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Abstract—Multi-core processors come with several cores inte-
grated on a single die. They often work incessantly under high
thermal stress, leading to severe wear-out. Server-class multi-
cores already come with a mechanism to survive a core failure
called Core Failure Resilience (CFR). Embedded multi-cores with
CFR are already on the horizon. The surviving cores must take
on an additional workload from their fellow failed core(s) under
CFR. They must also operate on higher frequencies to continue
meeting the target performance. However, this additional work-
load assignment further accelerates the wear-out of the surviving
cores due to additional heat from higher frequency operation.
Lifetime estimation frameworks rely on detailed simulations,
which leads to long simulation times. These frameworks are
unsuitable for the early stages of the design process as they
cannot quickly evaluate many design points. Existing frameworks
cannot estimate the Mean Time to Failure (MTTF) for multi-
cores that include Core-Failure Resilient (CFR) capabilities. We
introduce SLICER, the first framework for estimating the MTTF
of CFR multi-cores. SLICER integrates with state-of-the-art tools
HotSniper and MatEx for fast and accurate MTTF estimation.

Index Terms—Systems Simulation, Integrated Circuit Reliabil-
ity, Lifetime Estimation

I. INTRODUCTION

Technology scaling enables multi-core processors to inte-

grate several processing CPU cores on the same die. The

integration provides a severalfold improvement in parallel

processing capabilities in multi-cores. Multi-cores now form

the core of general-purpose high-performance computing in

data centers. However, this integration also subjects multi-

cores to higher power densities than before. With higher

multi-core power densities come higher multi-core operating

temperatures. Multi-cores usually operate incessantly at high

temperatures in data centers to satisfy the required user-

imposed Service-Level Agreements (SLAs).

The high temperatures wear-out the cores within the multi-

core by physically degrading its transistors. Thereupon, core

failures are common in multi-cores deployed in data centers.

Furthermore, scheduling decisions and workload variations

can result in non-uniform core aging, resulting in cores failing

in a multi-core at different times. State-of-the-art server-class

multi-cores cater to the possibility of unequal core lifetimes

with a feature called Core Failure Resilience (CFR) [1]. When

This work has received funding from the European Union’s Horizon 2020
research and innovation program for the APROPOS project under the Marie
Skłodowska-Curie grant agreement No. 95609 and the ADMORPH project
under the grant agreement No. 871259.

a core fails, CFR allows the other cores of a multi-core

to continue operations unaffected. CFR extends the lifetime

of a multi-core, but it also comes with a heavy design

and area overhead. Previously, embedded multi-cores rarely

experienced a core failure as they operate intermittently at

low temperatures. Consequently, the CFR feature is currently

non-existent in embedded multi-cores. However, with the

proliferation of embedded multi-core servers [2] and high-

performance adaptive embedded systems [3], CFR capabilities

are also expected in embedded multi-cores.

CFR provides the hardware mechanisms for multi-cores to

continue operating with the remaining surviving cores even

after several failures. However, the overlying CFR multi-core

scheduler must reschedule the same workload on fewer cores

to honor the SLAs. Therefore, the scheduler may operate the

surviving cores at a higher frequency (for higher performance)

using Dynamic Voltage and Frequency Scaling (DVFS) than

before (provided that other constraints allow it to do so) as they

take on the work of the failed cores. Surviving cores produce

more heat operating at higher frequencies (and voltages).

Consequently, DVFS may allow the multi-core to remain

operationally adequate at the cost of accelerated core aging.

Estimating the lifetime for multi-cores is an active subject

of research. We define Mean Time to Failure (MTTF) for

CFR multi-cores as the estimated average time wherein the

CFR multi-core (with the help of rescheduling) can still meet

the SLAs with its surviving cores. State-of-the-art simulation

frameworks such as LifeSim [4] allow the estimation of Mean

Time to Failure (MTTF) for non-CFR multi-cores. However,

no reliability simulation framework can estimate MTTF for

CFR multi-cores out of the box. Estimating the reliability

of multi-cores is quintessential in their design process. We

present SLICER (Simulator for Lifetime estImation of Core-
failurE Resilient multi-cores), capable of estimating the MTTF

of CFR multi-cores. MTTF for a multi-core is inherently

subject to the underlying micro-architecture, (re)scheduling

algorithm, reliability model, and system-level SLAs. SLICER
provides a plug-and-play interface to provide all these nec-

essary inputs. Designers can use SLICER to perform early

design-space exploration for CFR multi-cores with respect

to design parameters such as type and number of cores,

(re)scheduling algorithms, DVFS policies, etc. while verifying

that they meet the necessary reliability requirements. Addition-

ally, SLICER can estimate the MTTF for a CFR multi-core
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Fig. 1: Illustration of the process flow of SLICER.

for any predefined n number of core failures, adding further

flexibility. As a consequence, by using n = 1, SLICER is also

capable of simulating non-CFR multi-cores.

As SLICER is a tool for early-stage design-space exploration

of multi-core systems, it operates at an abstraction level

that allows fast simulations. For example, the framework

models a core as a single unit and does not consider sub-

core components. MTTF for multi-cores is in the order of

years. It is not time-wise feasible to estimate the MTTF

using detailed low-level cycle-accurate [5] or interval simula-

tions [6]. SLICER, therefore, uses isolated power-performance

traces from the HotSniper [7] (and potentially CoMeT [8])

interval simulation toolchain for estimating MTTF. HotSniper
provides traces for a given multi-threaded workload and micro-

architecture at different core frequencies. SLICER provides full

integration with HotSniper to automate the entire process of

power-performance profiling. SLICER produces temperatures

from the power traces (and user-provided floorplan) using the

MatEx [9] thermal modeling tool. Finally, though configurable,

SLICER uses the ElectroMigration (EM) [10] reliability model

to estimate the MTTF from the thermals in this work.

Figure 1 shows the process flow for SLICER. It models

applications as Directed Acyclic Graphs (DAGs) and supports

DAG-based scheduling [11]. A heuristic scheduler maps the

application DAG on the underlying CFR multi-core under a

deadline (SLA) constraint to create a DVFS-based schedule.

SLICER ages the CFR multi-core based on the schedule,

repeating iteratively till the multi-core experiences a core

failure. The scheduler then remaps the DAG on the remaining

functional cores under the same deadline constraint. The

scheduler reports success if it can find a viable schedule, and

the process repeats till the next failure. It will indicate failure

if no schedule can meet the deadline with the remaining cores.

The failure provides a single Time-To-Failure (TTF) data point

for MTTF estimation. SLICER uses randomized Monte Carlo

simulations (with aging-dependent randomized core failures)

to obtain the CFR multi-core MTTF.

Our Contribution: We present the first framework,

SLICER, to estimate MTTF for CFR multi-cores. The frame-

work provides a plug-and-play interface to insert the nec-

essary input – micro-architecture, floorplan, DAG-scheduler,

SLAs (deadlines), and reliability model. SLICER collects

the necessary traces from the low-level HotSniper interval

simulation toolchain and processes them with MatEx for the

time-wise feasible estimation of MTTF.

Open Source Contribution: The source code for SLICER is

released under the MIT license for unrestricted use and is avail-

able for download at https://github.com/sudam41/SLICER.

II. RELATED WORK

There are several frameworks available in the literature that

estimate the lifetime of multi-cores [4], [12]–[17] (See Table

I). However, most of them do not apply to CFR multi-cores.

The frameworks in [13] and [16] assume a single core failure

will fail the entire multi-core, resulting in an inaccurate MTTF

for CFR multi-cores that can survive core failures.

Some frameworks in the literature estimate the lifetime of

CFR multi-cores. However, they operate under the purview of

several important limitations. These frameworks fall into two

main groups, namely frameworks that use high-level power-

performance simulations [12], [15], [18], [19] and frameworks

that use low-level power-performance simulations [4], [13],

[14], [16], [17]. A framework must be time-wise feasible

to make it practical for performing early design-space ex-

ploration. Existing frameworks that use low-level simula-

tions integrate with live cycle-accurate system simulators like

gem5 [5] or interval system simulators like Sniper [6] to

estimate MTTF. Integration with a live performance simulator

brings accuracy but at the cost of heavy simulation time

overhead in every run. Contrarily, frameworks that use a

high-level approach define the workload of each task as a

percentage or assign a single power value to represent the

execution of an entire task. Such a high level of abstraction

puts into question the real-world translation of the results. In

contrast, SLICER uses on-demand task-level trace extraction

from the integrated HotSniper and reuses extracted traces

to minimize the invocation of low-level detailed simulators

for lower simulation time overhead. This hybrid approach

enables SLICER to reduce the simulation time while producing

accurate results.

Furthermore, the frameworks in [4], [12]–[15] only consider

multi-cores where all cores are identical. SLICER supports

lifetime estimation for homogeneous and heterogeneous CFR

multi-cores out-of-the-box thanks to its tight integration with

HotSniper, which also supports heterogeneity. The framework

described in [15] considers a scenario where it redistributes
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Framework High Level Integration with Dynamic Task Heterogeneous
Simulation Low-level System Simulation Reallocation Multi-cores

[15], [18] � � � �
[12], [19] � � � �

[16] � � � �
[4] � � � �

[13] � � � �
[14] � � � �
[17] � � � �

SLICER � � � �

TABLE I: State-of-the-art Simulation Frameworks

workload after each core failure based on a predetermined

configuration. This approach provides a solution to ensure

schedulability in the hyperperiod where a core failure and

task reallocation occur. However, it is unsuitable with dynamic

reallocation scenarios where aging/thermal aware reallocations

can be conducted [20]. The framework in [17] uses failure

dependency graphs with sub-core units to estimate the lifetime

of a CFR multicore. SLICER opts for core-level simulations as

a trade-off to achieve faster simulations since SLICER targets

early design-space exploration.

In addition to its application in this study, SLICER was em-

ployed internally within our research group for a distinct study

in design space exploration to evaluate platform architectures

and their floorplans [21].

III. LIFETIME RELIABILITY MODELING OF A CORE

The permanent hardware failures that result in core failures

manifest from core aging. A core (transistors within) inher-

ently wears out under active processing. This wear-out is pri-

marily a function of the core’s experienced temperature [22],

[23] but can also involve other advanced parameters like

operating voltage [24]. Technology scaling allows multi-cores

to integrate more cores on a single die. However, numerous

smaller cores in close proximity increase the power density of

the cores, accelerating their aging.

The literature describes multiple wear-out mechanisms [25].

Core (transistor) aging is an active research subject. Re-

searchers introduce more sophisticated aging models every

year. It is not the intention of this work to keep up with

them. We designed SLICER to work with any reliability

model with a parameterized implementation. However, we

must use some reliability model to obtain results in this

work. Therefore, we chose to employ the commonly used

ElectroMigration (EM) [25] model in this work. The core

failure probability under the EM model is a function of the

core’s temperature history – the operating temperatures and

the temperature durations. The following equation gives the

MTTF for a core under the EM model.

MTTFEM (T ) =
A0

(J − Jcrit)n
· exp Ea

kT
(1)

where A0 is a process-dependent constant, J is the current

density, Jcrit is the critical current density for the EM effect,

Ea is the activation energy for EM, k is the Boltzmann’s

constant, n is the material-dependent constant, and T is the

operating temperature. J must be greater than Jcrit for core

failure under the EM model. We cannot use Equation (1)

directly for system-level modeling. The core failures do not

occur deterministically in practice. Equation (1) provides the

expected value for core failure but not the probability distribu-

tion of failures around the mean. We use the common practice

of employing Weibull (or log-normal) distributions to model

the temporal core failure probability. Temporal core failure is

the probability of a core surviving until a particular time. The

following equation describes the reliability of a core with the

Weibull distribution.

R(t, T ) = e−(
t

α(T ) )
β

(2)

where t is the current time (measured in hours), T is the

steady state temperature, β is the Weibull slope parameter,

and α(T ) is the scale parameter that depends on the wear-out

mechanism. The following equation defines the α(T ) for the

EM model [15].

α(T ) =
A0(J − Jcrit)

−n exp Ea
kT

Γ(1 + 1
β )

(3)

where Γ() is the gamma function. Equations (2) and (3) give

the reliability of a core at any given time. However, we require

the entire temperature history of a core to calculate its MTTF.

It is computationally expensive to calculate the temperature

history. Instead, we calculate the average aging rate for a time

interval and use this parameter as a proxy for temperature

history to estimate the MTTF. The approximation does not

introduce a calculation error by assuming that the workload

repeats periodically. The following equation gives the average

aging rate for a constant workload [15].

α =

∑p
i=0 τi∑p

i=0
τi

α(Ti)

(4)

where α is the average aging rate over p atomic steps. Each

atomic step has a duration of τi with temperature Ti.

Core failure is inherently a random process. SLICER must

decide which core to fail among all the surviving cores in a

CFR multi-core. The probability of a core failure is negatively

correlated with its aging, as given by Equation 2. However, the

probability of any core failing is non-zero at any non-initial

time. So, it can happen that a less-aged core fails first than a

more-aged core by pure chance. Therefore, we use a random
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(b) Scenario 2: Younger core fails first.

Fig. 2: Mechanism for predicting the next core failure using

fault distribution curves.

function to determine the next core failure. We use an example

to explain this mechanism next.

Figure 2 shows the fault distribution curves based on Equa-

tion 2 for two cores in a dual-core CFR multi-core. The multi-

core has not experienced any core failure yet. Core 2 has aged

more than Core 1, as hinted by its steeper fault distribution

curve. SLICER chooses random floating point numbers R1
and R2 between 1 and 0 for Core 1 and 2, respectively.

It then projects the random numbers temporally using fault

distribution curves. Let t1 and t2 be the time corresponding

to Core 1 and Core 2, wherein cores’ fault distribution curves

attain the values of R1 and R2, respectively. In Figure 2a,

since t2 < t1, the older Core 2 is the next failure. However, as

shown in Figure 2b, if t1 < t2, the younger Core 1 is the next

failure. The probability of the scenario in Figure 2a happening

is higher than in Figure 2b, given that Core 1 is more aged.

SLICER reallocates additional workload to surviving core(s)

on a core failure. Furthermore, the cores probably run at higher

frequencies under the new reallocated schedule than before to

meet the deadline. Therefore, one can expect core temperatures

for the surviving core(s) to change (most likely for the worse)

Time (h)

R
el

ia
bi

lit
y

Workload 
changeR'

t'

          before reallocation
          after reallocation

(a) Temperature-Driven Curve Shift

Time (h)

R
el

ia
bi

lit
y

R'

t't''

          before reallocation
          after reallocation

(b) New Hybrid Fault Distribution Curve

Fig. 3: The changes in fault distribution curve for a surviving

core resulting from a workload reallocation after a failure.

after reallocation.

Figure 3 shows SLICER calculating a new fault distribution

curve for each surviving core with the new temperature. Let

R′ be the exact reliability value for a surviving core at the

exact time of core failure t′. Let t′′ be the hypothetical time

wherein the surviving core would have achieved the reliability

value of R′ when operating with the new – after reallocation –

temperature from the beginning. Figure 3a shows the before-

and after-reallocation fault distribution curve for a surviving

core with R′, t′, and t′′ projected on both curves. The new fault

distribution curve must account for the depletion of reliability

of the surviving core by the workload before reallocation.

Therefore, the new fault distribution curve for the surviving

core is a hybrid between the before- and after-reallocation

curves. Figure 3b shows that the partial before- and after-

reallocation fault distribution curves from Figure 3a form the

first and second parts of the hybrid curve, respectively. The

junction point wherein the two curves meet in time is given

by the before reallocation fault distribution curve. Figure 3b

shows the R′ and t′ projected on the hybrid curve.
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Fig. 4: An abstract overview of SLICER.

IV. CFR MULTI-CORE MTTF ESTIMATION WITH SLICER

Figure 4 shows an overview of the SLICER framework. It

takes in several inputs from the user: the hardware description

(with CFR multi-core floorplan), the software application de-

scription (i.e., DAGs), the deadline (SLA), the (re-)scheduling

policy, and the aging model. It produces the MTTF for the

CFR multi-core as output. Below, we describe the process of

obtaining the MTTFs from the inputs using various modules

of the SLICER framework.

SLICER passes the user-provided hardware-software de-

scription to a module called Power-Performance Simulator.

For this module, we use HotSniper [7] in SLICER. HotSniper
simulates the software as compiled binaries, using detailed

interval power-performance simulations. It provides core-level

power traces at the finest supported granularity of 100 ns.

Moreover, it also provides the start and end timestamps for

each task in the software’s DAG. SLICER uses the timestamps

to extract the power profile for each task from the temporal

core-level power traces via the Profiler module. The Profiler
passes the task-level power traces to the Scheduler module.

The Scheduler takes in the user-provided hardware-software

description, scheduling policy, and the deadline (SLA) as

input. It spatio-temporally maps tasks onto the functional (sur-

viving) core(s) under DAG and deadline constraints with a

user-provided heuristic scheduling policy. SLICER only sup-

ports static scheduling (other than a scenario where a core

has failed). Therefore, the Scheduler assigns all tasks a fixed

space in time in the schedule. SLICER does not support

dynamic scheduling [26], as the workload needs to remain

constant for the MTTF calculations to work. The Scheduler
module considers the deadline hard and reports failure if the

scheduling policy fails to find a schedule. It reports success and

a feasible schedule otherwise. The Scheduler generates a new

Merge
Tasks

Before After

Fig. 5: Merging of tasks in FMRadio benchmark.

temporal core-level power trace corresponding to the feasible

schedule and passes it to the Thermal Simulator module.

The Thermal Simulator generates a temporal core-level

temperature trace corresponding to the power trace passed to

it by the Scheduler. We employ the MatEx [9] thermal mod-

eling tool inside the Thermal Simulator. SLICER passes the

floorplan from within the user-provided hardware description

to MatEx, which uses it to simulate CFR multi-core thermals.

The Thermal Simulator passes the temperature trace to the

Aging Simulator module.

The Aging Simulator models the wear-out of the processor.

It takes in the user-provided aging model as input. It passes

the temperature trace from the Thermal Simulator through the

aging model iteratively to obtain the TTF for each core. It

assumes the core with the smallest TTF to fail first. It passes

which core exactly failed and the time from the last core failure

to the Scheduler. The Scheduler then remaps the workload.

The adaptive process repeats till the Scheduler fails to find

a feasible schedule or all cores have failed. The Scheduler
reports the MTTF to the user at the end of the process.

V. EXPERIMENTATION

Experimental Setup: We use the benchmark set

STR2RTS [27] to evaluate SLICER. STR2RTS [27] comes with

constructs that simplify task profiling of DAG-based StreamIt
benchmarks [28]. We employ HotSniper [7] to generate

power traces for each task in the benchmark. Some tasks in

the benchmarks are tiny and do not produce power values

with HotSniper, even at its smallest granularity of 100 ns.

Therefore, we merged these tasks (per the DAG) to form

larger tasks. Figure 5 shows the DAG transformation in the

FMRadio benchmark due to task merging. Table II shows the

number of tasks in each of the benchmarks. We simulate an

Intel octa-core Nehalem-EX [1] as the underlying multi-core.

Nehalem-EX is a high-performance CFR multi-core. We

chose this system for experimentation due to the availability

of its data and the CFR capabilities built into its architecture.

Table III shows the corresponding hardware description. We

set the ambient temperature to 45◦C.

A. Impact of Core Failures

CFR multi-cores are unique in their ability to survive core

failures. Failed cores do not directly impact the surviving

cores. However, the workload reallocation that follows can af-

fect the ongoing wear-out. The common understanding dictates

that core failure accelerates wear-out for surviving cores due

to additional workload. However, we observe that sometimes
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TABLE II: STR2RTS benchmarks used

Benchmark Number of tasks Number of tasks after merging
802.11a 117 73
Audiobeam 20 20
BeamFormer 56 56
CFAR 4 4
CFIR 3 3
DCT 13 6
DES 423 337
FFT2 26 8
FFT4 10 7
FilterBank 53 10
FMRadio 67 42

TABLE III: Hardware Description

Number of Cores 8
ISA x86

Area of a core 28mm2

L1 cache 32 KB
L2 cache 256 KB
L3 cache 24 MB

Fig. 6: Predicted MTTF with SLICER for different schedulers.

the wear-out of surviving cores slows down due to the failed

cores acting as a heat sink for the surviving cores. SLICER is

the first framework to provide such insights. Figure 7 shows

the heat map of the Nehalem-EX processor running the DES
benchmark (under a deadline constraint) at different stages of

its lifetime. Figure 7(c) shows a scenario wherein the failed

core (Core 1) acts as a heat sink for (Core 2), slowing down its

wear-out. Consequently, Core 2 continues to operate at more

or less the same temperature in Figure 7(b) as in Figure 7(c),

even though the former has more workload than the latter.

However, the effects do not last as the higher workload in

Figure 7(d) temperature-wise overwhelms the Core 2.

Benchmark Full Monte Carlo Average time per
simulation time (s) Monte Carlo iteration (s)

802.11a 648.89 3.24
Audiobeam 247.50 1.24
BeamFormer 294.56 1.47
CFAR 291.62 1.46
CFIR 262.66 1.31
DCT 292.99 1.46
DES 558.16 2.79
FFT2 303.82 1.52
FFT4 267.20 1.34
FilterBank 290.40 1.45
FMRadio 274.80 1.37

TABLE IV: Simulation time for each benchmark

B. Simulation Time of SLICER

As SLICER is a tool for designers to perform early-stage

design-space exploration, it provides fast predictions of the

MTTF. Table IV provides the time spent by SLICER to

determine the system’s MTTF when executing the different

workloads from Table II. We used the HEFT algorithm [29]

for task scheduling and conducted experiments on a Lenovo
ThinkPad X1 laptop with an Intel Core i7 processor. Moreover,

in this experiment, we used 200 Monte Carlo iterations for

determining the MTTF, i.e., for each benchmark, we repeated

the simulation – producing a TTF result – 200 times to

determine the MTTF. The table also shows the average time for

each Monte Carlo iteration (i.e., a single simulation instance).

The simulation times captured here are for the main simulation

loop only. We do not account for the time taken to generate

and profile the power traces (see Figure 4), as this process

only needs to be performed once for each workload-hardware

combination. The simulation times show that SLICER only

consumes a few seconds for an average Monte Carlo iteration,

and a full Monte Carlo simulation takes an average of 5.6

minutes. A similar simulation would take a low-level sim-

ulator hours to days to complete. Thus, SLICER allows for

efficient MTTF prediction, which enables early-stage design-

space exploration where designers must evaluate many design

points quickly.

C. MTTF for Various Scheduling Algorithms

SLICER provides the capability to analyze the impact of

scheduling on the MTTF. Scheduling policies can play a key

role in the lifetime of a CFR multi-core. Spatial mapping of a

workload onto a core directly determines the core temperature,

dictating its aging rate. Furthermore, the scheduler of a CFR

multi-core processor has the added responsibility of reallo-

cating the workload of a failed core amongst the surviving

cores. We showcase the performance of three schedulers from

the literature as a case study. We use HEFT proposed by

Topcuoglu et al. [29] and DNDS/DWDS by Huang et al. [30]

for the initial scheduling and the reallocation of tasks in our

MTTF evaluation. The DWDS also performs DVFS when

making scheduling decisions. Figure 6 shows the MTTF values

for the three algorithms with different benchmarks. DWDS
outperforms the other two schedulers for all benchmarks. The

improvement in MTTF is especially prominent for benchmarks
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(a) t = 0 hours. (b) Core 1 failing at (c) Core 6 failing at (d) Core 4 failing at

t = 10634.3 hours. t = 15066.0 hours. t = 17466.6 hours.

(e) Core 8 failing at (f) Core 2 failing at (g) Core 7 failing at (h) Core 3 failing at

t = 20191.1 hours. t = 22437.5 hours. t = 24897.5 hours. t = 28882.2 hours.

Fig. 7: Heat-map of a CFR multi-core surviving multiple core failures. ”X” denotes a failed core. Note that this shows only a

single instance of the Monte Carlo simulation and therefore the failing time is a stochastic TTF value and not the MTTF.

with many tasks, such as 802.11a and DES. We attribute

the improvement over other schedulers to the efficient use of

DVFS by DWDS to mitigate aging.

VI. VALIDATION

The lifetime of a microprocessor is in years. Such timescales

pose an inherent obstacle in validating any form of a lifetime

reliability simulator because any real-time validation experi-

ment with real hardware would take years to complete. An

alternative option would be to validate against another simu-

lator, particularly one that operates at a low level. However, a

full validation of MTTF estimation for CFR multi-cores with

a lower-level simulator would also be time-wise infeasible.

Moreover, in attempting to find a suitable simulator to

validate SLICER, we noticed that lifetime simulators that are

operational and can be fairly compared to our work are difficult

to find. Some simulator frameworks that are publicly available

are at a very high abstraction level, such as simulators that

represent workload in terms of percentages. This abstraction

cannot be fairly compared to SLICER, which defines the work-

load as a DAG and uses power traces to simulate the MTTF.

We found other simulators with obsolete code repositories that

do not function as intended. As such, we have been unable

validate against another (lower-level) simulation platform.

Instead, we have addressed the validation of our simulation

framework in a number of different ways. First, we have

based our simulator on widely used tools and models, such

as HotSniper and MatEx, which their authors have previously

validated in isolation. Second, we have performed a substantial

number of sanity checks that verified that the results produced

by SLICER fall within reasonable and explainable ranges and

exhibit explainable trends. Finally, one of the key novelties

in our work is that we use isolated power traces for tasks.

This design choice means that the accuracy of these traces

does not account for the core interactions with other processor

components, such as the other active cores and shared caches.
We investigated the impact of using the low-level ther-

mal/power simulator HotSniper to generate isolated and paral-

lel power traces and found that its effect is negligible. This ob-

servation confirms the validity of our choice for isolated power

traces. We assume that a workload repeatedly and continuously

executes (without idle times) until the system fails. While

this may not resemble a real-life workload, we argue that

this approach presents pessimistic (or at least conservative)

results, which helps in lifetime predictions. Furthermore, such

pessimistic MTTF predictions can still yield a high fidelity.

For design-space exploration, the fidelity of MTTF predictions

is typically more important than the absolute accuracy of the
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predictions. With high fidelity, we mean that when comparing

the MTTFs of multiple design candidates (to find an optimum

design), the ranking of these candidates in terms of MTTF

should be correct.

VII. CONCLUSION

Multi-core processors with CFR capabilities can remain

operational after one or more core failures. CFR multi-core

schedulers must reallocate the workload from the failed cores

to the surviving cores while continuing to meet the perfor-

mance, with the help of DVFS, if necessary. We present

SLICER, a first-of-its-kind framework capable of predicting

the MTTF of a CFR multi-core. SLICER allows the evaluation

of different scheduling policies in the context of expected

MTTF for CFR multi-cores. It also allows the user to de-

fine their own underlying hardware-software descriptions and

reliability model beyond the ones provided by default. We

demonstrate the capabilities of SLICER with the help of

different scenarios and case studies. We plan to extend the

framework to incorporate other features, such as the capabil-

ity to simulate approximate computing and reliability-aware

scheduling approaches that can further enhance the lifetime

of systems with CFR multi-core processors.
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