
1240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fitness Prediction Techniques for
Scenario-Based Design Space Exploration

Peter van Stralen, Student Member, IEEE and Andy Pimentel, Senior Member, IEEE,

Abstract—Modern embedded systems are becoming increas-
ingly multifunctional. The dynamism in multifunctional embed-
ded systems manifests itself with more dynamic applications and
the presence of multiple applications executing on a single em-
bedded system. This dynamism in the application workload must
be taken into account during the early system-level design space
exploration (DSE) of multiprocessor system-on-a-chip (MPSoC)-
based embedded systems. Scenario-based DSE utilizes the con-
cept of application scenarios to search for optimal mappings of a
multi-application workload onto an MPSoC. The scenario-based
DSE uses a multi-objective genetic algorithm (GA) to identifying
the mapping with the best average quality for all the application
scenarios in the workload. In order to keep the exploration of the
scenario-based DSE efficient, fitness prediction is used to obtain
the quality of a mapping. This fitness prediction is performed
using a representative subset of application scenarios that is
obtained using co-exploration of the scenario subset space. In
this paper, multiple fitness prediction techniques are presented:
stochastic, deterministic, and a hybrid combination. Results show
that, for our test cases, accurate fitness prediction is already
provided for subsets containing only 1–4% of the application
scenarios. Larger subsets will obtain a similar accuracy, but the
DSE will require more time to identify promising mappings that
meet the requirements of multifunctional embedded systems.

Index Terms—Co-exploration, design space exploration, fitness
prediction, subset selection.

I. Introduction

THE design of modern embedded systems, especially those
targeting the consumer market, is severely complicated

by an increasing demand for versatile and multifunctional
products that also have to meet stringent requirements in terms
of performance, power consumption, and cost. In addition,
these systems are typically dealing with an enormous time-
to-market pressure. As a result, embedded systems are in-
creasingly implemented using heterogeneous, software-centric
multiprocessor system-on-a-chip (MPSoC) architectures. To
cope with the design complexity of these systems, the concept
of system-level design has been introduced, which raises the
abstraction level of the design process [1]. Design space
exploration (DSE) is a key ingredient of system-level design,
during which a wide range of design choices are explored,

Manuscript received May 29, 2012; revised October 15, 2012, January 10,
2013; accepted February 18, 2013. Date of current version July 15, 2013.
This paper was recommended by Associate Editor P. R. Panda.

The authors are with the University of Amsterdam, Amsterdam 1098XH,
The Netherlands (e-mail: p.vanstralen@uva.nl; a.d.pimentel@uva.nl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2252711

Fig. 1. Mapping involves two aspects: allocation (selection of the architec-
tural components) and binding (assigning the application task to allocated
components).

especially during the early design stages. Such early DSE
is of paramount importance, as early design choices heavily
influence the success or failure of the final product.

An important element of system-level DSE is the search
for an optimal mapping of the application workload onto the
underlying MPSoC platform architecture. Here, the mapping
involves two aspects (Fig. 1): 1) allocation, and 2) binding.
Allocation selects the architectural components for the MPSoC
platform architecture (i.e., not all platform components need to
be used). Subsequently, the binding specifies which application
task or application communication is performed by which
MPSoC component. The number of possible mappings is
enormous, especially if there are multiple applications in the
workload of the embedded system.

A significant amount of research has been performed on
system-level DSE for MPSoCs [2] during the last two decades.
The majority of this paper is focused on the analysis of
MPSoC architectures under a single, static application work-
load. However, current application workloads executing on
embedded systems are becoming more and more dynamic.
This dynamic behavior can be classified and captured using
so-called workload scenarios [3]. Workload scenarios make
a distinction between two aspects. First, intra-application
scenarios describe the dynamic behavior within applications
(i.e., application modes). For example, a QoS mechanism
within a video decoder application may dynamically lower the
bitrate to meet its deadlines or to save power. Second, inter-

0278–0070/$31.00 c© 2013 IEEE

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1241

application scenarios describe the interaction between different
applications that are concurrently executing on an embedded
system and contending for its system resources.

In order to capture the dynamic behavior of multi-
application workloads in system-level design we have intro-
duced scenario-based DSE [4]. An important problem that
needs to be solved by such scenario-based DSE is the rapid
evaluation of mappings during the search through the MPSoC
design space. The number of potential interactions between
different applications grows exponentially with the number of
applications and application modes that can be simultaneously
executed in the embedded system. As a consequence, the
potential number of different application scenarios can be
huge. Therefore, it is infeasible to rapidly evaluate mappings
during the process of early DSE by exhaustively analyzing
(e.g., via simulation) all possible workload scenarios. As a
solution, fitness prediction [5] can be used to quickly ob-
tain an approximated fitness value. In scenario-based DSE,
a representative subset of application scenarios is used to
predict the fitness of a mapping. If mapping m1 is better
than mapping m2, a representative subset should be able to
give a better predicted fitness to mapping m1 that it assigns
to mapping m2. The difficulty, however, is that the represen-
tativeness of a subset of application scenarios is dependent
on the target MPSoC architecture. As the evaluated MPSoC
architectures are not fixed during the process of DSE, we need
to simultaneously co-explore the MPSoC design space and
the application scenario space to find representative subsets
of application scenarios for those mappings that need to be
evaluated.

Earlier work already introduced two different approaches
for subset selection: a genetic algorithm [4] and a feature
selection approach [6]. The contribution of this paper is a more
extensive description of scenario-based DSE with additional
experiments. Moreover, it will provide a new hybrid fitness
prediction method. The hybrid method combines the strengths
of both the genetic algorithm and the feature selection.

The rest of this paper is organized as follows. In the
next section, we quickly provide an overview of scenario-
based DSE. Sections 3 and 4 will describe the components
of our scenario-based DSE framework in more detail. First,
Section 3 describes the design explorer, which accounts for
the MPSoC mapping DSE using a representative subset of
application scenarios to evaluate mappings. Subsequently,
Section 4 provides an overview of the subset selector that
takes care of (dynamically) finding the representative subset
of application scenarios during the process of DSE. Section 5
presents the experiments in which we compare the different
fitness prediction techniques. In Section 6, we describe related
work, while Section 7 provides a conclusion.

II. Scenario-Based DSE

Scenario-based DSE rapidly evaluates mappings for multi-
application workloads during the search through the MPSoC
design space. For this rapid evaluation, a co-exploration is
performed of the MPSoC design space and the application
scenario space. The first part of this section describes the
high-level MPSoC simulation framework Sesame [7], which

is used for the evaluation of mappings in our scenario-based
DSE framework. Sesame is a high-level framework for quickly
obtaining an estimate of nonfunctional metrics (such as exe-
cution time and energy consumption) for a mapping, allowing
for separating the high-quality from the low-quality mappings.
As Sesame is part of the Daedalus design methodology [8],
the resulting mappings can directly be synthesized on FPGA
for validation and calibrational purposes.

Subsequently, the second part of this section describes the
complete exploration framework that efficiently deploys work-
load scenarios [3] during the process of early DSE. This frame-
work explicitly takes the existence of multiple applications into
account. If multiple applications are not explicitly taken into
account during the DSE, there are two options for designing
an embedded system with multiple applications: 1) isolate all
the applications on the architecture, and 2) design for the case
where all applications are active. The first approach completely
disregards resource sharing, whereas the second approach is
quite unrealistic. In both cases, more resources are used than
necessary, resulting in an overdesigned system.

A. Scenario-Aware Sesame

The design flow of Sesame is depicted in Fig. 2A. It
provides fast performance evaluation using a separation-of-
concerns based approach with a typical accuracy of ±5% with
respect to the real implementation [8].

Sesame is scenario aware [9], allowing it to simulate work-
load scenarios [3]. The workload scenarios are illustrated in
Fig. 2(b). In this paper, we distinguish two types of workload
scenarios: intra-application and inter-application scenarios.
Intra-application scenarios describe the different behaviors, or
operation modes, within an application. Fig. 2(b) shows the
intra-application scenarios for three example applications. For
example, the GSM application can be used in sending and
receiving mode, or the MP3 decoder can play music in mono
or stereo sound.

An inter-application scenario, on the other hand, describes
the behavior of multiple applications. That is, an inter-
application scenario specifies which applications can run con-
currently. For example, the inter-application scenario in Fig.
2(b) describes the situation in which the MP3 and video ap-
plications are running concurrently while the GSM is inactive.

To fully describe what a system is doing, a complete appli-
cation scenario bundles the possible intra-application scenarios
of all the active applications. The set of active applications
is described using an inter-application scenario, whereas each
intra-application scenario specifies a particular operation mode
of an individual application. The example application scenario
in Fig. 2(b) specifies that the MP3 application is playing music
in mono sound, while a simple profile is used to decode
video. It is possible for application scenarios to overlap in their
execution. During this overlap, however, the inter-application
scenario constraints must always be kept. Therefore, for the
example in Fig. 2(b) it can be the case that while one video
frame is decoded, multiple MP3 frames are handled. However,
given the inter-application scenario, it can never be the case
that the GSM application starts together with the MP3 or the
video application.

1242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 2. High level scenario-based MPSoC simulation. (a) Sesame. (b) Application scenarios.

Fig. 3. Exploration framework for scenario-based DSE. The GA chromosome within the design explorer is shown for our MP3-video example.

The complete set of workload scenarios is kept in the
scenario database. The scenario database is identified using
a profiling method. More details can be found in [9].

B. The Exploration Framework

The objective of the exploration framework is to provide
a static mapping of the multi-application workload onto the
MPSoC. This static mapping is used throughout the system’s
entire lifetime. Therefore, the average behavior of the system
for all different possible application workload scenarios must
be as good as possible. In this paper, we assume an equal
likelihood of each intra-application scenario. However, it is
perfectly possible to use a different probability distribution.

Despite the fact that Sesame provides fast MPSoC simula-
tion, it is infeasible to exhaustively simulate all the possible
application scenarios for each individual mapping. This is
why a representative subset of scenarios is used to estimate
the quality of each mapping. Fig. 3 shows the exploration
framework that is capable of performing such scenario-based
DSE. The general flow of scenario-based DSE is given on the
left side of Fig. 3, whereas the right side zooms in on the
actual scenario-based DSE part.

The scenario-based DSE explores the mapping of multi-
application workloads onto an MPSoC platform. To this end,

a couple of inputs need to be made explicit. Not only the
architectural model needs to be given, but also the multi-
application workload.

The architectural model describes the complete set of avail-
able architectural components (including the available inter-
connections). This architecture typically will not fit on the final
MPSoC. Therefore, the DSE will reduce this architecture by
only using a subset of the architectural resources. An example
architectural model can be seen in Fig. 2A. The mapping
chromosome in Fig. 3 (shown in the design explorer) allocates
the components CPU-A, CPU-C, and MEM-3. The component
INTERN is a virtual component that specifies that the internal
memory of a CPU is used.

From the multi-application workload two characteristics
are required. First, a model that describes the structure of
the applications. Secondly, the possible workload behavior is
described explicitly using a scenario database [9] in which
the inter- and intra-application scenarios are stored and made
explicit. Whereas the input application models specify the
structure of each individual (concurrent) application enabling
mapping exploration of the application tasks, the scenario
database characterizes the different possibilities for multi-
application workload behavior (e.g., which applications or
application modes are active at the same time).

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1243

A representative subset of application scenarios from the
scenario database is used to rapidly evaluate mappings during
MPSoC DSE. As the quality of the fitness prediction of a
subset is dependent on the mappings that are under evaluation,
we have already pointed out that the MPSoC design space
needs to be simultaneously co-explored with the application
scenario space. This co-exploration is illustrated in the right-
hand side of Fig. 3, which zooms in on our scenario-based
DSE. One of the two key elements, called the design explorer,
is similar to classical MPSoC DSE as it uses a metaheuristic,
which is in our case a genetic algorithm (GA), to search for
optimal mappings. The second key element, referred to as
the subset selector, tries to identify the best representative
subset of application scenarios that is used to evaluate the
mappings in the design explorer. The subset selector can be
implemented with multiple techniques. Both processes are
running asynchronously, and communication between them is
performed via shared memory. In the next two sections, we
provide a detailed description of the design explorer and subset
selector of our scenario-based DSE.

III. The Design Explorer

In this section, a description is given of how the design
explorer identifies optimal mappings. The first subsection
specifies the Sesame system model. Next, the mapping proce-
dure is described.

A. System Model

Fig. 2A shows the Sesame system model. There are three
conceptual layers in Sesame: 1) the application model; 2)
the mapping layer; and 3) the architecture model. The ap-
plication model describes each individual application using a
Kahn process network (KPN) [10], whereas the architecture
model describes the MPSoC platform architecture in a cycle-
approximate fashion. Furthermore, the mapping layer explic-
itly maps the tasks and communications from the application
model(s) onto the components in the architecture model.
This is implemented using a trace-driven co-simulation of the
application and the architecture model[7].

1) Application Layer: Applications are represented by a
directed graph GK(V, Ek). Vertices represent the Kahn process
nodes. Directed edges Ek = V × V represent FIFO communi-
cations links to pass messages between process nodes.

2) Architecture Layer: The architecture is described by
the undirected graph GR(R, ER). R represents architectural
resources, such as processors, communication buses, crossbars,
FIFOs, and memories. There are three types of architectural
elements. Architectural processors RP ⊂ R are the elements
capable of running processes. RB ⊂ R are FIFO buffers used
for communication. In case, two communication processes are
mapped onto the same processor, the communication could
potentially be done internally. Internal communication of a
processor p ∈ RP is modeled by connecting a buffer b ∈ RB

from and to the processor ((p, b), (b, p) ∈ ER).
All remaining architectural resources are only for intercon-

necting purposes. The edges in ER = R × R describe the
communication links in the architecture.

3) Mapping Layer: Computation mapping edges EX as-
sign architectural resources to the Kahn process nodes. More
precisely, the edge (v, p) ∈ EX assigns Kahn process v ∈ V to
processor p ∈ RP . A Kahn process can only be mapped onto
a processing element that is feasible of running the task:

(v, p) ∈ EX ⇐⇒ Feasible(p, v).

An example of a processing element that supports only a
limited number of application tasks is an application specific
integrated circuit (ASIC).

Next, communication mapping edges (EC) bind FIFO chan-
nels. An edge (c, b) assigns the channel c ∈ EK to a buffer
b ∈ RB in the architecture.

B. Mapping Procedure

The mapping procedure maps the application onto the ar-
chitecture. This is split into two steps: allocation and binding.
Allocation reduces the resource-usage of the architecture.
Next, the binding maps all processes and channels onto the
architecture. The procedure is as follows:

1) Allocation: The first step during mapping is allocation
α, where αP = RP ∩ α and αB = RB ∩ α. The allocation α

contains a subset of architectural resources such that α ⊆ R:

(
∑

r∈α

area(r)

)
< MAX AREA.

Given an allocation α, a set of potential communication
paths ψ = (αP × αB × αP) can be defined:

ψ = {(p1, b, p2) : PATHα(p1, b) ∧ PATHα(p2, b)}.

ψ is the set of paths (p1, b, p2) such that (:) there is a path
p1 → b and a path p2 → b. The function PATH determines
if there is a path between two resources using a subset of the
allocated resources α

PATHα(r, b) :=(r, b) ∈ ER ∨
∃ri ∈ α|(r, ri) ∈ ER ∧ PATHα(ri, b).

An allocation is only valid if each combination of processors
have at least one buffer to communicate:

∀p1, p2 ∈ αP : ∃(p1, b, p2) ∈ ψ.

2) Binding: There are two steps during binding. The
first step is computational binding and the second step is
the communicational binding. The computational binding βX

maps the processes onto processors such that βX ∈ EX:

∀v ∈ V : |{p : (v, p) ∈ βX ∧ p ∈ αP }| = 1.

Each process must be mapped on exactly one processor within
the set of allocated components αP . The communicational
binding βC is done after the computational binding. It maps
the communication channels onto architectural buffers such
that βC ∈ EC:

1244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 4. GA to find the optimal mapping extended with steps to communicate
data with the subset selector.

∀(v1, v2), b ∈ βC :(v1, p1) ∈ βX ∧ (v2, p2) ∈ βX

∧ (p1, b, p2) ∈ ψ

∀c ∈ Ek :|{b : (c, b) ∈ βC}| = 1.

Each mapped channel c must be mapped onto a buffer b.
Moreover, there must be a communication path between the
processors and the buffer.

A mapping m is the combination of an allocation α, and
the bindings βX and βC. It is only valid if all the preceding
constraints are fulfilled.

C. Genetic Algorithm

To actually perform the search for good mappings, a NSGA-
II [11] based multi-objective GA is used. NSGA-II is an elitist
selection algorithm that uses nondominated sorting to select
the offspring individuals. Nondominated sorting follows the
approach of Goldberg’s Pareto ranking [12] and is illustrated
in Fig. 6. All the nondominated individuals get rank one and
are removed from the set of mappings. The nondominated
individuals in the remaining set get the second rank and this
is repeated until all individuals are ranked. In this way, each
of the individuals get their dominance depth [13].

Let S be the total set of scenarios and S̃j be the represen-
tative subset at time step j. Our objectives for a mapping m

are defined as follows:

F (m) =
∑

s∈S

(perf(m), energy(m), cost(m))
|S|

F̃S̃j
(m) =

∑

s∈S̃j

(perf(m), energy(m), cost(m))
|S̃j|

In this case, the performance and energy are obtained by
invoking Sesame [7], whereas cost is defined as the sum of
the individual costs of the elements in allocation α. There is a
difference between the real fitness F and the estimated fitness
F̃S̃j

. The real fitness uses all possible scenarios to determine
the objectives. Therefore, this fitness is independent of the
current generation. The estimated fitness F̃S̃j

, however, is only
valid during generation j as in the next generation the most
representative scenario subset S̃j+1, which is used to estimate
the fitness may be changed.

Fig. 4 shows the extended algorithm of the GA that cou-
ples the design explorer and the subset selector. Before the
design explorer can perform any evaluation, the currently most

Fig. 5. Update procedure of the training set.

representative scenario subset S̃j must be retrieved. Using the
obtained subset of application scenarios S̃j , the design explorer
can quickly evaluate the fitness F̃S̃j

for all mappings in the cur-
rent population. As a result, mapping individuals in the parent
population may need to be partially reevaluated. Afterwards,
the current population is exported to the subset selector. Next,
the GA can select individuals based on their estimated fitness
F̃S̃j

. In case, the scenario subset Sj is representative, this means
that the decisions made by the NSGA-II selector are similar
to the case where the real fitness F would have been used.
The selected individuals can be used for reproduction. The
reproduction procedure creates a new population of individuals
that can be used in the next generation.

IV. The Subset Selector

The subset selector is responsible for obtaining a represen-
tative subset of scenarios S̃j to predict the fitness of mappings
in the design explorer. Due to the potentially large number of
scenarios, this selection is not trivial. Ideally, this selection
is done statically, before the MPSoC DSE process starts.
However, the problem is that mappings need to be available
to select the best subset of scenarios. Unfortunately, these
mappings are unavailable until the DSE process is running.
On top of this, the type of mappings are also changing during
the DSE search.

Therefore, the subset selection needs to be performed dy-
namically using a training set Ti of application mappings m.
The training set Ti is dynamically updated during the complete
process of scenario-based DSE. Logically, the subset selector
is split into two threads: the selector thread and the updater
thread. The selector thread is responsible for selecting the
representative subset of scenarios, whereas the updater thread
is only concerned with updating the training set.

In the remainder of this section, we provide a detailed
description of the various elements of the subset selector. First,
we will look into the updater thread and describe the update
procedure of the training set. Next, the metric that is used to
judge the quality of a representative subset will be described.
The final subsection subsequently describes how the selector
thread obtains the best representative subset of scenarios.

A. Training Set Update Procedure

During the search for the representative subset of application
scenarios, it is crucial to have a set of training mappings
Ti available to evaluate a certain subset of scenarios. The

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1245

Fig. 6. Set of Pareto fronts showing the effect of a small misprediction (as
shown with the dashed arrow) on the misclassification rate using the Boolean
(A + B) and the Goldberg (C + D) ranking scheme. In A + C the real fitness
is used, whereas B + D use a predicted fitness.

real fitness of this set of mappings must be known. That is,
each of these mappings should have been evaluated using
all applications scenarios stored in the scenario database.
Hence, the training set of mappings must be small, but still
correctly represent the population of mappings that is judged
in the design explorer. Fig. 5 illustrates the training set update
procedure from set Ti to set Ti+1. The steps are as follows:

1) Read Explorer Population: To keep the training set Ti

up to date with the mapping population in the design explorer,
the current design explorer population gj is imported. The list
of candidate mappings Ci+1 is updated as follows:

maximize
Ci+1

∑

m∈Ci+1

last gen(m)

subject to (1) Ci+1 ⊆ Ci ∪ gj

(2) Ci+1 ∩ Ti = ∅
(3) |Ci+1| = min(|Ci|, C SIZE)

Condition 1 states that gj is added to the set of candidates Ci+1.
Condition 2 takes care that none of the candidates are already
part of the trainer. Finally, the maximization criteria and
condition 3 take care that the number of candidates is limited
to C SIZE. In case of truncation, the oldest mappings are
removed (the function last gen(m) returns the last generation
that mapping m was part of the population).

2) Select Mappings: The next step is to select k new
candidate mappings Mc for the trainer Ti+1:

minimize
Mc

∑

m∈Mc

dist(P̃j, F̃S̃j
(m))

subject to (1) Mc ⊆ Ci+1

(2) |Mc| = k

In order to select the interesting mappings, the candidate map-
pings are ordered based on their Euclidean distance dist(...)

to the closest mapping on the estimated Pareto front P̃j of
generation j. As the design explorer needs to correctly identify
the real Pareto front, these are the most interesting mappings.
The closer the estimated fitness to an estimated nondominated
Pareto point, the higher the probability that the mapping is
part of the real Pareto front.

3) Evaluate Real Fitness: Once the mappings are selected,
a separate pool of Sesame worker threads is used to evaluate
all the selected mappings.

4) Add Mappings to Trainer: At this point, the fitness of
each of the selected mappings is exactly known. Therefore,
trainer Ti+1 can be generated. Ti+1:

minimize
Ti+1

∑

m∈Ti+1

dist(P, F (m))

subject to (1) Ti+1 ⊆ Ti ∪ Mc

(2) |Ti+1| = min(|Ti ∪ Mc|, T SIZE)

The candidate mapping are first added to Ti (condition 1),
after which the trainer is truncated to a maximum size
T SIZE (condition 2). During truncation the mappings with
the highest Euclidean distance from the real Pareto front P are
removed.

B. Subset Quality Metric

With the training set in place, the metric of judging a subset
of application scenarios needs to be defined. To be independent
from the number of optimization objectives, the misclassifi-
cation rate of the Pareto ranking of the individual training
mappings is used to judge the quality of the representative
subset.

There are several approaches for Pareto ranking [14]. In this
paper, we focus on two: Boolean ranking and Goldberg rank-
ing. Both ranking schemes are visualized in Fig. 6. Goldberg’s
ranking approach uses the dominance depth of individuals as
explained in Section III-C. Boolean ranking follows a more
simplistic approach: if the solution is nondominated the rank
is one and otherwise the rank is two.

Since the NSGA-II selector in the design explorer uses
Goldberg’s ranking, it may be obvious to use Goldberg’s rank-
ing to judge the quality of the representative subset. However,
the computation complexity of obtaining Goldberg’s ranking is
rather high, O(MN2), where M is the number of objectives and
N the population size, while the misclassification rate on the
ranking may also be somewhat deceiving. An example is given
in Fig. 6. In this example, the fitness of one of the individuals
is slightly off. As a consequence, it becomes dominated by
the left most individual and in both ranking schemes its
rank becomes two. Additionally, in the Goldberg’s ranking
all the individuals that are dominated by this individual also
increase in Pareto rank. This domino effect results in a 75% of
misclassified Pareto ranks, whereas the Boolean ranking only
has a misclassification rate of 8.3% (the individual with the
wrong fitness). It turns out that it is complicated to correctly
classify the lowly ranked individuals. Therefore, we have
chosen to use Boolean ranking. The elitist selection algorithm
only needs to be capable of identifying the Pareto front. The
order of the rest of the individuals is irrelevant.

1246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 7. Scenario subset with a larger number of misclassified relations do not necessarily result in a worse Pareto front. Pareto front B has only two
mispredicted relations (mapping [A, E] and mapping [D, J]), but only two of four Pareto points (mapping B and C) match the real Pareto front A. Pareto
front C may have four mispredicted relations, but all of its identified Pareto points are correct. Therefore, this metric is subordinate to misclassification.

During the subset evaluation two functions are used:

relF ′ (m1, m2) :=

1 F ′(m1) dominates F ′(m2)
−1 F ′(m2) dominates F ′(m1)
0 else

rankF ′ (m, T) :=

{
2 ∃m′ ∈ T

(
relF ′ (m′, m) = 1

)

1 else

The function relF ′ (m1, m2) determines the Pareto dominance
relation between mapping m1 and m2 given the fitness function
F ′. This fitness function can be equal to F (and thus provide
the real fitness) or equal to F̃S̃ . In this case, the scenario
subset S̃ is used to estimate the fitness. Next, the function
rankF ′ (m1, T) provides the ranking of a mapping given trainer
T .

The misclassification rate of a scenario subset S̃ is the ratio
of ranks that are estimated incorrectly:

rrank(S̃, T) :=
|{m ∈ T : rankF (m, T) 1= rankF̃S̃

(m, T)}|
|T |

A second and subordinate metric is the number of misclas-
sified relations:

rrel(S̃, T) :=
|{m1, m2 ∈ T : relF (m1, m2) 1= relF̃S̃

(m1, m2)}|
|T |2

By definition, when there are no misclassified relations, the
misclassification rate is also zero. However, less misclassified
relations does not imply that the Pareto ranking is better. This
is mainly due to the fact that the number of misclassified rela-
tions is only loosely coupled to the ranking of the individual
mappings. A clear example can be seen in Fig. 7. Compared to
the Pareto front based on the real fitness (7A), the estimation in
Fig. 7C is the best. The total Pareto front is predicted correctly.
However, it has more misclassified relations than the situation
in Fig. 7B, where 50 percent of the estimated Pareto front is
incorrect (E and J).

C. Subset Selection

The final part of this section discusses the core part for
selecting the representative subset: the selector thread. The
selector thread dynamically searches for the best representative
subset:

minimize
S̃

rrank(S̃, T) : minimize
S̃

rrel(S̃, T)

The main objective to optimize on is the misclassification rate
(rrank). In case, two or more scenario subsets have the same
misclassification rate, the number of misclassified relations
(rrank) will determine which is the best.

Every time the selector thread finds a new best subset, it
immediately updates the scenario subset that is used in the
design explorer. The subset may be of any size, as long as it
does not exceed the user-defined maximum size. In earlier
work [6], we have used a fixed size. This requirement is
however illogical: if there is a smaller subset of a better quality,
it has only benefits as the same quality is obtained using fewer
evaluations. Initially, the subset(s) in the population of the
subset selector are generated randomly. The selector thread
will start once the updater thread has added the first mappings
to the trainer.

A random pick of application scenarios does not result in a
representative subset (see [4]). Therefore, the representative
subset must be searched during the DSE. In earlier work,
we have introduced two approaches for the search of the
representative subset: a genetic algorithm [4] and a feature
selection algorithm [6]. In this paper, we add a third approach
for comparison purposes. It is a hybrid method that makes use
of both methods. Below, we describe each of the methods.

1) Genetic Algorithm (GA): In the first approach, the
subset is searched in a straightforward fashion. Similar to the
design explorer, a GA is used to identify the best representative
subset. A pool of individual subsets follows an evolutionary
process with crossover and mutation to obtain a subset of
scenarios that is as good as possible.

The benefits of this approach are: 1) it is fast; 2) the search
can quickly move through the total space of possible subsets;

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1247

Fig. 8. Hybrid approach for subset selection. The approach alternates be-
tween two subset selection techniques: genetic search and feature selection.
On convergence the GA will send the best undone subset to the FS. The FS
will improve the subset until the search converges or the local search is done
(in this case the subset will no longer be sent to the FS).

and 3) local optima can easily be circumvented. The downside,
however, is the coarse grained nature of the search. If an
individual is found that is close the optimal solution, it is quite
likely that mutation or crossover moves away from it. As a
consequence, it takes longer to identify the optimal subset.

2) Feature Selection (FS): A more intelligent approach
to guide the search can be achieved using feature subset
selection. Feature subset selection tries to find a subset of
features (application scenarios) to classify (obtain the Pareto
ranks) individuals as good as possible. In our case, we decided
to use dynamic sequential oscillation search [15] as our feature
subset selection algorithm. The benefit of this algorithm is that
it improves a subset instead of constructing one. Moreover,
at any given time it can be halted to return its currently
best representative subset. This algorithm uses a kind of hill-
climbing technique to improve the subset of scenarios. It will
oscillate the size of the subset by adding or removing the
most optimal scenario (e.g., the remaining subset is as good
as possible). The margin of oscillation is limited to a fixed
number 1. For a detailed description of the procedure of the
feature selection technique, we refer to [15].

As the search method of FS is more directed, in time it will
only move closer to the optimal subset. In contrast to a GA,
it will not move away from the optimal subset. This strength
is also its weakness. As it not moves away from the local
optimum, it is more sensitive to finding local optima.

3) Hybrid Approach (HYB): To combine the strengths of
both approaches, we introduce a hybrid method. Fig. 8 visu-
alizes this approach. The GA can quickly prune the complete
space of possible subsets, whereas the feature selection is good
at searching thoroughly in a small part of the total space of
the possible subsets. The hybrid method alternates between
the GA and the FS. Starting with the GA approach, it will
switch between the methods once the search is converged (no
improvement in a given amount of time).

The feature selection that is applied in the hybrid approach
is not just a custom variation operator. In contrast to a variation
operator, it keeps state over the different invocations. The same
subset can be sent to the feature selection more than once,
given that it is undone. For an undone subset, the oscillation
search has not exceeded the predefined maximal margin yet.
An undone subset that has been sent earlier will continue the
oscillating search at the margin, where it stopped during the
previous invocation.

1In the experiments we have used 20 as a margin

Fig. 9. MPSoC architecture components on which the application can be
mapped.

D. Final Pareto Front

The outcome of the DSE is a final set of candidate map-
pings. This set of mappings is taken from the trainer within
the subset selector. Most importantly, the real fitness of these
mappings is known. Additionally, the selection procedure of
the trainer ensures that the nondominated solutions that are
encountered will be kept in the list during the complete design
space exploration.

V. Experiments

In order to verify the scenario-based DSE, a couple of
experiments have been performed. For these experiments,
both the multi-application workload and the potential set of
architectural components remain fixed. The multi-application
workload is generated stochastically with a Python tool based
on [16] in such a way that the behavior of ten embedded ap-
plications is resembled. During the stochastic generation, a set
of constraints is supplied such that different types of intra ap-
plication scenarios are generated (computation/communication
intensive). Additionally, the number of simultaneously active
applications is fixed. The ten applications have a total of
58 processes and 75 communication channels. The multi-
application workload consists of 4607 different application
scenarios. We have chosen to use stochastic applications as
they provide a wider range of possibilities than real ap-
plications do. They can easily be instrumented to mimic
real applications, but they also allow for small changes on
parameters, such as communication fraction, for a thorough
study of the properties of the DSE process.

The platform architecture is visualized in Fig. 9. It contains
four different processors (CPU), which are able to execute
all the application processes. The ASIPs are limited to the
execution of 11 out of the 58 processes, whereas the ASICs can
only run four out of the 58 processes. For communication, all
the processing elements are connected to a crossbar. The cross-
bar contains buffers to temporarily store the messages[17].
Additionally, a fraction of the processors are also connected
to a shared memory via a bus. There are four dedicated
FIFO communication channels. As each of the components
has a specific cost (in terms of area), it is not necessarily the
case that all components are used in a mapping (i.e., not all
components need to be allocated).

Therefore, one of the objectives during DSE is the cost
of the mapping (the sum of the chip area of the used

1248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

components). Next to that, execution time and energy are
also objectives during the optimization of the mapping of the
multi-application workload onto the architecture. For energy
estimation, a simple activity-based power model is used. Each
component has two power numbers: idle power and busy
power. After simulation, the active time of each component
is known and the energy usage can be calculated. The result
of the DSE will be a Pareto front that shows the trade-off
between cost, time and energy.

All the experiments have been performed on a dedicated
node of the LISA cluster [18] that is part of the Dutch
SARA Computing and Networking Services. The selected
nodes contain two Intel quad-core Xeon L5520 processors
with eight cores running at 2.26 Ghz. As job management
is present on the LISA cluster, no other processes are running
on the processor. Therefore, the real exploration time of the
DSE can be used for comparison in the experimental results.

Fig. 10 shows an example multi-objective Pareto front that
results from our scenario-based DSE. A part of the non-
dominated solutions is annotated with the allocated resources.
Clearly, visible is the cheap single core solution: low energy,
low cost, but a high execution time. Adding more processors
improves the execution time. The fastest solution uses all
the available resources and communication structures (M is
shared memory, X is crossbar). Interesting to notice is the
difference between 2CPU+X (cost 80) and 2ASIC+2CPU+X.
Adding two ASICs results in an increase in execution time
(due to communication), but a lower power usage. However,
the 2CPU+X may use more chip area (cost 120), its CPU is
much faster and more power efficient.

In the following subsections, a couple of experiments will
be discussed. For these experiments we will focus on two
aspects: 1) scenario subset selection, and 2) DSE results.
For data visualization and discussion, we have chosen not to
focus on the quality of the complete Pareto front, but to look
for mappings that minimize execution time given a certain
maximal architectural cost.

The first subsection will compare the different subset se-
lection techniques in isolation. In this experiment, the subset
selector is decoupled from the design explorer and fed with
a static set of training mappings. Next, the effect of the
subset size during a DSE is investigated. The third subsection
describes the quality of the identified subsets during a real
DSE, where the training set is dynamic. Finally, the last sub-
section will compare the required effort to identify satisfying
mappings with the different subset selection techniques.

A. Subset Selection
The first experiment focuses on the scenario subset selection

procedure. Using two different training populations, the ability
to identify the subset with the optimal ranking (based on cost,
time, and energy) is identified for each of the procedures. For
this purpose, the subset selector is run in isolation using a
fixed training set. Two different training sets are used: the
first training set consists of 518 mapping individuals, whereas
the second training set has 498 mapping individuals. The
maximal subset size is varied from 20 to 200 (0.4–4.3% of the
total number of scenarios). A subset of 0.4% is the smallest

Fig. 10. Pareto front of the stochastical multi-application workload. Three
objectives are used: time (x-axis), energy (y-axis) and cost (point type). The
nontransparent points are annotated by the allocated resources.

subset size, where an optimal subset is available that is able
to predict the ranking of both of the trainers perfectly. The
subset of 4.3%, on the other hand, is large enough for a
quick identification of an optimal subset. For each of the 180
different runs, the seed and subset size is chosen randomly. A
subset selector approach will be run until the optimal subset
is found. The search time is limited to 15 min of wall-
clock time. After this period, the improvements in the quality
of mappings found by the design explorer are diminishing.
Therefore, a representative subset of application scenarios
is crucial to predict the ranking of the newly encountered
mapping individuals. In case the optimal scenario subset was
not found within 15 min, the search has failed. The properties
used in the genetic algorithm are listed in Table I(a).

Fig. 11C shows that the second trainer is harder to predict
than the first trainer. Trainer 2 has an average crowding
distance [11] which is 22.6% smaller than trainer 1. A smaller
crowding distance means that the mapping individuals are
closer to eachother and thus harder to rank.

Fig. 11 shows the results of the experiments. Fig. 11A shows
the success rate of the search. The success rate is equal to
the percentage of times that an optimal subset is found. The
optimal subsets are those that perfectly predict the Pareto rank.
As a consequence, there may be multiple optimal subsets.
Next, Fig. 11B shows the average evaluation time in case an
optimal subset was found. Generally speaking, it can be seen
that it is harder to find an optimal subset with the second
training set. For all the approaches, the success rate of finding
an optimal subset is much lower. Additionally, the time to find
an optimal subset is larger.

Comparing the GA and the feature selection (FS) approach,
we can conclude that the FS approach has a better success rate.
With respect to speed, it depends on the training set. In case an
optimal subset is easy to find (training set 1), the FS approach
is faster than the GA. The main reason for this is that fewer
modifications are required with respect to an initial subset in
order to converge to an optimal subset. Therefore, the FS can
easily perform these changes. Whenever an optimal subset
is more complex to find, the GA benefits from its quicker

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1249

Fig. 11. Comparison of the three approaches to scenario subset selection. For each of the three approaches (genetic algorithm, feature selection, and hybrid),
the subset with the optimal ranking is searched. Graph A show the success rate and graph B displays the time it takes to find this optimal subset. Graph C
the difference between both trainers is visualized using the average crowding distance.

adaption of the subset (crossover can cause a change of half
of the subset, whereas FS changes one scenario at the time).
As a consequence, in the few cases where the GA finds an
optimal subset, it achieves this in half the time.

Still, the success rate of the GA approach is insufficient.
Therefore, we introduced the hybrid method. The hybrid
method clearly outperforms the GA and the FS methods. For
the first training set, the hybrid method is only slightly worse
than the FS approach (77% versus 83%). As discussed before,
in this training set an optimal subset is easy to find and the
FS circumvents the computational needs of maintaining a pool
of subsets. In the second training set, an optimal subset is
harder to find and the hybrid approach can benefit from the
pool with different potential subsets: 43% versus 29%. The
fact that 57% of the optimal subsets are not found in the
second training set does not imply that these subsets cannot
be found. With a larger time limit, the GA can potentially still
find them. The advantage of the hybrid method is that it can
combine the thorough search of a specific part of the subset
space of the FS approach with the GA approach that has less
probability to end up in a local optimum. As a consequence,
more optimal solutions are found. When an optimal subset
is easy to find, this is paid for by a larger evaluation time.
For more complicated searches, the evaluation time decreases
due to the larger versatility of the genetic search (536 s
versus 375 s).

A common technique to circumvent local optima in a feature
selection technique is to run the algorithm with different initial
subsets. Even if the FS approach is only run twice, it is clearly
slower than the hybrid approach. Also, what the graphs in Fig.
11 do not show is the archive population at the end of the GA
and the hybrid approach. In contrast to the FS approach, the
GA and the hybrid approach will provide a diverse population
of good subsets. This is beneficial in the case when the training
set is updated. The ranking of the archive population may
change and one of the other subsets in the archive may be the
best subset that is used for improvement. The FS approach
is only limited to one subset and has a lower possibility to
immediately adapt itself to a new training set.

B. The Effect of Subset Size

After showing the success rate of the search for the optimal
scenario subset, the next step is to show the effect of the subset

TABLE I

Experimental Settings

(a) Subset GA Settings
Size of Archive 20
Size of Offspring 40
Crossover Probability 0.7
Gene Mutation Prob. 0.02

(b) Design Explorer Settings
Size of Archive 100
Size of Offspring 200
Crossover Probability 0.9
Gene Mutation Prob. 0.01

size on the quality of the identified mapping. Therefore, we
performed a DSE of 8 h with the hybrid approach to select a
scenario subset. During this DSE, two threads were assigned
to the subset selector and six threads were assigned to the
design explorer. The GA parameters are given in Table I. The
settings for the subset GA are the same as in the previous
experiment.

In the experiment, four different subset sizes are used: 0.1%,
1%, 4%, and 16% of the total number of application scenarios.
For each individual subset size, the result is averaged over
nine DSE runs to take into account the stochastic nature of
the GA in the design explorer. Fig. 12 shows the results of
the experiments. At six points in wall-clock time, the current
estimated Pareto front is logged. After the DSE, the estimated
Pareto fronts are exhaustively evaluated to obtain the real
fitness values of the individuals in the estimated Pareto front.
From this set of mappings, the real execution time (cycle
time) of the fastest mappings found by the DSE are given.
For experiment A our objective is:

minimize
m

time(m)

subject tocost(m) ≤ 100

Experiment B allows a higher cost for the mappings:

minimize
m

time(m)

subject tocost(m) ≤ 250

For each time step, four bars are shown—the average
minimal execution time for the DSE using a subset with 0.1%,
1%, 4%, and 16% of the scenarios.

When varying the number of scenarios in the subset there
are two conflicting trends:

1250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

Fig. 12. Effect of the subset size on the quality perceived result of the design space exploration. In this graph the fastest designs are shown (with respect
to total execution time) for designs within a certain cost.

1) Accuracy: The larger the subset, the more accurate the
fitness prediction in the design explorer is. As a result, it
can make better decisions about which individuals must
be chosen for the next generation. In general, larger
subsets are more likely to be able to identify the fast
mapping within a certain time.

2) Overhead: The larger the subset, the longer it takes
to obtain the fitness of a single mapping. A longer
evaluation time of a single mapping not only means
that less individuals can be evaluated in a certain time
frame, but also that the GA performs less generations.
As a consequence, the search has less benefit from the
evolutionary process and it becomes harder to identify
good mappings within a certain time frame.

After a short period (5 min), the evaluation overhead is the
most significant effect when looking at the different subset
sizes. For the 1%, 4%, and 16% subsets, the minimal execution
time is larger as the size of the used scenario subset increases.
An exception is the subset with 0.1% of the scenarios. As
it is too small, it becomes too inaccurate to predict the
fitness of a mapping. Consequently, its result after 5 min is
already worse than the 1% subset. Still, the 0.1% subset is
initially significantly better than the 16% subset size. This is
completely caused by the overhead effect.

The (in)accuracy effect of 0.1% can be observed in two
ways. At first the final result is 6.4–12.9% worse than the
larger subsets (Fig. 12A). Secondly, the standard deviation
over the different experiments is larger. In Figs. 12A and B,
the deviation over the experiments is also shown using error
bars. In case of the 0.1% subset, this deviation barely decreases
over time. This shows that the DSE is far from accurate. For
the other subsets, the prediction is accurate enough to result
in a very small deviation at the end of 8 h of DSE.

To make the overhead effect more clear, Table II shows
the average number of search generations that are performed
in the total time frame of 8 h. Obviously, the smaller the
subset size, the higher the number of performed generations.
Less obvious is the nonlinear relation between the subset size
and the generation count. At first, a lower evaluation time
per generation means a larger sequential portion of the DSE

TABLE II

Number of Generations in 8 H

Subset Size Generations
0.1% 2098
1% 1585
4% 856
16% 316

application. This leads to less efficient usage of the multicore
machine (Amdahl’s law). Both the mappings and the set of
scenarios can be evaluated in parallel. However, the selection
and variance in between the generations of the GA still needs
to be done sequentially.

The overhead effect is not visible any more once the GA
is converged. Fig. 12C shows the convergence time (within
1% of final result). In general, a larger subset means a larger
convergence time. An exception is the 0.1% subset. The 0.1%
subset is not able to provide good mappings as the fitness
prediction is not accurate enough. The increased convergence
time of the design explorer is also seen in the minimal
execution time in Fig. 12A. In the first hour, the minimal
execution time of the 4% subset larger than the 1% subset.
The same holds for the 16% subset. Provided that the subset
is accurate enough, the smaller the subset is, the earlier it gets
close to the optimal execution time.

Therefore, we can speak of an accuracy threshold. Once
the accuracy of the subset is above the accuracy threshold, the
final GA results are not significantly effected by the subset
size. However, due to the overhead effect, the convergence
time will increase with a larger subset.

C. Subset Quality During DSE

The first experiment in Subsection V-A showed the subset
quality on a fixed training set. This allows us to compare
the approaches for the quality of subset selection, but it does
not show us what actually happens during a DSE. Therefore,
we performed a scenario-based DSE using a hybrid selection
method. During the DSE, the subset quality is monitored over
time. More precisely, before each update of the training set, the

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1251

Fig. 13. Subset quality during the DSE. The quality is expressed in the
misclassification rate on the current training set. Four different subset sizes
are used: 0.5%, 1%, 4%, and 8% of the total number of application scenarios.
The averaged measurements are shown using points, whereas the line shows
the smoothed trend.

quality of the subset is logged. The settings for the experiment
are exactly the same as in Subsection V-B.

Fig. 13 shows the results of the experiment. For each curve,
nine experiments are performed. During these experiments
roughly 210 measurements are taken. The results of these
experiments are averaged (as displayed with the points) after
which they are smoothed. A couple of observations can be
made based on this experiment. First, the smaller the subset,
the higher the misclassification rate. This is as expected; the
more application scenarios in the representative subset, the
easier it is to predict the correct fitness (i.e. cost, cycle time
and energy) of a mapping.

In this experiment, there are two opposing forces. First,
the subset selector improves the subset over time. As a
consequence, the quality becomes better. At the same time,
the set of training mappings (provided by the design explorer
and exhaustively evaluated by the updater) is changing. This
changing training set makes it more complicated to correctly
classify the training mappings. As a result, the quality of the
subset decreases.

For all the experiments, at first the misclassification rate
becomes higher (e.g., the quality is decreasing). Next, the
subset quality stabilizes or even improves. The smaller subsets
(0.5% and 1%) stabilize after 4 h. After that point, the
misclassification rate remains stable (the 1% subset remains
at a misclassification rate of around 2.5%) or it improves
(the 0.5% subset misclassification rate drops from almost 4%
to 3.5%). With the larger subsets, it is easier to provide a
good classification (due to the larger number of application
scenarios). This can especially be seen for the 8% subset. It
hardly suffers from the warming up of the training set.

To conclude, the training set requires a short warm-up
before it is challenging enough to train decent subsets with
it. The initial set of training mappings has a higher crowding
distance as the mappings are still well spread and the differ-
ence between rank 1 mappings and rank 2 mappings is easy to
predict. Without any exception, all the performed experiments
provide a perfect classification in the first 10 min. At this
stage, the training set is still small and immature. Over time,
the GA of the design explorer slowly starts to converge and the
trainer becomes more crowded (i.e., mappings become more
similar). Therefore, it becomes harder to correctly classify the

Fig. 14. Quality of the DSE for the different subset selection approaches.
The quality is determined based on the distance between the estimated front
and the optimal front.

training mappings. This improved training set is beneficial
for the design explorer that constantly encounters unknown
mappings. However, the perceived quality in the subset selec-
tor is decreasing. The decreased quality does not mean that
the subset is worse. It is more a sign of a more crowded
training set. At a certain point in time, this becomes visible:
the training set complexity is stabilizing and the perceived
misclassification rate of the subset stabilizes or becomes lower.

D. Subset Selection Method and its Effect on the Efficiency

Our final experiment shows a comparison between the dif-
ferent subset selection methods and its effect on the efficiency
of the DSE. Therefore, the required exploration time for
the scenario-based DSE to identify a satisfying mapping is
measured. After all, the faster the DSE can provide results
that match the requirement of the user, the better it is. For
this purpose, a DSE of 100 min is performed with all the
subset selector approaches. Each experiment is performed for
three different subset sizes (1%, 4%, and 8%). The results are
averaged over nine runs.

In order to obtain the efficiency of the multi-objective DSE,
we obtain the distance of the estimated Pareto front (time
versus energy) to the optimal front. For this purpose, we
normalized the time and energy to a range from 0 to 1. As
the optimal front is not exactly known, we took the combined
Pareto front of all our experiments.

Fig. 14 shows the final results. In experiment V-B, we
observed that when increasing the subset two effects will
occur: 1) higher accuracy, and 2) slower convergence. This
can be seen in Fig. 14. The GA and the FS subset selection
have worse results when the subset becomes larger (the smaller
the distance, the better).

The hybrid, however, shows a somewhat different effect.
With 4% it is able to benefit from a subset with a higher
accuracy. The slower convergence starts to effect the efficiency
from the 8% subset.

Comparing the different methods, the hybrid method has the
best results. The only exception is for the 1% subset. In this
case the GA is still able to search the smaller design space
of possible subsets. Still, the result of the hybrid method at
4% is better than the result of the GA at 1%. With the larger
subset sizes, the hybrid method can exploit both the benefits
of the feature selection and the genetic algorithm.

1252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 8, AUGUST 2013

VI. Related Work

Scenario-based DSE addresses the design of MPSoC-based
embedded systems with multiple applications. For a long time,
only single fixed applications were addressed in the early DSE
of embedded systems [2]. Recently, an increasing amount of
literature is addressing the increasing dynamism of the nature
and number of applications on embedded systems. A useful
way of describing this application dynamism is by means of
scenario-oriented design [19]. Scenario-oriented design is a
benchmark-based design strategy where a notion of scenario
programs is used to describe which applications can run
concurrently during the usage of the embedded system.

With the introduction of workload scenarios [3], a new
problem is arising in the early DSE. The increasing number
of applications and their increasing dynamism translates into
an exponential growth of scenarios that needs to be taken
into account during scenario-oriented design. This exponential
relation between the number of scenarios and the number of
applications makes the early DSE of embedded systems even
harder. It is not enough to extend existing single-application
frameworks in such a way that multiple applications are
supported, but the number of evaluated scenarios during the
DSE must be limited in order to identify promising designs in
a short-time frame.

Some of the early DSE approaches of embedded systems
take multiple applications into account. Widely used are the
use-case scenarios. Use-case scenarios are comparable to
our notion of inter-application scenarios, and they describe
which applications can be active simultaneously. CA-MPSoC
[20] and MAMPS [21] are two design methodologies to
generate multiprocessor systems for multiple use-cases. Both
approaches try to find optimal mappings for each use-case
individually after which the design of the different use-cases
are merged. In case, the merged design of all the use-
cases does not fit on the architecture, MAMPS also provides
partitioning to divide the use-cases over different hardware
designs. The main difference of these approaches is that in
principle the mapping of a single application can change any
time a new use-case is encountered. In our approach, the
design of the final embedded system is less complex as the
mapping of a single application is independent of the use-
case. This may result in a nonoptimal application mapping
for a specific use-case, but there is no overhead when a
new use-case is encountered. In addition, both approaches
use homogeneous architectures in order to make it possible
to merge the design instances of different use-cases. In our
tool, this limitation is not present. Not only are heterogeneous
architectures allowed, but also the DSE is capable of allocating
architectural components on the MPSoC in such a way that
the architecture is optimized for all the use-cases.

An approach that does not merge design instances of
different use-cases, but takes the interaction between multiple
use-cases into account during design time, can be found in
[22]. The authors use a Logic-Based Benders Decomposition
approach using constraint programming to allocate the applica-
tion tasks onto the MPSoC. The benefit of the decomposition
approach is that the migration cost between the use-cases is

taken into account during the design. Still, this approach does
not take the intra-application dynamism into account.

An approach that takes both the inter- and intra-application
dynamism into account can be found in [23]. The approach
consists of static and dynamic parts. The static part will find
an optimal multi-application mapping for each sequence of
scenarios. This will result into templates that are used by
the online dynamic part to adapt the system to changing
circumstances. Although the approach is capable to adapt the
system to the full dynamism in a multi-application workload,
it does not address the increasing evaluation time due to
the increasing number of scenarios in future multi-application
workloads.

We address this issue by using fitness prediction. A survey
on fitness prediction can be found in [5]. Our fitness predictors
consist of a subset of the total set of application scenarios.
This subset of application scenarios is evaluated to estimate
the fitness of the mapping (i.e., a design instance). To train the
fitness predictors, we are using co-exploration. This is slightly
different than the co-evolutionary approach as presented in
[24]. In their approach, the evolution of the designs (or
solutions as it is called in [24]) is done in lockstep with the
evolution of the fitness predictors. As a result, the training of
the fitness predictors will always influence the search speed. In
our approach, the training of fitness predictors can completely
be separated from the search to high-quality solutions.

VII. Conclusion

In this paper, we presented scenario-based DSE for MPSoC-
based embedded systems. Scenario-based DSE provided an
efficient early design space exploration of dynamic multi-
application workloads by co-exploring the design space of
multi-application mappings onto an MPSoC with the design
space of representative scenario subsets. The scenario subsets
were used to quickly estimate the quality of a mapping,
whereas a small dynamic set of mappings was used to train
the representative scenario subset.

Three different approaches for scenario subset selection
were described: 1) a genetic algorithm; 2) a feature selection
algorithm; and 3) a hybrid approach. A genetic algorithm
was fast and was quickly capable of covering the complete
space of possible scenario subsets, but due to its stochastic
nature it could easily miss the optimal scenario subsets with
low-misclassification rates. The feature selection was more
deterministic and its directed search can eventually found
better subsets. However, feature selection was relatively slow
and could suffer from local optima in the scenario subset
space. The hybrid approach, as presented in this paper, com-
bined the two techniques. Therefore, it could offer a quick
coverage of the scenario subset space, a directed search and
less sensitivity to local optima. By combining both methods
(genetic algorithm and feature selection), it outperformed both
individual methods.

The experiments in this paper showed that during the DSE
there were two effects: 1) the overhead effect, and 2) the
accuracy effect. A larger scenario subset results in a more
expensive mapping evaluation. As a result, the DSE required

VAN STRALEN AND PIMENTEL: FITNESS PREDICTION TECHNIQUES FOR SCENARIO-BASED DESIGN SPACE EXPLORATION 1253

more effort to identify the Pareto front. Additionally, a large
subset also meant a higher accuracy. The higher accuracy
resulted in a better prediction that made the genetic search
to the Pareto front more efficient. Still, there was a certain
accuracy threshold with respect to the size of the subset. If the
size was below this threshold, the scenario-based DSE was not
capable of identifying a good Pareto front. Once the subset was
larger than the threshold, the mappings were classified precise
enough to result in a suboptimal Pareto front.

Future work will focus on the run-time exploitation of
application scenarios. Based on the dynamism in the multi-
application workload and the architecture, the embedded sys-
tem can be turned into an adaptive system that will dynami-
cally change the mapping based on the current circumstances.

References

[1] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: Orthogonalization of concerns and platform-based
design,” IEEE Trans. Computer-Aided Des. Integr. Circuits Syst., vol. 19,
no. 12, pp. 1523–1543, Dec. 2000.

[2] M. Gries, “Methods for evaluating and covering the design space during
early design development,” Integr. VLSI J., vol. 38, no. 2, pp. 131–183,
2004.

[3] S. V. Gheorghita, M. Hamers, J. Vandecappelle, A. Mamagkakis, S.
Basten, T. Eeckhout, L. Corporaal, H. Catthoor, F. Vandeputte, F. Boss-
chere, and K. De, “System-scenario-based design of dynamic embedded
systems,” ACM Trans. Des. Automat. Electron. Syst., vol. 14, no. 1, pp.
1–45, 2009.

[4] P. van Stralen and A. D. Pimentel, “Scenario-based design space
exploration of MPSoCs,” in Proc. IEEE Int. Conf. Comp. Des., Oct.
2010, pp. 305–312 .

[5] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—A survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3,
pp. 303–317, Jun. 2005.

[6] P. van Stralen and A. D. Pimentel, “Fast scenario-based design space
exploration using feature selection,” in Proc. Int. Workshop Parallel
Programming Run-Time Manage. Tech. Many-core Architectures, Feb.
2012, pp. 1–7.

[7] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Trans. Comp., vol. 55, no. 2, pp. 99–112, 2006.

[8] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere, “Daedalus: Toward composable mul-
timedia MP-SoC design,” in Proc. 45th Ann. Des. Automat. Conf., Jun.
2008, pp. 574–579.

[9] P. van Stralen and A. D. Pimentel, “A trace-based scenario database
for high-level simulation of multimedia MP-SoCS,” in Proc. Int. Conf.
Embedded Comp. Syst. Architectures MOdel. Simulat., Jul. 2010, pp.
11–19.

[10] G. Kahn, “The semantics of simple language for parallel programming,”
in Proc. IFIP Congr., 1974, pp. 471–475.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[12] D. E. Goldberg. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning, 1st ed. Addison-Wesley Professional [Online].
Available: http://www.worldcat.org/isbn/0201157675

[13] C. A. Coello Coello, G. B. Lamont, and D. A. Veldhuizen. (2007).
“MOP evolutionary algorithm approaches,” in Evol. Algorithms Solv-
ing Multiobjective Problems (Genetic and Evolutionary Computation,
2nd ed.). New York, NY, USA: Springer USA [Online]. Available:
http://www.springerlink.com/content/978-0-387-33254-3

[14] D. A. van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analyzing the state-of-the-art,” Evol. Comput., vol. 8, no. 2,
pp. 125–147, 2000.

[15] P. Somol, J. Novovicova, J. Grim, and P. Pudil, “Dynamic oscillating
search algorithm for feature selection,” in Proc. Int. Conf. Pattern
Recog., Dec. 2008, pp. 1–4.

[16] H. Orsila. (2009, Feb.). kpn-Generator [Online]. Avialble: http://
zakalwe.fi/∼shd/foss/kpn-generator/

[17] J. Hur, T. Stefanov, S. Wong, and S. Vassiliadis, “Systematic customiza-
tion of on-chip crossbar interconnects,” in Reconfigurable Computing:
Architectures, Tools and Applications (Lecture Notes in Computer
Science, vol. 4419). Berlin/Heidelberg, Germany: Springer, 2007, pp.
61–72.

[18] Sara. (2011). Lisa Cluster [Online]. Avialble: http://www.sara.nl/
systems/lisa

[19] J. M. Paul, D. E. Thomas, and A. Bobrek, “Scenario-oriented design for
single-chip heterogeneous multiprocessors,” IEEE Trans. vERY lARGE
sCALE iNTEGRATION (VLSI) Syst., vol. 14, no. 8, pp. 868–880, Aug.
2006.

[20] A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal, “CA-
MPSoC: An automated design flow for predictable multi-processor
architectures for multiple applications,” J. Syst. Architecture, vol. 56,
no. 7, pp. 265–277, Jul. 2010.

[21] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal, “Multipro-
cessor systems synthesis for multiple use-cases of multiple applications
on FPGA,” ACM Trans. Des. Automat. Electron. Syst., vol. 13, no. 3,
pp. 1–27, Jul. 2008.

[22] L. Benini, D. Bertozzi, and M. Milano, “Resource management policy
handling multiple use-cases in MPSoC platforms using constraint pro-
gramming,” in Logic Programming (Lecture Notes in Computer Science,
vol. 5366). Berlin, Germany: Springer, Dec. 2008, pp. 470–484.

[23] A. Schranzhofer, J.-J. Chen, L. Santinelli, and L. Thiele, “Dynamic and
adaptive allocation of applications on MPSoC platforms,” in Proc. Asia
South Pacific Des. Automat. Conf., 2010, pp. 885–890.

[24] M. Schmidt and H. Lipson, “Coevolution of fitness predictors,” IEEE
Trans. Evol. Comput., vol. 12, no. 6, pp. 736–749, Nov. 2008.

Peter van Stralen received the B.Sc. degree in com-
puter science and the M.Sc. degree in grid comput-
ing from the University of Amsterdam, Amsterdam,
The Netherlands, where he is currently pursuing the
Ph.D. degree.

His current research interests include embedded
systems, design space exploration, and concurrency.

Andy D. Pimentel received the M.Sc. and Ph.D.
degrees in computer science from the University of
Amsterdam, Amsterdam, The Netherlands.

He is currently an Associate Professor at the Com-
puter Systems Architecture Group, Informatics Insti-
tute, University of Amsterdam. His current research
interests include computer architecture modeling and
simulation, system-level design, design space explo-
ration, performance and power analysis, embedded
systems, and parallel computing.

Dr. Pimentel serves on the editorial boards of
Elsevier’s Simulation Modelling Practice and Theory and Springer’s Journal
of Signal Processing Systems. He serves on organizational committees for a
range of leading conferences, such as DAC, DATE, ICCAD, FPL, SAMOS,
and ESTIMedia.

