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Abstract
Shared caches in multi-core processors seriously complicate
the timing verification of real-time software tasks due to
the task interference occurring in the shared caches. Ex-
plicitly calculating the amount of cache interference among
tasks and cache partitioning are two major approaches to
enhance the schedulability performance in the context of
multi-core processors with shared caches. The former ap-
proach suffers from pessimistic cache interference estima-
tions that subsequently result in suboptimal schedulability
performance, whereas the latter approach may increase the
execution time of tasks due to a lower cache usage, also
degrading the schedulability performance.
In this paper, we propose a heuristic partitioned sched-

uler, called TCPS, for real-time non-preemptive multi-core
systems with partitioned caches. To achieve a high degree
of schedulability, TCPS combines the benefits of partitioned
scheduling, relieving the computing resources from con-
tention, and cache partitioning, mitigating cache interfer-
ence, in conjunction with exploiting task characteristics. A
series of comprehensive experiments were performed to eval-
uate the schedulability performance of TCPS and compare
it against a variety of global and partitioned scheduling ap-
proaches. Our results show that TCPS outperforms all of
these scheduling techniques in terms of schedulability, and
yields a more effective cache usage and more stable load
balancing.

CCS Concepts: •Computer systems organization→ Em-
bedded software.

Keywords: Cache partitioning, Partitioned scheduling, Schedu-
lability analysis, Real-time systems
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1 Introduction
Modern computer systems more and more rely on multi-core
processors, in which an increasing number of cores are being
integrated. These multi-core processors typically feature
a Last Level Cache (LLC) that is shared among all cores.
However, the shared LLC may easily hamper the real-time
properties for safety-critical applications due to the resulting
cache interference among concurrent application workloads.
It is therefore crucial to provide timing predictable memory
architectures for hard real-time systems where strict timing
certification is mandated.

There are two main approaches for improving timing pre-
dictability of multi-core architectures, namely (1) explicitly
calculating the possible cache interference such that it can
be accounted for in the task scheduling and (2) cache par-
titioning to avoid the cache interference. In [38], the cache
interference is explicitly modeled to obtain the worst-case
execution time (WCET) and integrated into a global sched-
uler. This enhances real-time guarantees on multi-cores but
suffers from pessimistic cache interference estimations that
also result in suboptimal schedulability performance. Based
on [38], [39] distributes tasks to individual cores and then
employs a partitioned scheduler. However, this approach suf-
fers from task allocation overheads and there still remains
cache interference. To mitigate cache interference, IA3[29]
considers WCET-sensitivity to perform coarse-grained cache
partitioning. However, it requires additional hardware sup-
port, does not exploit task characteristics for partitioning,
and ignores the impact of monotonicity of WCET sensitivity
(as will be discussed later on). [40] and [24] use cache parti-
tioning and deploy a partitioned scheduler in the context of
preemptive scheduling. However, in these works, the cache-
related preemption and task reload overheads are assumed to
be included in a task’s WCET by averaging its execution time
over a number of runs rather than explicitly modeling and
statically analyzing such overheads. Moreover, the technique
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in [40], which also applies memory bandwidth partitioning,
was designed for soft real-time systems and cannot provide
strong timing guarantees in hard real-time systems.

Despite the remarkable achievements on timing predictabil-
ity in the presence of a shared LLC for real-time systems,
only relatively little research attention has been paid to cache
partitioning deployed in the context of non-preemptively
scheduled multi-core platforms. Moreover, proper studies
on the effectiveness of partitioned caches compared to non-
partitioned caches in the context of global scheduling versus
partitioned scheduling are missing.

In non-preemptive scheduling, cache-related preemption
delays, which have been well studied [28], do not need to be
considered. There are, however, three research challenges in
realizing timing predictability on multi-cores through cache
partitioning using non-preemptive scheduling: (1) how to
ensure that real-time concurrent workloads safely obtain
computing resources (e.g., considering the cumulative com-
puting requirements for a specific taskset, taking into ac-
count so-called carry-in jobs [22], etc.), (2) how to effectively
partition the shared cache space to the distinct cores, and (3)
how to choose an appropriate real-time scheduler (i.e., parti-
tioned versus global scheduler) to enhance the schedulability
performance.
In this work, we propose a novel scheduler using a parti-

tioned LLC with partitioned scheduling, which is holistically
combined with a task-to-core mapping policy, to address the
above challenges. We perform a partitioned Earliest Deadline
First (EDF) strategy [5] and model the computing resource
conflicts using the largest possible cumulative execution de-
mand of all concurrent workloads (more details on this in
Section 2). Subsequently, we experimentally investigate the
relationship between the WCET of a task and the partitioned
cache size using application code from real-time benchmarks.
By exploiting this relationship, our scheduling policy can
effectively allocate tasks with the same characteristics onto
the same core and subsequently implement a cache partition-
ing scheme for the distinct cores. Furthermore, we explore
the design space of different non-preemptive scheduling ap-
proaches that address shared cache interference and compare
our proposed scheduler to these approaches. More specif-
ically, we compare our scheduler with a large variety of
state-of-the-art global as well as partitioned schedulers, ei-
ther using an unconstrained shared LLC or partitioned LLC.
The contributions of this paper are summarized as follows:

• We propose a new heuristic task and cache-aware
partitioned scheduling policy, called TCPS, for non-
preemptive real-time multi-core systems, which com-
bines the benefits of cache partitioning and partitioned
scheduling.
• We evaluate the design choices of our scheduling pol-
icy, comparing it with all different combinations of

methods to address cache interference and scheduling
approaches.
• We conduct comprehensive experiments and identify
how different parameter settings affect the relative
performance of partitioned and non-partitioned shared
caches for different real-time schedulers. By empirical
evaluation, we show that TCPS outperforms state-of-
art real-time multi-core scheduling policies in terms of
better schedulability, more efficient cache usage, and
more stable load balancing.

The remainder of the paper is organized as follows. Section
2 describes the applied system model as well as some prereq-
uisites for this paper. Section 3 studies the WCET sensitivity
to cache partitioning, exploited in our TCPS algorithm, as
outlined in Section 4. Section 5 presents the experimental
results. Section 6 presents related work, after which Section
7 concludes the paper.

2 System Model and Prerequisites
2.1 System and Task Model
2.1.1 Architecture Model. The system architecture as-
suming a fully timing compositional architecture without
timing anomalies consists of a multi-core processor with
𝑚 ≥ 2 identical cores 𝜋 = {𝜋1, 𝜋2, ..., 𝜋𝑚}. In this multi-core
processor, caches are organized as a hierarchy of two cache
levels where the lower level caches, i.e. L1 caches, are private
while the last-level cache (LLC) is shared among all cores.

We consider both set-associative instruction and data
caches and implement the LRU replacement policy for each
cache level. Instruction caches and data caches are sepa-
rate for 𝐿1 caches yet unified at the 𝐿𝐿𝐶 level. Furthermore,
caches are assumed to be non-inclusive non-exclusive, which
means that: (i) A memory block is searched for in the LLC
if and only if, a cache miss occurred when searching it in
cache level 𝐿1. (ii) When a cache miss occurs at cache level
𝐿, the entire cache line containing the missed information is
loaded into cache level 𝐿. (iii) The modification issued by a
store instruction goes through the memory hierarchy. If the
written memory block is already present at cache level 𝐿, a
write action is performed, along with the update of the main
memory. Otherwise, if the information is absent at cache
level 𝐿, this cache is left unchanged.

2.1.2 Task Model. We consider a taskset Γ comprising 𝑛
periodic or sporadic real-time tasks Γ = {𝜏1, 𝜏2, ... 𝜏𝑛}. Each task
𝜏𝑖 = (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ) ∈ Γ is characterized by its bound worst-case
execution time 𝐶𝑖 obtained through the static analysis tool
Heptane [21], a period or minimum inter-arrival time𝑇𝑖 , and
a relative deadline 𝐷𝑖 . In this paper, we assume constrained
deadline tasksets which means that task relative deadlines
are less or equal to the task period: 𝐷𝑖 ≤ 𝑇𝑖 . We further
assume that all those tasks are independent, i.e. they have
no shared variables, no precedence constraints, and so on.
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A task 𝜏𝑖 consists of a sequence of jobs 𝐽 𝑗𝑖 , where 𝑗 is the
job index. We denote the arrival time, starting time, finishing
time, and absolute deadline of a job 𝑗 as 𝑟 𝑗

𝑖
, 𝑠 𝑗

𝑖
, 𝑓 𝑗

𝑖
and 𝑑

𝑗

𝑖
,

respectively. The primary goal of a real-time scheduling
algorithm is to guarantee that each job will complete within
its absolute deadline: 𝑓 𝑗

𝑖
≤ 𝑑

𝑗

𝑖
= 𝑟

𝑗

𝑖
+ 𝐷𝑖 .

2.2 Schedulability Verification
Cache-aware partitioned scheduling, in combination with
cache partitioning, reduces multi-core scheduling into 𝑚

groups of uniprocessor scheduling problems since the cache in-
terference among cores is completely avoided. Therefore, in
this subsection, we recapitulate the exact schedulability ver-
ification for non-preemptive EDF scheduling of constrained-
deadline tasksets based on uniprocessor scheduling analysis
[1]. We employ partitioned EDF for constrained deadline
tasksets onto distinct cores. Since there exists execution con-
tention whenmultiple real-time tasks are ready to execute on
a core, wemodel this contention through the Demand-Bound
Function 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) [8] to provide the guarantee to safely
obtain the computing resources for each task. The𝐷𝐵𝐹 (𝜏𝑖 , 𝑡)
function is often suggested to ensure a real-time task can be
safely provisioned by the processor through accounting for
the largest possible cumulative execution demand of all jobs
generated by 𝜏𝑖 equipped with both their arrival times and
deadlines within any time interval of length t. Let 𝑡0 to be the
starting time of a time interval of length t, the cumulative
execution demand of jobs of 𝜏𝑖 over [𝑡0, 𝑡0 + 𝑡] is maximized
if one job arrives just at 𝑡0 and subsequent jobs arrive as
soon as permitted i.e., at instant 𝑡0 + 𝑇𝑖 , 𝑡0 + 2𝑇𝑖 , 𝑡0 + 3𝑇𝑖 , ...
Therefore, 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) can be computed by Equation (1).

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) =𝑚𝑎𝑥 (0, ⌊ 𝑡 − 𝐷𝑖

𝑇𝑖
+ 1⌋ ×𝐶𝑖 ) (1)

Karsten et al. [1] used 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) to model the processor
contention process and exhibited a necessary and sufficient
condition as shown in Theorem 1 for the feasibility test
of a sporadic task system 𝜏 scheduled by non-preemptive
EDF scheduling, abbreviated as 𝐸𝐷𝐹𝑛𝑝 , on uniprocessor plat-
forms.

Theorem 1. A taskset Γ is schedulable under 𝐸𝐷𝑃𝑛𝑝 on a
uniprocessor architecture if and only if:

∀𝑡,
𝑛∑︁
𝑖=1

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) ≤ 𝑡 (2)

and for all 𝜏 𝑗 ∈ Γ:

∀𝑡 : 𝐶 𝑗 ≤ 𝑡 ≤ 𝐷 𝑗 : 𝐶 𝑗 +
𝑛∑︁

𝑖=1&𝑖≠𝑗
𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) ≤ 𝑡 (3)

Karsten et al. also [1] proposed an approach to approxi-
mate the DBF(𝜏𝑖 ,t) using an approximated demand bound

function 𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) :

𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) =
{
0 𝑡 < 𝐷𝑖

𝐶𝑖 +𝑈𝑖 × (𝑡 − 𝐷𝑖 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(4)

where𝑈𝑖 =
𝐶𝑖

𝑇𝑖
. We can observe that the following inequality

holds for all 𝜏𝑖 and all t > 0:

𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) ≥ 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) (5)

In our work, we conduct schedulability verification of real-
time tasks on each core by following Theorem 1. In order
to simplify the calculation of the 𝐷𝐵𝐹 function yet without
overestimating, we replace 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) with 𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡). A
schedulability test is sustainable [6] if a subset of tasks as-
signed to a dedicated core is deemed schedulable. If all tasks
within the entire taskset pass the schedulability verification
on𝑚 distinct cores, we derive that the taskset is schedulable
on the multi-core architecture.

3 WCET Sensitivity to Cache Partitioning
Cache partitioning can avoid cache interference among cores
through allocating cache space to individual cores while
partitioned scheduling reduces task migration overheads
and reduces 𝐷𝐵𝐹 values for concurrent tasks due to fewer
tasks executing on a single core. In this paper, we propose
the TCPS scheduling approach that combines the benefits
of cache partitioning and partitioned scheduling. Since it
is not trivial to determine a good task-to-core allocation
and an optimal per-core cache partitioning scheme, we first
need to know the cache-space demand of tasks and then find
the right trade-off between per-core cache space and task-to-
core mappings. Hence, we begin by experimentally exploring
the relationship between the WCET of an application and
the varying size of its allocated cache partition (i.e., number
of cache sets) in realistic benchmarks. By exploiting this
relationship, we can determine which workloads feature
similar characteristics in terms of cache-resource demands
and, doing so, further guide the tasks allocation strategy and
cache partitioning strategy.

As the experimental platform, we used ARMv7 processors
with private 4-way set-associative L1 data and instruction
caches of 1KB each. The LLC is 8-way set-associative and
64KB in size. With regard to the benchmarks, we used the
Mälardalen [20] and TACLeBench [17] benchmark suites. We
deployed the Heptane [21] framework to obtain the WCET
values, which has a particular focus on cache analysis com-
pared to other WCET analysis tools [36]. Both instruction
and data caches were considered to evaluate the sensitivity
of a task’s execution time to its allocated cache size. The
results are shown in Figure 1.
In Figures 1a and 1b, each line denotes the normalized

WCET for an individual benchmark with a varying number
of allocated cache sets (i.e, partition sizes). We observe that
the execution time of tasks decreases while increasing the



LCTES ’22, June 14, 2022, San Diego, CA, USA Yixian Shen, Jun Xiao, and Andy D. Pimentel

0.0 0.2 0.4 0.6 0.8 1.0
Normalized (assigned) Cache Usage

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

o
rm

a
liz

e
d
 W

C
E

T
branch3

bs

bsort100

crc

expint

fft

fibcall

fir

insertsort

lcdnum

loop

matmult

minmax

ns

nsichneu

qurt

select

sqrt

ud

(a) Mälardalen benchmarks

0.0 0.2 0.4 0.6 0.8 1.0
Normalized (assigned) Cache Usage

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 W

C
E

T

binarysearch

prime

petrinet

rad2deg

deg2rad

jfdctint

minver

countnegative

ludcmp

statemate

bsort

lift

isqrt

(b) TACLeBench

Figure 1. The normalized WCET bounds for the benchmark tasks with varying cache partition sizes.

cache-partition size, up to a specific point which we refer
to as the stable point. After this stable point, the execution
time stabilizes and becomes insensitive to further increases
of allocated cache-partition size. The benchmark tasks in
Figure 1a consist of light-weight tasks. In most cases, the
stable point is reached by only allocating 20% of cache space
for these tasks. On the other hand, TACLeBench includes
somemore complex benchmarks, such as Lift (a lift controller
program) that demands more cache sets to reach the stable
point.
Most of the studied benchmarks follow the aforemen-

tioned stable point behavior, with a few exceptions. For in-
stance, the benchmark nsichneu from theMälardalen bench-
mark suite shows a higher execution time when it receives
40% of the cache sets compared to 20% of the cache sets. It
is crucial that the WCET sensitivity to cache-partition size
follows a strictly monotonic behavior to guide our cache and
tasks allocation strategy. Otherwise, the allocation process
may need to explore the full range of cache partitioning op-
tions, which is complicated and impractical. [2] proposed
an approach to establish monotonicity for these counter-
intuitive cases using the upper and lower bound of the sensi-
tivity curve.We also perform this approximation approach to
establish monotonicity for the counter-intuitive benchmarks
without significant loss of precision. In Section 5, we evalu-
ate the error introduced by this approximation by studying
the schedulability performance for both the upper bound
(i.e., conservative) and lower bound WCET values.

4 The TCPS Algorithm
In this section, we present our cache-aware partitioned sched-
uling algorithm, TCPS, for real-time multi-core systems.
Driven by the monotonic execution-time property for re-
alistic benchmarks, as discussed in the previous section, we
distribute tasks to distinct cores based on the similarity of

their cache space demands. Moreover, we perform the cache
partitioning strategy, mapping the specific cache sets to in-
dividual cores, by finding the right trade-off among cores.
Task allocation strategy. Tasks allocated to the same

core enjoy the same amount of partitioned cache memory.
Hence, it is important to assign tasks that exhibit similar
cache-demand characteristics to the same core to make full
use of the assigned cache partition.

EachWCET sensitivity curve, as shown in Figure 1, can be
modeled as a slowdown vector ®𝑔𝑖 .We assume set-associativity
cache with 𝑆 cache sets. The whole taskset Γ consisting of
𝑛 tasks can be constructed as a vector ®𝐺 comprised of 𝑛 𝑆-
dimensional ®𝑔, i.e., ®𝐺 = { ®𝑔1, ®𝑔2, ..., ®𝑔𝑛}. We exploit K-means
clustering [26] to group the tasks with a similar slowdown
vector ®𝑔 for mapping to distinct cores. We employ the K-
means clustering because it is suitable for our low dimen-
sion data space, guarantees convergence, and has a relatively
low overhead. We minimize the pairwise derivation in each
cluster according to Equation 6 given a maximum number
of iterations to converge, referred to as𝑚𝑎𝑥𝐼 .

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

𝑚∑︁
𝑖=1

1
2|𝜃𝑖 |

∑︁
𝜏𝑘 ,𝜏 𝑗 ∈𝜃𝑖

∥ ®𝑔𝑘 − ®𝑔 𝑗 ∥2 (6)

Tasks are grouped into 𝑚 clusters using K-means clus-
tering. However, we cannot ensure that the tasks in each
cluster are schedulable on a dedicated core since a task-to-
CPU assignment purely based on the WCET sensitivity to
partitioned cache size is sub-optimal. This may still lead to
a situation in which the tasks mapped to a particular core
(having similar WCET sensitivity to partitioned cache size)
cause a core utilization of above 100%. Therefore, we adopt
so-called taskbuckets 𝜃 as temporal space and replicas for
cores and fetch the tasks from taskbucket 𝜃𝑖 to corresponding
core 𝜋𝑖 to conduct schedulability verification to enforce that
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the utilization of each core will not exceed 100%. In addition
to utilization-aware task partitioning, we also employ task
migration in a later stage of our algorithm when the load
across cores is not balanced.
Cache partitioning strategy. It is difficult to determine

the best cache partitioning schema since allocating cache
space to individual cores is similar to the bin-packing prob-
lem. Hence, we perform a heuristic cache partitioning strat-
egy for cores in three stages by fully exploiting the slow-
down vector ®𝑔 and the𝐷𝐵𝐹 value of each task on a dedicated
core. Figure 2 illustrates the high-level idea of our proposed
algorithm. The initial cache partitions, as will be detailed
below, are based on the original taskbuckets that group tasks
having similar WCET behavior in terms of allocated cache
size. In the start-up cache partitioning phase, tasks are as-
signed based on their original taskbucket. If there exist any
unschedulable tasks after this initial phase, the algorithm
features two additional rounds of partitioning that include
incrementally enlarging the cache partitioning of cores as
well as task migrations between taskbuckets to reach schedu-
lability. Algorithms 1 and 2 provide a detailed description of
the TCPS algorithm.

i) Start-up cache partitioning stage, lines 1-3 in Algorithm 1.
We implement the initial cache partitioning by first satisfying
the least cache-demanding task of each core while maximiz-
ing the utilization of these tasks. More specifically, we select
the least cache-demanding task from each 𝜃𝑖 (associated with
core 𝜋𝑖 ), with 0 ≤ 𝑖 < 𝑚. Based on the sensitivity curves for
the𝑚 selected tasks and the cache-space constraints of𝑚
partitions, the objective function of a Mixed Integer Linear
Programming (MILP) formulation F as shown in equation
7 is constructed to find the cache partition size 𝑝𝑖 for each
core 𝜋𝑖 that maximizes the total utilization of these𝑚 tasks.

TaskBuckets

Core1 Core2 Core3 Core4

L1 L1 L1 L1

2 StartupCachePartition

1 Initial Tasks Distribution

Partitioned Scheduling5

3 FirstRoundCachePartition

First-round Task Allocation3

Core1

Partitioned Cache

Design time

(K-means)

(2D Bin-packing+Best fit)

(MILP)

4 SecondRoundCachePartition

Partitioned Cache

Partitioned Cache

Second-round Tasks Allocation4

Run time

Core2 Core3 Core4

(Carry-in job aware heuristics 
+load balance)

Partitioned Cache

Figure 2. The overview of TCPS algorithm

𝐹 =𝑚𝑎𝑥

𝑚∑︁
𝑖=1

𝑈𝑖 =𝑚𝑎𝑥

𝑚∑︁
𝑖=1

𝐶𝑖

𝑇𝑖
(7)

With 𝜏𝑖 referring to the least cache-demanding task in the
taskbucket 𝜃𝑖 , we denote the utilization of 𝜏𝑖 as𝑈𝑖 , calculated
by 𝐶𝑖

𝑇𝑖
. Inequality (8) specifies the constraint that the total

of𝑚 cache partitions 𝑝𝑖 must be less or equal to the total
number of cache sets 𝑆 .

𝑚∑︁
𝑖=1

𝑝𝑖 ≤ 𝑆 (8)

Condition (9) consists of regression models for the𝑚 tasks,
capturing their WCET sensitivity curves, where 𝐴𝑖 , 𝐵𝑖 and
𝑘𝑖 represent the regression parameters for fitting the WCET
with varying 𝑝𝑖 of a task 𝜏𝑖 .

𝑚∑︁
𝑖=1

𝐶𝑖 ×𝐴𝑖 + 𝑝𝑖 × 𝐵𝑖 + 𝑘𝑖 = 0 (9)

The slope of each sensitivity curve is, however, not a con-
stant. The challenge in implementing the whole partitioning
problem as a MILP is to explore the sensitivity curve of all
applications and generate a piece-wise linear fitting for tasks.
Exploiting the continuous property of each sensitivity curve,
we can linearize the piecewise function through Gurobi mod-
eling [3]. Assuming there exist 𝑞 piece-wise functions on
a sensitivity curve 𝑓 (𝐶𝑖 ), with 𝐶𝑖1 ≤ 𝐶𝑖2 ≤ · · · ≤ 𝐶𝑖𝑞 , we
use the continuous variable𝑤 and 0-1 variable 𝑧 to fit each
piece-wise function:

𝐶𝑖 =

𝑞+1∑︁
𝑙=1

𝑤𝑙 ·𝐶𝑖𝑙 (10)

𝑓 (𝐶𝑖 ) =
𝑞+1∑︁
𝑙=1

𝑤𝑙 · 𝑓 (𝐶𝑖𝑙 ) (11)

Variables𝑤 and 𝑧 must satisfy the following constraints:
𝑤1 ≤ 𝑧0,𝑤2 ≤ 𝑧0 + 𝑧1, · · · ,𝑤𝑞 ≤ 𝑧𝑞−1 + 𝑧𝑞,𝑤𝑞+1 ≤ 𝑧𝑞

𝑤1 +𝑤2 + · · · +𝑤𝑞 +𝑤𝑞+1 = 1
𝑧1 + 𝑧2 + · · · + 𝑧𝑞 = 1

(12)
After the start-up cache partitioning, each core has been

allocated an initial cache partition. Subsequently, tasks are
ordered by decreasing utilization in taskbuckets 𝜃 since it
is typically harder for a task with high utilization to find an
allocable core, whereafter we check whether or not all tasks
are schedulable with this provided cache partition (lines 4-6
in Algorithm 1). To this end, we iteratively fetch all tasks
from taskbucket 𝜃𝑖 to its corresponding core 𝜋𝑖 while verify-
ing the schedulability using Algorithm 2. More specifically,
we check if the condition (13) holds for each 𝜏𝑘 ∈ 𝜏𝜃𝑖 on all
𝑚 cores.
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𝐷𝑘 ≥
∑︁

𝜏 𝑗 ∈𝜏 (𝜋𝑖 )∪{𝜏𝑘 }
𝐷 𝑗<𝐷𝑘

𝐷𝐵𝐹 ∗ (𝜏 𝑗 , 𝐷𝑘 ) + max
𝜏 𝑗 ∈𝜏 (𝜋𝑖 )∪{𝜏𝑘 }

𝐷 𝑗>𝐷𝑘

𝐶 𝑗 (13)

We briefly explain the rationale behind the condition (13).
Given task 𝜏𝑘 , 𝜏 𝑗 refer to the tasks that have been previ-
ously allocated to core 𝜋𝑖 . The leading term in condition (13)
accounts for the cumulative execution demand of tasks (in-
cluding 𝜏𝑘 ) with a relative deadline falling before 𝐷𝑘 . Since
we consider a non-preemptive task system, the second term
represents the maximum blocking time due to a task with
a longer relative deadline than 𝐷𝑘 at the time a job of 𝜏𝑘
arrives. If the sum of these two terms is shorter than 𝐷𝑘 , the
task 𝜏𝑘 can safely finish within its deadline. If all tasks in all
taskbuckets 𝜃 fulfill condition (13), the taskset Γ is deemed
schedulable, implying that the cache partitioning algorithm
can be stopped. Otherwise, if there are still unused cache
sets not allocated by the MILP, we turn to the next stage.
ii) First-round cache partitioning stage, lines 7-10 in Algo-

rithm 1. The start-up cache partitioning stage only satisfies
the least cache-demanding task on a core. Hence, in most
cases, there remains sufficient unused cache space not al-
located by the MILP. Therefore, we iteratively allocate a
portion of cache space in units of 𝛿 (=2 in our case) cache
sets to distinct cores. After each iteration, we again take each
task from taskbucket 𝜃𝑖 and place it on corresponding core
𝜋𝑖 while conducting the schedulability verification. Please
note that if a new task is placed successfully, the tasks that
have been previously allocated to core 𝜋𝑖 are still schedula-
ble since the increasing cache partition size of a core will
result in a monotonic decrease of its total utilization. When
taskbucket 𝜃𝑖 is empty or all of its tasks reach the stable point,
its associated core will stop receiving more cache space. The
first-round cache partitioning stage ends when all taskbuck-
ets are empty or have reached the stable point.
iii) Second-round cache partitioning stage, lines 11-23 in

Algorithm 1. When the cache space is not used up after the
first two stages, while there still exist unschedulable tasks
in taskbuckets 𝜃 , we need to migrate tasks to other cores.
However, the tasks in a more cache-demanding taskbucket
can move to a less cache-demanding taskbucket, resulting
in a longer execution time of these tasks. In this situation,
we attempt to allocate more cache space to the target core if
the tasks can be scheduled on that core after (re-)allocation.

We sort the cores 𝜋 based on the utilization in increasing
order since a core with lower utilization may accept more
unschedulable tasks. Moreover, we define a set Γ𝑡𝑛𝑎 that
contains the unschedulable tasks from taskbuckets 𝜃𝑘 , where
𝑘 ≠ 𝑖 and 𝜋𝑖 is the target core for migration. We iteratively
allocate the cache sets to the target core and fetch the tasks
from Γ𝑡𝑛𝑎 to the target core while conducting the scheduling
verification. If all the unschedulable tasks can be allocated
to the cores, the taskset is deemed schedulable.

Algorithm 1 partitioned LLC for partitioned scheduling
Input: Task parameters, number of cores: m, number of

tasks: n, sensitivity vector: ®𝐺 , cache size: S, maximum
iterations: maxI, the number of cache sets distributed at
a time: 𝛿

1: 𝑇𝑎𝑠𝑘𝐵𝑢𝑐𝑘𝑒𝑡𝑠 𝜃 ← 𝑔𝑟𝑜𝑢𝑝𝑏𝑦𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ( ®𝐺,𝑛,𝑚,𝑚𝑎𝑥𝐼 )
2: Select the minimum vector ®𝐺𝑡𝑏 = {®𝑔1,®𝑔2,...,®𝑔𝑚 } in 𝜃

3: {𝑝1, 𝑝2, ..., 𝑝𝑚} ← 𝑆𝑡𝑎𝑟𝑡𝑢𝑝𝐶𝑎𝑐ℎ𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛( ®𝐺𝑡𝑏,𝑚, 𝑆)
4: Sort 𝜏 in each 𝜃 in decreasing order by utilization
5: if true == 𝑐ℎ𝑒𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝜃, 𝜋) then
6: return schedulable
7: while

∑𝑚
𝑖=1{𝑝𝑖 + 𝛿} < 𝑆 do

8: 𝐹𝑖𝑟𝑠𝑡𝑅𝑜𝑢𝑛𝑑𝐶𝑎𝑐ℎ𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑝1 + 𝛿, 𝑝2 + 𝛿, ..., 𝑝𝑚 + 𝛿)
9: if true == 𝑐ℎ𝑒𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝜃, 𝜋) then
10: return schedulable
11: Sort the utilization of cores 𝜋 in increasing order
12: for all 𝜋𝑖 ∈ 𝜋 do
13: Collect the unschedulable 𝜏 in 𝜃 to Γ𝑡𝑛𝑎(𝜏 ∉ 𝜏𝜃𝑖 )
14: for all 𝜏 𝑗 ∈ Γ𝑡𝑛𝑎 do
15: if

∑𝑚
𝑖=1{𝑝𝑖 } + 𝛿 < 𝑆 then

16: while
∑𝑚

𝑖=1{𝑝𝑖 } + 𝛿 < 𝑆 do
17: 𝑆𝑒𝑐𝑜𝑛𝑑𝑅𝑜𝑢𝑛𝑑𝐶𝑎𝑐ℎ𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑝𝑖 + 𝛿)
18: if 𝑐ℎ𝑒𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (Γ𝑡𝑛𝑎, 𝜋𝑖 ) & (𝜏𝜃𝑖 = ∅)

then
19: return schedulable
20: else if 𝑐ℎ𝑒𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (Γ𝑡𝑛𝑎, 𝜋𝑖 ) & (𝜏𝜃𝑖 = ∅)

then
21: return schedulable
22: if Γ𝑡𝑛𝑎 ∉ ∅ then
23: return unschedulable

Algorithm 2 𝑐ℎ𝑒𝑐𝑘𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝜃, 𝜋)
1: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 ← true, 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒 ← false
2: for all 𝜃𝑘 ∈ 𝜃 do
3: for all 𝜏 𝑗 ∈ 𝜏𝜃𝑘 do
4: if 𝜏 𝑗 𝑚𝑒𝑒𝑡𝑠 condition (13) then
5: 𝜋𝑘 .𝑎𝑐𝑐𝑒𝑝𝑡 (𝜏 𝑗 ) and 𝜃𝑘 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝜏 𝑗 )
6: for all 𝜃𝑘 ∈ 𝜃 do
7: if 𝜃𝑘 ≠ ∅ then
8: return 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒

9: return 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒

We observe that a taskset can be unschedulable onto𝑚
cores but may become schedulable on fewer cores (as there
is more cache space for each core). However, more tasks
allocated to a dedicated core increase the 𝐷𝐵𝐹 function as
well as the utilization of that core. It is highly challenging to
find an optimal number of cores. To achieve better schedu-
lability with a minimum number of cores, we employ our
TCPS algorithm to explore the feasible allocation on every
valid number of cores in the range of 1 ≤ 𝑖 ≤ 𝑚. Hereafter,
we adopt the smallest value of 𝑖 to schedule that taskset.
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Complexity Analysis. We discuss the complexity in
terms of the three stages. In the Start-up cache partition-
ing stage, we mainly execute groupbySensitivity and Startup-
CachePartition. The first one enumerates𝑚 clusters for all
tasks for𝑚𝑎𝑥𝐼 iterations. Hence, it takes O(𝑛 ·𝑚 ·𝑚𝑎𝑥𝐼 ) time.
StartupCachePartition employs the MILP formulation, with
in total 2𝑚 variables and 𝑚 + 1 constraints. The complex-
ity of this MILP problem is O(64𝑚

√
𝑚 ln𝑚 ln𝑚) [11]. In the

First-round cache partitioning stage, we assume that the allo-
cated cache sets in this stage is 𝑠1. It iteratively assigned the
cache sets to dedicated cores and then conducting schedu-
lability verification. This takes O( 𝑠1 .𝑚.𝑛2

2 ). In the Second-
round cache partitioning stage, we assume allocated cache
sets and tasks are 𝑠2 and 𝑛2 respectively. In every iterative
cache allocation, we attempt to schedule the tasks from𝑚−1
cores. It takes O( 𝑠2 .𝑚−1.𝑛.𝑛2

2 ). All in all, the complexity of the
partitioned scheduling algorithm is O(64𝑚

√
𝑚 ln𝑚 ln𝑚) +

O(𝑛 ·𝑚 ·𝑚𝑎𝑥𝐼 )+O( 𝑠1 .𝑚.𝑛2+𝑠2 .𝑚−1.𝑛.𝑛2
2 ). Despite the exponen-

tial complexity of the start-up stage, current MILP solver
implementations are efficient and capable of solving real-
word MILP formulations. Besides, for a specific taskset, we
only apply the MILP formulation once in the initial cache
partitioning phase at design time.Wewill demonstrate TCPS’
execution performance in Section 5.

5 Experimental Results
5.1 Experimental Set-up
From theMälardalen [20] and TACLeBench [17] benchmarks,
we select 𝑛 tasks to generate 10,000 tasksets in each experi-
ment. As for the taskset utilization𝑈𝑡𝑜𝑡 , we generate vectors
consisting of 𝑛 random elements using Randfixedsum [32],
each representing an individual task utilization, and that are
uniformly distributed in the designated value domain. Based
on the generated utilization and realistic WCET, we can
derive the 𝑇𝜏 =

𝑐𝜏
𝑢𝜏
. In our experiments, we measure the ac-

ceptance ratio for different taskset utilizations 𝑈𝑡𝑜𝑡 , which is
the number of schedulable tasksets divided by the total num-
ber of tasksets (i.e., 10,000), yielded by a scheduling method.
The target platform is an ARMv7 processor with𝑚 identical
cores, with private 4-way set-associative L1 data and instruc-
tion caches of 1KB each. The LLC is 8-way set-associative
and 64KB in size. The access latencies of L1 caches, L2 cache
and main memory are assumed to be 1, 10 and 100 cycles,
respectively. For all partitioned cache approaches, we take
those WCET values from the WCET curves that refer to the
amount of cache an application actually has. For the shared
cache approaches, we take the WCET values for a 1.0 nor-
malized cache usage, i.e. the WCETs when applications use
the entire cache.

5.2 Scheduling Policies
We compare TCPSwith a large range of other non-preemptive
scheduling approaches, covering all possible scheduling/cache
partitioning combinations. To compare against global sched-
uling without cache partitioning, we study both EDF and
Fixed Priority (FP) scheduling policies [38], referred to as
GLB-edf and GLB-fp respectively. For global scheduling with
cache partitioning, referred to as CP-edf, we use EDF sched-
uling and allocate an equal number of cache sets to each core.
For partitioned scheduling with shared LLC, referred to as
CITTA-1/C, we use the EDF-based algorithm from [39]. For
schedulers using a shared LLC, we have extended the Hep-
tane WCET estimation framework [21] with the modeling
techniques from [38] to account for the cache interference in
the schedulability analysis. In addition, we have adapted IA3

[29] by changing its coarse-grained hardware-based cache
partitioning into fine-grained software-based partitioning,
referred to as IA3+. Finally, to compare to the preemptive
heuristic partitioned schedulers CATA [24] and CaM [40], we
adjusted them such that they apply non-preemptive sched-
uling.

5.3 The Impact of Cache Sensitivity of Tasks on
Schedulability

As explained in Section 3, we reconstruct monotonicity for
counter-intuitive benchmarks using an approximation with
upper and lower bound sensitivity curves. Figures 3b and
4a illustrate, for two experiments that will be elaborated
below, the error introduced by this approximation. That is,
the TCPS_l and TCPS_u curves in these figures represent the
acceptance ratio using the lower and upper bound sensitivity
curves, respectively. These results indicate that only around
an additional 0.1% of tasksets are deemed schedulable only
using lower bounds, i.e. the gap between these bounds is
narrow.

To study the effects of cache sensitivity of tasks, we define
cache-sensitive tasks (theirWCET drops by 40% ormorewhen
receiving 12.5% of cache space compared to the minimum
allocation space) and cache-insensitive tasks (their WCET
drops by 10% or less when receiving 50% cache space). We
randomly select 𝑛 = 10 tasks to create 10,000 tasksets from
these cache-sensitive and cache-insensitive workloads re-
spectively to compare the acceptance ratio as shown in Fig-
ures 3a and 3b. We employ a t-test to compare the results for
TCPS_u in Figure 3b and TCPS in Figure 3a. As the p-value
of our test (0.0107) is less than alpha (0.05), we have sufficient
evidence that TCPS schedules the cache-insensitive tasks
more efficiently. This is due to the fact that cache space can
be easily reduced for these tasks without substantial perfor-
mance consequences, thereby saving cache space for more
cache sensitive tasks in hybrid workloads. Moreover, the rel-
ative schedulability performance of TCPS compared to the
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Figure 3. The impact of the cache sensitivity of taskset Γ on schedulability
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Figure 4. The impact of the cache interference of taskset Γ on schedulability

other scheduling methods is improving with lower cache sen-
sitivity. E.g., the average schedulability gap between TCPS
and IA3+ is 15.15% and 10.89% in Figures 3b and 3a when
𝑈𝑡𝑜𝑡 ∈ [1.9, 2.9]. The average schedulability gap between
TCPS and CITTA-1/C is 23.64% and 9.23% in Figures 3b and
3a when𝑈𝑡𝑜𝑡 ∈ [1.5, 2.5].

In the next experiment, we vary the degree of cache inter-
ference by using two types of tasksets with tasks of different
code sizes. The mean and standard deviation of cache inter-
ference with respect to the entire execution time of tasks 𝜏𝑘
in the high cache interference taskset is 6.45% and 13.11%,
respectively. Likewise, the mean and standard deviation in
the low cache interference taskset is 1.81% and 2.01%. Figures
4a and 4b show the acceptance ratio for these two types of
tasksets. We observe that the schedulability performance of
schedulers using a shared LLC (i.e., GLB-{edf,fp} and CITTA-
1/C) significantly drops for heavy cache interference tasksets.
CP-edf shows moderate schedulability performance, while
TCPS keeps good performance and all tasksets can be dis-
tributed to cores successfully if 𝑈𝑡𝑜𝑡 ≤ 2.9. Based on a t-
test for the results in Figure 3, with a maximum p-value of

0.023 < alpha (0.05), we have sufficient evidence that TCPS
outperforms IA3+ and CATA in terms of schedulability. We
note that IA3+’s counter-intuitive schedulability instances
in Figures 3b and 4a are due to the lack of reconstruction
of WCET monotonicity. CaM exhibits similar high schedula-
bility as TCPS when 𝑈𝑡𝑜𝑡 < 2.7, but for higher utilizations,
CaM does not perform as well as TCPS. E.g., the schedula-
bility of TCPS is 23.72% higher than with CaM on average
when𝑈𝑡𝑜𝑡 = 3.1 in Figure 3. This is because CaM randomly
picks one permutation of clusters for mapping, additionally
without considering the impact of carry-in jobs.

5.4 The Impact of Varying Number of Cores on
Schedulability

We randomly select 𝑛 = 20 tasks to generate 10,000 tasksets
from the benchmarks while using 2, 4 or 8 cores as shown
in Figure 5{a,b,c}. In Figure 5d, we randomly select n = 40
tasks to generate 10,000 tasksets from the benchmarks using
16 cores. For𝑚 = 2, GLB-{edf,fp} shows poor schedulability
while TCPS exhibits relatively good performance (i.e., it out-
performs all other approaches). However, when 𝑈𝑡𝑜𝑡 > 0.7,
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Figure 5. The impact of a varying number of cores on schedulability

TCPS also shows sub-optimal schedulability performance
due to high DBF values caused by high core utilization and
carry-in jobs.With the growing number of cores, GLB-{edf,fp}
and CP-edf show limited improvement, whereas CITTA-1/C
offers somewhat better scalability. In Figures 5b and 5c, the
schedulability gap between CITTA-1/C and TCPS shrinks
from 12.8% to 6.21% (with TCPS, m=6), respectively. TCPS
(m=6) outperforms both CITTA-1/C and TCPS (m=8) be-
cause a growing number of cores implies less cache space
per core. When𝑚 > 6, the cache space reduction per core,
and resulting longer execution times, has a greater impact
on schedulability than the decreased DBF and eliminated
cache interference. We have also performed a t-test to com-
pare CITTA-1/C and TCPS (m=8). Since the p-value (0.0022)
is less than alpha (0.05), we can derive that TCPS outper-
forms CITTA-1/C. Figure 5c also indicates that the benefits
of cache partitioning and partitioned scheduling in IA3+ and
CATA gradually cancel out since these heuristic algorithms
(i.e., first-fit decreasing heuristic applied in IA3+ and best-
fit decreasing heuristic applied in CATA) do not perform
holistic per-core cache allocation and task-to-core allocation.

Besides, they also do not explore the effect of carry-in jobs
in the DBF function on scheduling performance.
We also observe from Figure 5d that the scalability of

CITTA-1/C has its limits. This is because when increasing
the number of cores that share the LLC, the growing WCET
can potentially increase the upper bound on cache interfer-
ence, eventually making the interfered tasks unschedula-
ble. As shown in Figure 5d, TCPS and CaM achieve better
schedulability performance at m=12. We performed a t-test
to compare their schedulability performance. With a p-value
of 0.00057, which is less than alpha (0.05), we can conclude
that TCPS outperforms CaM (as well as all other approaches).
This is due to the fact that TCPS employs the MILP formula-
tion to find the optimal initial cache partitioning, which can
accelerate further exploring of the cache partitioning solu-
tion space. Moreover, we take the carry-in jobs introduced
by non-preemptive scheduling into account. Finally, we ex-
ploit task migrations to further improve the schedulability
performance of the system, with a relatively good scalability
(as demonstrated in Figure 5d).
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Figure 6. The comparisons of cache usage and load unbalance for partitioned scheduling policies
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Figure 7. Execution time (s) over varying utilizations for different scheduling policies

5.5 Comparing Cache Usage and Load Balance
Figure 6 shows the cache usage for 𝑈𝑡𝑜𝑡 ∈ [1,2,3] and load
balance (i.e., the average variance of core utilization across
𝑚 cores) for those tasksets Γ that are schedulable in Figure
5c and Figures 5{a,b,c,d} respectively. We observe that TCPS
achieves more effective cache usage. E.g., it saves 10 cache
sets compared with IA3+, CaM and CATA when 𝑈𝑡𝑜𝑡 = 1.
This is because TCPS employs the MILP to minimize cache
usage.When𝑈𝑡𝑜𝑡 = 3, the cache usage of TCPS and CATA are
similar, but TCPS and IA3+ can achieve better schedulability
on 6 cores, saving 2 cores compared with CATA. Moreover,
Figure 6 also shows that TCPS provides the most stable load
balance, whereas IA3+ suffers from heavy load unbalances
since the second-round cache partitioning in TCPS tries to
balance underutilized cores, especially for high𝑈𝑡𝑜𝑡 .

5.6 Execution Time Analysis
We measure the execution time of the schedulability analy-
sis for the eight scheduling policies in Figure 5b using 100
tasksets. Here, we included the partitioning overhead in the

execution time for all evaluated partitioned methods (TCPS,
CATA, IA3+, CaM and CITTA). Figure 7 clearly shows that
TCPS’ execution time is second only to CATA since CATA
performs the cache partitioning without considering task
characteristics. Despite the exponential complexity of TCPS’
start-up cache partitioning stage, the maximum running time
is 74.39 seconds when𝑈𝑡𝑜𝑡 is 1.3, whereas the execution time
of IA3+ is 1.27x slower on average. This is probably due to
the fact that IA3+ employs a depth-first search for cache par-
titioning which explores plenty of invalid space compared
with TCPS. The MILP solver to calculate the initial cache par-
titioning is a one-time job that can be efficiently addressed
by the modern MILP libraries. The execution time of CITTA-
1/C increases substantially as the utilization 𝑈𝑡𝑜𝑡 increases
and the average execution time is 4.21x slower than TCPS.

6 Related Work
WCET estimation and cache interference inmulticores.
In hard real-time systems, it is crucial to obtain the WCET
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of each real-time task, which is used later to conduct schedu-
lability analysis. WCET estimation on a single-core has been
actively investigated in the past two decades. [36] provides
an excellent overview of WCET estimations. Unfortunately,
the existing techniques for uniprocessor architectures are not
applicable to multi-cores with shared caches. In our work, we
adopt cache partitioning to transform the multi-core schedul-
ing problem into a set of uniprocessor scheduling problems.
We exploit an extended version of Heptane [21, 39] to obtain
the WCET values. The extensions in Heptane, based on [37],
allow for calculating the cache interference between tasks
and integrating the upper bound WCET into the schedula-
bility analysis.
Cache partitioning. Cache partitioning is often sug-

gested to mitigate cache interference. There are two cache
partitioning methods: software-based [15, 35] and hardware-
based techniques [12, 19]. Page coloring [15, 35] is the most
common software-based cache partitioning schema, which
exploits the translation from virtual addresses to physical
addresses present in virtual memory systems at OS-level.
Page addresses are mapped to pre-defined cache regions
to avoid the overlap of cache spaces. Hardware-based tech-
niques such as cache locking mechanisms [27, 33, 34] and
Intel CAT [31] demand additional hardware component sup-
port which is not available in many commercial embedded
processors. In our implementation, we adopt software-based
cache partitioning.
Real-time scheduling. To schedule real-time tasks on

multi-core platforms, three paradigms are widely researched:
partitioned [7, 16, 18], global [4, 9, 25] and semi-partitioned
scheduling [10, 14, 23]. A comprehensive survey of real-time
scheduling for multi-core architecture can be found in [13].
Most of these research works assume that the WCETs are
estimated in an offline and isolated manner, i.e. the WCET
values are considered to be fixed.

[38] and [39] have explored real-time global and parti-
tioned scheduling for multi-core systems in the presence of
cache interference. Global scheduling with shared caches is
done via three steps: i) calculating the upper bound cache
interference given an execution window, ii) performing an
iterative algorithm to obtain the upper-bound cache interfer-
ence during task executions, and iii) integrating the upper
bound WCET into schedulability analysis. The authors later
extended this work to partitioned scheduling [39], called
CITTA, to distribute tasks to cores ahead to decrease the
cache interference. CITTA shows better schedulability com-
pared to global scheduling. However, CITTA still suffers
from cache interference across multi-cores. Moreover, a com-
prehensive comparison between real-time scheduling ap-
proaches using partitioned versus non-partitioned caches is
missing.

[24, 29, 40] distribute tasks to cores and then allocate cache
resources to cores based on preemptive scheduling. How-
ever, these works do not explicitly calculate the preemption

overhead during task execution. In addition, the bandwidth-
aware partitioning [40] is based on a soft real-time system.
The above limitations result in insufficient guarantees for
hard real-time requirements. In our work, we calculate the
WCET by Heptane which has been extended to calculate the
cache interference among tasks which provides the safety
and predictability for hard real-time systems.

7 Conclusion
Shared LLC caches in multi-core processors introduce se-
rious difficulties in providing guarantees on the real-time
properties of embedded software due to the interaction and
the resulting contention in the shared caches. Cache par-
titioning is often suggested as a means of mitigating the
intra-core interference. However, the constrained cache us-
age may potentially increase the WCET which also degrade
the schedulability performance.
This paper presents a non-preemptive partitioned sched-

uling algorithm called TCPS that aims at improving system
schedulability through awareness of the cache sensitivity
characteristics of applications. TCPS combines partitioned
scheduling with cache partitioning to mitigate the cache in-
terference problem in real-time multi-core systems. As a first
step, TCPS clusters tasks based on their WCET sensitivity
to cache partition size and associates each of these clusters
with a different core. Then, a MILP problem is formulated to
get the initial cache partition size for each core. A number of
refinement steps are then carried out to refine the initial allo-
cation and potentially extend the initial cache partition sizes.
Once the task-to-core allocation is completed, partitioned
EDF is employed online.
We have compared the schedulability performance of

TCPS with a large range of state-of-the-art approaches, cov-
ering all possible scheduling/cache partitioning combina-
tions. Our evaluation includes schedulability experiments
using different task characteristics (e.g., cache sensitive vs.
cache insensitive tasks), and a varying number of deployed
cores. Besides schedulability performance, we also studied
the execution times of schedulers as well as their cache effi-
ciency and load balance. Our empirical evaluation shows that
TPCS outperforms all other studied scheduling approaches
in terms of schedulability performance while also yielding a
more effective cache usage and more stable load balancing.

TCPS exploits the task characteristics and their cache de-
mand for partitioning. However, in this work, we ignore
any thermal effects. For instance, some similar compute-
intensive tasks grouped as a cluster may contribute to a
thermal hotspot, resulting in a lower performance and thus
impacting the schedulability of the system. In our future
work, we plan to employ our scheduler in the HotSniper[30]
simulator, which accounts for the system’s thermal behav-
ior, to try to realize a more robust scheduler for real-time
systems.
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