Deep Learning Model Reuse and Composition in
Knowledge Centric Networking

Dolly Sapra
University Of Amsterdam
Amsterdam, Netherlands

d.sapra@uva.nl

Abstract—Machine learning has inadvertently pioneered the
transition of big data into big knowledge. Machine learning
models absorb and incorporate knowledge from large scale
data through training and can be regarded as a representation
of the knowledge learnt. There are multitude of use cases
where this acquired knowledge can be used to enhance future
applications or speed up the training of new models. Yet, the
efficient sharing, exploitation and reusability of this knowledge
remains a challenge. In this paper we propose a framework
for deep learning models that facilitates the reuse of model
architectures, transfer coefficients between models for knowledge
composition and updates, and apply compression and pruning
techniques for efficient storage and communication. We discuss
the framework and its application in the context of Knowledge
Centric Networking (KCN) and demonstrate the framework
potential through various experiments, i.e. when knowledge has
to be updated to accommodate new (raw) data or to reduce
complexity.

Index Terms—Knowledge Centric Networking, Deep Models,
Knowledge Reuse

I. INTRODUCTION

In the age of the Internet of Things (IoT), where we have a
complex network of connected devices, sensors and computing
units, there is a large amount of data churning up every minute.
As these networks grow with more devices and users, the rapid
growth of data can overwhelm the underlying communication
channels and resources. The data can be highly redundant
and obtaining data might not be the end objective in such
networks. Converting data to knowledge allows utilization in
beneficent ways for different tasks, such as visual monitoring
in smart homes, remote assistance in medical care or analyzing
environmental data for agricultural use. Machine learning is
increasingly being deployed to convert raw data into mean-
ingful knowledge. This conversion is majorly performed on
a central server or knowledge creator node with high com-
putation capabilities, which can create bottlenecks with high
volumes of data communication. To overcome these issues,
Knowledge Centric Networking (KCN) was conceptualized in
[1], which proposes a paradigm shift, in a network, from data
centric communication to knowledge centric communication.
KCN emphasizes three key aspects about knowledge: creation,
composition and distribution.

Deep learning models or Neural Networks (NNs) are a pop-
ular knowledge modality for big data, storing the knowledge in
the form of a brain-like architecture and thousands to millions
of coefficients, which are trained from large amount of data.

Andy D. Pimentel
University Of Amsterdam
Amsterdam, Netherlands

a.d.pimentel @uva.nl

° % B_\jData
0@ 0O —
g Deep Learnin
Q % @ Models =%
Knowledge
loT owled

Fig. 1. Traditional IoT network with centralized knowledge server for
intelligence. Deep learning models are trained centrally using data from
devices and then distributed.

They can be viewed as assimilating and extracting knowledge
by storing data statistics and domain specific characteristics
through training. Figure 1 illustrates how IoT networks and
deep learning models are deployed and used in the traditional
sense. There is a central knowledge server that creates deep
learning models from device data, analyzes new incoming data
and decides when to update the knowledge model. This knowl-
edge server frequently distributes appropriate deep learning
models to all devices, in order to promote the use of better and
more intelligent applications. KCN visualizes the knowledge
creation at the edge wherever possible, and these deep learning
models serve as the basic communication paradigm. New
dynamic data is continuously sensed and devices are added to
the network all the time. Sharing the assimilated knowledge
models, building newer knowledge models on top of existing
ones, and distributing decision making capabilities are aspired
as this would make the network more resilient and adaptable
to changes over the course of its active lifetime.

In such a distributed intelligent network, there is a need for
frequent knowledge updates. However, we are not aware of
any work on standardizing the knowledge update process. In
a domain specific task, the high correlation of deep learning
models can be exploited by different devices to reuse and
combine each other’s knowledge to create a better application.
Standardizing the knowledge update process with the aim of
reusing this high correlation, motivates the creation of our
framework. Our framework coordinates efficient communica-
tion, exchange and update of deep learning models, while
being adaptable to accommodate new data generated and
insights learnt.

We differ from domain adaptation [2], knowledge distil-
lation [3], and similar teacher-student algorithms [4], which

attempt to create new models for similar tasks in different do-
mains or constraints. In essence, these techniques can be used
with our framework to simplify the creation of student models
and streamlining their distribution through the network.

In short, our framework facilitates creation of a new network
and modification of existing ones, allows combination of
multiple models to compose a new model, replaces part(s) of
a model with other sub-model(s), isolates model layers that
can be individually transferred while supporting packaging
and compression for distribution. There are multitude of
ways in which deep learning models can be modified, both
weights and architecture of the neural network can be updated,
e.g. add/prune layers, add residual connections, change layer
activation. All of these tasks are unrelated to the training of
models or knowledge creation directly, even so, these tasks
are needed to keep the network’s knowledge contemporary
and maintain communication brevity with frequent updates in
the context of KCN.

The contributions of this paper are fourfold:

1) A framework for deep learning models to facilitate
knowledge exchange, reuse and frequent updates.

2) Discussion of various knowledge update techniques
from existing literature and formulating them in the
context of Knowledge Centric Networking.

3) A model partition and isolation paradigm to distribute
only the relevant slices of the deep learning model.

4) Validating the framework with experiments to update
knowledge models by varying data information over
time as well as model complexity.

The rest of the paper is organized as follows. We introduce
preliminary concepts and background of our work in Section
II. We then present various knowledge update techniques and
how they are incorporated in our framework in Section III
and results of our evaluations and validations in Section IV.
Finally, we discuss related works in Section V and conclude
the paper in Section VL.

II. BACKGROUND

In this section, we discuss the core ideas and terminologies
which form the foundation of our current work. We discuss
how IoT and deep learning are used together. Then, we
introduce KCN and discuss its communication model. Finally
we talk about interoperability among different devices in an
IoT network.

A. 10T and Deep Learning

The Internet of Things (IoT) is the network of devices
that embeds technology to sense the external environment and
perform some predefined tasks. These devices are capable of
communicating with the physical world, virtual (computing
and network environment) objects as well as with each other.
They may be similar in terms of data collected or the task
they are performing. For example, in a video surveillance
environment, most devices will be cameras with facial recog-
nition capabilities using similar knowledge models. In some

systems, different devices are collecting different types of data
but sharing the same goal. For instance, in a health monitoring
system with on-body sensors, each sensor is measuring a
different function like heartbeat rate or body movement but
they need to combine their data and knowledge in a way to
achieve a health overview.

As these IoT devices may generate a lot of data, global
Machine to Machine (M2M) IP traffic will grow more than
seven-fold in 5 years, from 3.7EB per month in 2017 to more
than 25EB by 2022, as projected by [5]. These enormous
amounts of data generated cannot be analyzed by humans,
therefore the need for artificial intelligence models such as
neural networks to be utilized in data analysis and knowledge
extraction. In neural networks, the input data pass through
multiple layers in sequence, wherein each layer performs
matrix multiplications on the data. The final layer of this
neural network is a predictor or a classifier for the expected
output. An example of a neural network is illustrated in
Figure 2. When the model contains many layers, the neural
network is known as a deep neural network (DNN) or deep
learning model. Convolutional Neural Networks (CNNs), e.g.
Alexnet [6], Resnet [7], are a special case of DNNs where
matrix multiplications include convolutional filter operations
designed for image and video analysis. There are other types
of DNNGs designed for variety of tasks; an overview of different
types of deep learning models can be found in [8].

CLLIANSS

Dog (0.1)
Cat(0.4)

Output: | peerosy

Lion(0.2)

Fig. 2. Deep neural network example for image classification

There are a large number of parameters in the matrix
multiplications, called model weights or coefficients, which are
estimated during training on data using stochastic gradient de-
scent [9]. This results in many computations being performed
and some devices do not have enough hardware resources to
cope with all the incoming data in a reasonable amount of
time. However, once computed the size of total coefficients
together is a tiny percentage of all the data generated and
analyzed over a period of time. There are other design choices,
called hyperparameters, to specify the deep learning model
architecture (like parameters of each layer, and the number
of layers). This model architecture and coefficients together
form the knowledge modality that we consider as the source
of intelligence in IoT systems.

B. Knowledge Centric Networking (KCN)

In traditional IoT networks with cloud computing support,
all devices transfer the data to the cloud and delegate heavy
computational tasks to the central server. Data then converge
and are progressively used for model training and fine tuning.
This approach implicates heavy data transmission and storage

S &4

D o @ loT-4 1
ata Target
Model-1 Model-1 S (Target)
‘ . PSS! Model-2
loT-1 I = o
ol- ge- 4 foe [-ii pt .
(Source) [ES loT-4 2
_ — (Target)
Model-2 Edge-4
S o o o (S &
e e SR
e - 2 =
- ata i eep Learnin - ° o
loT-2 Edge-2 - pI rning &_"';ii s
(Source) ——— Models -
d ~— Model-1 & (Target)
@ Cloud Edge-5 Model-2
5T ()
O ‘i Model-3 S @ ooo
=) Data = o ® 6o g '
loT-3 Edge-3 - m loT-6
(Source) Deep Learning Models (Target)

Fig. 3. KCN paradigm on IoT network with edge computing. Deep learning models can be created on edge and transmitted from edge to edge, edge to cloud

as well as edge to IoT device [10].

requirements on the network. The huge amount of data threat-
ening to throttle the network has prompted various research
ideas, e.g. data compression and quantization techniques [11],
[12]. Despite very efficient data compression techniques, the
network still can be overwhelmed to meet the demand for
high efficiency with highly redundant data transmissions. A
novel concept of KCN was envisioned and proposed in [1],
which emphasises the communication of knowledge models
instead of raw data. IoT devices continuously sensing the
environment and generating huge amounts of temporal data,
can use additional edge devices, which are closer to them or
maybe embedded along with sensors in the IoT device, for
knowledge extraction. KCN is based on the Edge computing
paradigm [13], which promotes more computation on edge
devices and less on the cloud, thereby reducing costs for
data bandwidth and storage. Figure 3 illustrates this concept:
deep learning models can be created and updated at the
edge and transmitted to other IoT devices, edge devices or
cloud. Besides improving latency and scalability of the system,
KCN also reduces exposure to privacy and security attacks by
removing the private or sensitive data moving around in the
connected network.

This network allows different granularity and hierarchy of
knowledge creation, re-composition, update and exchange.
Edge nodes can extract local knowledge from the sensed data
and then upload to the cloud. The cloud server collects models
from different devices and can perform composite knowledge
updates. It can then further distribute the updated models
to interactive and decision making devices, which might be
considered as front-ends of the system. Edge nodes can also
request generated models at another edge node directly to
perform its own task efficiently. This results in frequent
knowledge communication in the network as well as recurring
updates to knowledge models stored at different devices.

C. Interoperability

In any environment with multiple products and systems, it is
desired that all interfaces are well understood and are capable
of comprehending each other. There are many powerful deep
learning languages, toolsets and frameworks and it is possible
to have an environment where all of these are present in
at least one of the devices. Further optimizing deep learn-
ing models for specific hardware is difficult and since each
one (cloud/edge, CPU/GPU, etc.) has different capabilities
and characteristics, the problem becomes extremely hard and
complex. Models from a variety of frameworks need to run
on a variety of platforms. It is very time consuming to
optimize all the different combinations of frameworks and
hardware. A solution to train in any framework but being able
to communicate anywhere on the cloud or edge is needed.
Keeping this in mind, our framework is built using the Open
Neural Network eXchange framework (ONNX) [14]. ONNX
is well suited for this task as it encapsulates architecture and
coefficients in a single modality and is widely seen as a solu-
tion to the interoperability problem concerning different deep
learning frameworks. Most of them already allow exporting or
converting the model to the ONNX format, such as PyTorch
[15], Caffe2 [16], Apache MXNet [17], Microsoft Cognitive
Toolkit [18]. Converted models to ONNX can run on a variety
of platforms and devices directly using ONNX Runtime [19].
In the context of KCN, by standardizing the exchange format,
we simplify the design and implementation of dynamically
evolving deep learning models.

III. FRAMEWORK DESIGN

In this section, we present our framework and its features,
while discussing the design choices that we contemplate to
work best in different scenarios that can occur in knowledge-
based IoT networks. There is a plethora of algorithms and

techniques available in the literature that modify a neural
network in different possible ways. We draw some techniques
from this pool for their suitability to KCN. We not only
describe different forms of model modifications in this section
but also envision how and where they can be used for
efficient knowledge exchange. We specify which techniques
are supported by our framework and we try to point out their
applicability and possible use case settings. The novelty of this
framework lies in the detailed study and consolidation of deep
learning modification and communication techniques applica-
ble to a progressive learning and frequent update paradigm. We
recognize that some of our work is about picturing various
scenarios in the context of KCN and building a framework
around it. We believe that formulating knowledge composition,
update and exchange methodologies will cater to the dynamic
IoT network to be better serviced for a longer period of time
and it is a step forward towards moving the KCN paradigm
from a vision to reality.

A. Coefficients Update

The simplest form of knowledge update occurs in a neural
network by training the existing model with more data, which
is of similar nature as presented before. The model architecture
remains exactly the same, yet all coefficients get updated to
reflect knowledge from new data. Our framework implicitly
handles the coefficients update by updating the model file
with new weight values after training. Training with new data
is done at the edge and it is expected that this operation
is recurrent in nature on most, if not all, edge devices.
With the knowledge model being the important storage and
communication entity, the data is expected to be discarded
after training. The frequency of training is driven by storage
capacities at the edge devices and training can be triggered
with sufficient accumulated data. Depending on data type
and format, there may be a data cleanup and pre-processing
pipeline in place before the training operation. The updated
model is then available to be distributed or exchanged through
the network as needed.

B. Architecture Update

Designing a neural network is not trivial, and not all archi-
tectures are equal in terms of their capacities and knowledge
representation capabilities. Deeper networks, with a higher
number of layers, allow a more complex and non-linear
function to be learnt from data. However, apart from needing
huge amounts of training data to be able to meaningfully learn,
they require a large memory and powerful computation units,
usually lacking in edge devices. There exists a performance-
resource trade off in embedded and low power systems, which
is usually dissimilar for different types of devices. While
exchanging deep learning models between different nodes,
there is a chance that at the receiving device, the model is too
large or demands more computation resources than available,
setting off a need to reduce the model complexity. In some
other cases, the initial data available is not enough to train a
large model, so a small model may be built to kick start the

knowledge extraction process which also prevents over-fitting
on the small data-set at the same time. A larger model is built
later on to fully utilize all data that has been sensed, which
can be fabricated by expanding the current model capacity
instead of training from scratch. This progressive expansion is
also expected to reduce the upfront overhead of computational
costs that training a large model entails.

In all feasible and available scenarios for architecture up-
date, it is assumed vital for a model to be updated in a
function preserving fashion, so that the model does not leak
its knowledge. All algorithms implemented in the framework
have been chosen to consider either the function preservation
or minimal loss possible. Some of them were motivated by
the genetic operators in evolutionary neural architecture search
[20], where function preservation is crucial. The small loss of
performance with a major update is expected to be gained
back by training more and more as new data keep arriving
around the clock. Our framework handles architecture updates
by considering each layer as a named node and storing its
coefficients as a separate but connected block. Each node can
be isolated and its parameters, coefficients and formats updated
individually. It automatically checks for data format changes to
be done in subsequent layers of the modified node to keep the
model valid and consistent. The named nodes are important
and should be unique to be able to be used as identifiers for
all update and modification operations.

1) Increasing the model capacity: Out of all possible ways
to increase the model’s capacity, our framework currently
handles two ways to increase the capacity of the model:
increase the number of layers of the neural network or increase
the number of units or neurons in each or some of the layers.
Our framework emulates Net2Net [21] for function preserving
expansion of the network. There are two operations available
in Net2Net: Net2Deeper and Net2Wider, to increase neural
network depth and layer size respectively. Any convolutional
or fully connected layer is replaced by two layers of the same
type and size, with one layer having the same coefficients as
the original layer and the new layer’s coefficient matrix as
initialized to an identity matrix. To increase the number of
units in each layer, the coefficient matrix is expanded to the
required size and then random layer units are selected and
duplicated in the expanded coefficient matrix. Any increase in
number of units causes the output of the layer to increase
by the same amount, which means that there is a parallel
increase in the number of inputs to the subsequent layer. This
causes the coefficient matrix to expand as well, which is then
appended with randomly initialized values. These new layers
and units remain free to train further to take on any value later.
Hence, the effect of increasing layers and units in this way
is only to provide a good initialization to the newly created
snippets in the knowledge. With further training on the data,
the coefficients gets updated to preserve any new knowledge
and slowly diverge from their initial values.

2) Decreasing the model capacity: Contrary to the capacity
increasing operations, it is not beneficial to delete layers or
sub-units of the model in an ad-hoc manner. Each layer of the

model holds information or features that subsequent layers use
to build their own sub-knowledge. Various pruning techniques
have been proposed in the last decades to reduce model
complexity, redundancy and over-fitting. In recent works,
[22] and [23] suggested to remove all connections whose
weight was lower than a threshold and retrain the rest of the
network to fine-tune the model again. This approach leads to
a reduction in model size to the tune of 9 13 without
any loss of accuracy but leads to lightly populated coefficient
matrices. This reduces memory footprint of the model but fails
to reduce the computation cost because of irregular sparsity in
the pruned network. To overcome this issue, our framework
emulates the independent pruning technique from [24]. This
approach prunes the layer size by removing the least important
units of a layer. The relative importance of a unit in each layer
is calculated by the sum of its absolute weights. This value
gives an expectation of the magnitude of the output of each
unit, also called a feature map. Feature maps with smaller
weights tend to produce outputs with weak activations when
compared to the other units in that layer. Based on the target
reduction size, the units with the smallest sum values and their
corresponding feature maps are removed from the model. To
regain the accuracy that was lost by pruning, a prune-then-
retrain strategy needs to be adopted. In our framework, we
prune filters of multiple layers at once followed by further
training, though it is also possible to iteratively prune small
slices of the model and retrain the network repeatedly. The
iterative process may yield better results, but it requires more
data and training epochs to reach original performance.

Another way in which our framework decreases the network
capacity is by performing quantization on the coefficient
values. Quantization refers to the process of reducing the
number of bits that represent a number. In the context of
deep learning for research and deployment, the predominant
numerical format used has been 32-bits floating point. Our
framework currently converts 32-bits floating point numbers
to 16-bits, thereby halving the memory requirements for
the model on devices. As shown by many research works,
replacement of high precision numbers by lower-precision
numerical formats can be done without incurring significant
loss in accuracy [25], [26], thus preserving most of the
knowledge encapsulated in the converted model.

3) Replacing Layers: Our framework allows for replacing a
layer block in a model with a layer block from another model,
which was trained on similar data but on another device. For
this replacement to work, the input and output format of the
switching block have to be same in both source and target
models while the size of the block can be different. Figure 4
illustrates the layer replacing approach in our framework. If
model complexity reduction is desired, a block of n layers
is replaced by a block of layers of size <n from the source
model, given the layers are at the same cluster position as
defined in [27], so that the input and output formats of the
layer blocks are identical . The inverse action is also possible
to increase model capacity. This scenario in KCN is plausible
when multiple knowledge models in the IoT network are

Fig. 4. Example of layer replacement. A layer from the source model replaces
a similar layer section in the target model to achieve a new model containing
fewer layers.

trained on same data but resulted in different deep learning
models based on each device’s own optimization for model
creation and composition over the course of time. Accuracy
lost by performing this action can be regained by retraining
with more data, though sometimes the new model might never
be as proficient as the old one.

The model complexity of neural networks can also be
reduced by replacing a fully connected layer of a convolu-
tional neural network with the Global Average Pooling layer.
The network in Network architecture [28] and GoogLenet
[29] achieve state-of-the-art results on several benchmarks by
adopting this idea. Within our framework, replacing layers is
achieved by creating a new model using the relevant named
nodes from source models, followed by an associated coeffi-
cients copy operation. Coefficients for nodes which cannot be
found in the source model are then randomly initialized, these
are essentially now the new layers of our model.

C. Activation function update

Our framework allows changes to other parameters such as
layer activations, drop-out units and normalization techniques
as well. Activation functions are used for introducing non-
linearity into the neural network model so that the network
can progressively learn more effective feature representations.
Rectified Linear Units(ReLU) [30]-[32] are the most popular
activations as deep networks with ReLUs are more easily
optimized than networks with sigmoid or tanh units [33].
Figure 5 shows some popular activation functions.

Changing an activation function in the neural network has a
huge impact on the model behavior and changing them for an
already trained models is not a good idea. However, changing
the activation function from related functions is desirable in
some cases, such as using Leaky-ReLU will avoid the dead
ReLU problem which happens when the ReLU activation
always have values under 0, which completely blocks further
learning. Concatenated RelU [34] and Parametric Rectified
Linear Unit (PReLU) [35] are proposed to reduce redundancy

