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Abstract—Machine learning has inadvertently pioneered the
transition of big data into big knowledge. Machine learning
models absorb and incorporate knowledge from large scale
data through training and can be regarded as a representation
of the knowledge learnt. There are multitude of use cases
where this acquired knowledge can be used to enhance future
applications or speed up the training of new models. Yet, the
efficient sharing, exploitation and reusability of this knowledge
remains a challenge. In this paper we propose a framework
for deep learning models that facilitates the reuse of model
architectures, transfer coefficients between models for knowledge
composition and updates, and apply compression and pruning
techniques for efficient storage and communication. We discuss
the framework and its application in the context of Knowledge
Centric Networking (KCN) and demonstrate the framework
potential through various experiments, i.e. when knowledge has
to be updated to accommodate new (raw) data or to reduce
complexity.

Index Terms—Knowledge Centric Networking, Deep Models,
Knowledge Reuse

I. INTRODUCTION

In the age of the Internet of Things (IoT), where we have a
complex network of connected devices, sensors and computing
units, there is a large amount of data churning up every minute.
As these networks grow with more devices and users, the rapid
growth of data can overwhelm the underlying communication
channels and resources. The data can be highly redundant
and obtaining data might not be the end objective in such
networks. Converting data to knowledge allows utilization in
beneficent ways for different tasks, such as visual monitoring
in smart homes, remote assistance in medical care or analyzing
environmental data for agricultural use. Machine learning is
increasingly being deployed to convert raw data into mean-
ingful knowledge. This conversion is majorly performed on
a central server or knowledge creator node with high com-
putation capabilities, which can create bottlenecks with high
volumes of data communication. To overcome these issues,
Knowledge Centric Networking (KCN) was conceptualized in
[1], which proposes a paradigm shift, in a network, from data
centric communication to knowledge centric communication.
KCN emphasizes three key aspects about knowledge: creation,
composition and distribution.

Deep learning models or Neural Networks (NNs) are a pop-
ular knowledge modality for big data, storing the knowledge in
the form of a brain-like architecture and thousands to millions
of coefficients, which are trained from large amount of data.

Fig. 1. Traditional IoT network with centralized knowledge server for
intelligence. Deep learning models are trained centrally using data from
devices and then distributed.

They can be viewed as assimilating and extracting knowledge
by storing data statistics and domain specific characteristics
through training. Figure 1 illustrates how IoT networks and
deep learning models are deployed and used in the traditional
sense. There is a central knowledge server that creates deep
learning models from device data, analyzes new incoming data
and decides when to update the knowledge model. This knowl-
edge server frequently distributes appropriate deep learning
models to all devices, in order to promote the use of better and
more intelligent applications. KCN visualizes the knowledge
creation at the edge wherever possible, and these deep learning
models serve as the basic communication paradigm. New
dynamic data is continuously sensed and devices are added to
the network all the time. Sharing the assimilated knowledge
models, building newer knowledge models on top of existing
ones, and distributing decision making capabilities are aspired
as this would make the network more resilient and adaptable
to changes over the course of its active lifetime.

In such a distributed intelligent network, there is a need for
frequent knowledge updates. However, we are not aware of
any work on standardizing the knowledge update process. In
a domain specific task, the high correlation of deep learning
models can be exploited by different devices to reuse and
combine each other’s knowledge to create a better application.
Standardizing the knowledge update process with the aim of
reusing this high correlation, motivates the creation of our
framework. Our framework coordinates efficient communica-
tion, exchange and update of deep learning models, while
being adaptable to accommodate new data generated and
insights learnt.

We differ from domain adaptation [2], knowledge distil-
lation [3], and similar teacher-student algorithms [4], which



attempt to create new models for similar tasks in different do-
mains or constraints. In essence, these techniques can be used
with our framework to simplify the creation of student models
and streamlining their distribution through the network.

In short, our framework facilitates creation of a new network
and modification of existing ones, allows combination of
multiple models to compose a new model, replaces part(s) of
a model with other sub-model(s), isolates model layers that
can be individually transferred while supporting packaging
and compression for distribution. There are multitude of
ways in which deep learning models can be modified, both
weights and architecture of the neural network can be updated,
e.g. add/prune layers, add residual connections, change layer
activation. All of these tasks are unrelated to the training of
models or knowledge creation directly, even so, these tasks
are needed to keep the network’s knowledge contemporary
and maintain communication brevity with frequent updates in
the context of KCN.

The contributions of this paper are fourfold:
1) A framework for deep learning models to facilitate

knowledge exchange, reuse and frequent updates.
2) Discussion of various knowledge update techniques

from existing literature and formulating them in the
context of Knowledge Centric Networking.

3) A model partition and isolation paradigm to distribute
only the relevant slices of the deep learning model.

4) Validating the framework with experiments to update
knowledge models by varying data information over
time as well as model complexity.

The rest of the paper is organized as follows. We introduce
preliminary concepts and background of our work in Section
II. We then present various knowledge update techniques and
how they are incorporated in our framework in Section III
and results of our evaluations and validations in Section IV.
Finally, we discuss related works in Section V and conclude
the paper in Section VI.

II. BACKGROUND

In this section, we discuss the core ideas and terminologies
which form the foundation of our current work. We discuss
how IoT and deep learning are used together. Then, we
introduce KCN and discuss its communication model. Finally
we talk about interoperability among different devices in an
IoT network.

A. IoT and Deep Learning

The Internet of Things (IoT) is the network of devices
that embeds technology to sense the external environment and
perform some predefined tasks. These devices are capable of
communicating with the physical world, virtual (computing
and network environment) objects as well as with each other.
They may be similar in terms of data collected or the task
they are performing. For example, in a video surveillance
environment, most devices will be cameras with facial recog-
nition capabilities using similar knowledge models. In some

systems, different devices are collecting different types of data
but sharing the same goal. For instance, in a health monitoring
system with on-body sensors, each sensor is measuring a
different function like heartbeat rate or body movement but
they need to combine their data and knowledge in a way to
achieve a health overview.

As these IoT devices may generate a lot of data, global
Machine to Machine (M2M) IP traffic will grow more than
seven-fold in 5 years, from 3.7EB per month in 2017 to more
than 25EB by 2022, as projected by [5]. These enormous
amounts of data generated cannot be analyzed by humans,
therefore the need for artificial intelligence models such as
neural networks to be utilized in data analysis and knowledge
extraction. In neural networks, the input data pass through
multiple layers in sequence, wherein each layer performs
matrix multiplications on the data. The final layer of this
neural network is a predictor or a classifier for the expected
output. An example of a neural network is illustrated in
Figure 2. When the model contains many layers, the neural
network is known as a deep neural network (DNN) or deep
learning model. Convolutional Neural Networks (CNNs), e.g.
Alexnet [6], Resnet [7], are a special case of DNNs where
matrix multiplications include convolutional filter operations
designed for image and video analysis. There are other types
of DNNs designed for variety of tasks; an overview of different
types of deep learning models can be found in [8].

Fig. 2. Deep neural network example for image classification

There are a large number of parameters in the matrix
multiplications, called model weights or coefficients, which are
estimated during training on data using stochastic gradient de-
scent [9]. This results in many computations being performed
and some devices do not have enough hardware resources to
cope with all the incoming data in a reasonable amount of
time. However, once computed the size of total coefficients
together is a tiny percentage of all the data generated and
analyzed over a period of time. There are other design choices,
called hyperparameters, to specify the deep learning model
architecture (like parameters of each layer, and the number
of layers). This model architecture and coefficients together
form the knowledge modality that we consider as the source
of intelligence in IoT systems.

B. Knowledge Centric Networking (KCN)

In traditional IoT networks with cloud computing support,
all devices transfer the data to the cloud and delegate heavy
computational tasks to the central server. Data then converge
and are progressively used for model training and fine tuning.
This approach implicates heavy data transmission and storage



Fig. 3. KCN paradigm on IoT network with edge computing. Deep learning models can be created on edge and transmitted from edge to edge, edge to cloud
as well as edge to IoT device [10].

requirements on the network. The huge amount of data threat-
ening to throttle the network has prompted various research
ideas, e.g. data compression and quantization techniques [11],
[12]. Despite very efficient data compression techniques, the
network still can be overwhelmed to meet the demand for
high efficiency with highly redundant data transmissions. A
novel concept of KCN was envisioned and proposed in [1],
which emphasises the communication of knowledge models
instead of raw data. IoT devices continuously sensing the
environment and generating huge amounts of temporal data,
can use additional edge devices, which are closer to them or
maybe embedded along with sensors in the IoT device, for
knowledge extraction. KCN is based on the Edge computing
paradigm [13], which promotes more computation on edge
devices and less on the cloud, thereby reducing costs for
data bandwidth and storage. Figure 3 illustrates this concept:
deep learning models can be created and updated at the
edge and transmitted to other IoT devices, edge devices or
cloud. Besides improving latency and scalability of the system,
KCN also reduces exposure to privacy and security attacks by
removing the private or sensitive data moving around in the
connected network.

This network allows different granularity and hierarchy of
knowledge creation, re-composition, update and exchange.
Edge nodes can extract local knowledge from the sensed data
and then upload to the cloud. The cloud server collects models
from different devices and can perform composite knowledge
updates. It can then further distribute the updated models
to interactive and decision making devices, which might be
considered as front-ends of the system. Edge nodes can also
request generated models at another edge node directly to
perform its own task efficiently. This results in frequent
knowledge communication in the network as well as recurring
updates to knowledge models stored at different devices.

C. Interoperability

In any environment with multiple products and systems, it is
desired that all interfaces are well understood and are capable
of comprehending each other. There are many powerful deep
learning languages, toolsets and frameworks and it is possible
to have an environment where all of these are present in
at least one of the devices. Further optimizing deep learn-
ing models for specific hardware is difficult and since each
one (cloud/edge, CPU/GPU, etc.) has different capabilities
and characteristics, the problem becomes extremely hard and
complex. Models from a variety of frameworks need to run
on a variety of platforms. It is very time consuming to
optimize all the different combinations of frameworks and
hardware. A solution to train in any framework but being able
to communicate anywhere on the cloud or edge is needed.
Keeping this in mind, our framework is built using the Open
Neural Network eXchange framework (ONNX) [14]. ONNX
is well suited for this task as it encapsulates architecture and
coefficients in a single modality and is widely seen as a solu-
tion to the interoperability problem concerning different deep
learning frameworks. Most of them already allow exporting or
converting the model to the ONNX format, such as PyTorch
[15], Caffe2 [16], Apache MXNet [17], Microsoft Cognitive
Toolkit [18]. Converted models to ONNX can run on a variety
of platforms and devices directly using ONNX Runtime [19].
In the context of KCN, by standardizing the exchange format,
we simplify the design and implementation of dynamically
evolving deep learning models.

III. FRAMEWORK DESIGN

In this section, we present our framework and its features,
while discussing the design choices that we contemplate to
work best in different scenarios that can occur in knowledge-
based IoT networks. There is a plethora of algorithms and



techniques available in the literature that modify a neural
network in different possible ways. We draw some techniques
from this pool for their suitability to KCN. We not only
describe different forms of model modifications in this section
but also envision how and where they can be used for
efficient knowledge exchange. We specify which techniques
are supported by our framework and we try to point out their
applicability and possible use case settings. The novelty of this
framework lies in the detailed study and consolidation of deep
learning modification and communication techniques applica-
ble to a progressive learning and frequent update paradigm. We
recognize that some of our work is about picturing various
scenarios in the context of KCN and building a framework
around it. We believe that formulating knowledge composition,
update and exchange methodologies will cater to the dynamic
IoT network to be better serviced for a longer period of time
and it is a step forward towards moving the KCN paradigm
from a vision to reality.

A. Coefficients Update

The simplest form of knowledge update occurs in a neural
network by training the existing model with more data, which
is of similar nature as presented before. The model architecture
remains exactly the same, yet all coefficients get updated to
reflect knowledge from new data. Our framework implicitly
handles the coefficients update by updating the model file
with new weight values after training. Training with new data
is done at the edge and it is expected that this operation
is recurrent in nature on most, if not all, edge devices.
With the knowledge model being the important storage and
communication entity, the data is expected to be discarded
after training. The frequency of training is driven by storage
capacities at the edge devices and training can be triggered
with sufficient accumulated data. Depending on data type
and format, there may be a data cleanup and pre-processing
pipeline in place before the training operation. The updated
model is then available to be distributed or exchanged through
the network as needed.

B. Architecture Update

Designing a neural network is not trivial, and not all archi-
tectures are equal in terms of their capacities and knowledge
representation capabilities. Deeper networks, with a higher
number of layers, allow a more complex and non-linear
function to be learnt from data. However, apart from needing
huge amounts of training data to be able to meaningfully learn,
they require a large memory and powerful computation units,
usually lacking in edge devices. There exists a performance-
resource trade off in embedded and low power systems, which
is usually dissimilar for different types of devices. While
exchanging deep learning models between different nodes,
there is a chance that at the receiving device, the model is too
large or demands more computation resources than available,
setting off a need to reduce the model complexity. In some
other cases, the initial data available is not enough to train a
large model, so a small model may be built to kick start the

knowledge extraction process which also prevents over-fitting
on the small data-set at the same time. A larger model is built
later on to fully utilize all data that has been sensed, which
can be fabricated by expanding the current model capacity
instead of training from scratch. This progressive expansion is
also expected to reduce the upfront overhead of computational
costs that training a large model entails.

In all feasible and available scenarios for architecture up-
date, it is assumed vital for a model to be updated in a
function preserving fashion, so that the model does not leak
its knowledge. All algorithms implemented in the framework
have been chosen to consider either the function preservation
or minimal loss possible. Some of them were motivated by
the genetic operators in evolutionary neural architecture search
[20], where function preservation is crucial. The small loss of
performance with a major update is expected to be gained
back by training more and more as new data keep arriving
around the clock. Our framework handles architecture updates
by considering each layer as a named node and storing its
coefficients as a separate but connected block. Each node can
be isolated and its parameters, coefficients and formats updated
individually. It automatically checks for data format changes to
be done in subsequent layers of the modified node to keep the
model valid and consistent. The named nodes are important
and should be unique to be able to be used as identifiers for
all update and modification operations.

1) Increasing the model capacity: Out of all possible ways
to increase the model’s capacity, our framework currently
handles two ways to increase the capacity of the model:
increase the number of layers of the neural network or increase
the number of units or neurons in each or some of the layers.
Our framework emulates Net2Net [21] for function preserving
expansion of the network. There are two operations available
in Net2Net: Net2Deeper and Net2Wider, to increase neural
network depth and layer size respectively. Any convolutional
or fully connected layer is replaced by two layers of the same
type and size, with one layer having the same coefficients as
the original layer and the new layer’s coefficient matrix as
initialized to an identity matrix. To increase the number of
units in each layer, the coefficient matrix is expanded to the
required size and then random layer units are selected and
duplicated in the expanded coefficient matrix. Any increase in
number of units causes the output of the layer to increase
by the same amount, which means that there is a parallel
increase in the number of inputs to the subsequent layer. This
causes the coefficient matrix to expand as well, which is then
appended with randomly initialized values. These new layers
and units remain free to train further to take on any value later.
Hence, the effect of increasing layers and units in this way
is only to provide a good initialization to the newly created
snippets in the knowledge. With further training on the data,
the coefficients gets updated to preserve any new knowledge
and slowly diverge from their initial values.

2) Decreasing the model capacity: Contrary to the capacity
increasing operations, it is not beneficial to delete layers or
sub-units of the model in an ad-hoc manner. Each layer of the



model holds information or features that subsequent layers use
to build their own sub-knowledge. Various pruning techniques
have been proposed in the last decades to reduce model
complexity, redundancy and over-fitting. In recent works,
[22] and [23] suggested to remove all connections whose
weight was lower than a threshold and retrain the rest of the
network to fine-tune the model again. This approach leads to
a reduction in model size to the tune of 9× − 13× without
any loss of accuracy but leads to lightly populated coefficient
matrices. This reduces memory footprint of the model but fails
to reduce the computation cost because of irregular sparsity in
the pruned network. To overcome this issue, our framework
emulates the independent pruning technique from [24]. This
approach prunes the layer size by removing the least important
units of a layer. The relative importance of a unit in each layer
is calculated by the sum of its absolute weights. This value
gives an expectation of the magnitude of the output of each
unit, also called a feature map. Feature maps with smaller
weights tend to produce outputs with weak activations when
compared to the other units in that layer. Based on the target
reduction size, the units with the smallest sum values and their
corresponding feature maps are removed from the model. To
regain the accuracy that was lost by pruning, a prune-then-
retrain strategy needs to be adopted. In our framework, we
prune filters of multiple layers at once followed by further
training, though it is also possible to iteratively prune small
slices of the model and retrain the network repeatedly. The
iterative process may yield better results, but it requires more
data and training epochs to reach original performance.

Another way in which our framework decreases the network
capacity is by performing quantization on the coefficient
values. Quantization refers to the process of reducing the
number of bits that represent a number. In the context of
deep learning for research and deployment, the predominant
numerical format used has been 32-bits floating point. Our
framework currently converts 32-bits floating point numbers
to 16-bits, thereby halving the memory requirements for
the model on devices. As shown by many research works,
replacement of high precision numbers by lower-precision
numerical formats can be done without incurring significant
loss in accuracy [25], [26], thus preserving most of the
knowledge encapsulated in the converted model.

3) Replacing Layers: Our framework allows for replacing a
layer block in a model with a layer block from another model,
which was trained on similar data but on another device. For
this replacement to work, the input and output format of the
switching block have to be same in both source and target
models while the size of the block can be different. Figure 4
illustrates the layer replacing approach in our framework. If
model complexity reduction is desired, a block of n layers
is replaced by a block of layers of size <n from the source
model, given the layers are at the same cluster position as
defined in [27], so that the input and output formats of the
layer blocks are identical . The inverse action is also possible
to increase model capacity. This scenario in KCN is plausible
when multiple knowledge models in the IoT network are

Fig. 4. Example of layer replacement. A layer from the source model replaces
a similar layer section in the target model to achieve a new model containing
fewer layers.

trained on same data but resulted in different deep learning
models based on each device’s own optimization for model
creation and composition over the course of time. Accuracy
lost by performing this action can be regained by retraining
with more data, though sometimes the new model might never
be as proficient as the old one.

The model complexity of neural networks can also be
reduced by replacing a fully connected layer of a convolu-
tional neural network with the Global Average Pooling layer.
The network in Network architecture [28] and GoogLenet
[29] achieve state-of-the-art results on several benchmarks by
adopting this idea. Within our framework, replacing layers is
achieved by creating a new model using the relevant named
nodes from source models, followed by an associated coeffi-
cients copy operation. Coefficients for nodes which cannot be
found in the source model are then randomly initialized, these
are essentially now the new layers of our model.

C. Activation function update

Our framework allows changes to other parameters such as
layer activations, drop-out units and normalization techniques
as well. Activation functions are used for introducing non-
linearity into the neural network model so that the network
can progressively learn more effective feature representations.
Rectified Linear Units(ReLU) [30]–[32] are the most popular
activations as deep networks with ReLUs are more easily
optimized than networks with sigmoid or tanh units [33].
Figure 5 shows some popular activation functions.

Changing an activation function in the neural network has a
huge impact on the model behavior and changing them for an
already trained models is not a good idea. However, changing
the activation function from related functions is desirable in
some cases, such as using Leaky-ReLU will avoid the dead
ReLU problem which happens when the ReLU activation
always have values under 0, which completely blocks further
learning. Concatenated RelU [34] and Parametric Rectified
Linear Unit (PReLU) [35] are proposed to reduce redundancy



Fig. 5. Popular activation functions for neural networks.

and better generalize the traditional ReLU. In principle, chang-
ing the activation function is carried out in our framework by
changing node parameters. However, the more disparate and
dissimilar activation functions are, the more knowledge are
lost in the process.

D. Multi-source knowledge fusion

Our framework facilitates fusion of multiple deep learning
models to assimilate knowledge from different sources into a
larger model encapsulating the bigger picture. By using the
same layer node names as source nodes, the fused model
represents replicas of the parts of different models joined
together within the new model. After the new model is created,
it looks for associated source layer coefficients to be copied
for any computation needed on it.
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Softmax classifier

Pooling
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Fully-Connected
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Pooling
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Pooling

Conv

Fig. 6. Knowledge fusion model with different sensors in Human Activity
Recognition (HAR). Each time series data from sensors is locally processed
and fused together at a central node to extract inter-sensor relations to detect
human activity [36].

This feature is useful in IoT networks with temporal sensing
such as with Human Activity Recognition (HAR) [36]–[38],
which is a vital step in an application like skill assessment
and smart home assistant. Each sensor has its own knowledge
extraction module to analyze and obtain the local salient
features from the data. This knowledge is pooled centrally

Fig. 7. Knowledge fusion model with multi-source transfer learning using
an ensemble of deep models from different sensors/devices. Knowledge is
transferred from each source database to a target model. A selection process
combines models into an ensemble that is used to train a single randomly
initialized neural network.

and processed further to extract inter-sensor dependencies and
detect associated human activity in the given time period.
Figure 6 illustrates the concept of multi-source knowledge
fusion with deep learning models for time series input sensors.

In the context of KCN, this kind of model will have
difficulties to start knowledge extraction locally because all the
sensor data needs to be trained together to extract knowledge
about both independent and inter-dependent features for a
meaningful activity recognition. All sensors might be served
by same edge node to collect data and start training the model.
Once sufficient performance is reached, the model parts might
be isolated and distributed to relevant sensors. The sensors can
then convert their local raw data into knowledge using their
own sub-model and send their knowledge to the same edge
node again to be fused with knowledge from other nodes.
Our framework allows layer isolation and model fusion to
seamlessly execute this possible workflow.

Another example of knowledge fusion, called multi-source
transfer learning [39], [40] is currently popular in medical
image analysis. It is based on an ensemble of models that
are each created using single source transfer learning from
a variety of domains with similar data characteristics. In
single source transfer learning a number of consecutive layers
are transferred from a chosen pre-trained model (teacher) to
initialize its counterpart target model (student). The rest of
the student model is created anew and randomly initialized.
The layers obtained from the teacher are usually frozen and
the student model is trained on the target data-set to be



fine-tuned for the intended domain. In our framework, single
source transfer learning is realized by duplicating the source
model, freezing the coefficients of appropriate layers and then
replacing the rest of the layers with new randomly initialized
replacement layers. After re-training and fine tuning for the
target task, the new models can be saved at the central server.

An ensemble of all of the student models is then used to
train another model which is essentially now being generated
by training from a knowledge ensemble instead of raw data.
Figure 7 shows the multi-source transfer learning methodol-
ogy. In KCN, this paradigm is very useful when a new device
is added to the network, allowing it to gain knowledge from
already available intelligence in the network and does not need
to wait for a lot of data to be collected before being fully
utilized and deployed in its intended task. Our framework
does not perform this training but facilitates the creation of
ensembles of relevant student models. Using the ONNX file
format, any available or desired deep learning framework can
be used to train from the model ensemble.

E. Isolation and compression

As previously mentioned, our framework is capable of
isolating layers and their coefficients for all types of modi-
fications done on the models. Compression and packaging of
raw coefficients data are vital for efficient transmission and
exchange throughout the system, especially when distributing
only a part of the model. We implemented basic support for
general purpose compression and decompression using the
popular ZLIB compression library [41]. But, other compres-
sion libraries can also be added to extend our framework.

IV. VALIDATIONS

In this section, we validate the framework and its viability
to act as a knowledge modification and update environment.
We present the framework setup followed by two scenarios, a
smart camera network and a multi-sensor network, simulating
the KCN environment. We discuss different use cases for the
framework within these scenarios.

We implemented the framework using Java 8 and the
Protocol Buffers (protobuf) library [42] to build the ONNX
components. Our framework reads ONNX files and then alters
them as per the requested use case and writes the updated
ONNX files onto the storage system again. For further training
and validation, we imported the ONNX files into the Python
based Caffe2 framework (from the Pytorch library) [15]. Our
framework itself is reasonably lightweight and runs without
any GPU support, though we utilized a GeForce RTX 2080
[43] GPU to train all the deep models.

A. Smart camera network for object recognition

We simulated a KCN environment for a smart camera
network for object recognition as outlined in various other
frameworks as well [44]–[46] (see Figure 8). In the simulated
environment, each camera is represented by a unique convo-
lutional model called a cam-model. In other words, each cam-
model in the environment appears for a virtual camera and

Fig. 8. Smart camera network with a central knowledge server.

defines its object recognition capabilities. In the experimental
setup, we trained cam-models on CIFAR-10 [47], which is
a popular object recognition dataset. CIFAR-10 consists of
32 × 32 pixels RGB images classified into 10 categories and
is further divided into two sets of 50000 training and 10000
test images, to train and validate the model respectively.

A cam-model is an assembly of multiple convolutional
layers interspersed with two maxpool layers for input size
reduction, followed by fully connected layers. The convo-
lutional layers are also termed as feature extractor and its
main role is to convert raw image pixel data into meaningful
features of the input image. To correctly classify the image,
the feature information is then passed through a series of
fully connected layers, also called as a classifier. Figure 9
illustrates a basic neural network structure used in the current
setup. Each cam-model has its own distinct topology where the
number of convolutional and fully connected layers as well as
layer parameters such as the number of units and kernel sizes
are randomly sampled taking the pre-defined constraints into
account. This is to reflect that in a real smart camera network,
cameras added over a long period of time will have different
local compute and storage capabilities and might have been
initialized with a distinctive deep learning model.
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Fig. 9. Deep neural network depicting convolutional feature extractor and
fully connected classifier.

All models were built with ReLU activations and were
trained (and re-trained) with a learning rate of 0.0005 and
batch size of 90 using the Adam optimizer. We restricted the
GPU memory usage to 5GB during training to limit the size
of Neural Network from becoming too large. We discuss some
use cases for our framework below:



Fig. 10. Training curves for pruned model by 10%

Fig. 11. Training curves for modified model with some convolutional layers
replaced from another pre-trained model

1) Pruning a model by 10%: Memory is usually limited
on an edge device and pruning is a very efficient technique
to reduce the model’s memory footprint. To demonstrate
that performance is not degraded when removing redundant
information, we performed this experiment on a cam-model
comprising 13 convolutional layers and 3 fully connected
layers having a total of ≈10 million coefficients.

We pruned the network to reduce all weights by 10%,
resulting in a new model with ≈9 million coefficients. The
resulting model uses less memory while also reducing the
number of MAC (Multiply-Accumulate) operations needed in
each run. The original model has 91.4% accuracy while the
pruned model actually performed slightly better with 91.59%
accuracy after re-training, see Figure 10. The increase in
performance is caused by weak activations removal which
were not contributing considerably to the model intelligence.

2) Model composition from two neural networks : For this
use case, we chose a cam-model with 10 wide convolutional
layers and 3 fully connected layers (≈ 19 million coefficients)
with test accuracy of 90.81% with the aim of reducing storage
size of the model on the edge. We picked another cam-model

Fig. 12. Training curves for modified pre-trained model to include a new
class ”Flower” to the existing CIFAR-10 dataset.

Fig. 13. Training curves for modified pre-trained model with Global Average
Pooling as classifier, replacing fully connected layers.

with 13 (smaller) convolutional and 2 fully connected layers
(≈ 12 million coefficients) having an accuracy of 92.09%.

We chose a block of 2 convolutional layers from the latter
model and used it to replace a block of 4 convolutional
layers in the first one. All the blocks that were selected were
operating on same input and output dimensions and were
roughly in a similar phase of feature extraction. The resulting
model now has 8 convolutional layers and 3 fully connected
layers with ≈ 14 million coefficients. We re-trained it further
and the new model was able to achieve 89.5% accuracy, which
is much less than its parent. Figure 11 shows the related
training curves. This illustrates the point that composing a
model from two different models is not always a preserving
function, however the benefit is still observed by lowering the
model complexity through a reduction in the number of layers,
amount of arithmetic computations and storage size.

3) Increasing the number of output classes: As mentioned
above, there are 10 output classes for the CIFAR-10 dataset.
There are possible scenarios where sensed data or the envi-
ronment has evolved and there is a need to define an extra
output class. It is not desirable to train from scratch, especially



when original data were not saved in the system. We added
a class ”Flower” to an existing, pre-trained model on CIFAR-
10. The number of images available for the new class were
kept at half of existing class samples to reflect the fact that
in a dynamic environment new output classes will not be
equally represented, specially in the early stages of new data
being sensed. To fine tune the model, we preserved the feature
extractor and expanded the last fully connected layer in the
classifier to include new output, totalling the number of outputs
to 11. The new model was fine-tuned by training with an input
data set containing all 11 classes, though only the last few
layers were available to be updated as we froze the feature
extractor.

The randomly chosen cam-model, consists of 15 convolu-
tional layers and 3 fully connected layers with 92.6% accuracy
(with 10 classes). After only 10 epochs training, the reached
accuracy for the extended CIFAR-10 dataset is 91.57%, see
Figure 12.

We did not observe an accuracy increase after 10 epochs.
And we noticed that there is a loss of performance, but
handling the trade-off between speed of knowledge update
and best performance achievable is a complex task to fulfill.
The trade-off will generally vary with different data types,
model complexities and device computation capabilities. As
future work, the decision choices regarding how long to train
and how many layers to freeze might also be dynamically
incorporated into the framework to get the best model in terms
of its performance when data characteristic changes over a
long period of time.

4) Replacing layers: As discussed in Section III, replacing
heavy fully connected layers with Global Average Pooling de-
creases the model capacity in architecture update, and reduces
the computation cost. We took the same cam-model as above
(with 10 output classes) and replaced the fully connected
layers based classifier with a Global Average Pooling layer. In
the given network it resulted in ≈ 1.5 million fewer multiply-
accumulate operations, which leads to faster inference, along
with lower power consumption, computation and memory
demands on the device.

We re-trained the new network until the loss became stag-
nant, which was at 45 epochs. Original model accuracy is
92.6%, and even though the new model has fewer coefficients,
it displayed a very small performance degradation by reaching
an accuracy of 92.39%, see Figure 13.

The last two graphs (Figures 12-13) are noticeably smoother
than the first two because the feature extractor was frozen
in these two experiments and only the classifier part of the
network was actually re-trained.

B. Multi-sensor based activity recognition

This scenario demonstrates the use cases based on multi-
source knowledge fusion. We performed an activity recogni-
tion task based on the PAMAP2 dataset [48], which provides
data recordings from four sensors, 13 channels each from three
Inertial Measurement Units (IMU) and a single channel from
a heart rate monitor. All these sensors are body worn and are

on distinct locations such as hand, chest and ankle, jointly
forming a small network which also involves communicating
sensor data to a central controller which recognizes the activity
being performed. The setup in our experiment is based on the
CNN-IMU architecture from [49] as shown in Figure 14.

Fig. 14. Activity Recognition based on multiple sensor data. Each sensor has
a convolutional sub-model, fused at the end with fully connected layers.

Each sensor has its own branch of four convolutional
layers intermixed with two maxpool layers, followed by a
fully connected layer. The output from these branches is
concatenated and goes through fully connected layers that
predict the activity. The whole network is trained together at
once with the RMSProp optimizer using a batch size of 50 and
learning rate of 10−4 after downsampling the IMUs recordings
to 30 Hz and a sliding window of 3s (100 samples) and a step
size of 660ms (22 samples).

1) Isolating branches: Using our framework, we isolated
sub models from the branches and their respective layers into
individual ONNX files. The sub model can be deployed close
to the sensor itself, hence removing the need for sensors to
transmit all the data to the central controller. For a 13 channel
IMU, data needed to analyse each 3s window in our setup
is equivalent to approximately 8kBps. By computing the sub
models close to the sensor, only the output of the last layer is
sent over to the central server, which is approximately 3kBps,
resulting in a 60% decrease of bandwidth requirement. The
bandwidth saving becomes more important when there are
many sensors in the network.

V. RELATED WORK

The concept of incorporating knowledge based communi-
cation into networking is not new. There have been numerous
works proposing the idea, such as [50]–[52]. However, the
focus of these works is towards network communication
analysis and control, while largely ignoring the utilization of
knowledge modality in all other aspects of an IoT network.
In direct contrast, KCN perceives the knowledge as the chief
content operating in the network, from front-end to back-end
and from sensing to action. Knowledge creation, composition
and distribution are the primary expected features of every
device on the network.

Some works proposed in recent years investigate various dif-
ferent aspects of the knowledge centric paradigm to further the
research on KCN infrastructure. For knowledge distribution in
KCN, [10] investigated inter-model compression for compact
representation of models to further reduce the data bandwidth



requirements. Our works are similar in respect that we believe
interoperability is the forefront of knowledge communication
and exchange, but diverge very quickly in the scope they inves-
tigated. Our focus is on knowledge modification as opposed to
knowledge compression for distribution. Deep learning model
compression is a small part of our framework whose aim is to
allow coefficients isolation and efficient packaging in scenarios
where only some parts of the model need to be exchanged.

Foreseeing the problem of the knowledge-based forwarding
on the knowledge router, [53] proposed a novel data structure
for the knowledge routing table index. This results in faster
movement of knowledge on a physical network and its efficient
routing in terms of shorter latency, low memory consumption,
and fast routing table update. On similar lines, [54] proposed
an intelligent routing algorithm for knowledge models in
KCN based vehicular ad hoc networks. These works, though
dissimilar to ours, are vital to achieve KCN deployment in
physical IoT networks. These works strengthen the viability
of a KCN infrastructure implementation and in turn makes
our framework more practical and serviceable in a KCN based
system.

The concepts of lifelong learning and never-ending learning
[55], [56] have also been around since a while. These ideas
focus on individual models to be better learners of a variety
of data types by being able to learn how to learn, and thus
keep evolving with the evolving environment. Even though the
concepts have been proposed for individual models, they can
also be reformulated for the KCN paradigm where the dynamic
intelligence of the network is able to improve implicitly over
the course of time.

The implementation of systems that will last a long time is
also possible through progressive learning methodologies for
neural networks such as for multi-class classification [57], face
recognition [58] and Speech Enhancement [59]. In progressive
learning, the neural network starts learning from a small set
of data but can expand automatically on introduction of new
classes while still retaining the knowledge of previous classes.
Unlike our framework, these techniques let the model to grow
with each update and do not perform model reduction or
consider power-memory constraints that are common with
devices in the IoT network.

VI. CONCLUSION

In this paper, we presented a framework for deep learn-
ing models that facilitates knowledge update, composition
and reuse in the scope of KCN. We emphasized that our
framework can be used to allow deep learning models in a
IoT networks context for dynamic knowledge modality. We
envisioned multiple possible scenarios where neural networks
will need to be remodeled to suit evolving intelligence of the
system and discussed ways to solve some of those scenarios
with an appropriate methodology. We also demonstrated with
evaluations that our framework is able to update models in
a variety of scenarios that are likely to occur in KCN. We
showed that it is possible to use neural networks as a dynamic
knowledge modality, which can be continuously modified

and maintained in line with dynamic system behaviors and
changing requirements.

With significant recent advances in deep learning models
and deployment of more and more IoT devices, it is probable
that KCN will become the key to control the too much data
problem. There are still some open problems that need to be
solved in order to see KCN being deployed in reality. Specif-
ically, knowledge creation and modification strategies that are
geared towards low-power embedded devices and real time
constraints. As future work we plan to investigate these issues
and extend our framework to integrate resource/performance
trade-offs based model modification techniques and faster
update mechanisms for real time requirements.
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