
  

  

Abstract—The design of today’s embedded systems involves 
a complex Design Space Exploration (DSE) process. Typically, 
multiple and conflicting criteria (objectives) should be 
optimized simultaneously such as performance, power, cost, 
etc. Usually, Multi-Objective Evolutionary Algorithms 
(MOEAs) are used to explore a large design space with a finite 
number of design point evaluations, providing the designer a 
set of tradable solutions with respect to the design criteria.  

Analyzing how such evolutionary algorithms searched the 
design space, understanding the characteristics of the optimum 
design points, the effect of design parameters on each objective 
and the relationships between different criteria is of invaluable 
importance to the designer. To this end, this paper proposes a 
novel interactive visualization tool, VMODEX (Visualization of 
Multi-Objective Design spacE eXploration), to realize the 
search dynamics of a MOEA and to visualize where the 
optimum design points are located in the design space and what 
objective values they have. In our tool, we provide several 
interactive capabilities, which enable designers to look at the 
exploration data from different perspectives and provide better 
analysis of the search results. 

Keywords—Design space exploration, embedded systems, 
multi-objective evolutionary algorithms, visualization 

I. INTRODUCTION 
The complexity of modern embedded systems has led to 

the emergence of system-level design. A key issue of 
system-level design is the notion of high-level modeling and 
simulation in which the models allow for capturing the 
behavior of system components and their interactions at a 
high level of abstraction. As these high-level models 
minimize the modeling effort and are optimized for 
execution speed, they can be applied at the very early design 
stages to perform, for example, architectural Design Space 
Exploration (DSE). Such early design space exploration is of 
eminent importance as early design choices heavily 
influence the success or failure of the final product. 

System-level simulation frameworks that are deployed for 
DSE of embedded systems that are based on heterogeneous 
Multi-Processor System-on-Chip (MPSoC) architectures, 
usually use independent application and architecture models. 
The application model describes the functional behavior of 
the system expressed as processes (computations) and 
channels (communications). The architecture model 
represents the hardware components in the system, such as 
processors, reconfigurable modules, memories, etc. Then, 
different mappings of processes and communication 
channels to the various architectural components are 

evaluated by simulation to find the optimum mapping 
solutions. Each mapping decision taken in this step 
corresponds to a single point in the design space. 

Generally, for designing complex embedded systems, 
multiple conflicting criteria need to be considered 
simultaneously such as performance, power, cost, etc. 
Therefore, there exist no single optimum solution, which 
simultaneously optimizes all objectives. Instead, a set of 
optimal solutions, denoted as the Pareto optimal set or non-
dominated set, has to be found. This is the set of those 
solutions for which one objective cannot be improved 
further without causing a simultaneous degradation in at 
least one other objective. These optimal solutions provide 
the designer trade-offs between the design objectives. 

In order to find a Pareto optimal set, the designer should 
ideally evaluate and compare every single point in the design 
space. However, such an exhaustive search quickly becomes 
infeasible, as the design space grows exponentially with the 
size of the application(s) and the number of possible 
architecture components. 

In general, to trim down an exponential design space into 
a finite set of points, which are more interesting (or superior) 
with respect to design criteria, design space pruning can be 
used. In [1], e.g., the mapping decision problem is 
formulated as a multi-objective optimization problem in 
which three criteria are considered: the processing time, 
energy consumption and cost of the architecture. To solve 
this problem, a Multi-Objective Evolutionary Algorithm 
(MOEA) has been used to achieve a set of optimal 
alternative mapping decisions under the aforementioned 
criteria. MOEAs evaluate a population of design points 
(solutions) over several iterations, called generations. With 
the help of genetic operators, a MOEA progresses iteratively 
towards the best possible solutions. 

As the searched design space still is vast, interpreting all 
evaluation data and understanding how the MOEA searches 
through or prunes the design space is cumbersome. Such 
analysis is, however, essential to the designer as it provides 
insight into the “landscape” of the design space (e.g., 
indicating which design parameters are more important than 
others). 

To address these problems, we develop a novel interactive 
visualization tool, VMODEX, to understand how an 
evolutionary algorithm, such as presented in [1], searches 
the design space, where the optimum design points are 
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located, how design parameters influence each objective and 
which clarifies the relationship among multiple objectives. 
In this respect, we visualize the design space as a tree in 
which both design parameters and objectives are shown in a 
single view.  

The rest of the paper is organized as follows. Section II 
describes related work. Section III introduces techniques we 
have provided for visualizing multi-objective design space 
exploration. Section IV presents a case study with a Motion-
JPEG encoder application to illustrate the benefits of using 
visualization in the design space exploration process. 
Finally, section V concludes the paper. 

II. RELATED WORK 
In the field of computer architecture simulation, and 

especially in the area of system-level design space 
exploration, little research has been undertaken on 
visualization of simulation results in exploring alternative 
architectural solutions. Most of the visualization work in this 
area focuses on educational purposes (e.g., [2], [3]), or only 
provides some basic support for the visualization of 
simulation results in the form of 2D / 3D graphs. 

The work presented in [4] provides advanced and generic 
visualization support, but tries to do so for a wide range of 
computer system related information which may not 
necessarily be applicable to computer architecture 
simulations and in particular to design space exploration, 
with its own domain-specific requirements. 

In [5], an interactive visual tool is presented to visualize 
the results from system-level DSE experiments. The 

simulation results are visualized using a coordinated, 
multiple-view approach, which enables users to understand 
the information through different perspectives. But this tool 
does not provide any insight in the searching process as 
performed by e.g. a MOEA. For example, there is no way to 
find out which parts of the design space are not searched at 
all. 

There are only a few research efforts addressing the 
visualization of MOEAs. Most visualization approaches 
simply use standard visual representations such as bar charts, 
line graphs, scatter plots, etc. [6] or they use 2D or 3D plots 
in which either variables or objectives are shown. Although 
such diagrams are useful to understand the overall properties 
of the explored solutions, they are limited to the three 
dimensions and do not provide detailed analysis of the 
search results. However, VMODEX enables designers to 
easily visualize more than three dimension problems as well 
as to see both the design parameters and objectives in a 
single view. Furthermore, it provides insight into the 
“landscape” of the multi-objective optimization process. 

This paper proposes an extension to our previous work 
[7], in which we add some more features in VMODEX that 
enable designer to analyze the data and explore the search 
result from different perspectives in order to find the hidden 
important properties. Several filtering capabilities based on 
various criteria are provided, which help designers to define 
their preferences (from several point of views) and focus on 
only the design points that satisfy the preference conditions 
and find out the similarities between them. Furthermore, for 
each design point, an extra property (rather than the 
objective values and design parameters) is considered that is 
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the generation numbers in which a solution is evaluated. 
Based on this property, different approaches are provided to 
explore the data from this aspect, such as visualizing the 
generation numbers, edge visualization based on the 
generation numbers, filtering, etc. Moreover, a more detailed 
case study is presented in which we analyze the exploration 
results from different perspectives and at multiple levels of 
abstraction. This case study shows how VMODEX provides 
designers a very powerful and rapid analysis of DSE data. 

III. MULTI-OBJECTIVE VISUALIZATION 

A. Modeling the Design Space as a Tree 
As it is conceptually shown in Fig. 1, we model the design 

space as a tree. The tree has three sections: the parameters 
section, cost section and design points section. 

Parameters section: In this section, each level shows one 
parameter of the design space, such as the number of 
processors in the MPSoC platform. So, the number of levels 
in this section is equal to the total number of parameters in 
the design space. For example, in the tree illustrated in Fig. 1 
the design space has four parameters: number of processors, 
processor type, number of memories and memory type. In 
this example, the platform architecture consists of two 
Application Specific Instruction Processor (ASIPs), two 
microprocessors (mPs), one Static RAM (SRAM) and one 
Dynamic RAM (DRAM). 

By modeling the design space as a tree, there is no limitation 
on the number of design variables as each parameter is located 
at one level of the tree. Therefore, we can easily visualize 
multivariate data. 

Design points section: This section includes the design 
points searched by the MOEA. Here, a design point is 
defined as a specific instance of the architecture platform as 
well as a task and communication mapping. Each point is 
shown as a node, which is a child of its corresponding 
architecture. Design points are distributed in three levels: 
main Pareto, local Pareto and non-Pareto. 

The main Pareto level shows the global Pareto points 
found by the MOEA. The solutions at this level are better 
than all other solutions in the entire design space but they are 
non-dominated by each other. On the other hand, each point 
that is not part of the main Pareto set is dominated by at least 
one main Pareto point.  

At the local Pareto level, the local Pareto points are 
shown. A design point is called a local Pareto point if within 
the design points with the same architecture (but with 
different mappings), there is no point dominating that one. 
However, in the entire design space, a design point might 
exist which dominates the local Pareto point. It is clear that 
all the main Pareto points are local Pareto points as well. 
However, not all the local Pareto points are main Pareto 
points and therefore we use a relation node at the main 
Pareto level to make a connection between them and the 
previous level. These nodes are labeled with “R” in Fig. 1. 

 

All the other design points are placed at the non-Pareto 
level. Each one becomes a child of a local Pareto point that 
dominates it. If a design point is dominated by more than 
one local Pareto point, we calculate the Euclidean distance 
(in the objective space) between the dominated point and 
each dominating local Pareto point and the design point 
becomes the child of the local Pareto point with the smallest 
distance. A smaller distance means that the points are more 
similar according to the objectives. 

For easier interpretation and better analysis of the design 
points, the children of a local Pareto point are categorized 
into three groups according to their Euclidian distance from 
their parent. The solutions, which are equivalent to the local 
Pareto point with respect to all objectives, are put under the 
“zero” distance node. If the distance between a solution and 
its corresponding local Pareto point is more than a certain 
threshold (determined by the designer), it becomes a child of 
a “High” distance node, otherwise it becomes a child of a 
“Low” distance node. 

B. Showing Objectives in the Tree 
In this paper, we consider three objectives: processing 

time, energy consumption (i.e., power consumption times 
processing time) and architecture cost. The cost of each 
design point is dependent on the architectural components 
forming it. So, all solutions with the same architecture have 
the same cost. After the parameters section, the architecture 
cost can be computed since all components are known. 
Therefore, we add an extra section (see Fig. 1) between the 
parameters and design points sections, which is called the 
cost section and shows the costs of the different 
architectures. Since the cost is an objective and not a design 
parameter, we represent it with a different shape; a circle. 
For a better view, the size of the circle becomes bigger as the 
cost increases.  

The other two objectives are dependent on the mapping 
and are therefore shown in a design point node. The size and 
color of the third dimension of a design point node shows 
the energy consumption. As the energy consumption 
increases, the size of the third dimension becomes bigger 
and its color becomes darker. The color of the node itself 
represents the processing time. Colors are varied from 
yellow to red with all color grades in between. Nodes with 
the lowest processing time are yellow and nodes with the 
highest processing time are red. The color legends for 
processing time and energy consumption are shown in Fig. 2. 

VMODEX can easily be extended to show more than 
three objectives. Each node has some attributes like shape, 
orientation, size, color, transparency, texture, border, etc. 
Each attribute can be assigned to one objective. In this 
paper, only color and size are used to show objectives. 

Parameter nodes, however, do not represent single design 
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points and therefore do not have the direct notion of 
processing time or energy consumption. For this reason, 
there are some options to color the parameter nodes: based 
on the average, minimum, or maximum of either processing 
time or energy consumption of the design points in their sub 
trees. The color of parameter nodes that have no data node 
(i.e., do not have any DSE data) is white. In Fig. 1, the 
minimum processing time is chosen for coloring parameter 
nodes. 

C. Showing Generation Numbers 
In some cases, the designer wants to know what 

interesting design points are evaluated in which search 
generations. Therefore, we have developed a method in 
VMODEX that allows the designer to easily find out this 
kind of information. During the process of design space 
exploration using an MOEA, some design points that are 
near to the optimal solutions may be regenerated in different 
generations. In the DSE tree, for each design point, the 
number of the last generation in which it was generated is 
written inside a hexagon that is drawn at the upper left 
corner of the node (see Fig. 1). However, the designer is able 
to select a specific design point and see all the generation 
numbers in which the design point was evaluated. Fig. 3 
shows the visualization approach for showing the generation 
numbers. For each generation, a hexagon is drawn. The size 
of the hexagons increases from the first to the last 
generations. To save space, these pentagons are nested 
together. If within a generation the selected design point is 
found, then the color of the pentagon representing that 
generation is red. Otherwise, a gray pentagon is drawn. Fig. 
3(a) shows the situation that the corresponding design point 
is close to the optimum. Since it is regenerated in many 
search generations during the entire search. But in Fig. 3(b) 
the corresponding design point is generated in only two 
generations. This indicates that the design point is far from 
the optimal solutions and after a few generations it is not 
regenerated any more. 

D. Edge Visualization 
Edge visualization helps designers to navigate through the 

DSE tree and easily find more important parts. One feature 
of the design points is chosen as an importance factor and 
then the tree edges are visualized according to that factor, as 
follows: 

• A minimum and maximum edge width is defined, and 
this range is linearly mapped against the range of 

importance factor values. Wider edges lead toward 
more important subtrees. The effect is a bit like a 
network of roads, in which the more important roads 
are wider. 

• A specific color with various saturations is chosen. 
Similar to the line width, a linear mapping is done 
between the maximum and minimum saturation and the 
importance factor values range. Darker edges represent 
more important parts and lighter edges show less 
important subtrees. 

In VMODEX, two importance factors are defined:  
minimum Euclidian distance and last generation number. In 
the following subsections we explain these factors. 

1) Minimum Euclidian Distance 
For each design point, the Euclidian distance (in the 

objective space) between that solution and the nearest main 
Pareto optimal point is calculated. A smaller distance 
indicates that the solution is closer to the optimal solutions 
and therefore is better. Thus, in the DSE tree, the edges in 
the path from the root to the main Pareto points are the 
thickest and darkest since the distance is zero (see Fig. 1). In 
this manner, just by looking at the DSE tree, the designer 
can easily determines which parts of the design space, 
contain optimal solutions and which parts contain poor 
solutions.   

2) Last Generation Number 
The number of the last generation in which a design point 

is evaluated can be considered as an importance factor. As 
the MOEA gradually converges to a set of Pareto optimal 
points, we expect better design points in the later 
generations. The edge visualization can show this progress. 
The edges with a higher generation number in their subtrees 
are thicker and darker. As a result, the paths from the root to 
the last generated data nodes are the darkest and thickest 
paths. As the importance factors are not applicable for edges 
that have no data node in their sub tree, these edges are 
shown by gray dashed lines. 

E. Filtering 
The filtering option in VMODEX allows designers to 

easily view only preferred design points. Therefore, they can 
focus on the more interesting design points. Four kinds of 
filtering are available based on the: 1) objective values,       
2) design parameters, 3) distance from the main Pareto set 
and 4) generation numbers. The combinations of different 
filtering approaches are also provided. 

1) Filtering Based on the Objective Values 
In some cases, the designer wants to consider only design 

points with some specific objective values. The value of 
each objective is controlled by a range slider bar, in which 
the designer can set upper and lower limits on that objective. 
Design points with objective values inside the selected 
ranges are visible and the others become invisible. 
Therefore, the designer has the ability to easily view only 
design points with preferred objective values. There is an 
option to view all design points that fall within the filtering 
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conditions or to only show local Pareto points or only main 
Pareto points. In Section IV, we explain two examples of 
this filtering, which are applied on our case study results.  

2) Filtering Based on the Design Parameters 
VMODEX allows designers to hide the parts of the design 

space, which are not being considered for further analysis, in 
order to make the tree smaller and pay more attention to the 
more interesting parts. For instance, the designer may wants 
to consider only the parts of the design space, which contain 
evaluated data. By using this filtering option, those subtrees 
in the DSE tree which are not visited by the searching 
algorithm, and therefore do not contain evaluated design 
points become invisible. This way, the designer can focus on 
the sub trees which are more important and can also easily 
see which parts of the tree are searched by the MOEA. 
Another example is the case in which the designer is not 
interested in design points with certain parameter values, 
like e.g. design points with more than four processors. Then 
it is possible to hide the subtrees in the DSE tree, which 
contain more than four processors. By hiding a subtree, a 
blue triangle is drawn at the bottom of its root node 
specifying that the children of the node are invisible. The 
size of the triangle represents the size of the sub tree. The 
bigger the triangle means the more nodes in the sub tree. 

3) Filtering Based on the Distance from the Main    
     Pareto Set 

In the Multi-objective context, the goodness of a design 
point can be evaluated by the minimum Euclidian distance 
(in the objective space) from the Pareto optimal solutions. 
This distance measure can be useful for filtering design 
points to see only those solutions which have a distance 
from the Pareto optimal set that is less than a certain 
threshold. Thus, the designer can focus on only the design 
points, which are not far away from the Pareto optimal set. 
Hence, in VMODEX, we provide a filtering option based on 
this distance measure. The designer is able to define a 
threshold and then filters the design points to see only 
solutions, which are good enough according to their 
distance. Furthermore, as in VMODEX both the design 
parameters and objectives are shown in a single view, the 
designer can easily understand which parts of the design 
space contains solutions that are close to the main Pareto set. 

4) Filtering Based on the Generation Numbers 
Sometimes, the designer needs to consider only the design 

points generated in some specific generation(s). For 
example, showing only design points generated in the three 
last generations or comparing design points in the three first 
generations with the three last generations, and so on. 
Therefore, we provide a filter option based on the generation 
numbers. The user can simply add (or remove) generation 
numbers to the list of generation numbers. Only design 
points with their generation numbers in the list are visible 
and the others become invisible. The parameter nodes with 
at least one child in the generation list are still visible. 

IV. CASE STUDY 
In this section, we present a case study with a real 

application to demonstrate the benefits of using visualization 
in the design space exploration process. In this case study, 
we map a Motion-JPEG (M-JPEG) encoder to an MP-SoC 
platform architecture consisting of a general-purpose 
microprocessor (mP), two Application Specific Instruction 
Processor (ASIPs), two Application Specific Integrated 
Circuits (ASICs), one SRAM and two DRAMs. 

Using a multi-objective evolutionary optimizer [1], we 
intend to find a set of optimal design points (in terms of 
alternative architectural solutions and mappings) under three 
criteria: processing time, energy consumption and 
architecture cost. For this study, we run the MOEA for 100 
generations with 50 individuals per population. Therefore, 
5000 design points are searched by MOEA. 

VMODEX allows designers to look at the evaluated data 
from different perspectives and analyze the search results at 
multiple levels of abstraction. In the following subsections, 
we analyze the M-JPEG case study with respect to the 
following issues: 1) General information about the searched 
design space, 2) The characteristics of the main Pareto 
optimal points, 3) Comparing local Pareto sets of different 
architectures, 4) Investigating the effect of different 
mappings for a certain architecture on the objectives, and 5) 
Filtering design points by their objective values. 

A. General Information about the Searched Design Space 
Fig. 4 shows a snapshot of the visualization of the M-

JPEG case study. In this figure the parameter nodes that 
have no evaluated data are omitted and the minimum 
processing time is used for coloring the parameter nodes. 
Just by looking at the depicted tree, the designer can 
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immediately understand some general information about the 
design space searched by the MOEA. For example, it is 
obvious that there is no design point evaluated for single 
processor and five-processor architecture platforms since 
these parameter nodes are omitted from the DSE tree. 
Moreover, we can see that with two processors platforms, 
the MOEA cannot find a design point with a good 
processing time. This because the color of these parameter 
nodes are red which indicates that the minimum processing 
time of the design points in their subtrees is quite high. From 
the picture, it is also clear that most of the design points being 
searched by the MOEA contain two memories; one DRAM and 
one SRAM because all the biggest blue triangles have this 
memory configuration. Moreover, all design points with the 
minimum processing time include at least two ASIPs and one 
mP (node color is yellow) 

B. The Characteristics of the Main Pareto Points 
Fig. 5 shows the main Pareto points found by the MOEA. By 

looking at the picture, the designer can immediately recognize 
the characteristics of the main Pareto points, which are the best 
design points with respect to the design criteria. For example, in 
our case study, there is no main Pareto point with four 
processors. That means that with less processors (which is 
cheaper) the designer can get the same or better processing time 
and energy consumption. Therefore, using four processors is 
not appropriate for this application. Another interesting feature 
is that all the main Pareto points have at least one DRAM 
memory. A few of them have one SRAM besides the DRAM. 
Thus, using three memories or two DRAMs is not an 
appropriate solution in this case study. It can also be seen that 
all the main Pareto points with the lowest energy consumption 
have one ASIC, one ASIP and one mP in their underlying 
architectures (subtree indicated by “A”). So, by using 
VMODEX, the designer can easily find out which combinations 
of architectural components yield optimum design points. 

C. Comparing Local Pareto sets  
In VMODEX, the design space is modeled as a tree and 

this kind of modeling causes the design space to be divided 
in several subspaces. Each subspace represents a unique 

instance of the architecture platform. On the other hand, 
solutions inside a subspace have exactly the same 
architecture components but the way that the application is 
mapped onto those components is different. In each 
subspace, the Pareto optimal solutions found by a MOEA 
are called local Pareto optimal solutions. These solutions 
may or may not be main Pareto optimal. In the DSE tree, the 
local Pareto optimal solutions are located at a particular 
level, which is called the local Pareto level. Solutions at this 
level, which have the same parent at the cost level (and thus 
at the higher levels) are in the same subspace and therefore 
are members of the same local Pareto set. Fig. 6 shows an 
example of three local Pareto optimal sets (Q1, Q2, Q3). 

VMODEX enables designers to evaluate and compare 
different local Pareto optimal sets in different subspaces of 
the design space, and therefore, understand which parts of 
the design space contain solutions with a higher quality. For 
measuring the quality of a local Pareto optimal set, two 
distinct aspects should be considered: 

1. Closeness to the main Pareto optimal set 
2. Diversity in the objective values 

The first aspect is essential in any optimization. Local 
Pareto optimal solutions that are not close to the main Pareto 
optimal set are not desirable. Closeness can be measured by 
two ways: 1) the number of solutions in a local Pareto 
optimal set which are also in the main Pareto optimal set and 
2) the Euclidian distances (in the objective space) between 
the solutions in a local Pareto optimal set and the nearest 
member of the main Pareto set. 

The second aspect (i.e. diversity) is also important. Since 
only a diverse set of solutions provides the designer 
flexibility in choosing the level of trade-offs between 
objectives. In the DSE tree, all the solutions in a local Pareto 
optimal set have the same architectural components and 
therefore they have the same architecture cost. Thus, the 
diversity can only be considered for the other two objectives: 
processing time and energy consumption.  

Using VMODEX, both aspects of the quality of the local 
Pareto optimal sets can easily be evaluated. In terms of the 

 Fig. 5. Main Pareto points 
 



  

closeness, the color and thickness of edges show the distance 
from the nearest main Pareto optimal solutions. The edges in 
the path from the root to the main Pareto optimal solutions 
are the thickest and darkest since the distance is zero. As the 
distance increases the edges become thinner and lighter. 
Furthermore, it is easy to recognize those solutions of a local 
Pareto optimal set that are in the main Pareto set as well. In 
that case, their parents (in the tree) are main Pareto points. 
Otherwise they become children of a relation node. 

In terms of the diversity, the variety of the nodes’ colors 
represents the diversity in the processing time and the 
variety in the size and color of the third dimensions of nodes 
shows the diversity in the energy consumption. 

In Fig. 6, the solutions in set Q1 have a fairly high 
diversity in the processing time. Since the nodes’ colors are 
varied from yellow to red. However, the diversity in energy 
consumption is quite low. All the design points have almost 
the same energy consumption. That means that for this 

specific architecture, depending on the mapping, we may get 
a good or a poor processing time. However, the energy 
consumption of the design points in this part of the design 
space is quite high. Therefore, this architecture is not 
appropriate for obtaining a low energy consumption. 
Regarding the closeness, none of the solutions in this set is 
member of the main Pareto set (their parent is a relation 
node) and also their distances from the main Pareto set is 
large (their edges are thin and light). 

In the local Pareto optimal set Q3, the diversity in energy 
consumption is fairly good but the diversity in the 
processing time is limited. With this specific architecture no 
main Pareto point can be found but its local Pareto optimal 
solutions are close to the main Pareto optimal set. The color 
and thickness of edges represent this feature. 

In the set Q2, the diversity in both processing time and 
energy consumption is poor. However, the solutions have 
relatively good processing time and energy consumption. 

 
Fig. 6. Comparing local Pareto optimal sets 
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Furthermore, all of the solutions in this set are in the main 
Pareto set as well. 

D. Investigating the effect of different mappings for a 
certain architecture on the objectives 

Using our visualization tool, the designer can easily 
explore the influence of different mappings on the design 
criteria. Here we consider three architecture instances and 
study how the objective values change with modifying the 
mapping decisions. Since all the design points with the same 
architecture have the same cost, we examine the effect of 
mappings on the processing time and energy consumption. 

First consider the architecture platform consisting of two 
ASIPs, one DRAM and one SRAM. The evaluated design 
points for this architecture are shown in Fig. 7. As can be 
seen in this figure, for all design points, both the processing 
time and the energy consumption are extremely poor. Even 
with different mappings, we cannot get a good design point 

with this specific architecture. Therefore, this architecture is 
not a suitable solution for our case study. 

Fig. 8 shows the discovered solutions for the architecture 
that contains one ASIC, two ASIPS, one DRAM and one 
SRAM. Depending on the mapping, you may get a relatively 
good (e.g. the design point indicated by A) or a very poor 
(e.g. the design point indicated by B) processing time. 
However, the energy consumption of these design points is 
quite high. Therefore, this architecture is not appropriate for 
obtaining low energy but if the designer is interested in 
performance, he should take care about the mapping because 
a wrong mapping decision can make the difference between 
the best or the worst processing time. 

In Fig. 9, all design points have two ASICs, one ASIP, 
one mP, two DRAMs and one SRAM in their underlying 
architecture. From this figure, we can see that all solutions 
have relatively good processing time and energy 

 
Fig. 9. All design points are relatively good  
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consumption. Therefore, for this particular architecture, with 
different mappings we can get approximately good design 
points. So, if the designer is looking for a system that can 
flexibly deal with different mappings, this architecture may 
be a good solution.  

E. Filtering Design Points by their Objective Values 
The filtering option in VMODEX allows designers to 

easily view only preferred design points. In this case study, 
we apply three filtering scenarios to see the characteristics of 
design points with some specific objective values and to 
consider the properties of design points in some particular 
parts of the design space.  

In the first scenario, we are investigating the properties of 

local Pareto points, which do not have a microProcessor 
(mP) in their underlying architecture. Fig. 10 shows the parts 
of the design space that do not contain a microprocessor. As 
can be seen in this figure, for all points, both the processing 
time and energy consumption is poor. Therefore, the fast but 
expensive microprocessor has essential effect on getting a 
good processing time and energy consumption.  

In the second scenario, we are interested in those design 
points, which have the best processing time. Fig. 11 shows 
these solutions. From this figure, we can see that all of them 
are fairly expensive. Their cost is higher than 200, while the 
average cost is 160. Furthermore, none of them have good 
energy consumption. This is because for all design points, 
the size of the third dimension is big and its color is dark. 

 

 

Fig. 10. Local Pareto points without mP in their underlying architecture  

Fig. 11. Filtering by the best processing time 
 



  

Moreover, as in VMODEX both the design parameters and 
objectives are shown in a single view, we can easily find out 
which combinations of architectural components yield 
design points with objective values inside the interested 
ranges. As can be seen in Fig. 11, only with four architecture 
instances we can get design points with the best processing 
time. 

In the third scenario, we are looking for design points with 
the best energy consumption. The result of this filtering is 
shown in Fig. 12. As can be seen in this figure, the costs of 
the solutions are varied from 130 to 230. That means that 
with a cheap architecture, the designer can get the same 
energy consumption as with an expensive one. In addition, 
we can see that they are scattered almost in the entire design 
space. Moreover, all of them have relatively good processing 
time.  

V. CONCLUSION 
In this paper, we presented a visualization tool, 

VMODEX, which helps designers to understand how an 
MOEA explores the design space during its iterations and 
converges towards the optimal design points. It also enables 
very powerful and rapid analysis of DSE data such as: where 
the optimum design points are located in the design space 
and what objective values they have, how design parameters 
influence each objective and the correlations among multiple 
objectives. 

VMODEX models the design space as a tree in which 
both the design parameters and objectives can be seen in a 
single view. Furthermore, there is no limitation on the 
number of neither parameters nor objectives. In our tool, we 
provide several interactive capabilities, which allow 
designers to play with data and find out some interesting and 
important features that may not be found just by looking at 
the raw data or by using the tradition 2D/3D graphs. 
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