
PiQi: PartiallyQuantized DNN Inference on HMPSoCs
Ehsan Aghapour, Yixian Shen, Dolly Sapra, Andy D. Pimentel, and Anuj Pathania

University of Amsterdam
e.aghapour@uva.nl, y.shen@uva.nl, d.sapra@uva.nl, a.d.pimentel@uva.nl, a.pathania@uva.nl

ABSTRACT
Deep Neural Network (DNN) inference is now ubiquitous in embed-
ded applications at the edge. State-of-the-art Heterogeneous Multi-
Processors System-on-Chip (HMPSoCs) powering these applica-
tions come equipped with powerful Neural Processing Units (NPUs)
that significantly outperform other inference-capable HMPSoC
components – namely, the CPUs and GPUs – in terms of power
consumption and performance. However, CPUs and GPUs can per-
form full precision inference, whereas NPUs can often only perform
a quantized inference. Consequently, low-latency, low-power infer-
ence by the NPU comes at an accuracy loss due to the quantization.

DNNs consist of several heterogeneous layers. Here, we intro-
duce the PiQi framework that allows DNN inference to layer-wise
switch between the three inference-capable HMPSoC components,
CPU, GPU, and NPU, mid-inference with minimal overhead. Con-
sequently, PiQi employs the novel idea of partially quantized DNN
inference on HMPSoCs. However, different DNN layers experience
different power-performance gains while projecting different ac-
curacy losses on quantization. Therefore, we provide within PiQi
a multi-objective Genetic Algorithm (GA) that provides a power-
performance Pareto-front under an accuracy constraint by selec-
tive multi-layer quantization during inference. Additionally, PiQi
utilizes a neural network to expedite search time by predicting
accuracy when assigning DNN layers to the appropriate cores.

CCS CONCEPTS
• Computer systems organization→ System on a chip; Em-
bedded software; • Computing methodologies → Neural net-
works; • Software and its engineering → Software performance;
Software usability; Embedded software.

KEYWORDS
Edge Artificial Intelligence (Edge-AI), Low-Power Design (LPD),
Partial Quantization, and Neural Processing Unit (NPU).

ACM Reference Format:
Ehsan Aghapour, Yixian Shen, Dolly Sapra, Andy D. Pimentel, and Anuj
Pathania, University of Amsterdam, e.aghapour@uva.nl, y.shen@uva.nl,
d.sapra@uva.nl, a.d.pimentel@uva.nl, a.pathania@uva.nl . 2024. PiQi: Par-
tially QuantizedDNN Inference onHMPSoCs. In Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED ’24),
August 5–7, 2024, Newport Beach, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3665314.3670841

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0688-2/24/08.
https://doi.org/10.1145/3665314.3670841

Full-Precision DNN Inference Quantized DNN
Inference

Cortex A-53 CPU

Cortex A-72 CPU
Mali-T860MP4 GPU

NPU

DVFS

Core Core

Core Core

L2 Cache

DVFS
DVFS

Core Core

L2 Cache

Core

L2 Cache

Core

CoreCore

RK3399 Pro HMPSoC

Figure 1: Abstract block diagram of the RK3399ProHMPSoC.

1 INTRODUCTION
Deep Neural Networks (DNNs) are now commonplace in com-
puter vision applications in embedded edge devices [7]. Hetero-
geneous Multi-Processor System-on-Chip (HMPSoC) platforms
powering these edge devices allow for local on-chip DNN infer-
ence (without cloud support) for improved performance and pri-
vacy [6]. HMPSoCs ship with multiple inference-capable compo-
nents such as Central Processing Units (CPUs) and Graphic Pro-
cessing Units (GPUs) [10]. Moreover, state-of-the-art HMPSoCs
are increasingly shipping with Neural Processing Units (NPUs) for
DNN inference, as shown in Figure 1 for the RK399Pro HMPSoC.

NPUs are Application Specific Integrated Circuits (ASICs) that
allow for low-latency, low-power on-chip inference [12]. Figure 2
shows the NPU provides a several-fold increase in inference power
efficiency over a quad-core Cortex-A53 CPU, dual-core Cortex-A72,
and quad-coreMali-T860MP4GPU running at peak frequencywithin
an RK399Pro HMPSoC. However, the NPU, similar to most other
NPUs in the market, can perform Int-8 quantized inference but at
the cost of an accuracy loss from quantization. On the other hand, a
Cortex-A53 Little CPU, Cortex-A72 Big CPU, andMali-T860MP4 GPU
can perform FP-32 full-precision inference but with a magnitude
lower power efficiency than the NPU. CPUs and GPUs can also
perform quantized inference, but it only brings an accuracy loss
with minimal gains in power efficiency relative to quantization
with an NPU [11]. Figure 3 shows the Top-1 inference accuracy loss
from Int-8 quantized inference against full-precision inference for
different DNNs. The figure shows AlexNet and GoogleNet experi-
ence a minimal drop in accuracy due to quantization, while YoLov3
and MobileNet experience a significant accuracy drop.

DNNs contain several heterogeneous layers [20]. In default in-
ference implementations, all DNN layers execute with full preci-
sion on the CPU and GPU or with quantization on the NPU [21].
Consequently, if the accuracy requirement imposed by the user is
higher than the accuracy with the NPU, then the system must em-
ploy inefficient CPU- or GPU-only inference to meet the accuracy
constraint. Therefore, we present PiQi, a framework enabling the
partial quantized inference on HMPSoCs for the first time. PiQi al-
lows some DNN layer execution with full precision on CPU or GPU,
whereas others execute quantized on the NPU. PiQi implements

https://doi.org/10.1145/3665314.3670841
https://doi.org/10.1145/3665314.3670841

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Ehsan et al.

Al
ex
Ne
t

Go
og
leN

et

M
ob
ile
Ne
t

Yo
Lo
v3

0

5

10

15

N
or
m
.P

ow
er

Effi
ci
en
cy

Cortex-A53 CPU Cortex-A72 CPU Mali-T860MP4 GPU NPU

Figure 2: Power efficiency of different HMPSoC components
with different DNNs on RK3399Pro HMPSoC.

Al
ex
Ne
t

Go
og
leN

et

M
ob
ile
Ne
t

Yo
Lo
v3

0

1

2

3

4

A
cc
ur
ac
y
Lo

ss
[%
]

Figure 3: Top-1 Accuracy loss for different DNNs with Int-8
quantized inference over FP-32 full-precision inference.

4 5 6 7

5

10

15

20
Accuracy Constraint = 66%

Average Power Consumption [W]

La
te
nc
y
[S
ec
]

Little CPU-Only Big CPU-Only GPU-Only Partial Quantization

Figure 4: Power-Performance Pareto-front under different
executions for YoLov3 DNN under an accuracy constraint.

low-overhead mid-inference layer-level switching between CPU,
GPU, and NPU to support partially quantized DNN inference.

Motivational Example: Figure 4 shows the Power-Performance
Pareto-optimal front for the YoLov3 DNN under a 66% accuracy
constraint for various executions.An accuracy constraint refers to the
minimum level of user-defined accuracy that the final inference must
achieve to meet operational requirements. The accuracy (mAP) range
for this model is 64.7% (fully quantized) to 68.7% (full precision).
For the motivational example, we select a midrange target accuracy
(66%) to explore the potential trade-offs between accuracy, power
consumption, and latency. Since the NPU achieves only 64.7% with
fully quantized inference, NPU-only quantized DNN inference is
not feasible under the 66% constraint.

Figure 4 shows that even though full-precision CPU- or GPU-
only DNN inference satisfy the accuracy constraint, the correspond-
ing power-performance Pareto-fronts provide sub-optimal trade-
offs between power and performance. The sub-optimality remains
significant even with power-performance trade-offs enabled by
CPU and GPU Dynamic Voltage Frequency Scaling (DVFS) in CPU-
and GPU-only DNN inference, respectively. Figure 4 shows the
near-optimal power-performance Pareto-front with PiQi using par-
tially quantized DNN inference. Figure 4 shows that by synchro-
nized use of CPU, GPU, and NPU during inference, along with
CPU and GPU DVFS, PiQi provides a significantly better power-
performance trade-off than any single-component DNN inference.

While reducing power consumption and execution time leads to
lower energy consumption, our decision to optimize both power
and time objectives reflects a holistic approach that captures a
broader optimization landscape. By presenting the Pareto front of
power and performance, we offer users diverse design options, each
representing an optimal trade-off between power consumption and
execution time. This approach addresses energy concerns and pro-
vides nuanced insights, empowering users to select the design point
that best aligns with their specific constraints.

Novel Contributions:We make the following novel contribu-
tions in the scope of this work.

• We introduce the PiQi framework that enables partially quan-
tized DNN inference on HMPSoCs by implementing layer-
level switching between CPU, GPU, and NPU.

• We characterize the power, performance, and accuracy be-
haviour of DNNs under partial quantization and then build
models to predict inference power, performance, and accu-
racy under multi-layer partial quantization.

• We provide a multi-objective Genetic Algorithm (GA) for
determining a Power-Performance Pareto-front with partial
quantization under an accuracy constraint.

Open-Source Contributions: The code for the PiQi is pub-
licly available at https://github.com/Ehsan-aghapour/PiQi underMIT
license. It utilizes the ARM-CO-UP framework described in [3].

2 RELATEDWORK
Quantization [15] is a pivotal technique in DNN inference for en-
hancing latency and energy efficiency on edge devices in the lit-
erature. Notable studies by Nagel et al. [14] and Li et al. [13] have
honed model accuracy through per-layer quantized weight opti-
mization. Tann et al. [17] and Wang et al. [19] have furthered this
by incorporating quantization noise into DNN training to fine-tune
weights via Stochastic Gradient Design (SGD), minimizing accuracy
loss. Jain et al. [8] addressed quantization-induced errors through
dynamic compensation, albeit adding extra fix-point representation
complexity. Ahn et al. [4] provided a performance characterization
for quantization on edge devices, employing FP16/INT8 schemes on
ARMCPU in Raspberry Pi. Coello et al. [5] developed amethodology
for heterogeneously quantized DNN models, targeting minimum
energy consumption and high accuracy with low latency.

In a closely related work, Tsuji et al. [18] presented a greedy
search algorithm for solving the computationally hard combina-
torial optimization problem of selective layer quantization under
model-size constraints. A lightweight greedy algorithm works well
under the time constraints imposed by live accuracy feedback. How-
ever, the greedy algorithm only explores a fraction of the exponen-
tial design space, missing out on better solutions.

3 IMPLEMENTATION
We implement partially quantized DNN inference using the ARM
Compute Library (ARM-CL), which offers efficient low-level prim-
itives for DNN execution on ARM CPUs and GPUs, particularly
suited for ARM-based HMPSoCs such as RK399Pro[16]. Initially
supporting only CPU- or GPU-only inference, ARM-CL has been
extended with capabilities for mid-inference switching between
CPU and GPU layers[1], along with DVFS enhancements for power

https://github.com/Ehsan-aghapour/PiQi

PiQi: Partially Quantized DNN Inference on HMPSoCs ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

Python
Model

Run Script
Partition
Extractor Prepare NPU Parts

NPU
Partition 1

NPU Tool

 Extract

Initialize

Sub-Graph Creator

 Quantize & Tune

NPU
Partition 2

NPU
Reconstructor

DNN Model

C C

SCCR

NPUN N N S

S

In

CPU

N

SNNR NPU

GPUG G G Out

R

R

R

S

NPU Node

 Graph Manager Graph Executor

(DVFS level)

(DVFS level)

N N NIn
N

G G OutC C

CC Target Model

N N G

ARM Compute Library Context

Sample Images

R

S

Input, Receiver
Functions

Output, Sender

Input, Receiver
Functions

Output, Sender

Input, Receiver
Functions

Output, Sender

Input, Receiver
Functions

Output, Sender

Quantized NPU
Partition 1

Quantized NPU
Partition 2

S

NPU Node

DNN Layers Allocation

NPU

CPU

NPU

GPU

Run Configuration
NNNCCCCNNNGGGorder=

Non-ARM Compute Environment

DVFS= - - - V/f for C - - - V/f for G

 Quantize & Tune

DNN Model Transformation
(i.e.,Python->C++)

Figure 5: Illustrative abstraction for CPU, GPU, and NPU integration implementation

efficiency [2]. However, existing open-source frameworks do not
integrate NPU support or allow seamless switching between CPU,
GPU, and NPU mid-inference. For this purpose, we leverage our
framework ARM-COUP, which integrates these features and is de-
tailed in [3].

Figure 5 illustrates the ARM-CL-based implementation for the
proposed PiQi framework. The implementation takes as inputs the
DNN model and the desired Run Configuration, which specifies
the partition of layers between CPU, GPU, and NPU. In the case of
the ARM big.Little CPU, the CPU can be either a big or Little CPU
for a given partition. It also describes the CPU and GPU layer-level
DVFS settings. NPUs do not support DVFS.

The Run Script in the implementation then prepares the NPU
partitions outside the ARM-CL context. It takes the Python model
of the DNN and extracts out the parts marked for execution on
NPU in the Run Configuration. It then uses the vendor-specific
NPU Tool, in the case of this work from Rockchip, to quantize the
NPU partitions. The NPU Tool tunes the partitions for minimal
quantization-related accuracy loss using sample images from the
training set. The partitions are now ready for use within ARM-CL.

The Run Script then invokes the ARM-CL context. ARM-CL
converts the DNN model into an internal multi-node C++ graph
representation. PiQi uses a Graph Creator to break the ARM-CL
graph into 𝑁 sub-graphs for a Run Configuration with 𝑁 compo-
nent switches. Therefore, there is one sub-graph for each contigu-
ous single-component execution. PiQi adds Receiver and Sender
nodes to sub-graphs for the corresponding in and out connections.
PiQi uses an NPU Reconstructor to convert all nodes in an NPU
sub-graph, except the Receiver and Sender nodes, into a single
NPU node. PiQi then replaces this NPU node with the correspond-
ing quantized (and tuned) NPU partition prepared earlier. The NPU
uses a Graph Manager to connect the sub-graphs. Finally, PiQi uses
a Graph Executor to execute the connected sub-graphs. PiQi also
applies layer-level CPU and GPU DVFS using the Graph Executor,
as per the Run Configuration.

This implementation, which enables running the model on HMP-
SoC processors with a desired configuration, forms an essential

1 75
2.8

2.9

3

3.1
·10−2

Quantized Layer IDPo
w
er

Effi
ci
en
cy

[F
PS

/W
at
t]

Power Efficiency Gains Accuracy [%]

68.4

68.6

68.8

A
cc
ur
ac
y
[%
]

Figure 6: Power efficiency and accuracy for the full design
space in one-layer quantization for Yolov3.

operational component of PiQi . In contrast, the optimization pro-
cess in PiQi, detailed in Section 5, utilizes the GA algorithm and
prediction models for accuracy, power, and performance. It aims to
identify the optimal configuration that achieves the target accuracy.

4 CHARACTERIZATION
Partially quantized inference with PiQi inherently involves execut-
ing some layers of the DNN on the NPU with quantization while
executing other layers on a CPU or GPU with full precision. We
perform a power-performance and accuracy loss characterization
for partially quantized DNN inference. We use YoLov3 as an exam-
ple DNN for this characterization because of its large and complex
neural architecture. Nevertheless, we make similar observations
for MobileNet. There are

(𝑁
𝑋

)
design options for selecting 𝑋 out

of 𝑁 DNN layers for quantization with PiQi. YoLov3 comprises of
75 partitionable layers. Figure 6 shows the impact of executing
a single layer (i.e.,

(75
1
)
different design points) on the NPU with

quantization and the remaining layers executing at full precision on
the Big CPU running at full frequency. Figure 6 shows the entropy
in power efficiency and accuracy with one-layer quantization.

These power, performance, and accuracy behaviours exhibit even
higher entropy when multiple layers in a DNN are quantized to-
gether, as shown in Figure 7. Figure 7a and Figure 7b show the
power efficiency and accuracy of

(75
2
)
design points (down-sampled

by 5 for legibility) in two-layer quantization for YoLov3, respec-
tively. Let tuple (𝐴, 𝐵) represent the simultaneous quantization of
layers 𝐴 and 𝐵 of the DNN. Intuition dictates power efficiency and

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Ehsan et al.

20 40 60 20
40

60
2.8

3
·10−2

1st Layer 2nd Layer

Po
w
er

Eff
.[
FP

S/
W
at
t]

Two-Layer Quantization Better One-Layer Quantization Better

(a) Efficiency

20 40 60 20
40

6068

68.5

1st Layer 2nd Layer

A
cc
ur
ac
y

(b) Accuracy
Figure 7: Power efficiency and accuracy for the down-
sampled design space in two-layer quantization for Yolov3.

accuracy of two-layer quantization (𝐴, 𝐵) versus either single-layer
quantization (𝐴) or (𝐵) should be higher and lower, respectively.

Figure 7a compares the power efficiency of (𝐴, 𝐵) with (𝐴) and
(𝐵) for YoLov3. The figure shows the power efficiency of the two-
layer quantization design point is better in most cases. In some cases
where either of the one-layer quantization design points is better, we
trace them to power-efficiency loss from the additional component
switching overhead in the quantizing two non-contiguous layers
dominating the power efficiency gains of additional quantization.
Figure 7b compares the accuracy of (𝐴, 𝐵) with (𝐴) and (𝐵) for
YoLov3. The figure shows that two-layer quantization can lead to
higher or lower accuracy loss. This observation stems from the fact
that error propagation through the neural network architecture of
a DNN is not well understood. It is possible for the errors from two
quantized layers to cancel out partially.

5 PIQI FRAMEWORK
We introduce the PiQi framework for the partial quantization of
DNNs on HMPSoCs. PiQi consists of modelling and optimization
parts, as shown in Figure 8. The modelling part creates power, per-
formance, and accuracy models for a user-specified DNN model.
The optimization part finds the power-performance Pareto-front (us-
ing the models) for a user-defined accuracy constraint. Using pre-
diction models instead of live data allows several magnitudes faster
evaluation of a partially quantized DNN configuration.

Modelling. The modelling part of PiQi operates first by taking
the user-specified DNN model as an input. A layer in the DNN
can be either quantized or non-quantized. Therefore, 2𝑁 possible
partially quantized configurations (design points) are possible for a
DNN with 𝑁 layers. The design space is even larger as every non-
quantized layer in the configuration can execute with full precision
on a CPU or GPU at different DVFS levels. The quantization of
a layer within the DNN often leads to the loss of certain feature
information. This information loss propagates through the DNN,
influencing subsequent computations to the last output layer and
thus introducing errors in the prediction accuracy of the DNN. De-
termining the cumulative impact of information loss on prediction
accuracy from multiple layers is non-trivial as the processed data

undergoes multiple activation and soft-max functions before reach-
ing the final output. Consequently, an analytical model for accuracy
loss under partial quantization is hard to design. Therefore, we use
a Machine Learning (ML) model to predict the accuracy.

Since training with the entire design space is not feasible, PiQi
uses a sample generator to create a list of sample configurations
across the design space. It uses all design points from 1- and 2-layer
quantization, whereas it uses Monte Carlo sampling for 3-layer
quantization and beyond. It then evaluates the accuracy of all of
these configurations using a high-performance server. It takes the
server 5 minutes on average to assess a configuration accuracy.

PiQi uses the accuracy data from sample configurations to train
a dense neural network, as depicted in Figure 8, for predicting
accuracy loss. The model comprises three fully connected layers
with 128, 64, and 8 neurons, respectively, spanning from the input
to the output layer. The input for the model is a binarized vector –
0/1 for non-/quantized-layer – the size of the number of layers 𝑁 .
PiQi tailors the accuracy predictor model for each DNN intended
for deployment on the HMPSoC with an NPU using independent
training. We train Yolov3 and MobileNet models separately in this
work with 18331 and 4689 data samples, respectively. It takes the
server 5 minutes on average to train the model.

PiQi also predicts the power consumption and performance of
a configuration. The authors of [2] provide an analytical power-
performance model for mid-inference switching between CPU and
GPU. The model also accounts for the overhead of component
switching and CPU/GPU DVFS. We extend their model to account
for overhead for back-and-forth switching with the NPU. The ana-
lytical model requires a power-performance profile for every layer
on each component to work. We use an Arduino-based setup to
directly profile layers on the CPU and GPU on the HMPSoC. How-
ever, in the case of the NPU, all layers are simultaneously loaded
into an opaque vendor-specific NPU context. This context does
not make it transparent when one layer ends and the other starts,
making it infeasible for our profiling setup to attribute the power
and performance to individual layers. Therefore, we use hybrid
CPU-NPU configurations to profile an individual layer on the NPU
while excluding the impact of data transfer and loading times. It
takes the profiling setup 10 minutes on average to create a power-
performance profile for a configuration. Most profiling time over-
head originates from the one-time setup cost of loading the DNN
model to the NPU and not from actual inference.

Optimization. The optimization part of PiQi follows the mod-
elling part and takes in the user-defined accuracy constraint as input.
PiQi uses a multi-objective Genetic Algorithm (GA) to determine
the power-performance Pareto front under accuracy constraints
for partially quantized DNN inference. PiQi performs a one-time
encoding of configurations into chromosomes for the GA. The GA
starts with randomly selected configurations as the initial popu-
lation. It then uses the power, performance, and accuracy models
to evaluate the fitness of configurations in the population. It takes
less than a millisecond on average to evaluate the fitness of a con-
figuration. A configuration in the population is unfit if it violates
the accuracy constraint or is Pareto-dominated by another configu-
ration in the population in terms of power and performance. The
GA eliminates the unfit part of the population and uses mating
functions (crossover and mutation) to produce new offspring from

PiQi: Partially Quantized DNN Inference on HMPSoCs ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

Sampling Generator

Configs PowerPower Analytical
Model

Performance Analytical
Model

NSGA-II

Configs Perf.

Configs Acc.

Models

List of
Configs

Power-Perf
Evaluation

Acc. DB

Input
Layer

Dense
Layers

Output
Layer

812
8

64

Accuracy ML Model Training

Specify DNN Model Specify Accuracy Constraint

5 mins/
Config

10 mins/
Config

1 ms/
Config

Performance

Final
Population

DNN Model

Power

Modeling

Profile Setup
Rock-Pi

ACM-CL

Input Layers Output

ARDUINO

Power

Pe
rfo

rm
an

ce Acc= %

Optimization

Selection

Population

Initialization

Accuracy FilterAccuracy Profiling

Config. List

Power-Performance
Profile

Embedded HMPSoCRunning Enviroment:

Fitness

1 Hours
Non-Dominated

Sort

High-Performance Server

Accuracy ML-Based
Model

5mins

Figure 8: Abstract diagram showing the functioning for the proposed PiQi framework.
Table 1: The model-based prediction accuracy within PiQi .

Metric YoLov3 MobileNet
MAE Avg. Samples MAE Avg. Samples

Power 96𝑚𝑊 [1.7%] 5636𝑚𝑊 300 226𝑚𝑊 [5.3%] 4217𝑚𝑊 1000
Perf. 634𝑚𝑠 [9.8%] 6602𝑚𝑠 300 9𝑚𝑠 [3.8%] 236𝑚𝑠 1000
Acc. 0.0654% 68.0833% 2732 0.0258% 67.9117% 809

the surviving configurations as replacements. The process iterates
till the GA fails to produce stronger offspring for the population.

PiQi uses the NSGA-II algorithm [9] for the multi-objective GA. It
runs on the server and converges to a solution on average in around
one hour. Finally, the power-performance Pareto-front solution
from the GA is adjusted based on real power, performance, and
accuracy measurements to compensate for modelling errors before
delivering the final results to the user.

6 EVALUATION
We evaluate PiQi using the Rock-Pi N10 embedded platform con-
taining an RK3399Pro HMPSoC, shown in Figure 1. Considering
end-to-end latency and overall SoC power consumption, our re-
ported results encompass all overheads, including processor switch-
ing, quantization and dequantization during NPU transitions, data
transfer, and synchronization. We use two DNNs, MobileNet and
YoLov3, that show significant enough accuracy loss with quantiza-
tion (Figure 3) yet are also compatible with our extended ARM-CL
implementation (Figure 5). ARM-CL integrates several models like
AlexNet andGoogleNet in Caffe format incompatible with our partial
quantization implementation. We use 50,000 and 5,000 images from
the ImageNet and COCO datasets to evaluate the image classifica-
tion and detection accuracy for MobileNet and YoLov3, respectively.
We use Keras API for TensorFlow to train the accuracy models.

Prediction Results. Table 1 provides the prediction errors, mea-
sured as Mean Absolute Error (MAE), for power, performance, and
accuracy models used within PiQi, demonstrating high modeling
precision. The low error (MAE = 0.0654% for YOLOv3 and 0.0258%
for MobileNet) of the accuracy prediction model, can be attributed
to the narrow variability in accuracy ranges observed across models
(approximately 4% for YoLov3 and 1% forMobileNet).

Baseline. No existing work proposes partially quantized DNN
inference on HMPSoCs to the best of our knowledge. Therefore,

Table 2:MobileNet layer mappings for different accuracy.
Accuracy Sample Layer Mapping Num. Quantized Layers Best Time

[Overhead%]
Best Power

68.36 LLLLLLLLLLLLLL 0 137 ms [0%] 3404 mW
68.36 GLLLLLLNNNBNNN 6 100 ms [9%] 3229 mW
68.25 GLLLLNNNNNNNNN 9 77 ms [10%] 3207 mW
68.15 GGNNNNNNNNNNNN 12 63 ms [20%] 3158 mW
67.34 NNNNNNNNNNNNNN 14 29 ms [0%] 3108 mW

we choose a recent greedy algorithm from [18] that solves a similar
combinatorial optimization problem of selective layer quantization
as PiQi as a baseline. The original greedy algorithm proposed in [18]
is a single-objective optimization algorithm that provides a trade-
off between accuracy and model size. We adapt the algorithm to
select layers for quantization under an accuracy constraint and
call the adaption Greedy Search Algorithm (GSA). GSA initializes
by marking all layers for full-precision inference. It then greedily
marks the layer expected to cause the minimum accuracy loss for
quantization. It repeats the greedy marking process iteratively until
further marking violates the accuracy constraint. The iteration ends
with a valid design point wherein GSA marks each layer for full-
precision or quantized execution. GSA then executes the design
point on all full-precision components (CPUs or GPU) at all DVFS
frequency levels to get the Power-Performance Pareto-frontier.

Optimization Results. Table 2 presents sample configurations
detailing the layer mappings to NPU (N), GPU (G), big (B), and Lit-
tle (L) CPU clusters alongside the maximum number of quantized
layers for each target accuracy in MobileNet. It also showcases the
latency and power consumption achieved among the Pareto-front
results of PiQi for each target accuracy. Remarkably, even at the first
target accuracy (68.36%), corresponding to the accuracy of the full
precision model (first row), quantizing six selective layers (second
row) leads to improvements in both time and power consumption.
For a trade-off of only 0.21% accuracy (target accuracy=68.15), quan-
tizing 12 out of 14 layers is feasible. Notably, while a fully quantized
model would entail an accuracy drop to 67.34% (a 1.02% decrease,
with the second layer exerting a relatively high impact on accu-
racy), selectively quantizing layers allows for enhanced power and
latency performance with minimal accuracy compromise.

Overhead. The Best time column in table 2 includes the over-
head shown in brackets, representing the percentage of time spent

ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Ehsan et al.

67.4 67.6 67.8 68 68.2 68.4
1

1.2

1.4

1.6

1.8

Accuracy [%]

N
or
m
.H

yp
er

Vo
lu
m
e

GPU big CPU Little CPU GSA PiQi

(a) MobileNet

65 66 67 68 69
1

1.5

2

Accuracy [%]

N
or
.H

yp
er

Vo
lu
m
e

(b) YoLov3
Figure 9: Power-Performance Pareto-front hyper volume
comparison between GSA and PiQi .

on switching processors and transferring data. The main overhead
contributes to converting and loading to the NPU processor. As
the output of the initial layers is larger, switching to NPU at ear-
lier layers introduces more overheads. For example, one switch
to the NPU from the second layer introduces high overhead for
the 68.15% accuracy target case, while for the second row (target
accuracy=68.36%), switching to the NPU happens at latter layers,
which induces relatively less overhead (9% overhead for 4 switches).

Comparative Results. We evaluate GSA and PiQi for YOLOv3
and MobileNet DNNs under different accuracy constraints within
their achievable accuracy ranges. For each DNN, the accuracy con-
straints are bounded by the quantized-only and full-precision-only
inference accuracy. Both GSA and PiQi use the same prediction
model from Section 4 to ensure a fair comparison.

For each target accuracy (x-axis), we compare the multi-objective
optimizations (power and latency Pareto-front) of the two methods
using normalized hyper-volume as the metric. A fixed reference
point is established for each DNN by selecting the maximum power
consumption and latency among Pareto front design points of single
components (refer to Figure 4). The reference points are (20320 ms,
7200 mW) for YOLOv3 and (550 ms, 7000 mW) for MobileNet.

Figure 9 reports the model-based normalized hypervolume of the
power-performance frontier obtained using the twomethods for the
selected accuracy constraints. While the Pareto frontier results of
single-component inference remain fixed for different target accura-
cies, the power-latency Pareto frontier of PiQi consistently improves
with decreasing target accuracy due to increased layer quantization.
However, it’s crucial to acknowledge that this improvement isn’t
consistent across all scenarios for GSA. In some intervals, particu-
larly within GSA, where extensive switching occurs, there may be
instances where the power-latency performance does not improve
and may even degrade due to the overhead incurred from switch-
ing between processors and quantization/dequantization processes.
The power-performance Pareto frontier provided by PiQi always
dominates the frontier from GSA. Figure 9a and Figure 9b show
PiQi providing, on average, 11.6% and 18.1% higher hypervolume
than GSA (with the mentioned reference points) for MobileNet and

YoLov3, respectively. The observed improvements are higher at
accuracy constraints where the search space is larger.

7 CONCLUSION
We present the PiQi framework for partially quantized DNN Infer-
ence with NPUs found in state-of-the-art HMPSoCs. PiQi executes
parts of the DNN inference with full precision on a CPU or GPU
and other parts on the NPU with quantization. PiQi allows the use
of the NPU in power-performance efficient DNN inference under
accuracy constraints, wherein NPU-only execution is infeasible due
to accuracy loss from quantization. PiQi has an open-source im-
plementation for low-overhead switching between CPU, GPU, and
NPU mid-inference to enable partially quantized DNN inference.
It also has models for predicting power, performance, and accu-
racy loss for DNN inference with multi-layer partial quantization.
Finally, it comes with a multi-objective GA that enables the deter-
mination of a power-performance Pareto-front under an accuracy
constraint for partially quantized DNN inference. PiQi provides a
significantly superior Pareto-front over the state-of-the-art.

REFERENCES
[1] Ehsan Aghapour et al. 2022. CPU-GPU Layer-Switched Low Latency CNN

Inference. In DSD.
[2] Ehsan Aghapour et al. 2023. PELSI: Power-Efficient Layer-Switched Inference. In

RTCSA.
[3] Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj Pathania. 2024. ARM-

CO-UP: ARM COoperative Utilization of Processors. ACM Trans. Des. Autom.
Electron. Syst. (apr 2024). https://doi.org/10.1145/3656472 Just Accepted.

[4] Hyunho Ahn et al. 2023. Performance Characterization of using Quantization
for DNN Inference on Edge Devices: Extended Version.

[5] Claudionor N. Coelho et al. 2021. Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle detectors.
Nature Machine Intelligence (2021).

[6] Xiaotian Guo et al. 2023. Automated Exploration and Implementation of Dis-
tributed CNN Inference at the Edge. IoT Journal (2023).

[7] Ramyad Hadidi et al. 2019. Characterizing the Deployment of Deep Neural
Networks on Commercial Edge Devices. In IISWC.

[8] Shubham Jain et al. 2018. Compensated-DNN: Energy Efficient Low-Precision
Deep Neural Networks by Compensating Quantization Errors. In Proceedings of
the 55th Annual Design Automation Conference (DAC ’18).

[9] Deb Kalyanmoy. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-
II. TEVC (2002).

[10] Andreas Karatzas et al. 2023. OmniBoost: Boosting Throughput of Heterogeneous
Embedded Devices under Multi-DNN Workload. In DAC.

[11] Youngsok Kim et al. 2019. Layer: Low Latency On-Device Inference Using
Cooperative Single-Layer Acceleration and Processor-Friendly Quantization. In
EuroSys.

[12] Kyuho J. Lee. 2021. Architecture of neural processing unit for deep neural
networks. In Hardware Accelerator Systems for Artificial Intelligence and Machine
Learning. Elsevier.

[13] Yuhang Li et al. 2021. BRECQ: Pushing the Limit of Post-Training Quantization
by Block Reconstruction. arXiv:2102.05426

[14] Markus Nagel et al. 2019. Data-Free Quantization Through Weight Equalization
and Bias Correction. In ICCV.

[15] Markus Nagel et al. 2021. A White Paper on Neural Network Quantization.
arXiv:2106.08295

[16] Jie Tang et al. 2017. Enabling Deep Learning on IoT Devices. Computer (2017).
[17] Hokchhay Tann et al. 2017. Hardware-Software Codesign of Accurate, Multiplier-

Free Deep Neural Networks. In Proceedings of the 54th Annual Design Automation
Conference 2017.

[18] Satoki Tsuji et al. 2022. Greedy search algorithm for partial quantization of
convolutional neural networks inspired by submodular optimization. Neural
Computing and Applications (2022).

[19] Peisong Wang et al. 2023. Optimization-Based Post-Training Quantization With
Bit-Split and Stitching. TPAMI (2023).

[20] Siqi Wang et al. 2020. High-Throughput CNN Inference on Embedded ARM
Big.LITTLE Multicore Processors. TCAD (2020).

[21] Siqi Wang et al. 2020. Neural Network Inference on Mobile SoCs. IEEE Design
Test (2020).

https://doi.org/10.1145/3656472
https://arxiv.org/abs/2102.05426
https://arxiv.org/abs/2106.08295

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	4 Characterization
	5 PiQi Framework
	6 Evaluation
	7 Conclusion
	References

