
Hierarchical Design Space Exploration for
Distributed CNN Inference at the Edge

Xiaotian Guo1,2, Andy D. Pimentel1, and Todor Stefanov2

1 University of Amsterdam, The Netherlands, {x.guo3, a.d.pimentel}@uva.nl
2 Leiden University, The Netherlands, t.p.stefanov@liacs.leidenuniv.nl

Abstract. Convolutional Neural Network (CNN) models for modern
applications are becoming increasingly deep and complex. Thus, the
number of different CNN mapping possibilities when deploying a CNN
model on multiple edge devices is vast. Design Space Exploration (DSE)
methods are therefore essential to find a set of optimal CNN mappings
subject to one or more design requirements. In this paper, we present
an efficient DSE methodology to find (near-)optimal CNN mappings for
distributed inference at the edge. To deal with the vast design space of
different CNN mappings, we accelerate the searching process by propos-
ing and utilizing a multi-stage hierarchical DSE approach together with
a tailored Genetic Algorithm as the underlying search engine.

1 Introduction

Convolutional Neural Networks (CNNs) have been intensively researched and
widely used in many domains, including audio recognition, computer vision, and
natural language processing. Since CNNs became the state-of-the-art in large-
scale visual recognition and classification, countless advancements in improving
CNN models have been made to solve traditionally challenging problems such
as image recognition, classification, etc. Deploying these modern CNN models
and performing the inference directly on an edge device is typically not possible
because of limited resources in terms of memory capacity, computation capac-
ity, and power budget of the edge device. Therefore, to perform CNN inference
on edge devices, users typically need to rely on additional compute resources
provided as service by the cloud. Realizing CNN inference on edge devices us-
ing such cloud services requires users to communicate a substantial amount of
data between an edge device and a cloud server. Such data communication may
cause data privacy concerns as well as low device responsiveness due to data
transmission delays or temporal unavailability of the cloud services.

One approach to address the above problems and achieve CNN inference on
an edge device without cloud services, is to perform CNN model compression,
such as pruning, quantization, or knowledge distillation[6] that will allow to de-
ploy the entire CNN model on the device. However, such an approach sacrifices
the accuracy of the model to some extent, especially when high model compres-
sion rates are required. Another approach is to deploy only a part of the CNN

2 Guo et al.

model on the edge device and the rest of the model in the cloud. Such an ap-
proach [10], however, still suffers from data privacy and cloud communication
latency concerns. A third approach, which solves the aforementioned issues of the
other two approaches, is to partition the CNN model and distribute the parti-
tions across multiple edge devices to collaboratively perform the CNN inference.
A general direction is to utilize model and data parallelism methods [7] to divide
CNN computations over a number of edge devices. Such distributed execution
of the CNN model inference often needs to take multiple requirements into ac-
count, like latency, throughput, resource usage, power/energy consumption, etc.
Here, the way how the different CNN layers are distributed and mapped onto
the edge devices plays a key role in optimizing/satisfying these requirements.
For example, using model-parallelism techniques and mapping CNN layers in a
balanced way may reduce the maximum per-device memory footprint or energy
consumption. Or, some CNN mappings may generate a balanced data processing
pipeline, thereby improving the overall throughput. As CNN models for modern
applications are becoming increasingly deep and complex, the number of differ-
ent CNN mapping possibilities when deploying multiple edge devices, and the
various compute resources in each of them, is vast. Efficient Design Space Ex-
ploration (DSE) methods are therefore essential to find a set of (near-)optimal
CNN mappings subject to one or more design requirements (i.e., objectives).

In this paper, we present an efficient DSE methodology to find optimal CNN
mappings for distributed inference at the edge. To this end, we leverage our
AutoDiCE framework [1] to assess the quality (in terms of inference through-
put, memory footprint, and energy consumption) of a particular CNN mapping.
AutoDiCE is a fully automated framework for distributed CNN inference over
multiple edge devices. To deal with the vast design space of different CNN map-
pings, we accelerate the searching process by using a multi-stage hierarchical
DSE approach together with a tailored Genetic Algorithm (GA) as the under-
lying search engine. At every stage, we perform DSE at two hierarchical levels.
In the first level, we use analytical models inside a GA to approximate each
objective function (i.e., throughput, memory, and energy consumption) to avoid
relatively long evaluation times through real on-device (i.e., on-board) measure-
ments using our AutoDiCE framework. The near-optimal solutions found in the
first level together with Pareto-optimal solutions from a previous DSE stage are
utilized as the parents for the second level DSE. In this second level, we evalu-
ate each design point using real measurements taken from AutoDiCE-generated
CNN inference implementations to determine the Pareto front for a next DSE
stage. The output of the last DSE stage provides the final Pareto-optimal solu-
tions. Our contributions can be summarized as follows:

– enhance the DSE process by creating analytical models to approximate each
objective function in order to reduce the on-board evaluation cost during the
DSE process;

– accelerate the DSE convergence by performing the DSE process in multiple
stages where, at each DSE stage, we consider only specific part of the design

Hierarchical DSE for Distributed CNN Inference at the Edge 3

space and use as input Pareto-optimal solutions from the previous DSE stage
in order to find Pareto-optimal solutions for the next DSE stage;

– improve the searching efficiency with a tailored chromosome encoding method,
thereby scaling down the search space.

2 Related work

Today’s prevalent CNN models for computer vision tasks are becoming increas-
ingly large. Their execution, i.e. model inference, requires increasing amounts
of memory and compute resources, putting a large burden on the cloud infras-
tructure. Offloading parts of a single CNN model to the edge has gained the
attention of researchers to relieve the pressure on the cloud. For example, Neu-
rosurgeon [10] vertically partitions a CNN model between a single edge device
and the cloud. DDNN [17] also tries to partition a model between the cloud and
edge devices, but model retraining is needed for each early-exit branch. How-
ever, the methods in [10, 17] execute only the first few layers of a CNN model at
the edge, after which the rest of the computation is still offloaded to the cloud.
The unpredictable low responsiveness and data privacy issues are still present in
such partitioned CNN inference due to the partial involvement of the cloud [5].
To perform CNN inference on a fully distributed system at the edge, without
any cloud involvement, data partitioning or CNN model partitioning is often
required. For example, in [19], a data partitioning strategy is used in an ob-
ject detection CNN-based application to split input data frames. Alternatively,
CNN model partitioning splits CNN layers and/or connections of a large CNN
model, thereby creating several smaller sub-models (partitioned models) where
each sub-model is executed on a different edge device [16]. For instance, Hadidi
et al. [7] exploits model-partition methods to perform single-batch inference over
several collaborative and resource-constrained edge devices and utilizes their ag-
gregated computing power via a local network. In addition to using data and
CNN model partitioning to map large CNNs on resource-constrained edge de-
vices, researchers try to optimize the CNN mapping to improve the inference
performance. For example, the methodologies in [20, 18, 9] propose efficient algo-
rithms to determine partitioning policies that generate efficient CNN mappings
in order to improve the performance of cooperative inference over multiple edge
devices. However, these methodologies optimize and evaluate CNN mappings
based on analytical models only and consider limited number of objectives. In
contrast, our DSE methodology optimizes more objectives, and besides analytical
models, it uses AutoDiCE to evaluate mappings by real on-device measurements.

Distributed inference of large CNN models typically needs to consider a
range of different design requirements, such as latency, throughput, resource
usage, power/energy consumption, etc. These requirements/objectives can be
conflicting, implying that there usually does not exist a single optimal CNN
mapping that satisfies all requirements. Typically multiple solutions, so-called
Pareto optimal solutions, co-exist and the set of all optimal solutions is called the
Pareto front. Finding these Pareto-optimal CNN mappings for a given number

4 Guo et al.

of edge devices to perform distributed CNN inference under several requirements
is the topic of study in this paper. A popular approach to perform such a search
for Pareto-optimal solutions is by using multi-objective evolutionary algorithms
[4]. More specifically, in the domain of DSE, multi-objective Genetic Algorithms
(GAs), such as the Non-dominated Sorting Genetic Algorithm (NSGA-II) [3], are
widely used and have demonstrated to produce good results [15]. For instance,
[11, 12] use the NSGA-II GA to explore the design space to find improved neu-
ral network architectures for CNN-based applications. Our DSE methodology
also employs NSGA-II to explore the Pareto-optimal CNN mapping solutions
with respect to throughput, maximum memory usage per device, and maximum
energy consumption per device. However, NSGA-II can easily get stuck in so-
called dominance resistant solutions [14], that are far away from the true Pareto
front. How to search the optimal CNN mappings for distributed inference using
NSGA-II, and efficiently find the Pareto front in the huge search space, are the
main challenges we try to tackle in this paper.

3 Evaluation Methods

In this section, we discuss two different methods to evaluate the three objec-
tives at every stage in our two-level DSE. The first level DSE applies analytical
models to approximate the objectives, and the second level uses our AutoDiCE
framework to evaluate the objectives of distributed CNN inference by real im-
plementations and measurements on hardware boards.

3.1 Analytical Models

In the first level, we adopt analytical models to approximate the system through-
put, memory usage, and energy consumption for each CNN mapping. We use
tlj , Mlj , Elj to represent the execution time, the memory usage, and the energy
consumption of layer lj in a CNN model, respectively. A CNN mapping x is
denoted as x = [x1, x2, · · · , xL], where L is the number of layers in the CNN
model and xj = PEi means that layer lj is mapped on processing element PEi,
which could, e.g., be a CPU or GPU inside an edge device. For a given mapping
x, the three objectives of the distributed system can be computed as follows.

Throughput The overall system throughput Tsystem is defined as the images
processed per second (IPS) over multiple PEs:

Tsystem =
1

max1≤i≤N (ti)
; ti =

∑
∀j:1≤j≤L∧xj=PEi

tlj + tcomm

where ti is the time to process one image on PEi, N is the total number of de-
ployed PEs in the distributed system, and tcomm is the time needed for data
communication related to PEi. We assume that the size of input images are
already determined as well as the input and output tensors of every CNN layer
are also fixed. Then, we can estimate the total number of operations in every

Hierarchical DSE for Distributed CNN Inference at the Edge 5

layer and the total size of communicated data related to PEi. The execution
time tlj is estimated through the number of multiply–accumulate operations
(MACs). A proper approximation for communication time tcomm depends on
data movements, and involves intra-node shared memory communication, intra-
node communication between CPU and GPU, or inter-node communication over
the network.

Memory Every PEi allocates memory M i which consists of three parts: mem-
ory for CNN coefficients (i.e. weights, bias, and parameters), memory for output
buffers to store intermediate results of layers, and memory for input buffers of
some layers to receive data from other PEs:

M i =
∑

∀j:1≤j≤L∧xj=PEi

(M j
coeffs +M j

outbuffs +M j
inbuffs)

where M j
coeffs, M

j
outbuffs, and M j

inbuffs denote the sizes of the aforementioned
memory parts associated with layer lj mapped on PEi. These sizes (in number
of elements) are approximated based on the type of CNN layer lj . For example,
given a convolutional layer lj , the memory sizes are calculated as follows:

M j
coeffs = wk ∗ hk ∗ Cin ∗ Cout + Cout

M j
outbuffs = wout ∗ hout ∗ Cout M j

inbuffs = win ∗ hin ∗ Cin

where wk and hk are the width and height of the convolution kernel, Cin and
Cout are the number of input and output channels of layer lj , and win, hin, wout,
hout are the width and height of the input and output tensors of layer lj . If layer
lj mapped on PEi does not receive data from layers that are mapped on other
PEs then M j

inbuffs = 0.

Energy Every PEi consumes energy Ei to execute the CNN layers mapped
on PEi. In our energy consumption analytical model, Ei includes the energy
consumed for inference computation and data communication with other PEs:

Ei =
∑

∀j:1≤j≤L∧xj=PEi

Ej
comp +

∑
∀j:1≤j≤L∧xj=PEi

Ej
comm

where Ej
comp and Ej

comm denote the computation and communication energy
consumption for layer lj , respectively. Here, Ej

comm is non-zero only when layer
lj actually communicates with another PE. We calculate Ej

comp and Ej
comm as

follows:

Ej
comp =

∫ tjcomp

0

P j
comp (t) dt; Ej

comm =

∫ tjcomm

0

P j
comm (t) dt

where P j
comp(t) is the power consumption during the execution of layer lj , and

P j
comm(t) is the power consumption during data communication of layer lj with

another PE. P j
comp(t) and P j

comm(t) can be acquired by measurements during
CNN layer profiling on an edge device.

6 Guo et al.

3.2 AutoDiCE Framework

As explained in Section 1, in the second level we use our AutoDiCE framework [1]
to evaluate the fitness (i.e., the quality) of a given CNN mapping in terms of the
following objectives: CNN inference throughput, maximum memory usage per
device, and maximum energy consumption per device. AutoDiCE enables us to
evaluate the quality of a CNN mapping through actual on-device measurements.
AutoDiCE is a fully automated framework for distributed CNN inference over
multiple edge devices. Given a specific input CNN model and specifications of the
model partitioning and mapping of the partitions to (various resources within)
multiple edge devices, AutoDiCE automates the actual model partitioning, code
generation, and deployment of the CNN partitions on the edge devices.

Figure 1 shows the user interface and design flow of AutoDiCE, where the
main steps in the flow are divided into two modules: front-end and back-end. The
interface is composed of three specifications, namely a Pre-trained CNN Model
(provided as an .onnx file), Mapping Specification (a .json file), and Platform
Specification (a .txt file). The Pre-trained CNN Model specification includes the
CNN topology description with all layers and connections among layers as well as
the weights/biases that are associated with the layers and obtained by training on
a specific dataset using deep learning frameworks like PyTorch, TensorFlow, etc.
Many such CNN model specifications in ONNX format [2] are readily available in
open-access libraries and can be directly used as an input to the framework. The
Platform Specification lists all available edge devices together with their compu-
tational hardware resources and specific software libraries associated with these
resources. The Mapping Specification is a list of key-value pairs that explicitly
specifies how all layers described in the Pre-trained CNN Model specification
are mapped onto the computational hardware resources listed in the Platform
Specification. Every unique key corresponds to an edge device with a selection
of its hardware resources, like CPUs or GPU, to be used for computation. Every
value corresponds to a set of CNN layers to be deployed and executed on the
edge device resources. Such Mapping Specification can be provided manually by
the user or, like in this paper, generated by an external mapping DSE tool.

The three aforementioned specifications are given as an input to the front-
end module as shown in Figure 1, which then performs two main steps: Model
Splitting and Config & Communication Generation. The Model Splitting takes
as an input the Pre-trained CNN Model and Mapping specifications, splits the
input CNN model into multiple sub-models, and generates these sub-models in
ONNX format. The number of generated sub-models is equal to the number
of unique key-value pairs in the Mapping Specification. The Config & Commu-
nication Generation step takes all three input specification files and generates
specific tables in JSON format containing information needed to realize proper
communication and synchronization among the sub-models using the well-known
MPI interface. In addition, a configuration text file (MPI rankfile) is generated
to initialize and run the sub-models as different MPI processes.

The back-end module subsequently uses the output from the front-end for
code and deployment package generation. During the Code Generation step, effi-

Hierarchical DSE for Distributed CNN Inference at the Edge 7

Mapping Specification

.json

Frontend

Backend

Pre-trained CNN Model

.onnx

.onnx (models)

Platform Specification

.txt

Model Splitting

Model 1 … Model NModel 0 Comm 0

Config & Communication
Generation

Comm 1 … Comm N

MPI

Comm

 Library

CNN

Inference

 Library

Code
Generation

.json (tables)

.txt (mpi rankfile)
.cpp (code)

…
.cpp

Model N

Rankfile

.cpp

Model 0

Rankfile

.cpp

Model 1

Rankfile

Interface

Package 1Package 0 Package N

Package
Generation

Fig. 1. The AutoDiCE design flow and its user interface

cient C++ code is generated for every edge device based on the input sub-models
and tables. In the generated code, primitives from the standard MPI library are
used for data communication and synchronization among sub-models as well as
primitives from a custom CNN Inference Library are used for implementation of
the CNN layers belonging to every sub-model. This CNN Inference Library also
integrates OpenMP support. This means that if a CNN layer is mapped onto
multiple CPU cores in an edge device, the actual execution of such layer will be
multi-threaded using OpenMP to efficiently utilize the multiple CPU cores by
exploiting data parallelism available within the layer. Finally, the Package Gen-
eration step packs the generated C++ code, the MPI rankfile, and a sub-model
together to generate a specific deployment package for every edge device.

4 Multi-stage Hierarchical Design Space Exploration

Our DSE methodology utilizes a Genetic Algorithm (GA), namely the NSGA-
II algorithm [3], to search for optimal mappings of (complete) CNN layers to
different, distributed edge devices. We assume that each edge device contains a
number of internal compute resources (i.e. PEs), like a CPU and GPU, and we
map CNN layers directly to these specific PEs within an edge device.

Given a trained CNN model with L layers, a layer lj performs a compu-
tation operation in the CNN model such as a convolution (Conv), a matrix

8 Guo et al.

NSGA-II

Elites + Random
 Population

Final
Pareto Front

On-Board
Evaluation

Random
 Population

NSGA-II

Analytical Model

N Node
Elites

N-1 Node Pareto front
from previous stage

N Node Pareto front
for next stage

Stage 1

Stage 2

Stage 1

Stage 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 2 3 3 3

0 2 4 5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

PE1 PE1 PE2 PE2 PE3 PE4 PE4 PE4 0 2 4 5
(1) Naive Encoding (2) SplitPoint Encoding

l1 l2 l3 l4 l5 l6 l7 l8 8 layers CNN, 4 PEs

Fig. 2. Two Chromosome Encoding Methods

multiplication (FC), etc. As mentioned in Section 3.1, a mapping x of the
CNN layers onto a total of N PEs is denoted as x = [x1, x2, · · · , xL]. Such
mapping notation x is typically encoded with the GA’s chromosome where
PEi, i ∈ [1..N] define the gene types in the chromosome. An example of such
encoding, called Naive Encoding (NE), is shown in Figure 2. The GA chromo-
some [PE1,PE1,PE2,PE2,PE3,PE4,PE4,PE4] encodes an 8-layer CNN (L = 8)
mapped onto four PEs (N = 4), where layers l1 and l2 are mapped on PE1, l3
and l4 on PE2, l5 on PE3, and l6, l7, l8 on PE4. Such naive encoding for CNN
mappings is simple and intuitive but it may require exploration of a huge design
space because the space size depends exponentially on the number of layers L in
a CNN model and L is typically large. Therefore, in our DSE methodology, we
propose and utilize a tailored chromosome encoding method, called Split Point
Encoding (SPE). It encodes points in a CNN model that partition the model
into N groups of CNN layers, where each group consists of consecutive layers
and is mapped on one PE. In Figure 2, the Split Point Encoding example en-
codes the same mapping as the Naive Encoding example. It can be seen that
the 8-layer CNN has four split points, visualized with the vertical dashed lines,
at positions 0, 2, 4, and 5 determined by the layer index j. Therefore, the GA
chromosome using our SPE method is [0, 2, 4, 5] and it encodes four groups of
layers each mapped on one PE as follows: 1) for j ∈ (0..2], lj mapped on PE1;
2) for j ∈ (2..4], lj mapped on PE2; 3) for j ∈ (4..5], lj mapped on PE3; 4)
for j > 5, lj mapped on PE4. The length of our SPE chromosome is equal to
the number of PEs which is N , thus SPE requires exploration of a design space
which size depends exponentially on N . Since N is typically much smaller than
the number of CNN layers L, our SPE method largely scales down the design
space and improves the search efficiency compared to the NE method.

Given a trained CNN model and all edge devices with in total N PEs, our
DSE methodology searches for Pareto CNN mappings to optimize the three
objectives, mentioned in Section 3. In Figure 3, we present the general structure
of our multi-stage hierarchical DSE methodology. On the left, the K stages in
our DSE workflow are depicted, and on the right a zoomed-in view of each stage
is provided with the two rectangular boxes showing the two hierarchical levels
per stage. We accelerate our DSE process by splitting it into K different stages,
where K is the ceiling value of log2(N). At each stage, we perform a two-level
DSE. In both levels, the NSGA-II GA is deployed to evolve a population of

Hierarchical DSE for Distributed CNN Inference at the Edge 9

NSGA-II

Previous solutions +
 Random Population

Final
Pareto Front

On-Board
Evaluation

Previous solutions +
 Random Population

NSGA-II

Analytical Model

Near-optimal Pareto

Pareto front
from previous stage

K-1

 Pareto front
for next stage

Stage 1

Stage 2

Stage 3

Stage K

Fig. 3. The DSE Methodology workflow

CNN mappings over multiple generations to search for a Pareto front in terms
of the targeted objectives. In the first DSE level, we use the analytical models,
introduced in Section 3, inside the GA to approximate each objective function.
In the second DSE level, we use real distributed CNN inference implementations
generated by AutoDiCE (see Figure 1) for evaluation, thereby producing more
accurate Pareto solutions as they are based on real (on-board) measurements.

At every DSE stage k ∈ [1, · · · ,K−1], we search for optimal CNN mappings
on 2k target PEs. Figure 3 shows that to initialize the GA population at stage
k, with k > 1, the Pareto optimal results found by the previous stage k − 1
are used. By doing so, we can retain the information of Pareto CNN mappings
in previous stages to improve the DSE convergence. Moreover, the second level
DSE at each stage also uses the results from the first level of DSE to initialize
its population. Finally, the output of the last DSE stage (k = K) provides the
final Pareto-optimal solutions for N PEs.

5 Experimental Evaluation

In this section, we evaluate the search efficiency of our multi-stage hierarchical
DSE methodology by conducting three DSE experiments and comparing the
obtained experimental results in terms of the quality of the found solutions and
how this quality changes over time during the DSE process (i.e., the search).

10 Guo et al.

5.1 Experimental setup

In our three DSE experiments, we search for Pareto-optimal mappings of the
popular ResNet-101 [8] CNN model onto a cluster of four edge devices. ResNet-
101 has 344 layers with diverse types leading to an immense number of differ-
ent CNN mappings, i.e., we have to perform the search in a vast design space.
Therefore, ResNet-101 is a sufficiently representative model to apply our DSE
methodology on and to demonstrate its merits. Our 4-device edge cluster consists
of four NVIDIA Jetson Xavier NX development boards [13] that are connected
via a Gigabit network switch. Each board has an embedded MPSoC featuring
a 6-core CPU (NVIDIA Carmel ARMv8) and a GPU (Volta with 384 NVIDIA
CUDA cores and 48 Tensor cores). Thus, we have 8 PEs in total in our edge
cluster (4 boards with 1 CPU and 1 GPU per board). The On-Board Evaluation
step in the second level of our DSE methodology (see Figure 3) measures and
collects the CNN inference throughput, memory usage per device, and energy
consumption per device over 20 CNN inference executions and represents them
as average values over these 20 executions.

In the first DSE experiment, referred as 3s-2l-SPE, we utilize our multi-
stage hierarchical DSE methodology as presented in Section 4 with 3 stages,
2 levels per stage, and the chromosome is encoded using our SPE method. In
the second experiment, referred as 1s-non-SPE, we utilize a classical 1-stage,
non-hierarchical DSE methodology based on the NSGA-II algorithm with our
On-Board Evaluation as the fitness function and our SPE as the chromosome
encoding method. In the third experiment, referred as 1s-non-NE, we utilize the
same DSE methodology as in the second experiment but we replace SPE with the
NE method mentioned in Section 4. In all experiments, every CNN layer can be
mapped either onto a 6-core CPU or a GPU present in any of the aforementioned
four board. The NSGA-II algorithm is executed with a population size of 100
individuals, a mutation probability of 0.2, and a crossover probability of 0.5. In
each DSE experiment, we run the search for optimal mappings for 70 hours and
compare the quality of solutions found within these 70 hours.

5.2 Experimental results

Figure 4 shows how the quality of the found mappings in terms of the three
objectives, discussed in Section 3, improves during the search in the three DSE
experiments. The results for each objective are plotted in a separate chart where
the X-axis represents the search time in hours and the Y-axis represents the
objective value in images per second (IPS) for the CNN inference throughput,
in mega bytes (MB) for the maximum memory usage per edge device, and in
joules per image (J/img) for the maximum energy consumption per edge device.
Every point in a chart represents the best found mapping with respect to the
objective at a given point in time.

The results in Figure 4 clearly indicate that the 1s-non-NE DSE gets eas-
ily stuck in dominance resistant solutions, which means that such DSE cannot
find high-quality mappings even after hundreds of generations. In contrast, by

Hierarchical DSE for Distributed CNN Inference at the Edge 11

20

25

30

35

40

Overall Throughput

6

7

8

9

Energy Consumption

0 10 20 30 40 50 60 70
time (h)

0.35

0.40

0.45

0.50

0.55

0 10 20 30 40 50 60 70
time (h)

0.2
0.4
0.6
0.8
1.0
1.2

0 10 20 30 40 50 60 70
time (h)

200

300

400

500

600

700

800

900

M
ax

 IP
S

Pe
r d

ev
ice

 (i
m

g/
se

c)

M
ax

 M
em

or
y

Us
ag

e
Pe

r d
ev

ice
(M

B)

M
ax

 E
ne

rg
y

Co
ns

um
pt

io
n

Pe
r d

ev
ice

 (J
/im

g)

Memory

3s-2l-SPE
1s-non-SPE
1s-non-NE

Fig. 4. Quality of found mappings during the three DSE experiments

replacing the common NE encoding method with our tailored SPE method, the
search efficiency is significantly improved as shown in Figure 4 where the 1s-non-
SPE DSE delivers high-quality mappings for the three objectives after 20 hours.
This is because our SPE method ensures that only consecutive CNN layers will
be mapped on a PE, thereby scaling down significantly the design space and
allowing only exploration of mappings with reduced data communication among
PEs. Such mappings are better than less restricted mappings allowed by the NE
method.

Finally, comparing the 1s-non-SPE and 3s-2l-SPE results shown in Figure 4,
we see that by introducing multiple stages and hierarchy in the DSE process,
it is accelerate further in finding high-quality mappings. For example, after 40
hours of search time, our 3s-2l-SPE DSE delivers better mappings for the three
objectives than the 1s-non-SPE DSE.

6 Conclusion

We have presented a novel multi-stage hierarchical DSE methodology for dis-
tributed CNN inference at the edge. To accelerate the DSE process and improve
its efficiency, our DSE methodology combines analytical models with real on-
board measurements to speedup the evaluations of individual design points and
utilizes a tailored chromosome encoding method to effectively scale down the
explored design space. The methodology has been experimentally evaluated by
searching for optimal distributed mappings of the ResNet-101 CNN model onto
an edge cluster of four NVIDIA Jetson Xavier boards. The experimental results
show that our multi-stage hierarchical DSE methodology has significantly im-
proved search efficiency in comparison to a classical one-stage, non-hierarchical
DSE methodology which employs the commonly used, naive chromosome encod-
ing method.

12 Guo et al.

References

1. AutoDiCE: https://github.com/parrotsky/autodice
2. Bai, J., Lu, F., Zhang, K., et al.: Onnx: Open neural network exchange (2019),

https://github.com/onnx/onnx
3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002). https://doi.org/10.1109/4235.996017

4. Deb, K.: Multi-Objective Evolutionary Algorithms, pp. 995–1015. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

5. Dillon, T., Wu, C., Chang, E.: Cloud computing: Issues and challenges. In: 24th
IEEE International Conference on Advanced Information Networking and Appli-
cations. pp. 27–33 (2010)

6. Guo, Y.: A survey on methods and theories of quantized neural networks. arXiv
preprint arXiv:1808.04752 (2018)

7. Hadidi, R., Cao, J., Ryoo, M.S., Kim, H.: Toward Collaborative Inferencing of Deep
Neural Networks on Internet-of-Things Devices. IEEE Internet of Things Journal
7(6), 4950–4960 (Jun 2020)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

9. Hou, X., Guan, Y., Han, T., Zhang, N.: Distredge: Speeding up convolutional neural
network inference on distributed edge devices. ArXiv abs/2202.01699 (2022)

10. Kang, et al.: Neurosurgeon: Collaborative intelligence between the cloud and mo-
bile edge. ACM SIGARCH Computer Architecture News 45(1), 615–629 (2017)

11. Loni, M., Sinaei, S., Zoljodi, A., Daneshtalab, M., Sjödin, M.: Deepmaker: A multi-
objective optimization framework for deep neural networks in embedded systems.
Microprocessors and Microsystems 73, 102989 (2020)

12. Minakova, S., Sapra, D., Stefanov, T., Pimentel, A.D.: Scenario based run-time
switching for adaptive cnn-based applications at the edge. ACM Transactions on
Embedded Computing Systems (TECS) 21(2), 1–33 (2022)

13. NVIDIA: Jetson Xavier NX (2020), https://developer.nvidia.com/embedded/jetson-
xavier-nx

14. Pang, L.M., Ishibuchi, H., Shang, K.: Nsga-ii with simple modification works well
on a wide variety of many-objective problems. IEEE Access 8 (2020)

15. Pimentel, A.: Exploring exploration: A tutorial introduction to embedded systems
design space exploration. IEEE Design & Test 34(1), 77–90 (2 2017)

16. Stahl, R., Zhao, Z., Mueller-Gritschneder, D., Gerstlauer, A., Schlichtmann, U.:
Fully distributed deep learning inference on resource-constrained edge devices. In:
International Conference on Embedded Computer Systems. pp. 77–90 (2019)

17. Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks
over the cloud, the edge and end devices. In: 2017 IEEE 37th international confer-
ence on distributed computing systems (ICDCS). pp. 328–339. IEEE (2017)

18. Zeng, L., et al.: Coedge: Cooperative dnn inference with adaptive workload parti-
tioning over heterogeneous edge devices. IEEE/ACM Transactions on Networking
29(2), 595–608 (2020)

19. Zhao, Z., Barijough, K.M., Gerstlauer, A.: DeepThings: Distributed Adaptive Deep
Learning Inference on Resource-Constrained IoT Edge Clusters. IEEE TCAD
37(11), 2348–2359 (Nov 2018)

20. Zhou, L., et al.: Adaptive parallel execution of deep neural networks on hetero-
geneous edge devices. In: 4th ACM/IEEE Symposium on Edge Computing. p.
195–208 (2019)

