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ABSTRACT
Novel Deep Learning (DL) algorithms show ever-increasing accu-
racy and precision in multiple application domains. However, a
step further is needed towards the ubiquitous adoption of this kind
of instrument. First, effort and skills required to develop new DL
models, or to adapt existing ones to new use-cases, are hardly avail-
able for small- and medium-sized businesses. Second, DL inference
must be brought at the edge, to overcome limitations posed by the
classically-used cloud computing paradigm. This requires imple-
mentation on low-energy computing nodes, often heterogenous
and parallel, that are usually more complex to program and to man-
age. This work describes the ALOHA framework, that proposes
a solution to these issue by means of an integrated tool flow that
automates most phases of the development process. The framework
introduces architecture-awareness, considering the target inference
platform very early, already during algorithm selection, and driving
the optimal porting of the resulting embedded application. More-
over it considers security, power efficiency and adaptiveness as
main objectives during the whole development process.
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1 INTRODUCTION
Deep Learning (DL) algorithms, often called Deep Neural Networks
(DNN), currently represent the state-of-the-art approach inmachine
learning and artificial intelligence to complex problems such as
image recognition, object identification, speech recognition, video
content analysis, and machine translation [9].

Novel algorithm configurations continuously improve the preci-
sion of DL systems, often at the price of significant requirements in
terms of processing power. Nevertheless, the edge computing para-
digm pushes towards the deployment of DL inference tasks on em-
bedded devices, to overcome limitations of cloud-based computing.
When DL is moved at the edge, severe performance requirements
must coexist with tight constraints in terms of power and energy
consumption.

A promising solution to this problem relies on the use of paral-
lel heterogeneous processing architectures. In this landscape, the
implementation of modern DL systems becomes a very error prone
and effort hungry activity that limits the adoption of DL instru-
ments for small and medium software development companies,
for two main reasons. First, the configuration of the specific DL
algorithm usable to solve a problem is often chosen using a man-
ual trial-and-error approach that relies on multiple training and
evaluation iterations to compare different candidate configurations.
With this approach, good algorithm configurations are hard to find
in reasonable time, even for experts. Second, the programming of
embedded heterogeneous systems to implement the inference re-
quires advanced skills in parallel computing, and must be carefully
tuned to the specific target heterogeneous architecture, in order to
optimally exploit the underlying system in terms of performance
and power.

Thus, there is a growing need for computer-aided design tools
capable of assisting software developers in implementing DL al-
gorithms on heterogeneous low-energy processing platforms in
the embedded system industry. In this work we present a novel
software development toolflow, composed of interacting utilities
automating:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(1) the selection of an optimal algorithm configuration able to
meet the requirements of a specific application (use-case),

(2) the optimization of its partitioning and mapping on a het-
erogeneous low-energy target processing platform,

(3) the optimization of power and energy savings during its
deployment.

The approach will been practically validated on two main ref-
erence platforms, NEURAghe [15] and Orlando [4], showing that
it can actually support state-of-the-art computing technologies. In
this paper we show a first set of experimental results highlighting
the advantages of the proposed method.

2 RELATEDWORK
Researchers communities and vendors are targeting different as-
pects of DL, from algorithm design to implementation on computing
architectures. Recently, significant effort has been dedicated to the
development of open-source deep learning toolkits aiming to im-
prove the efficiency in building new neural network models and
in training and testing them on production-scale data, including
Theano [19], Caffe [8], TensorFlow [5] and CNTK [3]. All the men-
tioned tools typically target Graphic Processing UNits (GPUs) as
their primary target platform, often using libraries such as NVIDIA
CUDA and cuDNN [7] under the hood, and desktop Central Pro-
cessing Units (CPUs) as a second target. Despite continuous ad-
vancements in GPU-related technology, GPUs are far from being
the lonely actors in this field. A wide landscape of novel very power-
and performance-efficient processing architectures are emerging
on the market and in literature, often endowed with accelerators
and specialized hardware for speeding-up the most computation-
intensive tasks and/or reduce power consumption, such as convolu-
tion layers in CNN. Successful examples are the Tensor Processing
Unit from Google [6] and the NVIDIA Deep Learning Accelerator.
Other approaches rely on specialized hardware or consider FPGAs
as target implementation technology, thanks to their flexibility in
terms of logic and IOs.

Although the majority of architectures comes with a dedicated
middleware layers implementing computing primitives (cuDNN,
AuvizDNN, Tensor Processor Unit SDK), a power- and performance-
efficient implementation of new algorithms on the platform requires
a DSE process. The designer has to select, without support from
existing software development utilities, the right fine-tuning pa-
rameters of the mapping configurations, including partitioning of
layers in sub-layers, assignment of operations to processors, precise
scheduling of operations and data transfer.

AutoML1 provides tools for assessing with a design space ex-
ploration the impact of changing hyperparameter values on the
precision and on the performance of a target algorithm. Automated
algorithm design approaches mostly optimize for classification pre-
cision and only as a secondary objective try to reduce the computing
workload. ALOHA aims at advancing state of the art in this field by
implementing an application-level DSE environment that will tune
all the mentioned porting-related parameters. The architectural fea-
tures, described bymeans of an adequate architecture model, will be
considered to define an optimal porting configuration. Implementa-
tion of such porting will be later automated using platform-specific

1http://automl.org/
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Figure 1: General toolflow overview

support. The DSE will be made scenario aware to capture the dif-
ferent operation modes of the DL algorithms, thereby allowing to
make runtime trade-off choices regarding various extra-functional
properties such as system performance, energy consumption, pre-
cision.

3 DESIGN FLOW OVERVIEW
An overview of the proposed toolflow is shown in Figure 1. The
toolflow receives as inputs, a dataset, a set of use-case related con-
straints (security, performance and power), a configuration file,
initial DNN(s) and hardware architecture/specification files. The
main output of the flow is an architecture aware partitioned and
mapped DNN configuration ready to be ported on the target com-
puting platform. The overall tool flow can be divided into three
different phases.

The first phase aims at automating the algorithm design pro-
cess. It generates the optimal algorithm configuration taking into
account the target task, the set of constraints and the target ar-
chitecture that will execute the inference task. This is possible
thanks to a decision-taking tool, called Design Space Exploration
(DSE) engine, that creates a Pareto graph populated with design
points corresponding to candidate algorithm configurations. To
populate the Pareto graph, the DSE engine requests evaluation of
the design points to a set of satellite tools, shown on the right-hand
side of Figure 1, that assess different design points with respect to
different metrics (accuracy, security, power, performance, etc..). The
DSE uses design-space pruning techniques to reduce the number
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of evaluations to be performed, however exploration can require
several iterations. At the end the DSE selects the optimal algorithm
configuration, that is propagated to the next stage of the flow.

The second phase of the toolflow aims at automating a system-
level design process, optimizing the partitioning and the mapping
of the algorithm configuration selected by the DSE in the previous
phase on the target processing platform. This phase generates an ar-
chitecture aware partitioned and mapped application configuration
ready to be transferred to the last stage of the toolflow. Similarly to
phase 1, the design process is driven by a DSE engine, indicated as
System-level DSE engine in Figure 1.

Finally, the third phase automates the porting of the target in-
ference application on the target architecture, translating mapping
information in adequate calls to computing and communication
primitives exposed by the architecture. This phase exploits also the
power- and performance-related knobs exposed by the platform
(VFS, power and clock gating etc.).

In the following sections, a description of the components in each
phase, and an overview of the integration methodology that allow
them to work towards a common unified toolflow are presented.

3.1 Toolflow integration methodology
The ALOHA Toolflow integration is based on RESTful Microservice
architecture, which is a software architectural style that designs
an application as a collection of a loosely coupled, collaborating
services. Microservice architecture has been used by a widely set
of software leader companies such as Amazon, Ebay, Netflix or
Uber between others2. To decompose the application into services,
decomposition based on business capabilities3 has been used.

Each of the Toolflow components implements a HTTP/REST API
that can be accessed from other parts of the application. Contain-
ers are utilized to achieve the required level of isolation between
modules. Given that components are exposing a stateless inter-
face, an orchestrator module was implemented as controller of the
application and data flows.

3.2 Toolflow components
This section outlines the role and functionality of the main toolflow
components.

3.2.1 DSE Engine. The DSE engine drives the search for the opti-
mal algorithm configuration through the vast design space, using
iterative evaluation of candidate design points. It reads all the input
files from a shared storage, which includes constraints, configura-
tion, initial DNN(s) and hardware architecture/specification files,
and converts representational formats, if needed, to communicate
effectively with the different satellite tools. Subsequently, it initi-
ates the exploration process. When the exploration is finished, the
DSE engine triggers the next phase of the toolflow for system-level
DSE. If no initial DNN is provided, by default, the DSE engine will
generate a population of design points using random or minimum
topologies.

Since performing a full exploration would be unfeasible due to
excessive runtimes, the DSE engine uses a Genetic Algorithm (GA)
to explore and prune the design space. Figure 2 shows the workflow

2https://microservices.io/articles/whoisusingmicroservices.html
3https://microservices.io/patterns/decomposition/decompose-by-business-
capability.html

Read data model(s) and create 

genotypes

‘Pruned’ Design Space - output

Population (set of topologies)

Initial DNN model(s) (.onnx)

Evaluate current population

Stop 

criteria

met?

Initial population

Replace population

Do a set of genetic

alterations on 

population

Yes

No

DNN model(s) (.onnx)

Performance/Power evaluation

Security evaluation

Algorithm configuration refinement

for parsimonious inference

Training Engine

(accuracy evaluation)

Figure 2: Overview of the exploration process workflow

of the proposed GAmethodology. The process is initiated with a set
of DNNs which then creates a genotype for use in the GA. This set
of DNNs together make up the initial ‘Population’. Each genotype
in the population is evaluated and given a fitness score. Evaluation
of parameters is provided by satellite tools (described below in
more detail) and performed iteratively. With each iteration, we get
solutions that are better than the ones in the previous generation
and these have a higher probability of creating offspring for the
next generation. These new off-springs are created through gene
altering operations, like crossover and mutations, and these replace
the low scoring, poorly performing solutions.

The iterations continue until the stopping criteria are met, which
can be pre-defined satisfactory performance scores or a specified
maximum number of iterations. The last generation achieved in
this way gives us a set of topologies that satisfy the evaluation
constraints and are best among the explored topologies. A Pareto
graph is built using these resulting topologies along with their
fitness scores in the respective evaluation modules.

3.2.2 Training Engine. The Training engine is the principal utility
specifically dedicated for training in the proposed toolflow. It is
accessed by the DSE engine to request the accuracy evaluation of
a candidate algorithm configuration. It supports different training
methods, and may start training from scratch or applying trans-
fer learning to reuse pre-trained networks in a different use-case.
Conceptionally, the training engine relies on the following specifi-
cations:

(1) information baseline (domain description; training data, pre-
trained models);

(2) task (classification, regression, semantic segmentation etc.);
(3) training scenario (training from scratch, fine-tuning, transfer

learning);
(4) model architecture (type of model; specification which pa-

rameters are free and which are fixed);
(5) learning scheme (dataset augmentation, loss function, regu-

larization, dropout, adversarial training; probabilistic metric
for domain adaptation etc.);

(6) optimization technique for hyper parameter tuning.
The output of the training engine comprises numerical values

for the free parameters (weights and bias; hyper parameters) and
meta information from analysis of the training and final model.

Figure 3 shows an overview of the Training engine workflow
in conjunction with the toolflow components. Core part of the
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Training engine serves for model training and evaluation. Moreover,
it performs a local Hyper Parameter optimization to identify some
training related configuration parameters that are not included
in the model. Such optimization can be restricted (with directives
propagated from the Security Evaluation component) avoiding
exploration of some hyperparameters due to the security reasons
(eg. optimizer function). Optimization of the hyper parameters and
training are performed simultaneously on the model provided by
the DSE Engine. At the end of this procedure, evaluation scores
and trained model are send back to the DSE Engine.

3.2.3 Algorithm configuration refinement for parsimonious infer-
ence. This component of the toolflow, when requested by the DSE
engine, tries to reduce the computing effort and the energetic cost
of the execution of inference of a candidate design point. To this aim
it can apply transformations from two classes to the DNN under
refinement:

(1) qantize: reduction of data precision (using different nu-
merical representation formats in activations and weights).

(2) prune: remove low-impact connections between network
layers.

The qantize class of transformations is meant to lower the
data representation from the one used for the original floating-
point training to one which allows for parsimonious inference on
the target embedded device. Transformations of this class include:
low-precision calibration, low-precision calibration + fine-tuning,
Q-bit integer quantization [12], Q-bit INQ quantization [21], bina-
rization [2], ABC-Net binarization [13].

The prune transformations include both iterative pruning [11]
and INQ pruning [21] to prune less relevant network weights. The
INQ pruning uses fine-tuning of a pre-trained network. It can be
used only together with INQ quantization, as an additional option.
This component provides in output a modified algorithm descrip-
tion, after performing an optimization process that can be seen as
“local search” within the overall exploration process.

3.2.4 Security evaluation. The security evaluation component eval-
uates design points proposed by the DSE engine in terms of security
under adversarial input perturbations.

As shown in Figure 1, the security evaluation module receives a
trained network model (corresponding to the current design point)

and the dataset as inputs. For each data point, it then generates an
adversarial perturbation that, when applied to the data point, maxi-
mizes its probability of being misclassified by the targeted trained
network model. The adversarial perturbation is quantified by a
distance measure computed between the source data point and its
perturbed version, bounded by a maximum distance value epsilon.
These attacks are known as evasion attacks or adversarial examples,
and can be generated with state-of-the-art gradient-based algo-
rithms. The security evaluation procedure amounts to measuring
the attack success rate as a function of the maximum admissible in-
put perturbation epsilon, i.e., how the classification accuracy drops
as the maximum admissible input perturbation epsilon increases.
Three levels corresponding to low, medium and high security will
be defined to measure how quickly the accuracy drops as epsilon
increases. According to the evaluation results, the security evalua-
tion tool may also associate to a candidate algorithm configuration
a prospective action (among a set of pre-defined measures) that
may be used to improve its security level.

3.2.5 Performance/Power evaluation. This satellite tool evaluates
the performance and the power consumption associated with the
execution of the inference of a candidate design point on the tar-
get architecture. It receives as inputs one or several DNN models
coming from the DSE engine, and the target architecture descrip-
tion (see Figure 1). The tool generates as output, for every DNN
model, the following set of evaluated parameters: the DNN infer-
ence execution time in seconds (Performance), the DNN inference
energy consumption in joules (Energy), the number of processors
prospectively required for DNN inference (Processors), and the
memory required for DNN inference in bytes (Memory). The evalu-
ation of a DNN model is performed in three main steps. First, an
internal DNN model representation is extracted from a specifica-
tion of the input DNN. Second, a Cyclo-Static Dataflow (CSDF)
model is generated from the DNN model, as a graph of concurrent
tasks communicating data via FIFOs. Third, the CSDF model is
evaluated in terms of performance, power/energy consumption,
and resource usage. During the evaluation, the target architecture
is taken into account. This step will be implemented by extending
the open-source tool DARTS 4 with techniques for estimating the
power/energy consumption of the SDF graph when executed on
the target architecture.

3.2.6 System-level DSE engine. The system-level DSE engine con-
trols the exploration of the design space exposed by different parti-
tioning and mappings of the different inference software tasks and
creates a Pareto graph populated with design points corresponding
to candidate system-level configurations, featuring:

(1) a partitioning of DNN actors in sub-actors;
(2) a mapping of the DNN actors (or partitioned sub-actors) on

the processing elements available in the target architecture;
(3) a mapping of task-to-task communication items and inter-

mediate variables on communication and storage structures
available in the target architectures.

Granularity and nature of the mappable actors is extracted from
the architecture description format. This ensures, on one hand, ar-
chitectural awareness for the optimization-related decisions taken
in this phase. On the other hand, this permits mapping decisions

4http://daedalus.liacs.nl/darts/
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to be translated to actual code in the porting phase. To populate
the mentioned Pareto graph, the system-level DSE engine requests
evaluation of the design points to two satellite tools: Sesame frame-
work [16] and Architecture Optimization Workbench (AOW) [14]
(see Figure 1). The main difference between Sesame and AOW lays
in the level of details. AOW explores the whole design space subject
to system requirements and resource constraints (e.g., serializing
processing cores and communication buses) using coarse-grain
models for computation and communication, while Sesame can
perform more precise simulation of both computation and com-
munication over a more limited search space for better mapping.
In the proposed toolflow, the synergy between AOW and Sesame
is explored, where AOW finds “sweet” design spots and Sesame
fine-tunes and verifies them. The system-level DSE engine uses
design-space pruning techniques to reduce the number of evalua-
tions to be performed. Exploration can require several iterations. At
the end, the tool selects the optimal design point to be propagated
to lower level of the design flow.

To find more efficient mappings of DNN actors to the underlying
platform architecture and to optimize the usage of the available
resources in the target architecture, the system-level DSE engine
may also deploy transformations on the DNN algorithm graph by,
for example, merging or splitting actors (i.e., increasing or decreas-
ing the concurrency in the DNN algorithm). Alternatively, the DSE
engine may also invoke the post-training algorithm refinement
for parsimonious inference to achieve a workload reduction by
considering specific features of the target architecture.

3.2.7 Post-training algorithm refinement for parsimonious inference.
This component is responsible for performing, when invoked by
the system-level DSE engine on a candidate DNN, a post-selection
refinement of the DNN inference algorithm, to reduce the com-
putation burden during inference. This satellite tool is based on
Irida Labs‘ PI Technology [20]. At one usage mode, this technique
can serve as a self-pruning mechanism for the underlying DNN
model, thus enabling the elimination of unnecessary components
and redundancies in the DNN structure, through an additional
specialized post-training process. If the properties of the target
hardware architecture are favorable, the same technique can act as
a method for converting a static computing graph, to a dynamic
graph which can exhibit significant reduction in the average compu-
tational load during inference. In such a graph, several components
(i.e. convolutional kernels, groups of kernels, layers etc.) are con-
ditionally executed according to learned rules, and based on the
respective data being processed, by the means of some special, train-
able processing modules called LKAMs (Learning Kernel Activation
Modules).

To perform either of these operations, an internal model anal-
ysis process is initially used to identify the demanding nodes and
algorithmic components that can deliver the largest computational
gains. Upon identifying the components of interest, a set of special-
ized hyper-parameters are being defined based on the architecture
of the processed DNN model, and some utility modifications (i.e.
insertion of LKAMs) are applied without user interaction. After
the completion of the initial analysis, a specialized post-training
refinement process is undertaken in order to appropriately refine
the model.

If the process can converge to a solution that delivers a more
parsimonious inference, retaining at the same time the accuracy

of the initial model within specified margins, the tool returns the
modified model, otherwise notifies the DSE engine to proceed with
the initial trained model.

3.2.8 Middleware generation and code customization. The Middle-
ware generation and code customization support component in-
cludes a set of utilities and guidelines that:

(1) abstract the characteristics of the target platform;
(2) automate the translation of the partitioning and mapping

description into a platform-specific code that exploits the
programming primitives exposed by the target processing
platform, that must be used to execute a processing or com-
munication task on the hardware architecture;

(3) customize and instrument the code to reduce as much as pos-
sible the power consumption of the target hardware, using,
when available, power reduction techniques such as power
gating, clock gating, frequency scaling and others.

To interface these utilities with the rest of the toolflow, we have
outlined a first version of the architecture description format. Such
piece of information is intended to be produced by a prospective
user, when targeting a specific architecture for the first time, or
by the platform producer, to foster the adoption of its platform by
the community. The format aims to provide a general description
of the hardware platforms in terms of population of computing
elements, connectivity, and available operating modes (data types,
working frequency and gating conditions). Moreover, the architec-
ture description format describes, for the target reference platform,
a set of operators/actors representing the elementary computation
and communication tasks that can be triggered on the computing
resources exposed by the processing platform. These actors will
correspond to those managed by the utilities in the previous phase,
ensuring that the mapping information received as input by the
middleware component are prone to be implemented on the target
platform.

4 EXPERIMENTAL RESULTS
In this section we present a set of experiments that present the
potential of the optimization techniques that are used in the ALOHA
components.

4.1 Architecture-aware algorithm selection
A first experiment shows the potential of architecture-aware selec-
tion of algorithm parameters. We have performed a short explo-
ration considering VGG-16 [17] as initial algorithm. We consider
NEURAghe as target platform, whose capabilities are presented
in Table 15. NEURAghe is highly parameterizable, thus it can be
configured to fit in different devices with different costs and power
figures. In this experiment we have considered the LOSA configura-
tion. Two custom DNNs, derived from VGG-16 have been identified,
trained and tested using the architectural model and the training
engine. DNNs have slightly different layer configurations than the
original, respectively with a number of neurons increased (over-)
or descreased (under-) to better match the size of the matrix of
multiply-and-accumulate modules instantiated inside LOSA, to in-
crease their utilization over time and computing efficiency. Results

5The name of the accelerator template derives from the ancient megalithic edifices
named nuraghes, typical of the prehistoric culture in Sardinia. The different configura-
tions are named after most important nuraghes. https://en.wikipedia.org/wiki/Nuraghe
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Figure 4: Cumulative test loss on CIFAR-10 for VGG-16 fine-
tuned to different precisions from 8 to 3.5 bits, with weights
and activations scaling simultaneously.

are reported in Table 2. Both custom DNNs execute more efficiently
than the original. The over-dimensioned configuration undergoes
an increased workload in the same execution time as the the orig-
inal, allowing for a costless increase in accuracy. The downsized
algorithm also increases efficiency, reduces execution time, at the
expenses of a reduced accuracy.

4.1.1 Performance vs accuracy trade-off. As detailed in Section 3.2.3,
the ALOHA toolflow includes functionality to trade off an algo-
rithm’s accuracy with its energy cost. To test this functionality,
we initially focused on the relatively simple scenario of applying
optimization for parsimonious inference, to the VGG-16 topology
trained on CIFAR-10. To this aim we moved to stricter constraints
in terms of data representation, using a methodology derived from
Hubara et al.’s [12] quantized neural networks (QNN). In our case,
we apply the QNN method to a pre-trained CNN, after applying
a set of standard transformations so that each CONV layer is al-
ways followed by a batch normalization layer, on turn followed by
an activation quantization. We applied this methodology using a
pretrained version of this algorithm as input and applying the fol-
lowing heuristic relaxation strategy. First, we keep track of ∆L , the
variation of the overall total training loss between different epochs,
and we calculate it’s running average and standard deviation (µ∆L
and σ∆L ) over E epochs (typically 10-20).

(1) if both µ∆L and σ∆L are below hyperparametric thresholds
µτ and στ , we consider the training stale.

(2) if the training is stale for a N consecutive iterations (e.g. 2),
and the absolute loss is below a given threshold Lτ , we drop
the arithmetic precision by a given factor F .

(3) at each drop of precision, we reset the state of ∆L .

We used F =
√
2 (corresponding to dropping precision of the

equivalent of 0.5 bits at a time), L = 100, E = 20, µτ = στ = 5. At
the start of the procedure we set the representation to Q1.15, i.e.
a minimum representable value of ε = 2−15 = 3.052 × 10−5. By
tweaking these parameters, the overall ALOHA flow can choose
how much effort to dedicate to the quantization procedure. We ap-
plied the precision drop simultaneously to weights and activations;

for inputs, we stopped dropping precision after reaching 8 bits (the
native precision of input data).

Accuracy losses where negligible from 16 to 8 bits; Figure 4 shows
the latter part of the relaxation procedure where quality decreases a
bit more with each drop in precision, but is typically recoverable up
to a certain degree. As shown in Figure 4, the relaxation procedure
becomes slower with each drop, due to the increased difficulty in
finding good solutions. We stopped this preliminary version of
the procedure at 3.5 bits, where the impact on accuracy is more
substantial and the network does not converge satisfactorily with
respect to the hyperparameters we chose. Overall, we were able to
keep the quality drop in terms of accuracy below 5%when switching
from a 16-bit fixed point to a 4-bit network, capable to represent only
16 discrete values with ε = 2−3 = 0.125, with a 4× compression
(only from quantization not accounting e.g. for pruning and/or
additional compression opportunities granted by the correlation
between kernel values). Table 1 provides an hint of the performance
increase achievable on NEURAghe, when moving from 16 to 8 bit
data precision.

4.2 Security evaluation
In this section we discuss the capability of the framework to: (i) as-
sess the security of deep networks to adversarial examples, through
the notion of security evaluation curves [1], i.e., showing how the
performance of a model decreases under attacks crafted with an in-
creasing level of perturbation; and (ii) improve the security of deep
networks with adversarial training, i.e., by re-training the neural
network including such attacks as part of the training data [10, 18].
It is worth remarking that the framework will include also other
state-of-the-art defenses against adversarial examples, including
explicit detection or rejection of such samples, and the use of spe-
cific hyperparameter configurations to mitigate this threat (e.g.,
varying the regularization term in the loss function optimized dur-
ing training). We refer the reader to [1] for a more comprehensive
discussion of such defenses, as well as of the algorithms used to
craft the attacks. We discuss now an example of application of our
framework to improve the security of a deep network on a task in-
volving the recognition of MNIST handwritten digits. In particular,
we consider a well-known convolutional neural network used for
this task,6 consisting of different convolutional layers with pool-
ing and ReLU activations and a fully-connected output layer. We
trained it on the MNIST training set (consisting of 60, 000 images),
after normalizing all images in [0, 1] by dividing the pixel values by
255, and manipulated 10, 000 test samples with the Fast Gradient
Sign Method (FGSM) attack algorithm [10]. This attack bounds the
max-norm distance between the source image x and its adversarial
counterpart x′ as ∥x − x′∥∞ ≤ ε . This basically means that every
pixel p in the image x′ is manipulated independently, in the inter-
val [p − ε,p + ε]. We run this attack for ε ∈ {0, 0.01, 0.02, . . . , 1},
and report the corresponding security evaluation curve in Fig. 5,
showing how classification accuracy degrades under attacks char-
acterized by an increasing perturbation ε . We finally applied a basic
defense known as adversarial training [10], which suggests retrain-
ing the convolutional network by incorporating the attack samples
in the training set. To this end, we run the attack on the training
data and retrained the network on such samples along with the
initial training samples. We then generated the attack samples with
6https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
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Table 1: Main features of different NEURAghe configurations.

LOSA ARRUBIU SABINA LOSA ARRUBIU SABINA BANZOS
single 4x4 dual 2x4 single 2x2 single 4x4 dual 2x4 single 2x2 single 1x1

Device Z-7045 Z-7045 Z-7020 Z-7045 Z-7045 Z-7020 Z-7007s
DSP [#]; Freq [MHz] 864; 140 864; 140 216; 80 864; 140 864; 140 216; 80 54; 80

Benchmark net ResNet 18 ResNet 18 ResNet 18 VGG 16 VGG 16 VGG 16 SqueezeNet
Actual (16 bit) 61.91 103 18.34 172.67 184 29.32 3.84

GOps/s per Watt (16 bit) 6.19 10.3 5.24 17.26 18.4 8.37 1.53
GOps/s per k$ (16 bit) 25 41 41 69 74 65 43

Actual (8 bit) 111.12 - 33.07 335.09 - 56.51 -

Table 2: Comparison betweeen origi-
nal VGG-16 and custom NEURAghe-
aware configurations

Benchmark Performance (GOps/s) Accuracy (Top-1)

VGG16 172.67 88.4%
NEURAghe-aware VGG16 (over) 182.43 89.6%
NEURAghe-aware VGG16 (under) 183.75 79.7%
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Figure 5: Security evaluation of the considered convolu-
tional neural network under the FGSM attack with increas-
ing perturbation ε .

the FGSM attack against the robust network. As shown in Fig. 5,
the security of this network has been substantially increased by
this simple countermeasure. However, it is worth remarking that
stronger attack algorithms may be much more effective in this case.
We refer the reader to [1] for further details. In Fig. 6, we show
some examples of manipulated MNIST handwritten digits, able to
mislead classification, in along with their corresponding adversarial
perturbations (magnified to improve visibility).

4.3 Post-training parsimonious inference
experiment

In this section we explain what kind of additional savings can be
obtained applying post-training PI, and we present the results of
the evaluation of PI technique on a VGG-16 model. We performed
experiments using the VGG16 model on ILSVRC. The PI process
involves addition of LKAMs into all convolutional layers but the
first. The model was trained using the publicly provided pre-trained
model for initialization, and with a rather aggressive pruning hyper-
parameter setting, aiming to a more lossy but economical inference.
The resulting activity profiles of the trained parsimonious model are
illustrated in Figure 7. The resulting model achieves a respectable
of 70.4% accuracy, presenting a 2% deficit to the reference model,
but with an impressive 48.31% reduction in the required FLOPs. The
average kernel utilization is at the 66.14%, but more importantly,
as can be seen in figure 10, seven of the convolutional layers are
operating in a static or close-to-static mode, enabling the permanent
pruning of the redundant kernels from the model.

Figure 6: Manipulated MNIST handwritten digits that mis-
lead classification by a convolutional neural network,
crafted with the FGSM attack algorithm [10] with ε = 0.05.
Note that, within this setting, the adversarial perturbations
are almost imperceptible to the human eye, though still ef-
fective to mislead recognition.

Figure 7: Kernel Activity Profile for every layer of VGG16
model on ILSVRC2012 classification challenge.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have highlighted the main features of the ALOHA
framework, explaining the main components automating the de-
velopment process of deep learning inference tasks on low-energy
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resource-constrained computing nodes. We have presented a first
set of experiments, as a proof-of-concept demonstrating the poten-
tial of the proposed development techniques.
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