
FAA+RTS: Designing
Fault-Aware Adaptive Real-Time Systems

— From Specification to Execution —

Lukas MiedemaORCID1, Dolly SapraORCID1, Petr Novobilsky2,
Sebastian AltmeyerORCID3, Clemens GrelckORCID4, and

Andy D. PimentelORCID1

1 University of Amsterdam, Netherlands
{l.miedema, d.sapra, a.d.pimentel}@uva.nl

2 Q-media s.r.o., Czech Republic
pno@qmediacz.onmicrosoft.com

3 University of Augsburg, Germany
altmeyer@uni-augsburg.de

4 Friedrich Schiller University Jena, Germany
clemens.grelck@uni-jena.de

Abstract. Large-scale cyber-physical systems, such as those for subway
transportation or air traffic control, are becoming increasingly complex
and often need to operate without human intervention. At the same
time, these systems are subject to high requirements on the timing be-
havior and fault-tolerance. Consequently, the detection and mitigation of
both hard and soft errors is of high importance in the already complex
systems design process. The main challenges towards fault-aware real-
time systems is the overall system design, in which the sheer size of the
state-space and the system’s complexity exceeds the capacity of today’s
development tools. In this paper, we present a new holistic methodology
called FAA+RTS, for designing fault-aware adaptive real-time systems.
We cover the entire path from system specification using a coordina-
tion language, via design-space exploration and task scheduling to the
adaptive fault-aware runtime environment. Mitigating both hard and
soft errors addresses competing requirements. Improving soft error tol-
erance (through redundant execution) may accelerate the aging process
of silicon, thus expediting hard error failures. FAA+RTS is a novel solu-
tion as it integrates previously-isolated methods for dealing with multi-
ple constraints into a single framework, presenting a single overview of
all possible trade-offs to the application designer. This integration en-
sures that all aspects of system design, from specification to execution,
are cohesively addressed, resulting in a robust and reliable system. We
exemplify FAA+RTS using industrial-sized autonomous subway trans-
portation system as a use-case.

1 Introduction

Complex cyber-physical, e.g. controlling critical infrastructure, are subject to a
wide array of functional and non-functional requirements, ranging from reliabil-

https://orcid.org/0000-0002-7295-6568
https://orcid.org/0000-0003-3590-0394
https://orcid.org/0000-0002-2487-7144
https://orcid.org/0000-0003-3003-1388
https://orcid.org/0000-0002-2043-4469


2 L. Miedema et al.

ity and fault-tolerance to timeliness, energy usage and total system cost [15].
Availability combined with real-time reactivity is particularly challenging: Such
systems must be available for years or even decades while always providing cor-
rect reactions within tight deadlines during their entire lifetime [7]. Yet, their
long lifetime makes hardware faults, both soft and hard, inevitable [4]. Never-
theless, the system’s functional and timing correctness must still persist.

Engineering correct and robust software systems is considered a challenging
task in general. This general challenge is aggravated in our case in two ways.
Firstly, the consequences of malfunctioning software in cyber-physical systems
can be extremely serious up to the loss of lives. Secondly, the term correctness
not only involves computational (or functional) correctness, i.e. computing cor-
rect results eventually, but expands to properties of program execution such as
timing behavior and energy consumption. Computing the results within a given
time period and energy budget can be as important for system correctness as
their numerical values. Coordination languages such as TeamPlay coordination
language [12] have been developed to alleviate the enormous software develop-
ment burden by elevating coordination as a first-class citizen. The coordination
layer enables the specification of application building blocks which can system-
atically be protected against hard and soft faults of hardware components, with
the objective to ensure system integrity (functional results, time bounds, energy
budgets) as long as possible despite faulting compute resources.

Autonomous adaptivity is a promising mitigation technique for hardware
errors (both hard and soft) in the presence of real-time constraints. Limited
over-provisioning of resources (extra cores, extra slack in the schedule) can be
used effectively as the runtime system can respond to errors by rescheduling.
However, competing constraints emerge, in particular as redundant execution to
detect and mitigate soft errors increases system utilization, requires provisioning
more hardware, increases energy consumption and accelerates silicon aging thus
expediting the arrival of hard errors. To that end, Design-Space Exploration
(DSE) offers a potent mechanism to help evaluate and reduce the number of
design points. Many different System-on-Chip (SoC) designs can be explored,
each offering a different amount of available computational resources to the ap-
plication, and thus different degrees of room for adaptivity, fault-tolerance and
thus different aging characteristics.

Contribution: In such a setting, we propose FAA+RTS: A new holistic
methodology for designing fault-aware real-time systems. FAA+RTS encom-
passes the entire design flow from the application specification, multi-core system-
on-a-chip (SoC) design, adaptive scheduling to mean time to failure (MTTF)
analysis and the runtime environment. In FAA+RTS, adaptivity takes center
stage as a driver of reliability to guarantee timing correctness even in case of par-
tial system failure. The FAA+RTS runtime automatically reconfigures itself and
reacts to hardware faults, using either re-execution (soft errors) or re-scheduling
(hard errors) of critical components. FAA+RTS caters to the competing require-
ments of tolerance for soft errors and hard errors, of energy use and hardware
utilization by recognizing that each solution is a compromise. Using design space



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 3

exploration (DSE), we give the application designer full insight in the trade-off
between the various competing constraints and the resulting lifetime reliability
as mean-time-to-failure (MTTF). This holistic view enables the application de-
signer to select a compromise best tailored to the unique requirements of their
application.

2 Industrial use case

We both motivate and validate our FAA+RTS methodology by a case study
revolving around the communication subsystem of a railway control system de-
veloped by QMedia s.r.o., as illustrated in Figure 1. The application contains
multiple tasks with precedence relations, has real-time constraints. It is a safety-
critical application, thus reliability in the presence of both soft and hard errors
must be considered. Consequently, the use-case exhibits a breadth of require-
ments benefiting from a holistic approach such as offered by FAA+RTS, making
it ideally suited to evaluated our method.

Redundant radios

Railway Commu-
nication System
Use Case Area

Other applications

Ground station

Fig. 1: Overview of the railway communication system

2.1 Description

The communication subsystem operates several different information flows be-
tween the ground system and the moving train(s). Each information flow is
specific in purpose and criticality. It is necessary to establish independent com-
munication channels for each of them. Under normal conditions each information
flow has its own communication channel with allocated resources, but in case of
incidents it is crucial to primarily keep up communication channels associated
with the most critical information flows. Therefore, the system must be able
to respond to various operating conditions (signal level, channel interference,
HW-fault, line overload, etc.).

We show the parts of the software architecture of the use case in Figure 2.
The railway communication subsystem is composed of 7 computational modules
and 9 sinks, for a total of 16 real-time tasks. Each module is responsible for a
part of the independent communication channels: P1, for instance, reads data
from physical channels, and the data is further processed by the AT Parser.



4 L. Miedema et al.

Fig. 2: Excerpt of the QMedia software architecture, showing 3 compute tasks
and 5 sink tasks

2.2 Requirements

The timing requirements dictate a deadline and period of 100ms. Furthermore,
the soft error and hard error tolerance must be maximized, while energy should
be minimized. Desirable values for the energy use and reliability requirements
are not static and instead are contingent on cost. Such an open formulation
of requirements is ideal as it allows picking a compromise between the differ-
ent factors. Through design space exploration, FAA+RTS gives the application
designer a range of options to choose from, of which each such point can be
subjected to cost-benefit analysis within the organization. The final process of
narrowing the output of DSE down to a single option is out of scope for this
paper.

3 Related Work

To the best of our knowledge, there is no other framework that addresses the
fault-aware and adaptive aspect of real-time systems from specification all the
way down to the execution and at the same time address both hard and soft
errors. Several works address either soft errors [21] or hard errors [1] individually,
but do not consider both together. Notably, some publications explore fault-
tolerant scheduling techniques [18,19], but these efforts constitute only a fraction
of the broader framework proposed in our work.

Coordination is a well established computing paradigm with a plethora of
languages, abstractions and approaches, surveyed in [5]. Yet, it lacks adoption in
mission-critical cyber-physical systems, even more so in fault-tolerance contexts.
Hume [8], a resource-aware language for real-time systems, offers guarantees on
time and space. Similarly, AADL, the Architecture Analysis & Design Language
[6] supports performance and reliability analyses in real-time system design.
However, both lack resilience features. Fault-tolerant Linda [3] extends the Linda
coordination language [17], based on a tuple-space in which messages can be



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 5

shared between processes and the extensions focus mostly on making tuple-space
operations safer and fault-tolerant.

The authors in [11] introduce utilization control as a technique to mitigate the
core aging and core-failures (i.e. avoid hard-errors). This research focuses on the
software aspect of embedded systems design and assumes the availability of spe-
cific hardware for improving lifetime reliability. Another similar work, [20] con-
siders both hard and soft errors to extend the MTTF of a given hardware chip.
In direct contrast, our framework delves into the bigger picture which include
task scheduling and floorplan design of the SoC. A more powerful SoC design
logically lowers utilization at the same redundancy levels, improving MTTF.

4 Integrated Methodology

We present an integrated methodology that cohesively links various stages of
system design and execution, ranging from application specification to a fault-
tolerant adaptive real-time runtime environment and a tailored multi-core SoC
design.

Figure 3 outlines the proposed workflow.

Application Specification (Section 5) concerns the specification of the
real-time application using the TeamPlay coordination language [12]. We lever-
age a coordination language to enable mechanical processing of the application
code, its interdependencies and non-functional requirements in a robust and
high-level manner.

Fault-tolerant Adaptive Real-time Scheduling (Section 6) is concerned
with ensuring that all timing constraints are met under all conditions. Our ap-
proach is two-fold: (1) a scheduling bounds analyzer communicates with the
iterative Design Space Exploration tool, while (2) offline schedules are produced
for a range of degradation states from a particular design point.

Design Space Exploration (Section 7) identifies the SoC floorplan that
optimizes lifetime reliability and power consumption in presence of errors. The
tool generates a Pareto set from which an application designer selects a design
point.

Our fault-tolerant, self-adaptive Runtime Environment Artie is linked
with the compiled task code and runs the generated schedule set on the selected
hardware. We discuss this aspect together with the validation of our industrial
use-case in Section 8.

Each stage of our methodology is interconnected, ensuring that decisions
made at one stage inform and enhance subsequent stages.

– The high-level application specification using the TeamPlay coordination
language ensures robustness and clarity, feeding directly into the design space
exploration.

– The scheduling component interacts continuously with design space explo-
ration to ensure that timing constraints are met under all conditions.



6 L. Miedema et al.

Application Specification, Section 5

Non-functional
Properties

Application
DAG

Task
source code

Cecile Coordination Compiler

TeamPlay Application Specification

1MR 2MR ... nMR

Task graph at various redundancy levels

Design Space Exploration,
Section 7

DSE
Design Space Explorer

Scheduling
Bounds Analyzer

Design Point

Pareto front

Pick design point

Selected Design Point

Hardware Characterization
(MTTF, Average Power)

Hardware Specification
(floorplan, µ-arch)

Fault-tolerant Adaptive
Real-time Scheduling, Sec-
tion 6

Faktum
Schedule Generator

Schedule Set
up to n sched-
ules for n cores

Schedule (n cores)

Schedule (n − 1 cores)

...

Schedule (1 core)

Runtime

Platform
Compiler (e.g. gcc)

Artie Runtime Environment

Fig. 3: FAA+RTS methodology overview

– The Design Space Exploration stage identifies optimal configurations, di-
rectly influencing the scheduling and runtime environment to balance relia-
bility and power consumption effectively.

– The Artie runtime environment dynamically adapts based on the schedules
and configurations identified, ensuring real-time system resilience.

This cohesive approach ensures that our methodology is more than just a collec-
tion of techniques; it is a unified framework designed to address the complexities
of modern fault-tolerant real-time systems.



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 7

5 Application specification

The combination of functional and non-functional requirements plus resilience
against hardware failure creates an enormous software engineering complexity
problem that we address by leveraging the TeamPlay coordination language [12].
TeamPlay is an exogenous coordination language [2] that naturally induces a
two-layer software architecture: On the component implementation layer we
leverage a standard programming language (usually C/C++) to implement soft-
ware components with defined but manageable size and complexity along with
determined non-functional behavior. On the coordination layer the TeamPlay
language permits the high-level specification of integrating individual compo-
nents into a complete (cyber-physical) system that guarantees non-functional
requirements and optimizes for non-functional objectives, e.g. saving energy, de-
pending on the application. Communication between components is facilitated
via channels.

Access to a channel is exclusive: a sending component must always be sched-
uled in its entirety before a receiving component, ensuring absence of contention.
The explicit modeling of communication enables task-level redundancy, as mul-
tiple jobs can be spawned within one epoch. Non-functional properties of in-
dividual components are predetermined across the range of available micro ar-
chitectures and, where applicable, specific voltage and frequency settings. The
information is provided to TeamPlay via a data-base, coined the non-functional
properties file (see Figure 3).

We leverage our two-layer, exogenous coordination design for further degrees
of freedom in system design and integration. One example is multi-versioning
where the component engineers provide multiple functionally exchangeable im-
plementations of a component which differ in their non-functional properties, be
it through competing implementation or through alternative compilation. An-
other example, prominently featuring in this work is the systematic and transpar-
ent introduction of redundancy to component execution for increased resilience
against soft and hard hardware faults.

The FAA+RTS requires considerable flexibility of the application. Not only
by requiring adaptivity to handle soft and hard errors, but also support for a
range of platforms to enable effective Design Space Exploration. The compo-
nent model, each with well-defined semantics, unlocks this flexibility without
requiring dedicated support by the application developer. The Cecile coordina-
tion compiler serves as the front-end of the proposed FAA+RTS toolchain. As
per Figure 3, it ingests the TeamPlay coordination specification together with
the non-functional properties file, and it produces a number of task graphs with
different component replication levels in machine-readable form to be further
processed by our subsequent toolchain.

6 Fault-tolerant adaptive real-time Scheduler

We implement fault-tolerance via redundancy: redundant cores compensate for
hard errors and redundant executions compensate soft errors. At runtime, we



8 L. Miedema et al.

adapt the schedule as dictated by the environment, i.e., the number of available
cores and the presence of soft errors. In case of a hard error, we remap tasks of a
failing core to available, healthy cores. Doing so decreases the number of available
cores, and thus redundant execution may no longer be feasible. Consequently,
hard errors may lead to an increased exposure to soft errors.

Soft errors. We consider triple and dual modular redundancy at the task
level as primary means of mitigating soft errors, but other techniques are also
compatible with FAA+RTS, provided a sufficient schedulability test is available.
Triple modular redundancy mitigates errors by means of majority voting, while
dual modular redundancy detects errors that then are mitigated by re-execution
of the erroneous actors. Note that the system’s response time increases with the
level of redundancy, but the system response time can still be statically derived
given an upper bound on the number of faults [9].

Hard errors.Adaptivity implies limited predictability due to system changes
at run-time. Real-time scheduling, on the other hand, typically requires a high
degree of predictability to enable derivation of real-time guarantees. Systems
that are inherently unpredictable are unsuitable for a precise scheduling analy-
sis. To overcome this contradiction, we resort to a set of statically precomputed
schedules and a runtime environment that can dynamically switch between them.

To simplify remapping as a consequence of a hard error, we introduce process-
ing elements as an abstract entity to which tasks are mapped. At runtime, cores
are mapped to processing elements based on their availability. Hence, we do not
need to compute schedule for all permutations of failed cores. Consequently, the
number of schedules scales only linearly with the number of processing units.
The size of each schedule scale linearly with the number of tasks. As such, for
a system of n tasks and π processing units, we introduce a runtime memory
complexity of only O(n× π).

First, we prepare the task graph as encoded by the coordination language
in two aspects: (a) transformation into a bipartite graph distinguishing between
communication (data nodes) and computations (actor nodes); (b) partitioning
the bipartite graph into sections that execute sequentially. Figure 4 shows such
an extended graph, partitioned into two sections which can be scheduled inde-
pendently. The sectioning of the graphs allows us to change redundancy levels

5

4

6

2

1

3 8

7

9

10

section 1 section 2

Fig. 4: Illustration of bipartite graph (example)



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 9

in between. For each section, we derive a set of static schedules via HEFT-
scheduling[14]. The HEFT-scheduler is slightly adapted to correctly account for
redundant execution and to schedule, if feasible, redundant actors on different
processing elements. The precomputed schedules per section differ in the number
of available processing elements and the redundancy level of the actor execution
(TMR, DMR, no redundancy, see Figure 5).

Example. Figure 6 shows a sequence of hard errors. We assume a system
of 6 cores. The actors are scheduled using triple-modular redundancy on 5 pro-
cessing elements that are mapped to 5 of the 6 available cores, leaving one
redundant core idle (a). In case of a hard error, i.e., a permanently failing core,
processing element PE3 is remapped to the spare core (b). In case a further core
fails, the actors are mapped to only 4 processing elements using dual-modular
redundancy. The switch from triple to dual-modular redundancy is necessary
to meet the system requirements despite fewer processing elements. With the
chosen scheduling, i.e., static section scheduling and adaptivity between sec-
tions, system’s response time under x hard errors and y soft errors is merely a
straight-forward combinatorial computation of maximal section lengths.

PE4

PE3

PE2

PE1 1

2

3

4

5

6

(a) section 1/no redundancy

1

1′

2

2′

1c

2c

3

3′

3c

4

4′

4c

5

5′

5c

6

6′

6c

(b) section 1/DMR

t

Fig. 5: Two schedules for Section 1 from Figure 4, both with five processing
elements, (a) without redundancy and (b) with dual modular redundancy.

PE1 PE2 PE3

PE4 PE5

(a)

PE1 PE2

PE4 PE5 PE3

(b)

PE1 PE2

PE4 PE3

(c)

Fig. 6: Reaction to hard errors: Moving from TMR execution on 5 processing
elements and one spare core (a) to TMR execution (b) to DMR execution on 4
processing elements.

Static analysis. Faktum implements the scheduler and scheduling analysis.
It provides lower/upper bounds on needed processing elements, serves as a quick
schedulability analysis to be used in DSE and generates section schedules to be
used in the runtime environment.



10 L. Miedema et al.

7 Design-Space Exploration

The objective of the Design-Space Exploration (DSE) tool [13] is to help design-
ing a specific Multi-core System-on-Chip (SoC) for an application, implementing
core based redundancy to safeguard against hard errors. The redundant cores
on the SoC offer a safety net to the application, allowing for the remapping of a
workload in the event that one of the processing cores fails. This approach en-
sures that task deadlines continue to be met, even with reduced core resources.
However, the decision to integrate extra cores at the onset is not without con-
sequences. It introduces added costs, not only in terms of the monetary expen-
diture but also in the physical space occupied on the chip and the increased
power consumption. This raises a pivotal question: how many extra cores are
truly necessary to balance reliability and cost-effectiveness?

Our analysis indicates that the number of extra cores required is dependent
on the specific system requirements and workload characteristics. Detailed ex-
perimentation and results demonstrate the trade-offs between reliability, cost,
and power consumption, providing a clear guideline for determining the optimal
number of extra cores.

The DSE tool employs a Genetic Algorithm (GA) to explore floorplan de-
signs for a fixed grid size microchip and a specific workload. Each arrangement
of (different types of) cores on a grid style placement forms a design point. The
maximum size of the grid is predetermined (e.g., Figure 11). The GA is de-
signed as a multi-objective search algorithm to optimize Mean-Time-To-Failure
(MTTF) and average power consumption, which are inherently conflicting objec-
tives. The optimization objective of average power consumption directly reflects
the operational cost of the system and indirectly influences the physical cost
through the required number of cores in the system. The framework produces a
Pareto Set of design points, offering insights into floorplan choices that provide
the trade-off between lifetime reliability (via MTTF) and power consumption.
The framework evaluates design points using a simulator [16], which operates
at a high abstraction level, estimating the chip’s active lifespan and average
power consumption for a specific workload. The simulator predicts core failures
based on thermal, power and electro-migration ageing models, and redistributes
workload until the application becomes unschedulable. The simulator employs
Monte Carlo simulations with the stochastic fault models to predict the MTTF
by averaging Time-To-Failures for each simulation and similarly computes the
mean power usage.

Due to the significant computational requirements associated with perform-
ing numerous simulations per design point, the DSE tool continuously interacts
with the Scheduling Bounds Analyzer Faktum to decrease the overall simulation
count. When invoked, the Scheduling Bounds Analyzer provides information on
the quality of the current floorplan specifically in terms of its potential to offer a
valid and relaxed task schedule. The relaxation aspect suggests the capability of
the floorplan to accommodate acceptable disruptions in the task schedule. Based
on this analysis, the tool empirically categorizes the design point as good, bad
or intermediate [13]. Given the costly nature of simulations, a higher number of



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 11

simulations is reserved for design points that fall in the intermediate range. The
intuition here is that these specific floorplans effectively illustrate the trade-offs
between power consumption and MTTF. They are valuable as they do not rep-
resent extremes, offering neither the flexibility for any relaxation in the schedule
nor an excessively relaxed one. In other words, these floorplans represent a criti-
cal middle ground where the intricate relationship between power efficiency and
reliability is evident.

The DSE tool predicts the SoC’s reliability by considering core failures, i.e.
hard errors. Soft errors are addressed via redundant execution. The DSE tool
can be configured to account for soft errors by pre-processing the application
to incorporate redundant tasks. It is important to note that lifetime reliability
is significantly influenced by the presence of redundancy. Executing each task
multiple times increases the computational demand, resulting in higher power
consumption and elevated core temperatures. This elevated temperature accel-
erates the aging process of cores, emphasizing the trade-off between redundancy
and the associated increase in power consumption and core aging.

8 Validation

The first step is to model the application in the TeamPlay coordination language,
as shown in Figure 7. Following the specification of the non-functional require-
ments period and deadline, we can easily identify two sections in the code that
describe the application’s components and their interactions through channels,
respectively. The specification of a component consists of a set of typed inports
and a set of typed outports, using a syntax reminiscent of C structs. Typed chan-
nels connect outport to inports. TeamPlay supports the annotation of various
further properties to components, e.g. the redundancy level for resilience [10].
For space reasons we cannot show them all here. Note that we use the latest
syntax of TeamPlay here, which slightly diverges from the syntax used in [12].

The strength of the TeamPlay exogenous coordination approach is that we
can model our use case pretty much one-to-one according to the architecture
specification in Figure 2. Component implementations do not need to be (re-)im-
plemented, but can be adopted from existing software repositories. Port types,
and thus channel types, are merely symbolic on the coordination layer, permit-
ting integrity checks, but again are implemented at component implementation
layer with programming language suited for that task, in the context of real-time
software usually C.

This specification is converted to a bipartite graph split into sequential sec-
tions, composed of computing nodes (green) and data nodes (blue). Figure 8a
shows one such section of the railway application. Next, we produce redundant
variants of this graph to handle soft-errors. This means that we need to introduce
replicas and comparators (dual-modular redundancy) or voters (triple-modular
redundancy). Due to space limitations, we only show the bipartite graphs for
dual-modular redundancy in Figure 8b.



12 L. Miedema et al.

app Railway {
period = 100ms;
deadline = 100ms;
components {

P1 { outports { Str_t AT_Response1;
Str_t AT_Response2;
u16 Mode;
PST_TelemetricData_t TelemetricData; ... }}

CommandSelector { inports {u16 Mode;}
outports {ET_ModemCmd_t Modem1CMD;

ET_ModemCmd_t Modem2CMD ;}}
... }

channels {
P1.Mode -> CommandSelector.Mode;
P1.AT_Response1 -> AT_Parser.AT_Response1;
P1.AT_Response2 -> AT_Parser.AT_Response2;
P1.Mode -> AT_Parser.ModeIn;
... }

}

Fig. 7: Excerpt from use case TeamPlay coordination code

(a) no redundancy (b) dual-modular redundancy

Fig. 8: Task graphs for one section of the railway use-case.
.

The Design Space Exploration (DSE) tool is applied to the QMedia use-
case without redundancy, along with a dual-redundant task graph. Figures 9a
and 9b highlights all the design points explored by the GA for no-redundancy and
with dual-redundancy, respectively. Each floorplan is represented by its average
power consumption and MTTF (as estimated by the simulator). The Pareto Set,
denoted in orange, emerges as the GA converges in both scenarios.

Furthermore, a direct comparison between the two Pareto Sets is demon-
strated in 9c. It is noteworthy that the prospect of building safeguards against
soft errors and hard errors incur a heavy cost in terms of operational power con-
sumption of the SoC. Reduction in power consumption by curtailing the number
of cores on the SoC shortens the lifetime reliability of the system.

Pareto Points #1, #2, and #3, illustrated in Figure 9c, highlight the cost
of protecting the system against soft errors. Point #1, without redundancy,
consumes 1.03W on average with a predicted lifetime of ≈13.5 years. After in-
troducing redundancy, Point #2 offers a similar predicted lifetime but with an
increased power consumption of ≈2.25W. Similarly, Point #3 operates at a com-



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 13

parable power level but is projected to have a shorter lifetime of ≈7 years. The
significant contrast in lifetime reliability stems from the utilization of redundant
schedules, wherein each task is executed multiple times. This leads to increased
computational demands, higher power consumption, and overall, accelerates the
aging process of the underlying microchip. Eventually, this framework provides
valuable insights to the system designer to choose appropriate resources in cre-
ating a fault-aware adaptive real time system.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
MTTF (in years)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e 

Po
w

er
 C

on
su

m
pt

io
n(

W
)

Pareto Front

(a) No redundancy present

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
MTTF (in years)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e 

Po
w

er
 C

on
su

m
pt

io
n(

W
)

Pareto Front

(b) Dual redundancy present

4 6 8 10 12 14 16 18
MTTF (in years)

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Po
w

er
 C

on
su

m
pt

io
n(

W
)

#3 #1

#2

No Redundancy
Dual Redundancy

(c) Pareto Set comparison

Fig. 9: All design points explored by the DSE tool for no redundancy and dual
redundancy modes. The orange line in (a) and (b) highlights the Pareto set.

The schedules corresponding to Pareto Points #1 and #3 are shown in Fig-
ure 10. Pareto Point #2 is omitted due to space limitations. In both the cases,
the task graph offers only limited parallelism, see Figure 8, so that many cores
remain idle throughout task execution. As can be seen by the complexity of the
task graphs and the state-space, developing, optimizing and executing complex
adaptive fault-aware real-time systems needs to be accommodated by suitable
design-tools. Although all points from Figure 11 are Pareto optimal, the floor-
plans and schedules differ significantly.



14 L. Miedema et al.

C5Type: 0

C4Type: 0

C3Type: 0

C2Type: 0

C1Type: 0 1 2 3 4 5

6 7

8 9 10

111213 14

15 16

t

(a) Schedule for Pareto Point #1 (no redundancy)

C4Type: 0

C3Type: 0

C2Type: 1

C1Type: 0 3 4 9 13 5C C

1 1 2 2 6 6 4 12 5 13 101416101416C C C C C C C

10 11 9 15 7C C

8 8 11 15 12 7C

tt

(b) Schedule for Pareto Point #3 (redundancy)

Fig. 10: Schedules of a single section of the railway use-case for Pareto Point
#1 (no redundacy) and Pareto Point #3 (dual-modular redundancy) as marked
in Figure 11. The hatched executions denote replaces, comparators are marked
with C.

Furthermore, we have implemented the adaptive runtime environment Artie,
short for AROMA Runtime Environment, to execute the schedules computed by
Faktum on the selected platform. It support both bare-metal and pthread-based
execution, for instance via Linux. This way, we support a large range of target
architectures.

Our design methodology FAA+RTS not only enables us to specify the appli-
cation and its non-functional requirements on a very high level of abstraction,
but also to find Pareto-optimal design points and to execute the application with
timing guarantees. The design is Pareto-optimal with respect to the mean-time-
to-failure, cost and power consumption. Thus, we can execute the application in a
fault-tolerant manner protecting us form hard and soft errors via self-adaptivity
while meeting the stringent timing constraints.

9 Conclusion

In this paper, we have presented FAA+RTS, the first complete design method-
ology for the specification, development and execution of fault-tolerant adaptive
real-time systems. We use a coordination language to model the application and
its non-functional requirements. This specification is then input to Design-Space
exploration, which searches for optimal system configurations and schedules. The
scheduler provides a set of static schedules with varying levels of redundancy uses



FAA+RTS: designing (F)ault-Aware Adaptive Real-Time Systems 15

T:0

T: 0

T:0

T:0

T:0

(a) Floorplan for Pareto
Point #1
(no redundancy)

T:0

T:0

T:2T:0

T:0

T:0 T:2

T:0

T:0

T:1

(b) Floorplan for Pareto
Point #2
(redundancy)

T:0

T:0T:0

T:2

(c) Floorplan for Pareto
Point #3
(redundancy)

Fig. 11: Pareto Points #1, #2 and #3 as marked in Figure 9c. Point #1 without
redundancy, consumes ≈1.03W on average and has predicted lifetime of ≈13.5
years. When redundancy is required, Point #2 provides similar predicted life-
time consuming ≈2.25W. Similarly, Point #3 operates at similar power, but is
predicted to have half the lifetime at ≈7 years.

a variant of HEFT scheduling. The runtime system then switches between these
schedules at runtime depending on the current number of hard and soft-errors.

FAA+RTS targets highly complex self-adaptive systems featuring a wide ar-
ray of contradicting requirements, foremost fault-tolerance via adaptivity time-
liness, power consumption and costs. We have validated FAA+RTS on a real
railway use-case. The results show the immense design space and complexity
that can only be mastered using automated methodologies such as FAA+RTS.

References

1. Abdi, A., Zarandi, H.: A meta heuristic-based task scheduling and mapping method
to optimize main design challenges of heterogeneous multiprocessor embedded sys-
tems. Microelectronics Journal 87 (2019)

2. Arbab, F.: Composition of interacting computations. In: Interactive Computation.
Springer (2006)

3. Bakken, D., Schlichting, R.: Supporting fault-tolerant parallel programming in
linda. IEEE Trans. on Parallel and Distributed Systems 6(3) (1995)

4. Bansal, S., Bansal, R., Arora, K.: Energy conscious scheduling for fault-tolerant
real-time distributed computing systems. In: Role of Data-Intensive Distributed
Computing Systems in Designing Data Solutions. Springer (2022)

5. Ciatto, G., Mariani, S., Louvel, M., Omicini, A., Zambonelli, F.: Twenty years of
coordination technologies: State-of-the-art and perspectives. In: International Con-
ference on Coordination Languages and Models (COORD 2018). Springer (2018)

6. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis and design language
(AADL): An introduction. Tech. rep., Carnegie-Mellon University, Pittsburgh,
USA (2006)

7. Gunes, V., Peter, S., Givargis, T., Vahid, F.: A survey on concepts, applications,
and challenges in cyber-physical systems. KSII Transactions on Internet and In-
formation Systems 8(12) (2014)



16 L. Miedema et al.

8. Hammond, K., Michaelson, G.: Hume: a domain-specific language for real-time
embedded systems. In: Generative Programming and Component Engineering
(GPCE’03). Springer (2003)

9. Kühbacher, C., Ungerer, T., Altmeyer, S.: Redundant dataflow applications on
clustered manycore architectures. In: Hong, J., Bures, M., Park, J.W., Cerny, T.
(eds.) SAC ’22: proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, virtual event, April 25 - 29, 2022. pp. 226 – 235 (2022)

10. Loeve, W., Grelck, C.: Towards facilitating resilience in cyber-physical systems
using coordination languages. In: Constantinou, E. (ed.) 13th Seminar on Advanced
Techniques and Tools for Software Evolution (SATToSE 2020). vol. 2754. CEUR
Workshop Proceedings (2020)

11. Ma, Y., Chantem, T., Dick, R., Hu, X.: Improving system-level lifetime reliability
of multicore soft real-time systems. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 25(6) (2017)

12. Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Towards energy-, time- and
security-aware multi-core coordination. In: Bliudze, S., Bocchi, L. (eds.) 22nd In-
ternational Conference on Coordination Models and Languages (COORD 2020),
Malta. LNCS, vol. 12134, pp. 57–74. Springer (2020)

13. Sapra, D., Pimentel, A.D.: Exploring multi-core systems with lifetime reliability
and power consumption trade-offs. In: Embedded Computer Systems: Architec-
tures, Modeling, and Simulation: 23rd International Conference, SAMOS 2023.
Springer (2023)

14. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3) (2002)

15. Villarreal Lozano, C., Vijayan, K.: Literature review on cyber physical systems
design. Procedia Manufacturing 45 (2020)

16. Wasala, S.M., Niknam, S., Pathania, A., Grelck, C., Pimentel, A.D.: Lifetime esti-
mation for core-failure resilient multi-core processors. In: 16th IEEE International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2023).
IEEE (2023)

17. Wells, G.: Coordination languages: Back to the future with Linda. In: 2nd Interna-
tional Workshop on Coordination and Adaption Techniques for Software Entities
(WCAT’05) (2005)

18. Youness, H., Omar, A., Moness, M.: An optimized weighted average makespan
in fault-tolerant heterogeneous mpsocs. IEEE Trans. Parallel Distrib. Syst. 32(8)
(2021)

19. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems. Information Sci-
ences 379 (2017)

20. Zhou, J., Hu, X., Ma, Y., Sun, J., Wei, T., Hu, S.: Improving availability of multi-
core real-time systems suffering both permanent and transient faults. IEEE Trans-
actions on Computers 68(12) (2019)

21. Zhou, J., Sun, J., Zhou, X., Wei, T., Chen, M., Hu, S., Hu, X.: Resource man-
agement for improving soft-error and lifetime reliability of real-time mpsocs. IEEE
Trans. on Comp.-Aided Design of Integr. Circuits and Systems 38(12) (2018)


	FAA+RTS: Designing Fault-Aware Adaptive Real-Time Systems — From Specification to Execution — 

