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Abstract—When designing algorithms for single-instruction
multiple-thread (SIMT) devices such as general purpose graphics
processing units (GPGPUs), thread imbalance is an important
performance consideration. Thread imbalance can emerge in
iterative applications where workloads are of variable length,
because threads processing larger amounts of work will cause
threads with less work to idle. This form of thread imbalance
influences the design space of algorithms—particularly in terms
of processing granularity—but we lack models to quantify its
impact on application performance. In this paper, we present
a statistical model for quantifying the performance loss due to
thread imbalance for iterative SIMT applications with stochastic,
variable-length workloads. Our model is designed to operate
with minimal knowledge of the implementation details of the
algorithm, relying solely on an understanding of the probability
distribution of the lengths of the workloads. We validate our
model against a synthetic benchmark based on a Monte Carlo
simulation of matrix exponentiation, and show that our model
achieves nearly perfect accuracy. Compared to empirical data
extracted from real hardware, our model maintains a high degree
of accuracy, predicting mean performance loss within a margin
of 2%.

Index Terms—SIMT, imbalance, performance modelling

I. INTRODUCTION

As the landscape of high-performance computing has
evolved over recent years, single-instruction multiple-thread
(SIMT) processors—usually in the form of general-purpose
graphics processing units (GPGPUs)—have become popular
for high-performance computation in many domains [1]. By
sacrificing the independence of individual processing cores,
SIMT processors are able to pack significantly more process-
ing cores, and thus provide much more raw processing power,
compared to their traditional multiple-instruction multiple-data
(MIMD) counterparts [2].

However, not every conceivable computational workload
can be efficiently handed off to an SIMT device. The increased
raw processing power of these devices comes at the cost of
reduced flexibility, and algorithms must be carefully designed
to run efficiently on SIMT devices, lest their computational
prowess goes to waste. One important consideration when
programming SIMT devices is the concept of thread di-
vergence. In an SIMT device, a group of threads can—by
definition—perform only a single, common instruction at a
time; colloquially, these threads run in lockstep. Thus, cases

where the execution paths of threads diverge will cause some
of the threads to be idle. If care is not taken to minimise thread
divergence in algorithms designed to run on SIMT devices, it
can severely degrade performance [3].

Thread divergence emerges not only in situations with
conditional branches in the common if-else sense, but it
can also arise in iterative processes in the form of thread
imbalance. When the number of iterations of a loop varies
between threads, the result is divergence: threads will be
idle until the thread with the largest amount of work has
performed the necessary number of iterations. Throughout this
paper, we refer to workloads where the number of iterations
is not fixed and may differ between threads as variable-length
workloads. When the number of iterations is described by
some probabilistic process, we refer to them as stochastic
workloads. While it is well understood that thread imbalance
in variable-length workloads is detrimental to the performance
of SIMT devices [3], [4], we are unaware of any quantitative
models that predict exactly how much performance is lost.

The question how we can model the impact of thread
imbalance in stochastic variable-length workloads is the core
focus of this paper. With this work, we are the first to design
and implement an accurate statistical model for the expected
performance loss of a given application, given only that it is
an iterative process, that it is executed on an SIMT device, and
that the number of iterations required to complete the process
follows a known (albeit arbitrarily complex) distribution. We
validate our model using empirical measurements gathered
using a dedicated benchmark running on an NVIDIA GPU.
The results of this validation show that our model agrees with
simulated data with a relative error of less than 0.1%, and that
it agrees with measurements taken on a real device within 2%.

Our accurate model can help motivate more precisely the
design process of (future) SIMT applications—in particular in
terms of processing granularity—in domains where stochastic
iterative processes are common, such as machine learning [5],
cryptography [6], graph processing [7], and scientific comput-
ing [8]. The importance of thread imbalance and granularity is
further supported by our own results, which show (in Table I)
that thread imbalance in SIMT devices can lead to execution
that is nearly four times slower if thread granularity is not
chosen carefully.



In short, our paper makes the following contributions:
• We provide a statistical framework for reasoning about

the performance loss due to thread imbalance in variable-
length workloads on SIMT processors (Section III);

• We assess the accuracy of our model using empirical
results gained from a custom synthetic benchmark for
this form of performance loss (Section IV);

II. BACKGROUND

A traditional multi-core CPU architecture consists of a
number of processing cores, each of which is equipped with
dedicated arithmetic and control hardware. Because all cores
in such an architecture possess their own control, they can
function largely independently of one another, executing mul-
tiple instructions on (potentially) different data. Thus, such
an architecture is classified as multiple-instruction multiple-
data (MIMD) [9]. In recent years, we observe a stark rise in
popularity of a different kind of architecture: single-instruction
multiple-thread (SIMT). SIMT architectures omit the control
flow from individual cores in favour of having a larger number
of (less flexible) cores and—as a result—more arithmetic
prowess compared to a similar MIMD device.

A. Thread Divergence and Imbalance

In an SIMT architecture, multiple threads—which we refer
to as a thread group—share the same control flow. As a result,
instructions on such architectures can only ever be issued to an
entire thread group at the same time, rather than to individual
threads like on an MIMD architecture. This behaviour is
referred to as lockstep execution. In this execution model,
conditional branches are challenging and are implemented
through a process known as masking: when a thread group en-
counters a conditional block, each thread determines whether
it should execute or ignore the corresponding instructions.
Threads not participating in conditional execution are unable to
perform other useful work during this time: they are idle, and
computing resources are wasted. As the number of conditional
paths—or the length of those paths—grows, more threads are
idle for longer periods of time, and we lose more performance.
We refer to this behaviour as thread divergence, and it can be
a significant source of performance degradation [3].

Thread divergence also arises in iterative structures such as
loops, which rely on conditional branches that jump back to
the start of the loop body. Thus, if one thread in an SIMT
processor has concluded the iterative process but another
thread has more iterations to perform, their execution paths
diverge: the first thread will need to idle until the second
completes the loop. We refer to this particular manifestation
of threads divergence as thread imbalance.

B. Reducing Thread Imbalance

The SIMT programmer’s toolbox provides at least two
strategies to ameliorate the effects of thread imbalance: chang-
ing the thread granularity, and load balancing. Thread granu-
larity refers to the way work is mapped onto the threads of the
processor. Most commonly, SIMT programmers map small,

independent parts of a workload onto individual threads, but it
is also possible to spread that work over multiple threads. This
effectively reduces the number of independent jobs executed
by the thread group, thereby reducing the degree of imbalance.
However, spreading work over multiple threads is often non-
trivial. We see increased support for programming at these lev-
els of granularity; NVIDIA, for example, implements so-called
cooperative groups in version 9.0 of its CUDA platform [10],
[11]. Similarly, SYCL features sub-groups [12]. Both of these
features allow programmers to tune their code to minimise the
impact of thread imbalance.

Load balancing, on the other hand, operates by pre-
processing the workload of the SIMT processor such that the
work performed by each thread group is more balanced [7].
For example, a programmer may choose to sort the work-
load before offloading it to the SIMT device, guaranteeing
that jobs of similar length will end up in the same thread
group. Of course, sorting a sufficiently large workload is in
itself a costly operation, and approximate solutions—which
nevertheless more balanced execution—may be used [13].

Choosing a suitable thread granularity or balancing loads
between SIMT threads requires an understanding of how much
performance we lose due to imbalance, but we do not currently
have quantitative models for this. Rather, these important (and
potentially time-consuming) optimisations are often processes
of trial and error. Our contribution, therefore, is to provide
a quantitative model for the impact of thread imbalance in
order to allow application developers to make more informed
decisions about the design of their applications.

III. MODELLING

Throughout this paper we assume that a workload is
comprised of an arbitrary number of units of work which
can be performed independently and in parallel. Each unit
is described by a natural number, indicating the number of
iterations required to complete it. For example, the workload
{5, 2, 3, 7} consists of four units of work, requiring 5, 2,
3, and 7 iterations to complete. Executing one iteration has
some application-specific computational cost T ; this might
represent, for example, a number of cycles or an amount of
wall-clock time. It follows that the computational cost of a
unit of work is given by the number of iterations required to
complete it multiplied by the iteration cost T .

As workloads can be arbitrarily large and hardware is
inherently limited in its ability to execute processes in parallel,
the workload is naturally partitioned into work groups. On an
SIMT device with two lanes, our previous workload might
be partitioned into two work groups: {{5, 2}, {3, 7}}. Work
groups are analogous to thread groups in the same way that
data is analogous to hardware; work groups are mapped onto
thread groups for processing, and a single thread group may
process many work groups throughout the running time of
a program. The mapping of individual units of work onto
individual threads is determined by the thread granularity.
The manner in which the work groups within a workload are
mapped onto thread groups depends on the hardware, and has
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(a) The SIMT device runs in lock-
step, leading to periods of idle-
ness (straight grey arrows). The
cost, including idle time, is 56 for
w and 40 for w′.

t0 t1 t2 t3 t4 t5 t6 t7

(b) The MIMD device incurs no
performance loss due to lockstep
execution (amortised over con-
tinuous execution, wavy arrows).
The cost is 33 units for w, and 32
for w′.

Fig. 1: An example of 8-way SIMT and MIMD execu-
tion of two work groups from a larger workload: w =
{4, 2, 7, 1, 6, 4, 3, 6} and w′ = {4, 3, 4, 5, 4, 5, 3, 4}. The per-
formance loss due to imbalance is H(w) = 56/33 = 1.70 and
H(w′) = 40/32 = 1.25.

no bearing on the rest of our model: on a strict SIMT device,
work groups might be executed sequentially by a single thread
group, while on an NVIDIA GPU the work groups might
be executed in parallel across multiple independent streaming
multiprocessors.

Importantly, the idea of imbalance exists only within work
groups, and there is (by definition) no dependency between
different work groups. This allows us, without loss of gener-
ality, to study work groups individually. As such, we denote
work groups using the symbol w, and we use |w| to denote
the size of work group w. Finally, wi shall denote the number
of iterations required to complete the ith unit of work in w.

We define performance loss due to SIMT execution as
the computational cost of executing a work group w on a
SIMT device, CSIMT(w), divided by the cost of executing the
same work group on an idealised MIMD device, CMIMD(w).
This idealised device has equivalent computational power to
the SIMT device, but does not run in lockstep and as such,
its performance does not degrade due to thread imbalance.
Figure 1 illustrates the execution of a workload on these two
devices. Formally, the performance loss of executing a work
group w on the SIMT device, H(w), is defined as:

H(w) =
CSIMT(w)

CMIMD(w)
(1)

From our assumptions made about the devices, it follows
that H(w) ∈ [1,∞); indeed, since the MIMD device has
the same computational power, but is not affected by thread
imbalance, it should always perform as well as or better than
the SIMT device. In this framework, H(w) = 1 implies that
the computational cost of running the work group on the
SIMT device is the same as the cost of running it on the
MIMD device, and indicates that the work group incurs no

performance loss at all. Intuitively, as |w| becomes larger (in
other words, as we process more work in parallel), we expect
the performance loss to grow accordingly. Finally, |w| = 1
implies H(w) = 1, as there is no possibility for a single unit
of work to be imbalanced.

A. Modelling SIMT and MIMD Devices

In order to model the computational cost of executing a
work group on our SIMT device we must consider the fact
that, in lockstep execution, a thread cannot proceed until all
threads in its group have completed their required number of
iterations. Thus, the threads need to wait for the thread with the
largest number of iterations: the depth of the work group [14].
Because all threads in the group are occupied (albeit possibly
idle) throughout the entire process, the total computational cost
for the work group w, CSIMT(w), is given by the following
expression, where T represents the computational cost of
executing a single iteration:

CSIMT(w) = |w|
|w|
max
i=1

Twi = T |w|
|w|
max
i=1

wi (2)

Next, we model the computational cost of executing the
same work group on our idealised MIMD device. This device
executes the units of work in parallel, but can immediately
perform meaningful work when previous work is completed
such that threads do not incur additional cost by idling.
Therefore, the computational cost of executing the work group
on our MIMD device is equal to the sum of the costs of
the individual units. This gives us the following definition of
CMIMD(w), where the cost T to perform one iteration is the
same as for the SIMT device:

CMIMD(w) =

|w|∑
i=1

Twi = T

|w|∑
i=1

wi (3)

We can substitute Equations 2 and 3 into Equation 1 to
obtain the following expression for the loss of performance:

H(w) =
T |w|max

|w|
i=1 wi

T
∑|w|

i=1 wi

= |w|max
|w|
i=1 wi∑|w|

i=1 wi

(4)

It is worth noting that, in Equation 4, the constant cost factor
T is eliminated, which imparts a powerful property on our
model: it is wholly independent of the implementation details
of the iterative code, as well as the hardware on which it will
run. This means that no knowledge about the implementation
is required to construct a model of this type. Rather, we only
need to know how the number of iterations for each work unit
is distributed.

B. Modelling Stochastic Work Groups

From this point forward, we treat our work groups as ran-
dom samples, which necessitates some change in notation. In a
stochastic framework, our work group w becomes a realisation
of an independently and identically distributed sample of size
n = |w| drawn from a discrete distribution W , such that w =
{W1,W2, . . . ,Wn} and W1,W2, . . . ,Wn ∼ W . Thereby,



H(w) necessarily becomes a random variable, which we shall
denote XW (n), such that XW (n) ∼ H({W1,W2, . . . ,Wn}).
This gives the following rephrasing of Equation 4 in terms of
random variables:

XW (n) = n
maxni=1 Wi∑n

i=1 Wi
(5)

The idea that iteration counts are drawn from or described
by a statistical distribution arises naturally in many kinds of
computation. Programs which model or process data from real-
world processes might be described—with sufficient domain
knowledge—by one of many well-known parametric distribu-
tions, such as the Poisson distribution. In many other cases
where a closed-form distribution is not available, we can still
describe the iteration-counts distribution through simulation.

This stochastic framework also elucidates some of the po-
tential use cases for our model. Indeed, the idea of configuring
the thread granularity of a program corresponds directly to
changing the size n of the random sample of work lengths, and
load balancing corresponds to changing the underlying distri-
bution W ; balancing the load of a SIMT program amounts
to partitioning it into multiple smaller loads, each of which
has a more narrow distribution and—as a result—loses less
performance due to imbalance. Because our model captures
these effects so directly, we believe it to be a useful tool in
reasoning about these kinds of optimisations.

Given that the distribution of our work unit lengths, W ,
is discrete, we could—in theory—find the distribution of
the performance loss XW (n) by enumerating all possible
values of W1,W2, . . . ,Wn. However, this solution runs in
O(|supp(W )|n) time and is not generally computationally
tractable: a distribution supported by only ten possible out-
comes would lead to 1032 possible combinations in a model
for thirty-two parallel units of work.

We proceed by creating an equivalent model that is more
computationally efficient. In order to do so, we first re-write
the numerator in Equation 5 using order statistics: given that
W1,W2, . . . ,Wn are random variables drawn from W , we
can sort these values in ascending order such that the ith
order statistic, denoted W(i:n), is the kth smallest value. Thus,
W(1:n) represents the smallest value in the sample, W(2:n)

represents the second-smallest value, and so forth. Given that
there are n values in total, W(n:n) naturally represents the
largest value in the sample—the maximum. Next, we reduce
the denominator of the fraction to a single random variable.
This new random variable, denoted ZW (n, a), represents the
distribution of the sum of n random variables drawn from W ,
given the fact that the maximum of that sample is known to
be a. Since the maximum value is know from the numerator,
we set a = W(n:n) and obtain the following equation:

XW (n) = n
a

ZW (n, a)
where a ∼ W(n:n) (6)

The number of random variables required to compute the
performance loss XW (n) in Equation 6 is now only two

(as opposed to the n random variables required to compute
Equation 5): W(n:n) and ZW (n,W(n:n)). This greatly reduces
the combinatorics required to enumerate all possible outcomes
of this division; indeed, we find that the number of out-
comes is now bound by O(n|supp(W )|2). We proceed by
computing the distribution of the sample maximum W(n:n) in
Section III-B1, and the distribution of the sum of a sample
given its maximum, ZW (n, a), in Section III-B2. Finally, we
calculate the ratio distribution XW (n) in Section III-C.

1) Distribution of the Sample Maximum: In order to find
an analytical solution for the distribution of the maximum of
a series of i.i.d. random variables W1,W2, . . . ,Wn ∼ W , we
note that this maximum is equal to the n-th order statistic
of that sample, denoted W(n:n). The distribution of order
statistics for discrete distributions is well understood [15],
and the distribution of W(n:n) is described by the following
probability mass function:

fW(n:n)
(x) = P (W ≤ x)n − P (W < x)n

= FW (x)n − (FW (x)− fW (x))
n (7)

It is worth noting that the distribution of the maximum value
preserves the support of the original distribution; intuitively,
if one were to roll a six-sided die ten times and select the
maximum roll, that outcome would never be more than six,
nor would it ever be lower than one.

2) Distribution of the Sample Sum: In Equation 6,
ZW (n, a) denotes the distribution of the sum of an i.i.d.
sample W1,W2, . . . ,Wn ∼ W given a priori knowledge that
the maximum value in that sample is equal to a, thus:

fZW (n,a)(x) = P

(
x =

n∑
i=1

Wi

∣∣∣∣∣ W(n:n) = a

)
(8)

In order to derive this distribution we construct a paramet-
ric, non-normalized function gW (x; i,m), which denotes the
probability of the sum of i values drawn from W , each of
which is no greater than m, being equal to x. This function is
defined inductively from a degenerate distribution supported at
zero (capturing the idea that additive processes start at zero)
as follows:

gW (x; i,m) =

[x = 0] if i = 0
m∑
j=0

gW (x− j; i− 1,m)fW (j) otherwise

(9)
By its definition, gW (x;n, a) nearly models the target

distribution but it crucially fails to model that, in for the
maximum of a sample to equal a, the sample must contain a
at least once. In order to resolve this, we subtract the function
gW (x;n, a − 1), which intuitively models the probability of
never drawing a, point-wise. Then, we only need to normalize
the resulting probabilities to find an expression for the distri-
bution of the sample sum given its maximum:



fZW (n,a)(x) =
gW (x;n, a)− gW (x;n, a− 1)∑na

j=a (gW (j;n, a)− gW (j;n, a− 1))
(10)

C. Modelling Performance Loss

In order to find the distribution of the loss of performance in
our model, we calculate the ratio distribution between W(n:n)

and ZW (n,W(n:n)). This process does not generally permit
a closed form solution, but this distribution can be calculated
through a brute-force approach. Indeed, since all distributions
involved in the process are discrete and because their supports
are subsets of the integers, our ratio distribution is supported
by a subset of Q which must be countable. The probability
of each supported outcome is then given by summing up
the probabilities of all outcomes which map to the same
irreducible fraction:

fXW (n)(x) =
∑

a,b∈N, n a
b =x

fW(n:n)
(a)fZW (n,a)

(b) (11)

It should be noted that, for this process to be tractable, the
support of the underlying distribution W must be finite. If the
support of W is infinite, then the support of W(n:n) is infinite
and, consequently, the support of XW (n) is also infinite; as
such, we would not be able to meaningfully enumerate the
possible outcomes. We can resolve this issue by approximating
W using a finite truncated distribution.

The enumeration of the possible outcomes, and the compu-
tation of their probabilities, marks the end of the construction
of our model. This model gives us insight into the distribution
of the loss of performance for a randomly drawn work group.
For example, E(XW (n)) gives the expected loss of perfor-
mance for a work group. Because most real-world workloads
will have many thousands of work groups, the performance
loss of such workloads will naturally tend towards the expected
value as a consequence of the law of large numbers.

IV. EVALUATION

In order to evaluate the predictive power of our model, we
construct a benchmark based on a simple iterative process:
matrix exponentiation. Our validation process has two stages.
First, we simulate a synthetic workload—with exponents
drawn from a given distribution—using a Monte Carlo method.
This process allows us to compute the loss of performance
as given by Equation 4 exactly, and we will refer to this as
the simulated loss of performance. Second, we execute the
matrix exponentiation kernel—with the iteration counts given
by our earlier simulation—on a real-world SIMT device; by
measuring the execution time of each of the work groups, we
can determine the measured loss of performance. Both of these
metrics can then be compared to each other, as well as to the
modelled loss of performance, to confirm whether they are in
agreement.

Data: Source distribution W , number of trials r, work group
size n

Result: Simulated results x0, . . . , xr and measured results
y0, . . . , yr

for i← 0 to r do
for j ← 0 to n do

pi,j ←W ;
Mi,j ← random matrix;

end
end
for i← 0 to r do

CSIMT ← 0;
CMIMD ← 0;
parallel for j ← 0 to n do

M ′
i,j ← I;

cj ← clock();
for k ← 0 to pi,j do

M ′
i,j ←M ′

i,jMi,j ;
cMIMD,j ← clock();

end
cSIMT,j ← clock();
CSIMT ← CSIMT + cSIMT,j − cj ;
CMIMD ← CMIMD + cMIMD,j − cj ;

end
xi ← n

maxnj=0 pi,j∑n
j=0 pi,j

;

yi ← CSIMT
CMIMD

;
end

Algorithm 1: Benchmark of the loss of performance when run-
ning work units drawn from a given distribution. We assume
execution on an SIMT machine—thus, the parallel block is
executed in lockstep—to determine CSIMT, and emulate the
equivalent MIMD execution to calculate CMIMD.

A. Benchmark Design

Our benchmark operates by computing powers of square
dense matrices Mp (with p ∈ N) through repeated multiplica-
tion1. This problem matches the class of algorithms targeted
by our model very well: each work unit iteratively executes
matrix multiplication operations, and the number of iterations
is equal to the exponent p. In addition, the cost of each iteration
is fixed: for our benchmark, we operate on 16×16 matrices. As
discussed in Section III, the execution time of each individual
step is irrelevant to the outcome of our model, and as such
the size of the matrices should not matter. However, we find
that if the run-time of each individual step is very small (as
it is for, say, 3 × 3 matrices), we incur additional noise in
our measurements. Pseudo-code for our benchmark is given
in Algorithm 1.

Note that our validation strategy relies on an emulation
of MIMD behaviour on the SIMT device. To this end, we
measure the cost of performing a computation in accordance
with the SIMT model as the time between the start of the
computation and the time at which all threads are done. In
contrast, we emulate the behaviour of an MIMD device by

1The astute reader may have noticed that, because square matrices under
multiplication form a monoid, this operation can be performed more efficiently
in O(log2 p) time. However, this defeats the purpose of our benchmark, and
is therefore not implemented.



TABLE I: Descriptive statistics of the probability distributions
used to validate our model, comparing modelled, simulated,
and measured distributions.

Modelled Simulated Measured

Dist. n µA ηS,A µS ηM,S µM ηA,M

B(40, 0.5) 2 1.090 0.01% 1.090 0.86% 1.099 0.86%
4 1.163 0.00% 1.163 0.83% 1.173 0.84%
8 1.225 0.02% 1.225 0.85% 1.236 0.88%

16 1.278 0.01% 1.278 0.75% 1.287 0.74%
32 1.325 0.01% 1.325 0.11% 1.326 0.12%

Geo(0.05) 2 1.476 0.05% 1.477 1.36% 1.497 1.43%
4 2.047 0.03% 2.047 0.91% 2.065 0.89%
8 2.668 0.01% 2.668 0.77% 2.689 0.77%

16 3.317 0.02% 3.317 0.12% 3.321 0.14%
32 3.979 0.02% 3.979 1.64% 3.915 1.59%

Pois(30) 2 1.104 0.00% 1.104 0.57% 1.110 0.58%
4 1.191 0.00% 1.191 0.55% 1.198 0.55%
8 1.268 0.01% 1.268 0.57% 1.275 0.57%

16 1.335 0.00% 1.335 0.44% 1.341 0.45%
32 1.397 0.00% 1.397 0.26% 1.393 0.25%

U(20, 40) 2 1.118 0.00% 1.118 0.57% 1.124 0.58%
4 1.213 0.01% 1.213 0.55% 1.220 0.54%
8 1.275 0.01% 1.275 0.58% 1.282 0.59%

16 1.309 0.01% 1.309 0.53% 1.316 0.54%
32 1.326 0.00% 1.326 0.16% 1.328 0.16%

NB(5, 0.3) 2 1.301 0.02% 1.301 1.64% 1.323 1.68%
4 1.587 0.06% 1.586 1.38% 1.608 1.34%
8 1.860 0.04% 1.860 1.32% 1.885 1.30%

16 2.123 0.06% 2.124 0.84% 2.142 0.90%
32 2.375 0.01% 2.375 0.72% 2.358 0.70%

µA denotes the expected performance loss as derived analytically using
our model, µS denotes the mean performance loss derived from our
simulation, and µM denotes the mean of the measured data. ηa,b denotes
the relative error between the means µa and µb: ηa,b = |(µa−µb)/µa|.

calculating the time at which each thread is ready to proceed
with further useful work, without being constrained by the
lockstep execution model.

We evaluate the accuracy of our model using the following
five underlying probability distributions for work unit lengths:

• B(40, 0.5) Binomial with n = 40 and p = 0.5.
• Geo(0.05) Geometric with p = 0.05.
• Pois(30) Poisson with λ = 30.
• U(20, 40) Uniform with a = 20 and b = 40.
• NB(5, 0.3) Negative binomial with r = 5 and p = 0.3.
These distributions have been selected for evaluation be-

cause they: (1) occur naturally and commonly in real-world
processes; (2) they have a wide range of supports (including
infinite ones); and (3) they have a wide variety of shapes (in-
cluding fat-tailed and thin-tailed). Please note that our model
is not limited to such well-behaved distributions; instead,
the model works for arbitrary discrete distributions. Even a
categorical distribution assigning an arbitrary probability mass
to each of a set of natural numbers can be used with our
modelling strategy.

B. Experimental Setup

We have implemented our benchmark in C++; the Monte
Carlo simulation of work items follows the MT19937 pseudo-
random number generator provided by the C++ standard
library [16]. The code for the SIMT device was written in
CUDA [11], and it was compiled and executed on the CUDA
11.5 platform. The compiler was configured to emit code for

Compute Capability and PTX version 8.0 (the most recent
version supported by our target GPU). The host code was
compiled using gcc version 9.4.0. Our results were generated
on a node of the DAS-6 cluster [17] using an NVIDIA A100
PCI-e GPU with 40GB of HBM2 memory based on the
Ampere microarchitecture [18]. The kernels were launched
with 256 threads per block. For each experiment, we used
218 work groups to ensure the availability of sufficient device
memory to store the input matrices.

As our GPU is of a post-Volta architecture, it is equipped
with Independent Thread Scheduling which implies that it is
not strictly an SIMT device [19]. In order to more accurately
simulate true SIMT behaviour, explicit thread group-level
synchronisation2 was added to the kernel. This also allows
us to evaluate the effects of Independent Thread Scheduling
by disabling this synchronisation, as explored in Section IV-D.

As discussed in Section III-C, some of our underlying
distributions had to be truncated to ensure finite support; in
these cases, the acceptable loss of precision was set to a
threshold of ϵ = 10−6.

C. Validation Results

In order to evaluate the quality of our model, we calculate
the expected and mean performance loss for our modelled,
simulated, and measured results. The nature of our problem
makes it difficult to apply many of the usual goodness-of-
fit tests; some of the probabilities we model are extremely
small, leading to very small numbers of expected observations,
which invalidates the use of Pearson’s χ2 and similar tests.
Because our data is discrete, the Kolmogorov-Smirnov test
(and other statistical tests for continuous distributions) are not
applicable. This need not be a problem, however: as discussed
in Section III-C, we posit that the mean is one of the most
meaningful statistics for our model, as it allows us to estimate
the performance loss for entire workloads.

The results of our analysis are shown in Table I. These
results indicate that our model manages to predict the mean
performance loss of both the Monte Carlo simulation and the
measurements on the GPU with a high level of accuracy:
the relative error between our model and the Monte Carlo
simulation never exceeds 0.1% in our validation, and the
relative error between our model and the timing results from
the GPU—a noisy environment—never exceeds 2%. A visual
comparison between the modelled, simulated, and measured
results for a subset of distributions3 is shown in Figure 2.
These figures confirm—on a visual level—our previous find-
ings that the model agrees well with simulated and measured
data.

We observe that finitely-supported distributions (namely,
the binomial and uniform distributions) are modelled more
accurately, due to the fact that they do not require truncation;
the truncation required to make our model work with infinite
distributions (in this case, the geometric, Poisson, and negative

2In CUDA terminology, this is referred to as warp-level synchronisation.
3The remaining distributions exhibit similar levels of agreement, but were

not included due to space limitations.



0
0.02
0.04
0.06
0.08

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

P
(H

(w
)
=

x
)

Modelled
Simulated
Measured

(a) B(40, 0.5) with 16 parallel units of work.
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(b) Geo(0.05) with 8 parallel units of work.
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(c) Pois(30) with 32 parallel units of work.
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(d) U(20, 40) with 2 parallel units of work.

0
0.02
0.04
0.06
0.08

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
(H

(w
)
=

x
)

Modelled
Simulated
Measured

(e) NB(5, 0.3) with 4 parallel units of work.

Fig. 2: Comparison between the modelled, simulated, and
empirically measured performance loss distributions for a
subset of distributions and degrees of parallelism.

binomial distributions) discards a small but non-zero amount
of information.

D. Effects of Independent Thread Scheduling

Due to the Independent Thread Scheduling architectural
feature, the A100 GPU used in our validation is not a
true SIMT device, as thread group-level synchronicity is not
guaranteed by the hardware. As discussed in Section IV-B, we
use explicit thread group synchronisation to more accurately
emulate SIMT behaviour, but it remains prudent to investigate
the effect of this non-SIMT architecture on our model. To
this end, we have performed all our measurements with the
explicit thread group synchronisation disabled and computed
the difference in performance loss between the two sets of
results. These differences are shown in Figure 3.

We observe that, in all of our benchmarks, the relative
error between the experiments with and without explicit thread
group-level synchronisation is less than 1%. We conclude
that the presence of Independent Thread Scheduling has little
impact on the accuracy of our model and, therefore, our
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Fig. 3: Relative error of measured performance loss with ex-
plicit thread group-level synchronisation enabled and disabled,
demonstrating the impact of Independent Thread Scheduling.

model remains adequate even for future devices which may
not follow the SIMT execution model in the strictest sense.
It is worth noting that these results are consistent with the
notion that Independent Thread Scheduling primarily serves
to guarantee forward progress in parallel algorithms, rather
than to provide significant gains in performance [20]. While
we are not aware of any existing studies examining the effects
of this microarchitectural feature in and of itself, our results
are consistent with studies which—in passing—examine its
impact on the performance of other applications [6], [21].

E. Limitations

The main limitation of our model is that the MIMD device
which underpins it is inherently theoretical; however, we are
not aware of any real-world pair of SIMT-MIMD processing
devices with exactly equivalent computational power. This has
consequences for the predictive power of our model, as we
cannot use it to make concrete predictions about program run-
time; instead, our model can be used—for example—to rank
different implementations, as they are compared against the
same theoretical optimum.

V. RELATED WORK

Performance models for SIMT devices—GPUs in
particular—have been widely studied. A survey of existing
modelling techniques, as well as a framework for classifying
models, is given by Madougou, Varbanescu, Laat, et
al. [22]. Within their framework, the model presented in
this paper could be classified as a model for optimisation
space exploration at a coarse abstraction level requiring zero
knowledge about the hardware. While Madougou, Varbanescu,
Laat, et al. specify a class of modelling techniques described
as statistical, this class does not accurately describes our
model: rather than extracting the impact of the design space
from a posteriori knowledge of execution time through
data-centric, machine-learning based methods, we use
statistical methods to make a priori predictions of a program’s
performance, which fits in the category of analytical models.
This categorisation would imply that the closest existing
models to ours are models such as Eiger [23], Stargazer [24],
and the model by Zhang, Hu, Li, et al. [25]. However, all
these models require knowledge about the implementation of
the SIMT program, which our model does not; therefore, we



believe that our model can be applied much earlier in the
application development process.

VI. CONCLUSION

In this paper, we have presented a model that gives insight
into the performance of iterative applications with stochastic
variable-length workloads on SIMT architectures such as
GPUs; using our model, we can estimate the performance
loss that such applications incur due to thread imbalance.
Our model is designed specifically to require as little a priori
knowledge as possible, relying solely on an understanding of
the statistical distribution of the amount of work that is to be
processed by each thread. This information can be extracted
from domain knowledge or from simulation through an ex-
isting implementation, thus requiring little to no information
about the details of an SIMT implementation of the program,
and allowing our model to be used in the early stages of
application development.

Our model is shown to be accurate within a relative error
of 0.1% compared to a Monte Carlo simulation, and within
2% when compared to measurements on a real device. We
believe our model can be used to quantitatively motivate and
guide important optimisations of SIMT programs, in particular
thread coarsening and load balancing. We aim to apply our
model to real-world applications in domain science in the near
future. In addition, we aim to investigate how our model can
be used in the exploration and (automated) tuning of the design
space of SIMT applications.
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