
PELSI: Power-Efficient Layer-Switched Inference
Ehsan Aghapour, Dolly Sapra, Andy D. Pimentel, and Anuj Pathania

University of Amsterdam
e.aghapour@uva.nl, d.sapra@uva.nl, a.d.pimentel@uva.nl, a.pathania@uva.nl

Abstract—Convolutional Neural Networks (CNNs) are now
quintessential kernels within embedded computer vision applications
deployed in edge devices. Heterogeneous Multi-Processor System-
on-Chips (HMPSoCs) with Dynamic Voltage and Frequency Scal-
ing (DVFS) capable components (CPUs and GPUs) allow for low-
latency, low-power CNN inference on resource-constrained edge
devices when employed efficiently.

CNNs comprise several heterogeneous layer types that execute
with different degrees of power efficiency on different HMPSoC
components at different frequencies. We propose the first framework,
PELSI, that exploits this layer-wise power efficiency heterogeneity
for power-efficient CPU-GPU layer-switched CNN interference on
HMPSoCs. PELSI executes each layer of a CNN on an HMPSoC
component (CPU or GPU) clocked at just the right frequency for
every layer such that the CNN meets its inference latency target with
minimal power consumption while still accounting for the power-
performance overhead of multiple switching between CPU and GPU
mid-inference. PELSI incorporates a Genetic Algorithm (GA) to
identify the near-optimal CPU-GPU layer-switched CNN inference
configuration from within the large exponential design space that
meets the given latency requirement most power efficiently.

We evaluate PELSI on Rock-Pi embedded platform. The platform
contains an RK3399Pro HMPSoC with DVFS-capable CPU clusters
and GPU. Empirical evaluations with five different CNNs show a
44.48% improvement in power efficiency for CNN inference under
PELSI over the state-of-the-art.

Index Terms—Low-Power Design, Edge Computing, Embedded
Machine Learning (ML), On-Chip Artificial Intelligence (AI).

I. INTRODUCTION

Computer vision tasks are now integral in many high-
performance embedded applications across domains such as
autonomous driving [10], intelligent robotics [6], image clas-
sification [9], and object detection [11]. Convolutional Neural
Network (CNN) kernels processing (inference) image streams
to extract recognizable features accurately are used extensively
for computer vision tasks in embedded platforms. CNNs are
increasingly inferencing higher resolution image streams stream-
ing at ever-increasing frame rates. Nevertheless, privacy and
performance constraints mandate the inference on the embedded
platforms themselves. Embedded platforms, however, are more
severely constrained in terms of their power consumption than
their non-embedded counterparts. Therefore, the success of em-
bedded computer vision applications hinges on the platforms to
provide low-power, low-latency CNN inference.

Heterogeneous Multi-Processor Systems on Chips (HMPSoCs)
nowadays power most high-end embedded platforms. Figure 1
illustrates the modern RK3399Pro HMPSoC within the Rock-
Pi N10 embedded platform. It comprises two multi-core CPU
clusters – Little and big, and an embedded multi-core GPU.
Dynamic Voltage and Frequency Scaling (DVFS) technology
allows the HMPSoC components (CPU clusters and GPU) to run
independently at different frequencies [15], [16]. Furthermore,
all the HMPSoC components are capable of performing CNN
inference [21]. Therefore, DVFS allows a trade-off between

6 DVFS Levels

A53 Core A53 Core

A53 Core A53 Core

L2 Cache

8 DVFS Levels

A72 Core A72 Core

L2 Cache

5 DVFS Levels

Core Core

L2 Cache

CCI Bus

DRAM

big CPULittle CPU Mali-T860 MP4 GPU

Fig. 1: An abstract block diagram of RK3399Pro HMPSoC in
RockPi N10 embedded platform.

100 300 500 700 900 1,100 1,300 1,500 1,700 1,900
2

4

6

HMPSoC Component Frequency [MHz]

Po
w

er
E

ffi
ci

en
cy

[F
PS

/W
at

t]
Little Big GPU

(a) Compute-Intensive Convolution Layer

100 300 500 700 900 1,100 1,300 1,500 1,700 1,900

8

10

12

14

HMPSoC Component Frequency [MHz]

Po
w

er
E

ffi
ci

en
cy

[F
PS

/W
at

t]

Little Big GPU

(b) Memory-Intensive Fully-Connected Layer

Fig. 2: Power efficiency of different CNN layers (from AlexNet)
in different HMPSoC components at different frequencies.

inference performance and inference power on all HMPSoC
components. The power efficiency of a CNN layer depends upon
the interaction between the memory-compute characteristics of
the layer and the underlying HMPSoC component. Consequently,
there is a wide power-efficiency spectrum wherein one can
perform a CNN inference on HMPSoCs, as shown in Figure 2.
Figures 2(a) and 2(b) show changes in power efficiency with fre-
quency change on different HMPSoC components for a compute-
intensive convolution layer and memory-intensive fully-connected
layer, respectively.

GPU big CPU Little CPUbig CPU
In

pu
t

La
ye

r1

La
ye

r2

La
ye

r3

f1
b f2

b f3
b

Data

La
ye

r4

f4
g

Data

La
ye

r5

f5
b

Data

La
ye

r6

La
ye

r7

La
ye

r8

f6
l f7

l f8
l

O
ut

pu
t

Target CNN Inference Latency

Fig. 3: An abstraction depicting power-efficient CPU-GPU layer-
switched CNN inference employed within PELSI framework.

TABLE I: The size of design space for power-efficient CPU-
GPU layer-switched inference for different CNNs with different
numbers of partitionable layers on RK3399Pro HMPSoC.

CNN Partitionable Layers Number of Design Points
AlexNet 8 1.7e+10

GoogleNet 11 1.2e+14
MobileNet 14 8.0e+17
ResNet50 18 1.0e+23

SqueezeNet 10 6.1e+12

The power-efficiency spectrum widens further with the possi-
bility of performing CPU-GPU layer-switched inference on HMP-
SoCs. We [1] were the first to show that heterogeneous layers
within a CNN exhibit performance heterogeneity on embedded
CPUs and GPUs. We show some layers execute faster on the em-
bedded CPU while others execute faster on the embedded GPU.
Based on this observation, we proposed a framework to switch
between CPU and GPU mid-inference based on the executing
layer for maximizing the performance of CNN inference. We
showed that even after accounting for the overhead of switching
between CPU and GPU back-and-forth, the observed latency of
CNN inference was lower than executing purely on either of the
HMPSoC components. However, we do not explore DVFS with
layer-switched inference and run their CPU and GPU only at their
maximum frequencies for the highest inference performance. But
execution only at the highest frequency results in a high-power
inference. Combining CPU-GPU DVFS with CPU-GPU layer-
switched inference allows for a fine-grained trade-off between
the CNN inference performance and power consumption under a
given latency constraint. Note, the layer-switched inference design
is distinct from pipelined CNN inference design [20].

We introduce a novel framework, PELSI, that explores the
idea of power-efficient CPU-GPU layer-switched inference, as
shown in Figure 3. CNN inference under PELSI switches between
HMPSoC components mid-inference depending upon the CNN
layer under execution. PELSI simultaneously sets the layer-wise
frequency of the HMPSoC component to the level that allows the
CNN to achieve its target latency most power efficiently. PELSI
operates within a large exponential design space. HMPSoC with
FB , FL, and FG DVFS frequency levels for its big CPU, Little
CPU, and GPU projects a design space of size (FL+Fb+FG)

N

for a CNN with N partitionable layers. Table I shows the design
space size for different CNNs on a RK3399Pro HMPSoC. It
is computationally infeasible to exhaustively search this design
space for an optimal solution. Therefore, PELSI includes a
Genetic Algorithm (GA) to identify a near-optimal solution for
power-efficient CPU-GPU layer-switched inference under latency
constraints.

Littl
e big GPU

Littl
e-L

W

big
-LW

GPU-LW
PELSI

1.4

1.6

1.8

Po
w

er
E

ffi
ci

en
cy

[F
PS

/W
at

t]

Fig. 4: Power efficiency of MobileNet running on Little CPU, big
CPU, and GPU with fixed DVFS (Little, big, and GPU), layer-
wise DVFS (Little-LW, big-LW, and GPU-LW), and the proposed
PELSI framework under a given latency constraint of 200 ms

.

Motivational Example: We perform a CNN inference with
MobileNet with a target latency of 200 ms as a motivational
example. Figure 4 shows the power efficiency of CNN infer-
ence that meets the target latency with different executions.
The CNN inference attains a power efficiency of 1.49 FPS/Watt,
1.33 FPS/Watt, and 1.29 FPS/Watt while executing at the lowest
possible fixed frequency that meets the target latency using only
Little CPU, Big CPU, and GPU, respectively.

We now allow layer-wise DVFS for single-component CNN
inference and use a configuration that meets the target latency.
However, we run different CNN layers at different frequen-
cies to maximize the inference’s power efficiency on a single
HMPSoC component. Figure 4 shows that the CNN inference
attains a power efficiency of 1.79 FPS/Watt, 1.62 FPS/Watt, and
1.37 FPS/Watt when executing layer-wise DVFS that meets the
target latency while using Little CPU, big CPU, and GPU, respec-
tively. Using layer-wise DVFS increases the power efficiency of
inference by 20.00%, 21.89%, and 6.27% against fixed-frequency
inference on Little CPU, big CPU, and GPU, respectively.

Finally, in our motivational example, we allow layer-wise
DVFS alongside switching between HMPSoC components mid-
inference as proposed with PELSI. Figure 4 shows that CNN
inference under PELSI attains a power efficiency of 1.89 FPS/Watt
for the same target latency. PELSI increases the power efficiency
of CNN inference by 6.26%, 17.43%, and 38.42% against single-
component layer-wise DVFS CNN inference on Little CPU, big
CPU, and GPU, respectively. Therefore, our motivational example
motivates using layer-wise DVFS synergistically with HMPSoC
component-switching for extracting maximum power efficiency
for a latency-constrained CNN inference.

Our Novel Contributions: We make the following novel
contributions in the context of this work.

• We propose a framework, PELSI, that explores the idea of
power-efficient CPU-GPU layer-switched CNN inference.

• We propose a GA within PELSI to identify a near-optimal
configuration for power-efficient CPU-GPU layer-switched
CNN inference under latency constraints.

• We implement the proposed PELSI framework within the
ARM Compute Library (ARM-CL) and evaluate it using
RK3399Pro HMPSoC.

Open Source Contribution: PELSI is publicly available for
download at https://github.com/Ehsan-aghapour/ARMCL-pipe-all
(”CPU-GPU-LW” branch).

TABLE II: The available DVFS levels of the Little CPU, big CPU,
and GPU on RK3399Pro HMPSoC.

Little CPU big CPU GPU
Frequency (MHz) Voltage (mV) Frequency (MHz) Voltage (mV) Frequency (MHz) Voltage (mV)

408 800 408 800 200 800
600 800 600 800 300 800
816 850 816 825 400 825
1008 925 1008 875 600 925
1200 1000 1200 950 800 1100
1416 1125 1417 1025

1608 1100
1800 1200

II. RELATED WORK

Efficient power management has always been an important
consideration for resource-constrained embedded devices. In this
respect, various hardware-based techniques have been proposed
in the literature, from power monitoring [5] and power mod-
eling [3] for off-the-shelf hardware to creating special low-
powered hardware [2]. However, only hardware-level techniques
can not effectively minimize power consumption unless accom-
panying software-level techniques exploit application domain-
specific knowledge for power efficiency [19]. We formulate
PELSI with CNN-specific knowledge considerations and its per-
layer behavior on different computing resource types.

In research, several works improve power efficiency for CNN
training [4], [8]. However, a trained CNN deployed on an embed-
ded device for a long duration will benefit more from the power
efficiency of the inference. Another popular direction to achieve
power efficiency during CNN inference is to search for appro-
priate CNN models through Neural Architecture Search (NAS)
algorithms [12], [13]. In principle, PELSI is orthogonal to such
techniques. One can use PELSI for an efficient layer-switched
inference for a CNN designed through NAS methodologies.

Traditionally, in High-Performance Computing (HPC), CNN
inference is performed solely on GPUs. Therefore, multiple
works only focus on power efficiency for inference on GPUs,
such as [18] and [22]. PELSI, on the other hand, focuses on
HMPSoCs where embedded CPUs and GPUs are comparable
in performance, and both are used for inference to maximize
efficiency. To this end, a few works [7] propose to analyze the
power efficiency of CNN inference on HMPSoCs for both CPUs
and GPUs. The authors of [3] propose a per-core power model,
while the authors of [17] analyze power-performance profiles of
various CNNS for CPU and GPU platforms. However, unlike
PELSI, these papers do not propose any tangible solution to
improve power efficiency through hardware-software co-design.

DVFS is well-known as an efficient methodology for power
management on embedded devices. For example, [18] reduces the
energy consumption of CNN training on a GPU by controlling its
operational frequency. AOA [14] coordinates the frequency of both
CPU and GPU to improve performance and reduce total energy
consumption. AOA achieves this by balancing the workload at
a higher abstraction level and does not delve deeper into the
working of a CNN and its layers.

III. SETUP

We use Rock-Pi N10 embedded platform in this work.
An RK3399Pro HMPSoC, as shown in Figure 1, powers the
Rock-Pi N10 platform. The platform has a hexa-core asymmetric

Rock-Pi

ARM-CL

Output

L4
L3
L2
L1

Input

INA260
Power Supply

Ω

ARDUINO
SCL

SDA Read Power

Read Annotation

Write

Annotated
Power Samples

Latencies

Host Profile Data

S
ig

na
l

GPIO

Fig. 5: An abstract diagram depicting setup for CNN inference
layer-level power profiling.

ARM big.Little multi-core CPU with two CPU clusters – big
and Little. The Little CPU cluster contains four low-power,
low-performance A53 cores with six DVFS levels. The big
CPU cluster contains two high-performance, high-power A72
cores with eight DVFS levels. It also has an ARM dual-core
Mali T860 GPU with six DVFS levels. Table II summarizes
all the DVFS levels available for different components in the
RK3399Pro HMPSoC. A 4 GB LPDDR4 acts as the main memory
https://www.overleaf.com/project/64024988b5f20ae00aed5297for
the HMPSoC. The platform is running Android v9.0 with kernel
v4.9.

We use ARM-CL v21.02 in this work for CNN inference. We
use AlexNet, GoogleNet, MobileNet, ResNet50, and SqueezeNet
as the CNN kernels. These CNNs perform image classification.
Their designers trained them on the ImageNet data set for 1000
image classes. The input to these models are images of size (224
× 224) with three channels (RGB), and the output is a tensor of
size 1000 predicting the input image’s class. We implement the
GA using NSGA2 employing the pymoo Python3 library.

We use an external power data acquisition setup for fine-grained
CNN inference power consumption measurements on Rock-Pi
N10, as shown in Figure 5. The setup uses an INA260 sensor
that measures the current and voltage transfer over a single I2C
interface. We pass the power supply for the Rock-Pi N10 through
an INA260 sensor, wherein the sensor measures the current based
on dropped voltage with an internal shunt resistor. An Arduino
Uno embedded board samples voltage and current readings from
the INA260 sensor through an I2C clock and data pins (SCL and
SDA) at the sampling rate of 692 samples per second. Arduino
Uno sends the data to the host laptop for further processing over
the serial (USB) port. The setup allows the annotation of the
power data with meta-data using signals passed from the Rock-Pi
N10 through GPIO pins to the Arduino Uno. We modify ARM-
CL to send a signal (with meta-data) at the start and end of the
execution of each layer of the CNN. The meta-data then allow us
to separate the power consumption of each layer of CNN during
an inference. We get the corresponding layer latency directly from
ARM-CL using clock functions.

IV. IMPLEMENTATION

We implement the proposed PELSI framework within the ARM-
CL framework. ARM-CL is a collection of low-level (written
in Assembly language) Machine Learning (ML) functions. They
come highly optimized for the ARM Cortex-A CPU and Mali GPU
cores. ARM-CL forms the ideal choice to perform CNN inference
for our setup. Power-efficient CPU-GPU layer-switched CNN
inference involves implementing two new features – HMPSoC

Kernel Space

Kernel GovernorGPU DVFS

big DVFS

Little DVFS

set freq(fb)

set freq(fl)

set freq(fg)

User Space ARM-CL
L1 L2 L3 L4 L5

f1
b f2

g f3
g f4

l f5
bioctl

Fig. 6: An abstraction depicting the implementation of PELSI.

TABLE III: The min and max DVFS delay(µs) for the Little CPU,
big CPU, and GPU on RK3399Pro HMPSoC, when transitioning
to higher (up) and lower (down) frequency levels.

Transition PE Min Delay Frequency Max Delay Frequency
i i+1 i i+1

Up
L 296 0 1 4211 0 2
B 193 0 1 3811 6 7
G 657 0 1 4461 2 4

Down
L 109 4 3 193 3 0
B 91 7 3 1413 4 1
G 670 4 1 1464 4 2

component-switching and layer-wise DVFS – not available by
default in the ARM-CL.

Authors of [1] extensively extend ARM-CL to support HMPSoC
component switching and make those extensions publicly avail-
able. We start with this extended open-source version of ARM-
CL that allows for HMPSoC component-switching out-of-the-box
in this work. We add more extensions to this ARM-CL version
to support orthogonal layer-wise DVFS enabling the proposed
PELSI. Figure 6 shows the implementation of layer-wise DVFS
working synergistically with component-switching within PELSI.

It is common practice to use pseudo file system sysfs provided
by the Linux kernel to change the frequency of HMPSoC com-
ponents (CPU or GPU cores) from the Operating Systems (OS)
user space. However, there is higher overhead when changing an
HMPSoC component’s frequency using sysfs than from within
the OS kernel space. Therefore, PELSI updates the frequencies
for layer-wise DVFS change from within the kernel space to make
layer-wise DVFS time-wise feasible.

The CNN inference happens in the user space. Therefore, the
information when a CNN layer starts/finishes execution is only
available in the user space. This information must get passed
down to the kernel space to perform synchronized layer-wise
DVFS with minimal overhead. We embed ioctl calls (written
in C/C++) at the start of the execution of every CNN layer
in ARM-CL that signal the execution frequency for the layer’s
preferred HMPSoC component. A custom power Governor of
our design (embedded within the kernel source code) receives
this signal in the kernel space. It then sets the frequency of the
preferred HMPSoC component to the value within the received
signal. Simultaneously, to minimize power consumption, it sets
the frequency of the non-preferred (idle) HMPSoC components to
the minimum value. The involved ioctl calls are non-blocking.
The low overhead allows for fast layer-wise DVFS.

During experiments, we observe a noticeable delay from ini-
tiating a frequency update to the actual change in the hardware.
This delay varies for different frequency levels for all components.
Table III shows the minimum and maximum frequency transi-

(c1, f1) (c2, f2) ... (cN , fN)

Chromosome

Fig. 7: Chromosome gene encoding representing the HMPSoC
component type (ci) and the corresponding component fre-
quency (fi) for every layer i in CNN with N layers.

tion delay (µs) when increasing (up transition) and decreasing
frequency (down transition).PELSI accounts for these delays in
computing the execution time and power of a layer.

V. ALGORITHM

PELSI, as shown in Figure 3, requires the determination of
the preferred HMPSoC component and the component’s cor-
responding layer-wise frequency for every CNN layer. PELSI
must ensure meeting the inference’s latency target with maximum
power efficiency. PELSI targets an NP-hard optimization problem
with a large exponential design space, as shown in Table I.
Consequently, it is impossible to brute-force the optimal power-
efficient CPU-GPU layer-switched CNN inference configuration
in PELSI. Therefore, we propose to use a Genetic Algorithm (GA)
within PELSI to find a near-optimal configuration that meets a
given CNN inference target latency with minimal power con-
sumption. The GA accounts for the power-performance overhead
of switching components mid-inference inherent in PELSI. The
implementation overhead for achieving fine-grained layer-level
DVFS in PELSI (Figure 6) is negligible. Therefore, the GA does
not take it into account for optimization.

It takes up to a minute to determine the power-performance
attributes for a configuration in PELSI directly from the embed-
ded platform. The GA within PELSI requires an evaluation of
hundreds of thousands of such configurations. Consequently, it is
time-wise infeasible (though technically possible using our setup)
to run the GA directly with live power-performance feedback
from the embedded platform. Therefore, we instead execute
our GA using power-performance profiled data for every CNN
layer at different HMPSoC components at different frequencies
obtained using the data acquisition setup shown in Figure 5.
We use a linear regression model that correlates the size of
data migration (between the components on switching) with the
observed power and performance penalty to determine the power-
performance overhead of component switching involved in a
configuration. This evaluation design allows the GA to find a near-
optimal configuration in a reasonable amount of time at the cost
of introducing a minimal error between the expected and observed
power-performance attributes of the solution configuration when
ported to the real embedded platform.

A Genetic Algorithm (GA) is a meta-heuristic design-space
exploration algorithm based on the process of natural evolution.
The proposed GA is an iterative algorithm that begins with
encoding some configurations into chromosomes. Each distinct
chromosome represents a unique individual. All the individuals
together form the initial population. After evaluating the popu-
lation, using a fitness function based on CNN inference latency
and power consumption, the weak (and unviable) individuals are
replaced with the offspring of the stronger individuals produced
through mating (crossover and mutation) functions. This process
continues over multiple iterations. Therefore, the population in
later iterations will consist of fitter individuals representing more

(c1, f1) (c2, f2) (c3, f3) ... (cN , fN)

(c′1, f
′
1) (c′2, f

′
2) (c′3, f

′
3) ... (c′N , f ′

N)

(c1, f1) (c2, f2) (c′3, f
′
3) ... (c′N , f ′

N)

(c′1, f
′
1) (c′2, f

′
2) (c3, f3) ... (cN , fN)

Parent1

Parent2

Child1

Child2

(a) Crossover

(c1, f1) (c2, f2) (c3, f3) ... (cN , fN) (c1,f ′
1) (c2, f2) (c′3 ,f3) ... (cN , fN)

Child Mutated Child

(b) Mutation

Fig. 8: An abstraction illustrating the mating process using
crossover and mutation operation within the proposed GA for
a CNN with N layers.

power-efficient latency-meeting configurations than the configu-
rations that formed the initial population. The process eventually
converges to the solution population when the GA can not produce
stronger offspring anymore.

Population: The population contains individuals with a single
chromosome representation of configurations. Figure 7 shows the
gene encoding for a chromosome within an individual. There is
a gene for every layer in the CNN under inference. The gene
contains the information about the HMPSoC component and the
corresponding frequency with which the layer will execute on the
HMPSoC. The chromosome, therefore, contains all the informa-
tion necessary to determine the power-performance attribute of
its underlying configuration.

Fitness function: A fitness function evaluates and ranks the
offspring based on an optimization objective while operating un-
der CNN inference latency constraint. The optimization objective
for the GA is to minimize the energy consumption per inference.
Measuring the onboard energy consumption for each design point
takes a long time. Therefore, to converge within a reasonable time
frame, we use profiles of the time and power consumption for
layers of CNN when running on Little CPU, big CPU, and GPU
at all frequency levels. The fitness function estimates the layer-
wise energy consumption and inference latency using a regression
model on the profiled data. Moreover, there is a transition delay by
the request to switch frequency while the layer has already started
to execute. This delay leads to part of the layer executing in the
old frequency until the new frequency is active in the hardware.

The energy estimation model accounts for various factors of
the DVFS-based layer-switched inference of a CNN. The final
estimation estimates power consumption and timing analysis of
per-layer execution, the transition delay, and the communication
overhead to switch between different processing components. We
investigate the correctness of the energy consumption estimation
function by measuring the actual values from 1000 random design
points and comparing them against estimated values. The overall
mean error rate between estimated and measured values remained
between 6.16% and 9.32% for different CNN models.

Selection: After evaluating and ranking the population, the GA
selects n parents (n2 pairs) using a binary tournament selection
algorithm to generate offspring with mating operations. In binary
tournament selection, two individuals are randomly selected from
a population and compared with each other. The GA then selects
the individual with higher fitness as one of the parents for the
next generation. It repeats the tournament (with the previously

selected parent excluded) to find the other parent. The GA then
marks the two selected parents as a mating pair. An individual
can be in multiple mating pairs. Therefore, a stronger individual
within the population has a higher probability of spawning more
offspring for the next generation. The selection process repeats
till the GA selects the desired mating pairs.

Mating: The GA uses crossover and mutation operations
to generate offspring from the selected parents, as shown in
Figure 8. For the crossover operation, the GA selects a random
crossover point in the chromosome and generates two offspring by
combining the first and second sections of each pair, as shown
in Figure 8(a). Therefore, for the offspring produced from the
crossover, one parent determines the HMPSoC component map-
ping and the corresponding DVFS settings for the first section.
Complementarily, the other parent determines the mapping and
DVFS setting of the second section. After generating offspring,
the GA applies mutation by selecting a random gene (layer) and
changing its first value (target HMPSoC component), and select-
ing another random gene and changing its second value (DVFS
settings), as shown in Figure 8(b).

Survival: The mating process generates an offspring population
Qi in GA iteration i. The offspring population Qi is the same
size n as the parent population Pi, as each pair of parents gener-
ates exactly two offspring. The GA then merges the offspring
population Qi with the parent population Pi to generate the
merged population Ri. It then ranks the individuals in the merged
population Ri according to their fitness. The GA then selects the
top n individuals from Ri to form the next parent generation Pi+1,
corresponding to the GA iteration i+1. This process ensures that
the parent generation Pi+1 could not be worse in terms of fitness
than the parent generation Pi in the previous iteration.

Convergence: The process of selection, followed by mating,
and survival repeats iteratively in the GA. In each iteration with
crossover, the GA explores different areas of design space. In each
iteration with mutation, the GA attempts to find better design
points within an area. The GA achieves convergence when it
is no longer possible to produce stronger (yet viable) offspring
from a given generation of parents. The GA reports the top-
ranked individual as the solution on convergence. Within this
individual’s chromosome resides the near-optimal power-efficient
configuration that meets the given latency constraint.

VI. RESULTS

We evaluate our proposed PELSI framework on Rock-Pi N10
embedded platform containing RK3399Pro HMPSoC. Since the
work introducing the idea of CPU-GPU layer-switched execu-
tion [1] does not employ DVFS and focuses only on maximizing
performance, it is not fair to compare it against it in the context
of power efficiency. The work most similar to PELSI is AOA [14].
The original AOA utilizes DVFS at run-time based on the power
and utilization of HMPSoC components to minimize total energy
consumption during a CNN inference. We modify AoA to improve
power efficiency under a latency constraint similar to PELSI for
a baseline comparison. We call the baseline AoA-like.

AOA comprises two parts. The first part works on the power
consumption of the current interval and the CPU-GPU utilization.
AOA in the first part determines if it can increase the frequency
of processors while keeping the total energy consumption as the
constraint. In the second part, AOA computes an imbalance factor
representing the CPU and GPU utilization difference. When this

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

0.5

1

1.5

2
Po

w
er

E
ffi

ci
en

cy
[F

PS
/W

at
t]

AOA-Like PELSI

Fig. 9: Normalized CNN inference power-efficiency for PELSI
against the state-of-the-art for different CNNs.

factor outweighs a threshold, it triggers the imbalance state. In the
imbalance state, the bottleneck processor’s frequency increases
till it reaches the maximum level. Otherwise, AOA decreases the
frequency of the non-bottleneck processor.

We design the AOA-Like algorithm by modifying the first part
of the original AOA. AOA preserves total energy consumption,
whereas the AOA-Like has to meet the latency deadline. For
this purpose, after each layer execution, AOA-Like decides if the
frequency of a component is worth increasing to meet the target
latency. We measure the execution time of CNN layers with all
fixed frequency combinations of GPU and its host (big CPU) to
compute the average execution time per layer. With this data,
AOA-Like assign every layer a task-portion number, which is the
percentage of time taken by the layer within the overall inference
time. The total task-portion number of remaining layers is then
compared with the remaining percentage of time left in the target
latency (time-portion). If the ratio of the total task portion to the
time portion is higher than one, the frequency level is increased by
the same number of steps as this ratio. The second part of AOA-
Like remains unchanged to keep the CPU and GPU balance.

We evaluate the improvement in the power efficiency with
PELSI over AOA-Like design with five conventional CNNs. For
the target latency of each CNN, we add approximately 100 ms to
the minimum latency that the AOA-Like design achieves. Figure 9
depicts the power efficiency of PELSI against the AOA-Like for
different CNNs. It demonstrates that for all evaluated CNNs, the
PELSI achieves higher power efficiency. These power efficiency
improvements are 33.40%, 34.09%, 74.74%, 31.41%, and 48.73%
for AlexNet, GoogleNet, MobileNet, ResNet50, and SqueezeNet,
respectively. Across all CNNs, the PELSI framework improves
power efficiency by 44.48% on average.

VII. CONCLUSION

We observe different CNN layers execute with different power
efficiency on different HMPSoC components (CPU or GPU)
running at different frequencies. Based on the observation, we
propose PELSI framework that explores power-efficient CPU-
GPU layer-switched CNN inference in this work. PELSI proposes
to switch between CPU-GPU mid-inference while simultane-
ously changing the frequency of the active inferencing HMPSoC
component. PELSI incorporates a GA to find a near-optimal
power-efficient CPU-GPU layer-switched CNN inference con-
figuration under a latency constraint. We evaluate the proposed
PELSI framework on Rock-Pi N10 embedded platform containing
RK3399Pro HMPSoC. Results show significant improvement in
power efficiency across different CNNs with inference under
PELSI over the state-of-the-art.

REFERENCES

[1] Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj Pathania. Cpu-
gpu layer-switched low latency cnn inference. In 2022 25th Euromicro
Conference on Digital System Design (DSD), 2022.

[2] Hyochan An et al. An ultra-low-power image signal processor for hier-
archical image recognition with deep neural networks. IEEE Journal of
Solid-State Circuits, 56(4), 2020.

[3] Ganapati Bhat, Sumit K Mandal, Sai T Manchukonda, Sai V Vadlamudi,
Ayushi Agarwal, Jun Wang, and Umit Y Ogras. Per-core power modeling
for heterogenous socs. Electronics, 10(19), 2021.

[4] TaiYu Cheng et al. Minimizing power for neural network training with
logarithm-approximate floating-point multiplier. In 2019 29th international
symposium on power and timing modeling, optimization and simulation
(PATMOS). IEEE, 2019.

[5] Luca Cremona, William Fornaciari, and Davide Zoni. Automatic identifica-
tion and hardware implementation of a resource-constrained power model
for embedded systems. Sustainable Computing: Informatics and Systems,
29, 2021.

[6] Jonatan S Dyrstad et al. Grasping virtual fish: A step towards robotic deep
learning from demonstration in virtual reality. In 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 1181–1187. IEEE,
2017.

[7] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. Automated explo-
ration and implementation of distributed cnn inference at the edge. IEEE
Internet of Things Journal, 10(7):5843–5858, 2023.

[8] Ali HeydariGorji et al. Stannis: low-power acceleration of dnn training using
computational storage devices. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020.

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[10] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque,
Lingjia Tang, and Jason Mars. The architectural implications of autonomous
driving: Constraints and acceleration. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 751–766, 2018.

[11] Wei Liu et al. Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer, 2016.

[12] Svetlana Minakova et al. Scenario based run-time switching for adaptive
cnn-based applications at the edge. ACM Transactions on Embedded
Computing Systems (TECS), 21(2), 2022.

[13] Mohanad Odema et al. Eexnas: Early-exit neural architecture search
solutions for low-power wearable devices. In 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE, 2021.

[14] Zhixin Ou et al. Aoa: Adaptive overclocking algorithm on cpu-gpu
heterogeneous platforms. In Algorithms and Architectures for Parallel
Processing: 22nd International Conference, ICA3PP 2022, Copenhagen,
Denmark, October 10–12, 2022, Proceedings. Springer, 2023.

[15] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika Mitra.
Power-performance modelling of mobile gaming workloads on heteroge-
neous mpsocs. In Proceedings of the 52nd Annual Design Automation
Conference, pages 1–6, 2015.

[16] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated cpu-
gpu power management for 3d mobile games. In Proceedings of the 51st
Annual Design Automation Conference, pages 1–6, 2014.

[17] Yuyang Sun, Zhixin Ou, Juan Chen, Xinxin Qi, Yifei Guo, Shunzhe Cai,
and Xiaoming Yan. Evaluating performance, power and energy of deep
neural networks on cpus and gpus. In Theoretical Computer Science:
39th National Conference of Theoretical Computer Science, NCTCS 2021,
Yinchuan, China, July 23–25, 2021, Revised Selected Papers 39. Springer,
2021.

[18] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. The impact
of gpu dvfs on the energy and performance of deep learning: An empirical
study. In Proceedings of the Tenth ACM International Conference on Future
Energy Systems, 2019.

[19] Yigit Tuncel, Sizhe An, Ganapati Bhat, Naga Raja, Hyung Gyu Lee, and
Umit Ogras. Voltage-frequency domain optimization for energy-neutral
wearable health devices. Sensors, 20(18), 2020.

[20] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj
Pathania, and Tulika Mitra. High-throughput cnn inference on embedded
arm big. little multicore processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(10):2254–2267, 2019.

[21] Siqi Wang, Anuj Pathania, and Tulika Mitra. Neural network inference on
mobile socs. IEEE Design & Test, 37(5):50–57, 2020.

[22] Junyeol Yu, Jongseok Kim, and Euiseong Seo. A dnn inference latency-
aware gpu power management scheme. In 2021 IEEE 3rd Eurasia Confer-
ence on IOT, Communication and Engineering (ECICE). IEEE, 2021.

