
Article

A Case for Security-aware Design-Space Exploration
of Embedded Systems

Andy D. Pimentel

Parallel Computing Systems group
University of Amsterdam
The Netherlands
a.d.pimentel@uva.nl

Version July 10, 2020 submitted to J. Low Power Electron. Appl.

Abstract: As modern embedded systems are becoming more and more ubiquitous and interconnected,1

they attract a world-wide attention of attackers and the security aspect is more important than2

ever during the design of those systems. Moreover, given the ever-increasing complexity of the3

applications that run on these systems, it becomes increasingly difficult to meet all security criteria.4

While extra-functional design objectives such as performance and power/energy consumption are5

typically taken into account already during the very early stages of embedded systems design, system6

security is still mostly considered as an afterthought. That is, security is usually not regarded in the7

process of (early) design-space exploration of embedded systems, which is the critical process of8

multi-objective optimization that aims at optimizing the extra-functional behavior of a design. This9

position paper argues for the development of techniques for quantifying the ’degree of secureness’10

of embedded system design instances such that these can be incorporated in a multi-objective11

optimization process. Such technology would allow for the optimization of security aspects of12

embedded systems during the earliest design phases as well as for studying the trade-offs between13

security and the other design objectives such as performance, power consumption and cost.14

Keywords: Embedded computer systems; cyber security; system-level design and design-space15

exploration; multi-objective optimization; system trade-offs16

1. Introduction17

Embedded computer systems are ubiquitous and have a major impact on our society. Examples18

of such systems are close at hand: modern TVs contain one or multiple computer systems to19

handle functionality such as decoding the input signal, performing various image enhancement20

techniques as well as displaying and updating live information (e.g., program guide or weather21

forecast). Smart-phones rely on embedded computer systems to allow users to make phone calls,22

shoot photos and videos, perform GPS navigation, browse the Internet, execute apps, and so on. The23

use of embedded computer systems is, however, by no means restricted to consumer electronics: in24

industrial, medical, automotive, avionic, or defense applications they are equally pervasive.25

The complexity of the underlying system architectures of modern embedded systems forces26

designers to start with modeling and simulating (possible) system components and their interactions27

in the very early design stages. This is often referred to as system-level design [1]. The system-level28

models typically represent application workload behavior, characteristics of the underlying computing29

platform architecture, and the relation (e.g., mapping, hardware-software partitioning) between30

application workload(s) and platform architecture. These models are applied at a high level of31

abstraction, thereby minimizing the modeling effort and optimizing the simulation speed. This is32

especially needed for targeting the early design stages since many design decisions are still open33
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and, therefore, many design alternatives still need to be studied. High-level system modeling allows34

for the early verification of a design and can provide estimates on the extra-functional properties35

of a design such as system performance and energy/power consumption. The system-level models36

are typically accompanied by a methodology for efficient design-space exploration (DSE) [2], which37

is the process of assessing alternative design instances with respect to i) the platform architecture38

that will be deployed (e.g., the number and type of processing elements in the platform, the type of39

network to interconnect the processors, etc.) and ii) the mapping of application tasks to the underlying40

platform components [3]. It is a multi-objective optimization problem that searches through the space41

of different implementation alternatives to find optimal design instances. Exploration of different42

design choices, especially during the early design stages where the design space is still at its largest,43

is of eminent importance. Wrong decisions early in the design can be extremely costly in terms of44

re-design effort, or even deadly to the product’s success. Consequently, considerable research effort in45

the embedded systems domain has been spent in the last two decades on developing frameworks for46

system-level modeling and simulation that aim for early design-space exploration.47

As embedded systems are becoming more and more ubiquitous and interconnected (illustrated48

by, e.g., the strong trend towards the Internet of Things), they also attract a world-wide attention of49

attackers. This makes the security aspect more important than ever during the design of these systems50

[4]. Moreover, given the ever-increasing complexity of the applications that run on modern embedded51

systems, it becomes increasingly difficult to meet all security criteria. While design objectives such as52

performance and power/energy consumption are usually taken into account during the early stages53

of design (as explained above), system security is still mostly considered as an afterthought. That54

is, security is typically not regarded in the process of (early) design-space exploration of embedded55

systems. However, any security measures that may eventually be taken much later in the design56

process do affect the already established trade-offs with respect to the other extra-functional properties57

of the system like performance, power/energy consumption, cost, etc. [4]. Thus, covering the security58

aspect in the earliest phases of design is necessary to design systems that are, in the end, optimal59

with regard to all extra-functional objectives. However, this poses great difficulties because unlike the60

earlier mentioned conventional system objectives, like performance and power consumption, security61

is hard to quantify: there exists no single metric with which one can measure the degree of secureness62

of a design.63

This position paper argues for the need for security-aware, system-level design-space exploration64

methods and techniques for embedded systems. To this end, we will discuss a multifaceted,65

scoring-based methodology for quantifying the degree of secureness of embedded system design66

instances. This methodology allows for incorporating the secureness quantifications in a multi-objective67

optimization process and would thus enable optimization of the security aspect during the earliest68

phases of design. However, we want to emphasize the fact that this is a position paper and therefore69

does not present an actual implementation of the proposed solution nor any experimental results.70

The remainder of this paper is organized as follows. In the next section, we will provide a brief71

introduction to the concept of design-space exploration. In Section 3, we will describe our proposal for72

a security-aware DSE approach, focusing on a method to quantify the secureness of embedded system73

design instances. Section 4 discusses related work, after which Section 5 concludes the paper.74

2. Design-Space Exploration75

During the design-space exploration (DSE) of embedded systems, multiple optimization objectives76

– such as performance, power/energy consumption, and cost – should be considered simultaneously.77

This is called multi-objective DSE [2]. Since the objectives are often in conflict, there cannot be a single78

optimal solution that simultaneously optimizes all objectives. Therefore, optimal decisions need to be79

taken in the presence of trade-offs between design criteria.80
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2.1. Multi-objective Optimization81

Given a set of m decision variables, which are the degrees of freedom (e.g., parameters like the82

number and type of processors in the system, application mapping, etc.) that are explored during DSE,83

a so-called fitness function must optimize the n objective values [2]. The fitness function is defined as:84

fi : Rm → R1 (1)

A potential solution x ∈ Rm is an assignment of the m decision variables. The fitness function fi85

translates a point in the solution space X into the i-th objective value (where 1 ≤ i ≤ n). For example,86

a particular fitness function fi could assess the performance or energy efficiency of a certain solution x87

(representing a specific design instance). The combined fitness function f (x) subsequently translates a88

point in the solution space into the objective space Y. Formally, a multi-objective optimization problem89

(MOP) that tries to identify a solution x for the m decision variables that minimizes the n objective90

values using objective functions fi with 1 ≤ i ≤ n :91

Minimize y = f (x) = ( f1(x), f2(x), ..., fn(x))

Where x = (x1, x2, ..., xm) ∈ X

y = (y1, y2, ..., yn) ∈ Y

Here, the decision variables xi (with 1 ≤ i ≤ m) usually are constrained. These constraints make92

sure that the decision variables refer to valid system configurations (e.g., using not more than the93

available number of processors, using a valid mapping of application tasks to processing resources,94

etc.), i.e., xi are part of the so-called feasible set. In the remainder of this section, we assume a95

minimization procedure, but without loss of generality, this minimization procedure can be converted96

into a maximization problem by multiplying the fitness values yi with −1.97

With an optimization of a single objective, the comparison of solutions is trivial. A better fitness98

(i.e., objective value) means a better solution. With multiple objectives, however, the comparison99

becomes non-trivial. Take, for example, two different embedded system architecture designs: a100

high-performance system and a slower but much cheaper system. In case there is no preference101

defined with respect to the objectives and there are also no restrictions for the objectives, one cannot102

say if the high-performance system is better or the low-cost system. A typical MOP in the context103

of embedded systems design can have a variety of different objectives, like performance, energy104

consumption, cost and reliability. To compare different solutions in the case of multiple objectives,105

the Pareto dominance relation is generally used. Here, a solution xa ∈ X is said to dominate solution106

xb ∈ X if and only if xa < xb:107

xa < xb ⇐⇒ ∀i ∈ {1, 2, ..., n} : fi(xa) ≤ fi(xb) ∧
∃i ∈ {1, 2, ..., n} : fi(xa) < fi(xb)

Hence, a solution xa dominates xb if its objective values are superior to the objective values of xb.108

For all of the objectives, xa must not have a worse objective value than solution xb. Additionally, there109

must be at least one objective in which solution xa is better (otherwise they are equal).110

An example of the dominance relation is given in Figure 1, which illustrates a two dimensional111

MOP. For solution H the dominance relations are shown. Solution H is dominated by solutions B, C112

and D as all of them have a lower value for both f1 and f2. On the other hand, solution H is superior113

to solutions M, N and O. Finally, some of the solutions are not comparable to H. These solutions are114

better for one objective but worse for another.115
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Figure 1. A Pareto front and an example of the dominance relation (taken from [2]).

The Pareto dominance relation only provides a partial ordering. For example, the solutions A to F116

of the example in Figure 1 cannot be ordered using the ordering relation. Since not all solutions x ∈ X117

can be ordered, the result of a MOP is not a single solution, but a front of non-dominated solutions,118

called the Pareto front. A set X′ is defined to be a Pareto front of the set of solutions X as follows:119

{x ∈ X′ | @xa ∈ X : xa < x}

The Pareto front of Figure 1 contains six solutions: A − F. Each of these solutions does not120

dominate the other. An improvement on objective f1 is matched by a worse value for f2. Generally, it121

is up to the designer to decide which of the solutions provides the best trade-off.122

2.2. Search for Pareto optimal solutions123

The search for Pareto optimal design points with respect to multiple design criteria entails two124

distinct elements [5]:125

1. The evaluation of a single design point using the fitness function(s) f (x) regarding all the126

objectives in question like system performance, power/energy consumption and so on. These127

evaluations are usually based on measurements using real systems or predictions from either128

analytical models or simulation models [2].129

2. The search strategy for navigating through and covering the design space during the DSE process.130

Such search strategies can be based on exact, but typically unscalable, methods that guarantee131

finding the optimal solution(s). These exact methods can, for example, be implemented using132

integer linear programming (ILP) solutions (e.g., [6,7]) or branch & bound algorithms (e.g., [8]).133

Alternatively, so-called meta-heurisics, such as genetic algorithms (GA) or simulated annealing,134

can be used to search the design space for optimal solutions. They only perform a finite number135

of design point evaluations, and can thus handle larger design spaces. However, there is no136

guarantee that the global optimum will be found using meta-heuristics, and therefore the result137

can be a local optimum within the design space. GA-based DSE has been widely studied in138

the domain of system-level embedded design (e.g., [9–12]) and has demonstrated to yield good139

results.140

In this paper, we focus on the fitness evaluation aspect of DSE. More specifically, we argue that141

while there are well-established techniques and metrics for the fitness evaluation of traditional design142

objectives such as performance, power / energy consumption, cost, and reliability, this is not the case143

for evaluating the fitness of design instances in terms of how secure they are. This lack of security144

fitness evaluation methods and metrics inhibits the use of system security as a first-class citizen in the145

process of early design-space exploration of embedded systems. As was indicated before, such design146

practice leads to suboptimal products because any security measures that may be taken later in the147
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design process do affect the already established trade-offs with respect to the other extra-functional148

properties of the system like performance, power/energy consumption, cost, etc.149

In the next section, we will therefore argue for the development of a security-aware DSE approach,150

based on a multifaceted, scoring-based security quantification methodology. This methodology allows151

for quantifying the degree of secureness of design instances such that these can be incorporated in the152

DSE’s multi-objective optimization process. Eventually, once such a security-aware DSE would have153

been implemented, it would allow for optimization of security aspects of embedded systems in their154

earliest design phases as well as for studying the trade-offs between security and the other design155

objectives like performance, power consumption and cost. Evidently, such technology would provide156

a substantial competitive advantage in the embedded systems industry.157

3. Towards security-aware, system-level DSE158

The envisioned approach for security-aware system-level design-space exploration, adopting159

a multifaceted, scoring-based security quantification methodology, is illustrated in Figure 2. Below,160

we will explain the different components of this approach. The blue parts of Figure 2 refer to the161

methodology components that only need to be specified or performed once, whereas the red parts162

refer to components that are dependent on the design-space exploration process and thus must be163

revisited every time a new design instance is evaluated in terms of extra-functional properties such as164

performance, power consumption, and of course, in the scope of this paper, also secureness. Before165

describing our approach in detail, however, we will first discuss several assumptions that delimit our166

proposed approach.167

3.1. Assumptions168

We focus on security threats in which the underlying embedded system architecture plays a169

central role, and do not consider any security flaws that can be exploited purely at the application170

level. This implies that we restrict ourselves to the following set of attack types:171

1. Side-channel attacks like power analysis attacks, timing attacks such as the recent Spectre and172

Meltdown attacks, scan attacks, differential fault analysis attacks and electromagnetic analysis173

attacks (see [13,14] for an overview of these side-channel attacks);174

2. Denial of service attacks [15,16];175

3. Software-based attacks such as buffer overflows for which protection mechanisms may be available176

at the system (architecture) level (e.g. [13]);177

4. Attacks directed towards breaking encryption algorithms [17].178

For each of the above attacks, we subsequently consider a range of protection mechanisms – derived179

from literature – that can be applied to protect specific system components or the entire system against180

these attacks.181

Moreover, we consider system-level DSE in which both the platform architecture (e.g., selection182

of platform components such processing elements, memories, and networking components) as well183

as the mapping of application tasks and communications to the selected platform components are184

optimized for traditional objectives such as performance, power consumption, and cost, but now185

also for secureness. Such system-level design-space exploration is depicted in the top-middle part of186

Figure 2 and could, for example, be performed with system-level DSE frameworks such as Sesame187

[18,19] or a similar environment (e.g, [20–22]). Important to note here is that the performance, power188

and cost models used in the DSE also need to account for the effects of deploying specifically selected189

security protection mechanisms (as discussed above) inside a platform architecture.190

3.2. A multifaceted, scoring-based methodology for secureness quantification191

As a first step in our methodology, shown in the top left of Figure 2, the applications that need192

to execute on the target embedded system together with their extra-functional requirements are193
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Figure 2. Proposed approach for security-aware system-level DSE using a multifaceted, scoring-based
security quantification methodology.

identified and specified. The specified extra-functional requirements include the traditional ones194

such as performance and real-time requirements, power/energy consumption budgets, etc., but also195

requirements in terms of secureness. Regarding the latter, one can use the well-known CIA triad to196

indicate the needs with respect to the security aspects Confidentiality (preventing sensitive information197

from reaching the wrong people), Integrity (maintaining consistency, accuracy, and trustworthiness of198

data) and Availability (ensuring timely and reliable access to, and use of, information) [23]. Here, a199

domain-specific language (DSL) could be developed to specify these extra-functional requirements. The200

application workloads themselves can be specified using task or process graphs, explicitly describing201

application tasks and their interactions (communications).202

Given the attack types we consider in our proposed approach, as discussed in Section 3.1 and203

shown at the left in Figure 2, only those attacks that are relevant for the embedded system under204

design need to be identified, which we refer to as the so-called domain-specific attacks. To this end,205

we need to consider the security requirements of the target embedded system as specified using the206

CIA triad as well as the characteristics of the specific attack types in terms of, e.g., passivity and207

accessibility. Here, passivity refers to what extent an attack manipulates the target system, either as a208

means or a goal of the attack. For example, a denial of service attack clearly is an active attack as its sole209

aim is to manipulate the system, whereas a side-channel attack based on power analysis is a passive210

attack. Accessibility refers to the access level that is required for an attack to be performed. Revisiting211

the example of a side-channel attack via power analysis, such an attack obviously requires physical212

access to the embedded system, whereas e.g. a software-based attack does not require this. If we now213

consider, for example, an anti-lock braking system, then confidentiality is not a major concern as such214

a system does not process sensitive information. This makes passive attacks such as side-channel215

attacks not relevant and can therefore be excluded from the set of domain-specific attacks. However,216

the braking system may not be disrupted or manipulated (i.e., integrity and availability are crucial217

CIA elements) thereby making active attacks highly relevant. Table 1 provides an overview of the218

required access level and passivity of the attack types we consider in this paper. Here, virtual access219
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Attack Sub-type Access level Passivity
Side-channel Power analysis Physical Passive

Timing attack Virtual Passive
Scan attack Physical Active
Fault Analysis Physical & Virtual Passive & Active
Electromagnetic Analysis Physical Passive

Denial of Service Virtual Active
Software Buffer overflow Virtual Active
Cryptanalysis None Passive

Table 1. Required access level and passivity of various types of attacks on embedded systems.

level attacks require access to one process that runs within an application on the embedded system in220

question. Cryptanalysis attacks often do not require access to the system. For example, in the case of221

public key cryptography, the public key is distributed to other systems and therefore freely available.222

Once the set of domain-specific attacks has been determined, those attacks that are relevant to223

the different components in the underlying platform architecture can be determined: for example,224

a networking component is not susceptible to a software-based buffer overflow attack, whereas a225

microprocessor component is. To do so, we also need the mapping information (i.e., which application226

tasks and communications are mapped onto what platform components) of the design instance(s) that227

are currently being explored by the system-level DSE process. Subsequently, for each component in228

the platform architecture, we can now determine the set of possible security protection mechanisms229

that can be deployed to effectively increase its secureness (’Per-component protection mechanisms’ in230

Figure 2). These sets of possible per-component protection mechanisms are an important ingredient of231

our envisioned scoring-based security quantification methodology: they allow for determining the232

coverage with respect to the protection mechanisms that are actually deployed in the design instances233

being explored by the system-level DSE. To achieve this, a scoring technique would be needed that can234

capture binary coverage relationships (i.e., a certain protection mechanism is available or not) as well235

as numerical coverage relationships. The latter applies in cases where, for example, a certain amount of236

random noise is added to a system component to disguise real power behavior in order to complicate237

or even prevent side-channel attacks based on power analysis [24] (here, the amount of noise forms a238

power / security trade-off) or when the strength of a cryptographic processor is identified as a function239

of the key-size it uses.240

Besides the coverage of protection mechanisms deployed in the platform architecture components,241

one can take two other facets into account to determine the security score of a particular design instance.242

First, the spatial isolation realized in design instances can be considered. That is, reducing the amount243

of resource sharing between applications or even between tasks from a single application will increase244

the secureness of the system, as this will complicate certain types of attacks such as side-channel attacks.245

Therefore, a proper technique for quantifying the spatial isolation (using the mapping information246

from the system-level DSE) would be required such that it can be used for security scoring purposes.247

As a final ingredient of our anticipated security score, the platform component utilization can be248

used. The rationale behind this is that higher utilized components typically are more prone to certain249

attacks. Moreover, higher utilized components possibly also play a more important role in achieving250

the CIA-triad system requirements. To include the platform component utilization, we need to profile251

the application(s) to measure the activity of application tasks and communications, i.e., the degree to252

which they utilize the underlying resources. Hereafter, this information is related to the mapping of253

these application tasks and communications onto the platform architecture. The resulting component254

utilization can then be used to weight the protection mechanism coverage and spatial isolation of255

design instances in the final security scoring (as shown at the bottom of Figure 2).256
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3.3. Scoring the security of design instances257

Above, we described the ingredients of our envisioned security scoring methodology. We258

do realize that we have not provided any details on how such security scoring could actually be259

implemented. Actually, this remains a topic for future research, which will hopefully also be picked up260

by the community. Nevertheless, in this section, we would like to provide a rough sketch of a fairly261

simple approach to do such scoring.262

Given a mapping of a (set of) application(s) to the underlying resources of a possible platform263

architecture, which includes the mapping of application tasks to computational resources as well as264

the mapping of inter-task communications to network and memory resources. Then, for each utilized265

component in the platform, we could calculate a security score along the following lines. Let ATx be266

the set of Attack Types (see e.g. the second column of Table 1) to which component x is susceptible:267

ATx = {
⋃

∀ti |ci mapped on x
Attacksti |ci

}

For ATx, we only consider the application tasks ti or inter-task communications ci (dependent268

on whether x is a processing or communication component) that are mapped to component x.269

Attacksti |ci
refers to the possible attacks for task ti or communication ci, taking into account its security270

requirements according to the CIA triad as well as taking into account the access level and passivity of271

the various attacks (see Table 1). To determine a security score Sx for a component x, one could then272

perform the following calculation:273

Sx =

∑
p∈PATx

Protection-level(p, x)

|ATx|
·

1
Utilizationx

Here, p is a particular protection mechanism and is part of the set PATx that consists of the274

possible protection mechanisms for the attacks listed in set ATx for component x. The function275

Protection-level(p, x) returns a value that indicates the extent to which component x implements276

protection mechanism p. This function could, for example, return a value between 0 and 1: The277

value 0 would mean that the component does not implement the protection mechanism, implying278

that component x would be fully susceptible to the associated attack type. The value 1, on the other279

hand, would refer to an available implementation of protection mechanism p such that component x280

is fully protected against attacks of the associated type. Evidently, the returned value may also be in281

between 0 and 1, indicating partial protection. For example, in the case protection mechanism p adds a282

certain amount of random noise to a component to disguise real power behavior in order to prevent283

side-channel attacks based on power analysis [24], the level of added noise (which is a trade-off284

between power consumption and security) would determine the returned value of the function285

Protection-level(p, x). To calculate Sx, we also consider the reciprocal of the utilization of component286

x. Here, the utilization refers to the fraction the computing/communication component x contributes287

to the overall computing or communication time of an application. The rationale behind this is that288

one could argue that those components (both processing and communication components) that are289

less active over time will be less susceptible to certain types of attacks, like side-channel attacks. To290

determine the overall security score of a specific design instance (i.e., a particular application mapping291

to a selected platform architecture), one could simply accumulate the Sx scores for all components x292

used in the design instance.293

The above scoring example is by no means meant to be a complete and fully-fledged solution to294

the security scoring problem. It is merely meant to act as an illustration for the direction of thought295

as presented in this paper. Moreover, in the above scoring example, we also do not consider spatial296
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isolation as part of the security score. One direction to accomplish this, would e.g. to penalize the297

mapping of multiple application tasks or communications to a single platform component.298

The multifaceted, scoring-based security quantification methodology as outlined in this section299

could provide a real innovation to system-level embedded system design as it would facilitate designers300

to study the trade-offs between the performance, power consumption, cost, and secureness of design301

instances during the early stages of design.302

4. Related work303

The need for recognizing security as a first-class citizen, next to traditional design objectives such304

as performance, cost and power consumption, in the design of embedded systems is not new. For305

example, quoting from [4]: "However, security is often misconstrued by embedded system designers as306

the addition of features, such as specific cryptographic algorithms and security protocols, to the system.307

In reality, it is a new dimension that designers should consider throughout the design process, along308

with other metrics such as cost, performance, and power.". Nevertheless, the integration of security309

aspects in the process of system-level design-space exploration of embedded systems has never really310

got off the ground and is still a largely uncharted research ground. Only a few efforts exist that address311

this problem but, at best, most of them provide partial solutions or solutions to very specific security312

problems. For example, in [25], the evaluation of security protocols is integrated in the design process.313

For instance, it rates the security of a system based on the probability of a hash collision. However, it314

does not cover other types of attacks, such as timing attacks and power analysis. The authors of [26]315

try to neutralize several types of side-channel attacks by means of spatial isolation in a DSE setting316

but, again, they do not consider any other types of attacks / protection mechanisms. In [27], a small317

number of attacker capabilities and corresponding requirements that refer to the CIA triad are defined318

in the context of DSE. The problem of this approach is that it is not trivial to relate types of attacks to319

those capabilities and requirements. The work of [28] incorporates security in system-level DSE by320

first generating potential architecture configurations, after which an automated security analysis is321

performed to check the generated configurations against designer-specified security constraints.322

In all the above works of [26–28] security is modelled as a requirement in the DSE process, which323

does not allow for studying actual trade-offs between performance, power consumption or cost in324

relationship to secureness of a design.325

An alternative approach for quantifying security is by means of a security risk assessment using326

a specific attack model [29]. For example, [30], proposes an attack tree model to evaluate the user’s327

privacy risks associated with an Internet-of-Things eco system. They evaluate the potential risks328

based on varying attack attributes, the probable considerations or preferences of an adversary, and329

the varying computational resources available on a device. Research efforts like this are, however,330

typically not focused on the process of (early) DSE.331

To the best of our knowledge, only the works of [31,32] and [33] are similar to what we propose332

in terms of aiming at incorporating security as an objective that can be traded off with other objectives333

in the process of early DSE. In [31,32], the authors introduce an UML-based approach in which334

application security requirements can be described together with security ’capabilities’ – in addition to335

other extra-functional aspects such as performance and power consumption – of system components336

stored in a library. This then allows for a DSE process during which the application requirements337

are matched with the component capabilities. The very recent work of [33] introduces a novel DSE338

framework that allows for considering security constraints, in the form of attack scenarios, and attack339

mitigations, in the form of security tasks. Based on the descriptions of the system’s functionality340

and architecture, possible attacks, and known mitigation techniques, the framework tries to find the341

optimal design for an embedded system.342
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5. Conclusions343

As embedded systems are becoming increasingly ubiquitous and interconnected, they attract a344

world-wide attention of attackers. This makes the security aspect during the design of these systems345

more important than ever. However, state-of-the-art design tools and methodologies for embedded346

systems do not consider system security as a primary design objective. This is especially true for the347

early design phases in which the process of design-space exploration is of eminent importance for348

performing trade-off analysis. Any security measures that may eventually be taken much later in the349

design process will then affect the already established design trade-offs with respect to the other, and350

more traditional, design objectives like system performance, power consumption and cost. It goes351

without saying that such a design practice leads to suboptimal products.352

In this position paper, we therefore argued for security-aware design methods for embedded353

systems that will allow for the optimization of security aspects of embedded systems in their earliest354

design phases as well as for studying the trade-offs between security and the other design objectives355

such as performance, power consumption and cost. To this end, we proposed a multifaceted,356

scoring-based methodology for quantifying the degree of secureness of embedded system design357

instances, which would allow for incorporating these secureness quantifications in early design-space358

exploration of embedded systems. The proposed methodology has not yet been implemented, and359

would require further research to do so. We do hope, however, that this position paper will be a trigger360

for more wide-spread research on techniques that allow for incorporating security as a first-class361

citizen in the process of early design-space exploration of embedded systems.362
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