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Wei Quan, University of Amsterdam; National University of Defense Technology
Andy D. Pimentel, University of Amsterdam

The application workloads in modern MPSoC-based embedded systems are becoming increasingly dynamic.
Different applications concurrently execute and contend for resources in such systems, which could cause se-
rious changes in the intensity and nature of the workload demands over time. To cope with the dynamism of
application workloads at run time and improve the efficiency of the underlying system architecture, this ar-
ticle presents a hybrid task mapping algorithm that combines a static mapping exploration and a dynamic
mapping optimization to achieve an overall improvement of system efficiency. We evaluate our algorithm
using a heterogeneous MPSoC system with three real applications. Experimental results reveal the effec-
tiveness of our proposed algorithm by comparing derived solutions to the ones obtained from several other
run-time mapping algorithms. In test cases with three simultaneously active applications, the mapping so-
lutions derived by our approach have average performance improvements ranging from 45.9% to 105.9%
and average energy savings ranging from 14.6% to 23.5%.
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1. INTRODUCTION
Modern embedded systems, which are more and more based on Multi-Processor
System-on-Chip (MPSoC) architectures, often require supporting an increasing num-
ber of applications and standards. In these systems, multiple applications can run
concurrently and are thus simultaneously contending for system resources. For each
single application, there are often also different execution modes (or program phases)
with different requirements. For example, a video application could dynamically lower
its resolution to decrease its computational demands in order to save the battery. As a
consequence, the behaviour of application workloads executing on the embedded sys-
tem can change dramatically over time. Typically, the target MPSoC architecture plat-
forms are heterogeneous in nature, as such systems are capable of providing better
performance and energy trade-offs than their homogeneous counterparts [Kumar et al.
2004]. Here, the process of application task mapping plays a crucial role in exploiting
the system properties such that applications can meet their, often diverse, demands on
performance and energy efficiency [Sun and Sugawara 2011].

Author’s addresses: W. Quan and A. D. Pimentel, Informatics Institute, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands; W. Quan, School of Computer Science, National University
of Defence Technology, Yanwachi Main Street 47, Changsha, Hunan, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0000 ACM 1539-9087/0000/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 00, Publication date: 0000.

Page 1 of 25 Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs



00:2 W. Quan et al.

The problem of optimally mapping tasks onto a given set of heterogeneous proces-
sors for maximal throughput (performance) or minimal overall energy consumption
has been known, in general, to be NP-complete. When considering mapping multiple
applications onto a target architecture, this problem is exacerbated as the resource
contention between applications should be carefully considered in this case. State-of-
the-art methods for solving this problem can be divided into three categories: static,
dynamic and hybrid task mapping algorithms which, respectively, work at design time,
run time and both design time and run time. Traditionally, the task mapping problem
is solved statically at design time for which there are many known task mapping algo-
rithms targeting different application domains and different hardware architectures.
These algorithms typically use computationally intensive search methods to find the
optimal mapping or near optimal mapping for the applications that may run on the sys-
tem. Dynamic task mapping techniques, on the other hand, cannot be computationally
intensive as they have to efficiently make task mapping decisions at run time. There-
fore, these techniques typically use heuristics to find good task mappings. Evidently,
static task mapping techniques usually obtain mappings of higher quality compared
to those derived from dynamic algorithms as the former allow for exploring a larger
design space for the underlying architecture. This, of course, at the cost of consuming
more time. Another drawback of static mapping techniques is that they cannot cope
with dynamic application behaviour in which different combinations of applications
can be executing concurrently over time that are contending for system resources. To
overcome the shortcomings of pure static and dynamic task mapping algorithms, hy-
brid (semi-static) approaches have become increasingly popular in recent years. Usu-
ally, in this kind of approaches, multiple mapping solutions are found at design time
and applied at run time based on the current state of the system. However, most hybrid
mapping approaches still suffer from shortcomings regarding the support of adaptivity
to cope with application dynamism. For example, many approaches do not support the
handling of new, incoming applications that were not known at design time, or they
cannot capture fine-grained application dynamism, such as the dynamism that exists
within each application. In this work, we propose a novel hybrid task mapping (HTM)
algorithm for heterogeneous multimedia MPSoCs that tries to capture dynamic be-
haviour both between and within applications and which exploits the advantages from
both static and dynamic mapping algorithms.

Like all hybrid approaches, our proposed approach distinguishes two stages. Firstly,
the design-time stage performs design space exploration (DSE) to find two optimal
mappings for each application with the objectives of maximizing the throughput and
maximizing the throughput under a predefined energy budget respectively. Secondly,
the run-time stage dynamically optimizes the mapping of the running application(s)
based on the optimal mappings of the corresponding applications explored in the first
(design-time) stage and the system execution state. The second stage can be further
split into two steps, mapping initialization and mapping customization, which opti-
mize the mapping with the objective of maximizing the throughput under the prede-
fined energy budget and further improve the performance of the mapping using an
application-dependent objective respectively. Using a range of experiments, we show
the effectiveness of our proposed approach by comparing derived solutions to the ones
obtained from several other run-time mapping algorithms.

The remainder of this article is organised as follows. Section 2 presents a moti-
vational example for our work. Section 3 gives some prerequisites and the problem
definition for this work. Section 4 provides a detailed description of our hybrid task
mapping (HTM) algorithm. Section 5 introduces the experimental environment and
presents the results of our experiments. Section 6 discusses related work, after which
Section 7 concludes the paper.
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Fig. 1. Intra-application scenario performance of MJPEG

2. MOTIVATIONAL EXAMPLE
To support dynamism between and within applications, we use the concept of scenar-
ios [Paul et al. 2006; Gheorghita et al. 2009; van Stralen and Pimentel 2010b]. Here,
one can distinguish two forms of scenarios to capture dynamic application behaviour:
inter-application scenarios describe the simultaneously running applications in the
system, while intra-application scenarios define the different execution modes within
each application. The combination of these inter- and intra-application scenarios are
called workload scenarios, and specify the application workload in terms of the differ-
ent applications that are concurrently executing and the mode of each application. At
design time, a system designer could aim at finding the optimal mapping of applica-
tion tasks to MPSoC processing resources for each workload scenario with different
objectives (performance/energy). However, when the number of applications and ap-
plication modes increase, the total number of workload scenarios will explode expo-
nentially. Consider, e.g., 10 applications with 5 execution modes for each application.
In this case, there will be 60 million workload scenarios. If it takes one second to find
the optimal mapping for each scenario at design time, then one would need nearly two
years to obtain all the optimal mappings. Moreover, storing all these optimal mappings
(610-1 mappings) such that they can be used at run time by the system to remap tasks
when a new scenario is detected would also be unrealistic as this would take up too
much memory storage.

A general hybrid approach to solve this problem is by clustering workload scenarios
and only storing a single mapping per cluster of workload scenarios to facilitate run-
time mapping [Gheorghita et al. 2009; Quan and Pimentel 2013b]. Such clustering im-
plies a significant space reduction needed to store the mappings. Moreover, so-called
scenario-based design space exploration [van Stralen and Pimentel 2010a] can be de-
ployed to efficiently find these mappings by only evaluating a representative subset of
scenarios for each cluster. For example, let us consider a clustering method in which
we find and store a single mapping for each inter-application scenario that yields, on
average, the best performance for all possible intra-application scenarios within the
inter-application scenario [Quan and Pimentel 2013b; Schor et al. 2012]. However, as
we can see from the behaviour of a Motion-JPEG (MJPEG) encoder application in Fig-
ure 1, using such a single mapping to represent an entire inter-application scenario
shows considerable performance variations for the different intra-application scenar-
ios that exist in this inter-application scenario. In this particular example, the inter-
application scenario contains, besides the MJPEG encoder, two other simultaneously
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running multimedia applications: a MP3 decoder and a Sobel filter for edge detection
in images.

From this example, we can observe that the use of cluster-level mappings (i.e., map-
pings found to be good for an entire cluster of workload scenarios) could provide a run-
time mapping system with enough information to quickly find an adequate mapping
for a detected workload scenario but it will not immediately lead to finding the optimal
system mapping for any identified workload scenario. Besides this, there are two ad-
ditional drawbacks of this hybrid approach, as was already discussed in the previous
section: it lacks the adaptivity of supporting new applications (i.e., adding an applica-
tion would require to redo the entire process of clustering and design-time DSE) and it
still suffers from relatively high memory usage for storing all the pre-optimized map-
pings when the number of applications increases (for the example clustering method,
210-1 mappings need to be stored for 10 applications with 5 modes in each application).

In this work, we solve the first problem by splitting the handling of application
dynamism using two run-time steps: mapping initialization and mapping customiza-
tion. In the first step, an adequate mapping for a detected workload scenario is found
(as above), after which the second step performs run-time mapping optimization by
continuously monitoring the system and trying to perform (relatively small) mapping
customizations to gradually further improve the system performance. To address the
aforementioned problems of supporting new applications and storage requirements,
the design-time phase of our approach explores two optimal mappings for each intra-
application scenario in every single application. It does so for two different objectives:
maximizing the throughput and maximizing the throughput under a predefined en-
ergy budget. By using this method, the number of mappings that need to be determined
and stored at design time is greatly reduced (100 mappings need to be stored for 10
applications with 5 modes in each application). Also, if a new application needs to be
supported on the system, only two pre-optimized mappings for each intra-application
scenario of this application need to be provided to the system, avoiding the need of
exploring the mappings for all possible new inter-application scenarios.

3. PREREQUISITES AND PROBLEM DEFINITION
In this section, we explain the necessary prerequisites for this work and provide a
detailed problem definition.

3.1. Application Model
In this paper, we target the multimedia application domain. For this reason, we use the
Kahn Process Network (KPN) model of computation [Kahn 1974] to specify application
behaviour since this model of computation fits well to the streaming behaviour of mul-
timedia applications. In a KPN, an application is described as a network of concurrent
processes that are interconnected via FIFO channels. This means that an application
can be represented as a directed graph KPN = (P, F ) where P is set of processes
(tasks)1 pi in the application and fij ∈ F represents the FIFO channel between two
processes pi and pj . Figure 2 shows the KPN of the Motion-JPEG (MJPEG) decoder
application used in the previous section.

3.2. Architecture Model
In this work, we restrict ourselves to heterogeneous MPSoC architectures with shared
memory. An architecture can be modelled as a graph MPSoC = (PE,C), where PE
is the set of processing elements used in the architecture and C is a multiset of pairs

1We use the terms process and task interchangeably in this article.
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Fig. 2. KPN for MJPEG

cij = (pei, pej) ∈ PE × PE representing a buffered communication medium, composed
of a network channel (like a Bus, NoC, etc.) and a buffer located in shared memory,
between processors pei and pej . Combining the definition of application and architec-
ture models, the computation cost of task (process) pi on processing element pej is ex-
pressed as T ji and the communication cost between tasks pi and pj via channel cxy that
connects pex and pey is Ccxy

ij . Here, the time units for the communication cost and the
computation cost should be unified to the cycles under the same clock frequency in case
of different clock frequencies on the target system. With respect to power consumption,
SPi and DPi refer to the static and dynamic power consumption for pei. Besides pro-
cessing elements, another main component of energy consumption in our target system
is the shared memory. For this component, we denote the static and average dynamic
power consumption (for read/write transactions) as SM and DM respectively.

3.3. Task Mapping
The task mapping defines the binding of the components in a KPN application (includ-
ing the processes and the FIFO communication channels) to the underlying architec-
ture resources. For a single application, given the KPN of this application and a target
MPSoC, a correct mapping is a pair of unique assignments (µ : P → PE, η : F → C)
such that it satisfies ∀f ∈ F, src(η(f)) = µ(src(f)) ∧ dst(η(f)) = µ(dst(f)). When tasks
are mapped onto the underlying architecture, the usage Uk of each pek can be calcu-
lated by equation 1, where pi 7→ pek and pj 7→ pey mean that tasks pi, pj are mapped
onto processors pek and pey respectively. Note that, if two tasks are mapped onto the
same processor (k equals to y in equation 1), then the communication cost between
these two tasks will be neglected as it uses the internal memory on the processor for
communication.

Uk =
∑

pi 7→pek,pj 7→pey

(T ki + C
cky

ij ) (1)

In the case of a multi-application workload, the state of simultaneously running
applications that are distinguished as inter- and intra-application scenarios should
be considered in the task mapping. Let A = {app0, app1, ..., appm} be the set of all
applications that can run on the system, and M i = {mdi0, mdi1, ..., mdin} be the set
of possible execution modes for appi ∈ A. Then, SE = {se0, se1, ..., seninter}, with
sei = {app0 = 0/1, ..., appm = 0/1} and appi ∈ A (if appi is active then appi = 1, else
appi = 0), is the set of all inter-application scenarios. And saij = {..., appk = mdkjk , ...},
with 0 ≤ k ≤ m, appk ∈ A ∧ appk = 1 ∈ sei and mdkjk ∈ M

k, represents the j-th intra-
application scenario in inter-application scenario sei ∈ SE. The set of all workload
scenarios can then be defined as the disjoint union S = ti∈SESAi, with SAi = {sai1,
sai2, ..., sa

i
ni
intra
}.
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As already explained in the previous section, we propose to perform the task map-
ping of applications in two stages. In the first stage, which is performed at design
time, we perform DSE for each intra-application scenario of each application (denoted
by scenario si in the whole workload scenario space S) to find two mappings that show
i) the maximal throughput (optimization objective Ot) and ii) the maximal throughput
under a certain energy budget bi (optimization objective Otb) respectively. Here, bi is
defined as the energy budget for workload scenario si. As will be explained in detail in
the next section, the two mappings derived from design-time DSE are stored so they
can be used for mapping initialization in the second (run-time) stage to get a final
mapping – either by directly using the stored mappings (if a newly detected work-
load scenario only contains a single active application) or by deriving a new system
mapping from the stored per-application mappings – when a new workload scenario
has been detected. As mentioned above, both the Ot and Otb objectives are used in
design-time mapping exploration, whereas only Otb will be used for run-time mapping
optimization. To allow our design-time DSE to construct a Pareto Front with regard to
the performance and energy consumption of mapping solutions, we change the objec-
tive of maximal throughput into a minimal objective, i.e. Op = 1/Ot. Consequently, the
system objectives turn into minimizing Op and Opb. More specifically, we use system
energy consumption Esi , si ∈ S and total workload scenario execution time Xsi , si ∈ S
for workload scenario si to find the optimal or near optimal mappings that satisfy the
above two objectives at design time. For the purpose of run-time mapping customiza-
tion, we also use an application-specific objective (besides the system-wide objective
Opb), denoted as Oβi for application appi. This objective defines the performance re-
quirements of each separate application, which in our case is still defined in terms of
throughput.

Under these definitions and given the KPN = (P, F ) for each application and an
MPSoC = (PE,C), our goal is to find the optimal or near optimal mapping at run
time for each detected workload scenario si ∈ S with the objective to minimize Opb and
where each application should also satisfy its own objective Oβ .

4. A NOVEL HYBRID TASK MAPPING (HTM) ALGORITHM
As shown in Figure 3, the entire workflow of our approach can be divided into three
steps: design-time preparation, run-time mapping initialization and run-time map-
ping customization. As mentioned before, in the step of design-time preparation, two
optimized mappings for each intra-application scenario are prepared by exploring the
corresponding mapping space. These pre-optimized mappings will be stored in sys-
tem memory for run-time mapping initialization/optimization. At run time, when the
system detects a new workload scenario, our HTM algorithm will try to produce a
good mapping for the active applications in the scenario using (a combination of) the
stored per-application mappings derived from the design-time preparation step. Here,
we make the assumption that each workload scenario will execute long enough to jus-
tify a possible remapping of application tasks. Otherwise, a trade-off needs to be made
between the cost of remapping and the mapping performance improvement, which is
beyond the scope of this article. This process of determining a new mapping for all
applications when a new workload scenario has been detected, is referred to as map-
ping initialization. The objective of this process is to maximize the system throughput
under the predefined energy budget (or, in other words, minimize Opb). The mapping
initialisation, which uses the stored mapping information of isolated applications, may
not immediately lead to finding the optimal system mapping for a complete identified
workload scenario (i.e., the combination of applications that form the scenario). There-
fore, during the execution of a certain workload scenario, the HTM algorithm will try
to actively further improve the mapping performance when application-specific objec-
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Fig. 3. The workflow of HTM

tives are (about to be) violated. To this end, it continuously monitors the system and
tries to perform relatively small mapping customizations to gradually further improve
the system performance. Evidently, to reduce migration overheads, the algorithm aims
at keeping the number of required task migrations as low as possible. This process is
called mapping customization. The details of these three steps will be explained in the
following subsections.

4.1. Design-time Preparation
At design time, the mappings with minimal Op and Opb will be searched for all intra-
application scenarios in each isolated application (i.e., in those inter-application sce-
narios with only a single active application). As shown in Figure 3, it would also
be possible to cluster intra-application scenarios of applications, and only determine
mappings with minimal Op and Opb for an entire cluster of intra-application scenar-
ios. This would further reduce the number of mappings that need to be explored and
stored. However, in this article, we assume that mappings with minimalOp andOpb are
searched for all separate intra-application scenarios of applications. To find these map-
pings, we deploy a scenario-based DSE approach [van Stralen and Pimentel 2010a],
which is based on the well-known NSGA-II genetic algorithm (GA). As our target MP-
SoC platform is known, we can use a simplified version of the approach in [van Stralen
and Pimentel 2010a]. The implementation of the genetic algorithm is explained below.

4.1.1. Chromosome Representation. We use a standard approach for representing map-
pings within the GA’s chromosomes [Erbas et al. 2006]. It contains two parts. The first
part contains the mapping of the processes in the application, whereas the second part
describes the mapping of the communication channels of the application. Implicitly,
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Fig. 4. Pareto Front of a workload scenario with application Sobel active

this also contains the resource allocation for the platform. Resources that are not used
in any binding (processing or communicating resources) are also not allocated on the
platform. This representation method could also be applied to store the pre-optimized
mapping on the target system. In that case, for each process and FIFO channel in the
application KPN, it would need log

|PE|
2 bits and log

|C|
2 bits respectively to encode the

mapping information. To store a mapping in system memory for application appi that
contains |Pi| processes and |Fi| FIFO channels, it would need |Pi| ∗ log|PE|2 +|Fi| ∗ log|C|2
bits.

4.1.2. Fitness Function. To find the mappings with minimal Op and Opb for workload
scenario si in the mapping space in question, the Pareto Front of mapping performance
and mapping energy consumption is generated by solving the following multi-objective
optimization problem:

min[Esi , Xsi ]. (2)

Evaluating the fitness value of each individual (i.e., design point) is performed using
the Sesame system-level MPSoC simulation framework [Pimentel et al. 2006]. After
the GA-based DSE, a Pareto Front of solutions is generated, as illustrated in Figure 4.
Looking at the Pareto Front, one can easily obtain the mappings satisfying the minimal
Op and Opb, which equal to the mappings with minimal Xsi and minimal Xsi under
the energy budget of bi. This energy budget of bi is calculated using equation 3. The
first part α in equation 3 is a constant scaling factor set for the energy budget and
the second part represents the minimal energy consumption for workload scenario si.
Here, we assume that the energy budget bi should be higher than the minimal energy
consumption of the solution mappings found for the workload scenario si.

bi = α ∗ argmin(Esi), with α > 1 (3)

4.1.3. Operators for NSGA-II. To effectively search for global optimal mapping solutions,
and escape possible local ones, the crossover and mutation operators are important
components of a GA. With respect to the crossover operator, the most common methods
are one-point crossover, two-point crossover and uniform crossover. In our work, the
one-point crossover is used as it is simple and yields more or less the same effect as
the other approaches. Regarding mutation, we use an operator that randomly selects
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an application task that is subsequently moved to a randomly selected processor. The
last step is to set appropriate parameters for the GA, such as population size, crossover
and mutation probabilities, etc. The parameters used in our work will be introduced in
the experiment section.

4.2. Run-time Mapping Initialization
In the mapping initialization stage, we use an Energy-aware Iterative multi-
application Mapping (EIM) algorithm [Quan and Pimentel 2013a] to find a good initial
mapping for a newly detected workload scenario. Our EIM algorithm, which is outlined
in Algorithm 1, can be divided into a static part and a dynamic part. The static part
is used to capture the intra-application dynamism in those inter-application scenarios
with only a single active application.

The mappings derived from the design-time preparation stage are used by the EIM
algorithm, as shown in lines 1-3 of Algorithm 1. To this end, these mappings are stored
in a so-called scenario database. Besides storing these two mappings, the estimated
minimum energy consumption for each intra-application scenario of each application
is also stored in the database. This value is based on the most energy efficient mapping
found in the Pareto Front generated by design-time DSE (e.g., the left-most point in
Figure 4) and is calculated using equation 4. The calculation and use of this value will
be explained later on. When the system detects a new workload scenario, the EIM al-
gorithm will first choose the corresponding optimal mapping – as stored in the scenario
database – for each application active in the workload scenario as the initial mapping.
As the database only stores mappings for the intra-application scenarios of each single
application, its size typically is relatively small. However, if its size becomes too large,
then the size can be controlled by clustering intra-application scenarios (as explained
in Section 4.1) and choosing a proper granularity of scenario clusters.

If there is only a single application active in the workload scenario, then the map-
ping selected from the scenario database as the initial mapping is the mapping with
the maximal throughput under a given energy budget for that particular application.
Hereafter, the algorithm directly returns this initial mapping as a final mapping de-
cision. Otherwise, if there are multiple applications active simultaneously, then the
mapping with maximal throughput for each active application will be chosen as initial
mappings. These initial per-application mappings will then simply be merged together
to form the initial mapping for the complete workload scenario. Here, there are two
reasons for not choosing the mapping with maximal throughput under a certain en-
ergy budget as the initial mapping. First, the communication locality behaviour of the
mapping with maximal throughput under an energy budget typically is not as good as
the one with maximal throughput without an energy budget. Our run-time algorithm
exploits this locality incorporated in the initial per-application mappings for further
improvement of the workload scenario mapping. Second, we will consider the energy
constraints during the mapping optimization process at run time, so we do not yet have
to consider an energy budget for the initial mapping in the case of a workload scenario
with multiple active applications.

The dynamic part of our EIM algorithm is only used for those workload scenarios
that contain multiple simultaneously active applications. It aims at further optimizing
the initial mapping found during the static part of the EIM algorithm, as described
above. The strategy used in the dynamic part of the EIM algorithm is described below.

For the active multi-application scenario, our algorithm will optimize the mapping
with the objective to minimize the system metric Opb. Consequently, the optimal map-
ping for each scenario is the one that has the minimal Op among all the possible map-
pings under energy budget of bi for workload scenario si. It is, however, extremely
hard to find the optimal mapping for each workload scenario at run time because of
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ALGORITHM 1: EIM algorithm
Input: KPNappactive , MPSoC, scenario id(si)
Output: (µ, η)
1: (µ, η) = getInitMapping(si);
2: if singleAppActive(si) == true:
3: return (µ, η);
4: else:
5: U = peUsage(KPNappactive , MPSoC, µ, η);
6: Mp = maxPUsage(U );
7: Vp = varPUsage(U );
8: bi = eBudget(si);
9: return iterativePOpt(µ, η, Mp, Vp, bi);

the following reasons. Firstly, as one cannot obtain the true value of Op before actu-
ally executing the application on the target platform, an estimated O

′

p needs to be
used to guide the algorithm to find the optimal mapping. Here, there exists of course
a clear accuracy/overhead trade-off between different estimation techniques. Efficient
but less accurate run-time mapping-performance estimation techniques may lead to
sub-optimal mappings, while the high overhead of more accurate techniques may neu-
tralise the performance benefits of the mapping optimization itself. Secondly, the map-
ping problem is NP-complete, as was mentioned before. It is unrealistic for a run-time
mapping algorithm to explore the entire mapping space to determine the optimal map-
ping for a scenario.

To solve the above problems, we use an alternative method using heuristics to search
a part of the mapping space which may contain the optimal or a near optimal mapping.
To this end, we change the objective of performance into the optimization of two alter-
native metrics: Mp and Vp that, respectively, represent the maximal usage and usage
variation in Uk, pek ∈ PE (see also equation 1). In this case, we do not need to use the
metric Op as the optimization objective, thereby addressing the first of the two above
problems. Regarding the second problem, by using an optimization heuristic based on
the metrics Mp and Vp, we aim at finding an optimal or near optimal mapping in a
computationally efficient fashion. The rationale behind this heuristic is that a better
mapping for the objective of high throughput usually has smaller Mp and Vp values.
For the purpose of restricting the energy consumption of the resulting mapping, we use
the estimated energy consumption of a mapping (µi, ηi) for workload scenario sj given
by equation 4 and the system energy budget bj calculated by equation 5, to control
the search space of possible mappings. Here, Emk represents the estimated minimal
energy consumption for application appk which is stored in the scenario database.

In equation 4, E
′

p is the dynamic and static energy consumed by all active processors
and E

′

m represents the dynamic and static energy consumption of the shared mem-
ory. This relatively simple energy model is built on several assumptions of the target
architecture: 1) the power model used for the shared memory in the system already
includes the power consumption of the bus connected to it; 2) for simplicity, we ignore
the energy consumption caused by resource contention and communication delays. We
make these assumptions to control the complexity of the analytical energy model and
reduce the computation cost at run time. It is hard (and computationally much more
expensive) to analytically derive the task stalls incurred by delays due to communica-
tion and resource contention in heterogeneous MPSoCs as considered in this work. So,
here we make a tradeoff between accuracy and computation complexity. Under these
assumptions, the system active time for a specific workload scenario is simply assumed
to be argmax(Ui), which is subsequently used to calculate the static energy consump-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 00, Publication date: 0000.

Page 10 of 25Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs



A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 00:11

tion. Notice that the energy budget defined here is different from the energy budget
used for design-time DSE (equation 3). In equation 5, the estimated minimal energy
consumption is used instead of the actual minimal energy consumption determined
(using the Sesame simulator) by design-time DSE like is used in equation 3. The es-
timated minimal energy is computed by applying equation 4 to the mapping that has
been found to yield the highest energy efficiency after performing design-time DSE
and is stored in the scenario database (as was explained earlier). This is motivated by
the fact that the energy consumption of possible mapping solutions explored at run
time are also estimated using equation 4. Therefore, we also make a projection of the
energy budget using equation 4.

Eij = E
′

p + E
′

m (4a)

E
′

p =
∑

active pek

(DPk ∗ Uk + SPk ∗ argmax(Uk)) (4b)

E
′

m = DM ∗
∑

cxy=mem
frt 7→cxy∈ηi

(C
cxy

rt ) + SM ∗ argmax(Uk) (4c)

bj = α ∗
∑

active appk∈sj

Emk (5)

The mapping algorithm for the workload scenarios with multiple active applications
is outlined in Algorithm 2, which will be executed in an iterative fashion. The starting
mapping used in this algorithm is the one derived from Algorithm 1. In each iteration,
the algorithm first proposes a new mapping for each active application as shown in
line 2 of Algorithm 2. In this process, the algorithm searches the mapping space us-
ing the following greedy pattern: it checks the processors in Uk in descending order to
determine whether the KPN application in question has a task or a bundle of adja-
cent, communicating tasks2 resident on this processor. If so, then the algorithm finds
a possible substitute processor for the task/adjacent tasks that satisfies the following
conditions:

(1) The M
′

p of the new mapping is smaller than the Mp of the old mapping.
(2) If the previous condition cannot be satisfied, then the algorithm tries to find a

substitute processor for which the resulting M
′

p is equal to Mp and V
′

p is smaller
than Vp. If the first condition was satisfied, then this condition will never be used
in this particular iteration.

(3) The estimated energy consumption of the new mapping should be smaller than the
energy budget bi of the (intra-application) scenario si in question.

The above process proposes new mappings for those applications that satisfy the con-
ditions (for the other applications, the mapping remains unaltered). These newly pro-
posed mappings are either a mapping that has a minimal M

′

p (if condition 1 has been
satisfied) or a mapping with minimal V

′

p . However, in the above process, it can also be
the case that there are multiple new mappings proposed for an application, e.g. when
there are multiple tasks (or task bundles) that can be remapped and for which the

2Mapping such a task bundle to a single processor is the outcome of the design-time mapping
optimization to reduce communication overhead.
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ALGORITHM 2: IPO algorithm
iterativePOpt(µ, η, Mp, Vp, bi):
1: for each active appj :
2: (µj , ηj) = getPSubstitute(µ, η);
3: if (µj , ηj) != (µ, η):
4: U = peUsage(KPNappactive , MPSoC, µj , ηj);
5: M j

p = maxPUsage(U );
6: V j

p = varPUsage(U );
7: Lj = perfLoss(appj , µ, η, µj , ηj);
8: Mk

p = argmin(M j
p);

9: if Mk
p < Mp:

10: (µ∗, η∗) = (µk, ηk);
11: iterativePOpt(µ∗, η∗, Mk

p , V k
p , bi);

12: else:
13: V t

p = argmin(V j
p + Lj);

14: (µ∗, η∗) = (µt, ηt);
15: if (µ∗, η∗) == (µ, η):
16: return (µ, η);
17: else:
18: iterativePOpt(µ∗, η∗, M t

p, V t
p , bi);

above conditions hold. In these cases, we use another metric, L, to decide on the final
proposed mapping, where the value of L needs to be minimized. The metric L tries to
capture the performance loss of a task remapping for the application in question3 and
is calculated using equation 6.

L =
∑
pk∈Bj

i

(T jk − T
i
k) + (C

cjl
kt − C

cil
kt ) (6)

Here, we denote the task/task bundle that needs to be remapped from pei to pej as Bji .
After the algorithm has proposed a new mapping for each application, the next step

is to select the most effective among these remapping proposals to be used for the
next optimization iteration of the algorithm or return a mapping as the final one, as
shown in lines 8-18 of Algorithm 2. If no new mapping has been proposed for any of the
applications in the workload scenario in the previous step, then the input mapping will
be returned as the final optimized result. Otherwise, we use the following conditions
to select the most effective remapping for the next iteration of the algorithm:

(1) If there is one and only one proposed mapping that has the minimalM
′

p and thisM
′

p

is smaller than the Mp of the original mapping, then this mapping will be passed
to the next mapping optimization iteration.

(2) If the first condition has not been satisfied, then the proposed mapping with
argmin(V

′

p + L) will be taken as the input mapping for the next iteration. The
rationale behind this is that the algorithm tries to gradually optimize the mapping
for the entire workload scenario while keeping the performance loss for a single
application due to task remapping as small as possible (i.e., taking into account
the processor affinity of the tasks proposed to be remapped).

3We note that L can be negative, implying that the task/task bundle has a higher affinity with
the processor it is proposed to be mapped on.
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The time complexity of our EIM algorithm is highly dependent on the diversity of
each pre-optimized (i.e., statically derived) mapping stored in system memory, espe-
cially considering the iteration count of our EIM algorithm. The diversity |Di| of an
application (appi) mapping is defined as the number of pipeline segments in this map-
ping. Under this definition, |Di| = 1 and |Di| = |Pi| mean that all the tasks in appi
are mapped onto a single processor and different processors respectively. Here, |Pi|
represents the number of tasks in appi. In the function on line 2 in Algorithm 2,
the maximal number of possible new mappings is |PE| ∗ |Di| ∗ |PE|. For each pos-
sible new mapping, the time consumed for computing the values of Mp and Vp is
O(|PE||P | + |F ||C| + 2|PE|). Consequently, the time complexity of each active appli-
cation in each iteration is O(|PE|2|Di|(|PE||P | + |F ||C| + 2|PE|)). The approximate
time complexity of each iteration then is O(|PE|2|D|(|PE||P |+ |F ||C|+2|PE|)), where
|PE|, |D|, |P |, |F | and |C| respectively represent the total number of processor ele-
ments, the sum of |Di| of each active application appi, the total number of active tasks,
the total number of active FIFO channels and the total number of communication
channels. As the algorithm searches the mapping space to minimize Mp and Vp simul-
taneously, the maximal iteration count of Algorithm 2 is argmax(|D|, |D||PE|), where
the first and the second argument represent the maximal iteration count needed for
searching each of the above metrics. Then, the overall time complexity of Algorithm 2
is O(|PE|3|D|2(|PE||P |+ |F ||C|+ 2|PE|)).

4.3. Run-time Mapping Customization
After the mapping is initialized for the active workload scenario, the system will mon-
itor the execution of this workload scenario. As mentioned before, the application-
specific objective of each active application will be applied at run time, which will be
used to determine whether or not a performance problem arises. Here, we assume that
the target MPSoC should, in principle, be dimensioned such that it can accommodate
all possible target applications but that a particular application’s performance objec-
tive may be violated due to a bad mapping. When the system detects that an objective
is unsatisfied, a Scenario-based run-time Task Mapping (STM) algorithm is applied to
find a new task mapping for that particular application that missed the performance
goal. If multiple applications miss their performance goal, then the STM algorithm
will start optimizing the most problematic application first. This STM algorithm is
based on our previous work in [Quan and Pimentel 2013b], but has been extended in
this work to also work for heterogeneous MPSoC architectures. The main steps of our
STM algorithm are described below.

4.3.1. Finding the Critical Task. The first step of our STM algorithm is to find the so-
called critical task for the application that missed its objective, as shown in lines 5-8
of Algorithm 3. The rationale behind this is that by remapping this critical task and
possibly its neighbouring tasks (forming a bottleneck in the application), the resulting
effect will be optimal. To find the critical task, the STM algorithm maintains three
lists. The first list stores the task costs (TC). For every application, it contains the cost
of the application’s tasks, where the cost is determined by the sum of the execution and
communication times of a task. These task costs are arranged in descending order in
the list. The two other lists concern the storing of two other metrics for each task: the
proportion of task cost in the total busy time of the PE (i.e., processor) onto which the
task is currently mapped (CIB), and the proportion of task communication time (read
and write transactions) in the task cost (CIC).

Using the TC list, the algorithm checks the task at the top of the list to find the
critical task, taking the following two conditions into account: 1) whether or not the
task’s CIB proportion is lower than a specific threshold, defined by pCIB. Here, the
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ALGORITHM 3: STM algorithm
Input: KPNappi , µ, η
Output: New(µ, η)
list: TC, CIC, CIB, PU
pCIC = δc, pCIB = δb
1: results[] = getStatistics();
2: taskCost(KPNappi , results, TC, CIC, CIB);
3: peUsage(results, PU);
4: while(1) :
5: if (apptype = getType(KPNappi )) == DATA PARALLEL :
6: critical = findDPCritical(KPNappi , TC, CIC, CIB, pCIB, pCIC);
7: else :
8: critical = findCritical(KPNappi , TC, CIC, CIB, pCIB, pCIC);
9: reason = findReason(critical, CIC, CIB, pCIB, pCIC);
10: if reason == POOR LOCALITY :
11: MCC[] = minCircle(KPNappi , results, critical);
12: if GetSubstitute(PU, µ, η, MCC, apptype) == true :
13: return New(µ, η);
14: else failed;
15: else if reason == LOAD IMBALANCE :
16: if GetSubstitute(PU, µ, η, apptype) == true :
17: return New(µ, η);
18: else failed;
19: else :
20: pCIB += ε;
21: pCIC -= ε;

rationale is that a high-cost task receiving only a small fraction of processor time may
imply that the processor is overloaded. If the task satisfies this condition, then this
task is considered as the critical task and the process of finding the critical task ends.
Otherwise, the algorithm continues to check the other tasks in the TC list with lower
costs until it finds the critical task. If there is no task in the application that satisfies
the first condition, then the second condition will be used: 2) Whether or not the CIC
proportion is higher than the threshold pCIC. The algorithm checks all the tasks using
this second condition just like it did for the first condition. If all the tasks do not satisfy
these two conditions, then the algorithm will, respectively, increase and decrease the
pCIB and pCIC thresholds by ε, after which the above process is restarted again.

For data parallel applications, the process of finding the critical task has one ad-
ditional test as compared to regular applications. This extra test (performed in the
function findDPCritical) involves the check whether or not all data-parallel tasks are
mapped onto different PEs. If there are data-parallel tasks that are mapped onto the
same processor, then those tasks with higher task costs will be treated as critical tasks.
Otherwise, the process of finding the critical task will be the same as for regular ap-
plications.

4.3.2. Remapping the Critical Task. After the critical task has been found, the STM al-
gorithm tries to analyze the reason for missing the application’s performance goal.
In this respect, we recognize two different reasons: poor locality and load imbalance.
Here, we use the process of determining the critical task to also determine the rea-
son for not meeting the performance goal: If the CIC proportion of the critical task is
higher than the value of the current pCIC threshold, then the algorithm assumes that
poor locality is the reason. Otherwise it takes load imbalance as the reason for not
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Fig. 5. Example of an MCC for a critical task (gray task on the left-hand side)

meeting the application demands. This means that poor locality has a higher priority
than load imbalance as a reason for not meeting the application demands, which is
helpful to reduce the energy consumption due to communications.

Subsequently, the function GetSubstitute in the STM algorithm can follow different
strategies to find a target PE to which the critical task will be remapped. The selection
of remapping strategy depends on the reason for not meeting the application’s perfor-
mance demands as well as on the type of application (data parallel or not). The strate-
gies that are used to find the substitute PE for data-parallel applications are similar
to the ones for regular applications except that one additional condition is taken into
account for finding the substitute PE: the substitute PE should not be a PE onto which
its parallel tasks are mapped.

Poor locality. In the case of poor locality, the STM algorithm will try to find a better
mapping for the application in question based on a minimal cost circle (MCC) ap-
proach. A situation that has been identified as ”poor locality” is mainly due to the
communication overhead between tasks. Evidently, if the communicating frequency
between two tasks is very high or the communicating data size is very large, then
these two tasks should preferably be mapped onto the same PE or onto two different
PEs that contain a more efficient interconnect between each other. The MCC strat-
egy aims at redistributing the critical task and possibly its neighbouring tasks over
PEs such that communication overhead is reduced while trying to avoid creating new
computational bottlenecks. To this end, it first finds the minimal cost circle based on
equation 7 for the critical task pi:

min(Circle Cost(pi)
z
mn), with 0 ≤ m,n < |P |,m ≤ i ≤ n, 0 ≤ z < |PE| (7)

where:

Circle Cost(pi)
z
mn =

∑
m≤k≤n
pk 7→pez

T zk +
∑

m≤k≤n
pk 7→pez

∑
0≤j<|P |

C
czy
kj (8)

where T zk denotes the execution time of task k for PE z, and Cczykj denotes the commu-
nication overhead between tasks k and j (see Section 3.2). Figure 5 shows an example
of an MCC (indicated by the oval on the right-hand side) consisting of a task bundle of
three tasks, including the critical task (gray task).

After the MCC of the critical task has been determined, the function GetSubstitute
will choose a substitute PE for all the tasks included in the identified MCC to achieve
a new mapping. As the task to processor binding is part of the calculation of the MCC
of the critical task, implying that the binding with the minimal MCC is known after
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this calculation, the substitute PE is the processor used in this binding. However, if
the MCC solely consists of the critical task itself, then the critical task will be mapped
together with the neighbouring task with which the critical task has the heaviest com-
munication to the processor that yields the minimal task cost for the combined tasks.
After the substitute PE has been found, the FIFO channels between the tasks that
need to be remapped are either mapped as internal communication onto the new PE
(if communicating tasks are mapped onto this PE) or onto the system bus.

Load imbalance. In the case a load imbalance has been identified as the reason for
not meeting the application demands, a load balancing strategy is used to remap the
critical task. For this purpose, the PU list is used, containing the processor utilisations
for each PE. The substitute PE for the critical task is the PE with the lowest utilisation
in the PU list that is different from the PE onto which the critical task is currently
mapped. If such a substitute does not exist, then the algorithm cannot find a better
mapping.

In the STM algorithm, the most time consuming part is the function for finding the
MCC of the critical task in line 11 of Algorithm 3. The time consumption of an exhaus-
tive search method to find the result of equation 7 is O(|Pi||PE||Fi||C|). To reduce the
time complexity of this function, we find the MCC by gradually adding a communicat-
ing task into the bundle of tasks around the critical task to see whether the minimal
cost of the new MCC task bundle (if the task bundle is mapped to a different proces-
sor) is larger than the previous task bundle. If so, this communicating task will not be
added to the MCC task bundle. By using this greedy method, the maximal time com-
plexity is reduced to O(|Pi||PE| ∗ N) where |Pi||PE| represents the maximal number
of times of selecting the MCC task bundle and N represents the time complexity of
calculating the cost of a new MCC task bundle.
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5. EXPERIMENTS
5.1. Experimental Framework
To evaluate the efficiency of our HTM algorithm and the mappings found at run time
by this algorithm, we deploy the Sesame system-level MPSoC simulator [Pimentel
et al. 2006]. To this end, we have extended this simulator with our run-time resource
scheduling framework, as illustrated in Figure 6. Our extension includes the Scenario
DataBase (SDB), a Run-time System Monitor (RSM) and a Run-time Resource Sched-
uler (RRS). The SDB is used to store the mappings for intra-application scenarios of
each application as derived from design-time DSE as well as the application-specific
information like the performance objective, energy budget, etc. The RSM is in charge
of detecting and identifying the active workload scenario, and also collects the statis-
tics (e.g., performance of each application, system execution information, etc.) from
the underlying system during the execution of a certain workload scenario. Here, we
would like to note that the mechanism for the actual scenario detection and identifi-
cation is beyond the scope of this article. The RRS uses the HTM algorithm (the EIM
part) and the identified workload scenario by the RSM to do mapping initialization at
the beginning of each new workload scenario. During the execution of a workload sce-
nario, the RRS uses the HTM algorithm (the STM part) and the statistics collected by
the RSM to do mapping customization when there is a pre-defined application-specific
performance objective violated (triggered by RSM).

When a new application needs to be added to the framework, two design-time prepa-
rations for this application are required. First, as mentioned in Section 2, two map-
pings for each intra-application scenario of this application need to be explored at de-
sign time. These pre-optimized mappings will be stored in the SDB. Second, a standard
function needs to be provided that helps the RSM to collect the appropriate application
execution statistics and to decide whether or not the application violates its perfor-
mance objective. Also, the user-defined application-specific performance objective and
energy budget need to be stored in the system memory.

5.2. Experimental Results
5.2.1. Experiment Setup. In this subsection, we present several experimental results

in which we investigate various aspects of our HTM algorithm. For our experiments,
we use three typical multi-media applications: a Motion-JPEG (MJPEG) encoder, an
MP3 decoder, and a Sobel filter for edge detection in images. These applications are
denoted as A1, A2 and A3 respectively in Table II and Figure 7. The KPN of the
MJPEG application contains 8 processes and 18 FIFO channels, Sobel contains 6 pro-
cesses and 6 FIFO channels, and MP3 contains 27 processes and 52 FIFO channels.
Moreover, MJPEG has 11 intra-application scenarios, MP3 has 3 intra-application sce-
narios, whereas Sobel only has 1 intra-application scenario. This results in a total of
95 different workload scenarios. Here, the 11 intra-application scenarios (execution
modes) of MJPEG represent 11 different levels of computation complexity due to dif-
ferences in the characteristics of the images being processed. For MP3, however, the
intra-application scenarios are defined by the way of how the input music is decoded
(left mono, right mono and stereo). The simultaneously active tasks are therefore dif-
ferent among the different intra-application scenarios of MP3. At design time, we have
determined the optimal mappings for each intra-application scenario of each applica-
tion targeting the two throughput objectives Op and Opb, as explained in Section 4.1.
For all the three applications, there are 15 intra-application scenarios (MJPEG : 11,
Sobel : 1 and MP3 : 3) in total. That means that we need to store 30 optimal mappings
in system memory (i.e., the scenario database).
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Table I. Parameters of NSGA-II

parameter value
initial population size 256

generation size 256
generations 512

crossover probability 0.8
mutation probability 0.2

Table II. Studied application workload scenarios

Inter-application scenario Workload scenario
A1 mjpeg 7
A2 sobel 0
A3 mp3 2

A1A2 mjpeg 7, sobel 0
A1A3 mjpeg 7, mp3 2
A2A3 sobel 0, mp3 2

A1A2A3 mjpeg 7, sobel 0, mp3 2

The parameters of the NSGA-II genetic algorithm we have used for design-time DSE
are listed in Table I, which have been tuned for obtaining high-quality mappings for
each workload scenario in our benchmark set.

With respect to the target architecture, we target a heterogeneous MPSoC contain-
ing 5 different processors, connected to a shared bus and memory. In this work, we
assume that these 5 processors can execute all application tasks. However, we want
to stress that our framework is not restricted to this assumption: dedicated processors
could also be used in our framework. In that case, some additional information like the
possible target processor of each task is needed for the RRS to derive a correct map-
ping. The architecture model also includes the required components for our run-time
scheduling framework.

In the following experiments, we will evaluate the effectiveness of our HTM algo-
rithm by studying how the run-time part of HTM (the EIM algorithm for mapping
initialization and the STM algorithm for mapping customization) improves the map-
ping quality in terms of scenario execution time and scenario energy consumption.

5.2.2. Mapping Initialization. In this experiment, we compare the EIM algorithm to three
different run-time mapping algorithms: Simple Mapping Merge (SMM) which simply
merges together the (statically derived) optimal mappings of each active application
for the corresponding intra-application scenario, Task Processor Affinity (TPA) which
uses the affinity between tasks and processors to greedily determine a mapping with-
out considering resource contention, and Output-Rate Balancing (ORB) [Castrillon
et al. 2011] which aims at balancing the computation and communication load of each
processor. Moreover, we also compare the run-time mapping results to the results of
optimal mappings for each workload scenario. These optimal mappings have been stat-
ically determined by means of design-time DSE using the NSGA-II genetic algorithm.

Here, we focus on those workload scenarios that have the heaviest computational
demands, instead of all workload scenarios. These workload scenarios are listed in
Table II, where the first column specifies the encoded (in terms of A1, A2 and A3)
inter-application scenarios and the second column specifies the intra-application sce-
narios (labeled by the integer following the application name) used to form the work-
load scenario. For the scaling factor α of the energy budget in our EIM algorithm (see
equation 5) we use the values 1.5 and 1.3 in our experiments.
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Fig. 7. Comparing the quality of mapping solutions derived from different run-time mapping algorithms
for different inter-application scenarios
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Fig. 8. Comparing the quality of mapping solutions derived from different run-time mapping algorithms
for the intra-application scenarios of A1A2A3

The experimental results are shown in Figure 7. In Figure 7(a), we compare the
performance of the mappings resulting from the EIM, SMM, TPA, and ORB algorithms
as well as from NSGA-II-based design-time DSE. The energy consumption of these
mappings is shown in Figure 7(b). In these two figures, the bars of NSGA-BP and
NSGA-BE respectively represent the mappings with best performance and minimal
energy consumption found by the NSGA-II-based design-time DSE. These are used
as a baseline for comparison. From Figure 7(a), we can see that our EIM algorithm
in most cases produces a better mapping for the tested workload scenarios than the
SMM, TPA and ORB algorithms. For the workload scenarios in which only a single
application is active (i.e., bars for A1, A2 and A3) our EIM algorithm directly uses the
mapping from design-time DSE, which results in a mapping performance that is very
close or even equivalent to the optimal mapping. However, although the mappings have
similar performance, they could still have a different energy consumption behaviour. In
the case of our EIM algorithm, we use the energy budget in the search for an efficient
mapping to limit the energy consumption of the resulting mapping. Consequently, and
as shown in Figure 7(b), the EIM algorithm can yield mappings for single-application
workload scenarios that are more energy efficient than the ones obtained by NSGA-BP.

In the workload scenarios with multiple simultaneously active applications, we can
see that the EIM algorithm yields clear performance improvements compared to the
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Fig. 9. Final mapping comparison of EIM and STM for all intra-application scenarios of A1A2A3

other three run-time mapping algorithms, especially in the case of workload scenario
A1A2A3. By setting the parameter α of our EIM algorithm to different values, we
can notice that in some workload scenarios, like A1, A3 and A2A3, the mapping per-
formance with a higher energy budget is better than the one with a lower energy
budget. However, in other workload scenarios, there is no such behaviour. This can
be explained by the fact that for the latter workload scenarios the energy budget is
high enough for the algorithm with a lower energy budget to find a mapping that is as
good as the one found by EIM with a higher energy budget. In Figure 7(b), we can see
that even if we have an energy budget in our EIM algorithm, the actual energy con-
sumption of the final mapping may still exceed the energy budget: like for EIM-1.5E
in the A2A3 workload scenario and for EIM-1.3E in a few other workload scenarios.
This is caused by estimation inaccuracies of the energy model used in our algorithm.
Even if the estimated energy consumption of a new mapping is under the predefined
energy budget, the actual resulting system energy consumption after the remapping
has taken place may still not fully satisfy our desired energy budget.

5.2.3. Mapping Customization. The experiment in this subsection shows the results of
further mapping optimization by applying the mapping customization process. Fig-
ures 8.a and 8.b show the scenario execution time and energy consumption of map-
pings found by the SMM, TPA, ORB, EIM and STM algorithms in all the intra-
application scenarios of a particular inter-application scenario, namely A1A2A3. In
the case of the STM algorithm, the algorithm uses and tries to improve on the re-
sults of the EIM algorithm, as sketched in Figure 3. Using inter-application scenario
A1A2A3, there are 33 workload scenarios in total that are considered as the applica-
tion workload in this experiment. The error bars in the graphs show the variability of
the results. From Figure 8.a, we can see that the mappings from our STM and EIM al-
gorithm with a scaling factor α = 1.5 achieve the best average performance among the
investigated five algorithms. Note that the mapping customization process is applied
during the execution of a certain workload scenario after the mapping initialization
process. The STM algorithm is therefore used to further optimize the mapping solu-
tions derived from the EIM algorithm. Comparing the results from STM and EIM, we
found that the STM algorithm can achieve an additional performance improvement
of 2.2% on average for all 33 considered intra-application scenarios. The reason for
this relatively small performance improvement is twofold. First, the mapping derived
by EIM for each new workload scenario is already a near optimal solution, which im-
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Fig. 10. Average algorithm computation cost (cycles on a 2.17GHZ CPU) for intra-application scenarios of
A1A2A3

plies that the potentials for further improvement by the STM algorithm are limited.
Second, the STM algorithm is designed for the situation in which the (user-defined)
application-specific performance objective is violated. However, as the EIM algorithm
can handle fine-grained application dynamism, such performance objective violations
for an application will typically not be very large. When there is a (small) performance
objective violation, the STM algorithm tries to find a new mapping by only making
small changes to the old mapping in an on-the-fly manner. If the new mapping satis-
fies the pre-defined performance objective, then the STM algorithm will stop4

Figure 9 shows the details of the mapping performance comparison between the
STM and EIM algorithms. Figure 8.b shows the average energy consumption of the
final mappings as shown in Figure 8.a. The results in this figure illustrate that the
mappings from our STM and EIM algorithms have the lowest average energy con-
sumption, where the STM algorithm achieves an additional energy improvement of
0.5% on average compared to the EIM algorithm. Overall, in this experiment, we have
demonstrated that the STM algorithm is capable of further improving the mapping
performance compared with the EIM algorithm, without sacrificing the energy con-
sumption of the mapping.

Compared with the mapping solutions derived from the SMM, TPA and ORB algo-
rithms, the average performance and energy consumption of the final mapping solu-
tions generated by applying the HTM algorithm (the mapping is first optimized by
EIM followed by STM at run time) for the 33 workload scenarios in A1A2A3 improve
by 67.2%, 105,9%, 45.9% (performance) and 14.6%, 23.5%, 14.9% (energy) on average
respectively.

5.2.4. Algorithm Computation Cost. In this subsection, we investigate the computation
cost of the run-time stage (EIM and STM) of our HTM algorithm and compare it to
the overhead of the other run-time mapping algorithms. The results of an experiment
in which we average the algorithmic overhead for executing different intra-application
scenarios of A1A2A3 (the most complicated workload scenario where all three applica-
tions are active) are shown in Figure 10. Note that the time unit (cycles on a 2.17GHZ
CPU) used in this figure is different from the time unit used for the mapping perfor-
mance as presented in the previous figures, which are based on simulation cycles mea-
sured by the Sesame simulator. From Figure 10, we can see that the SMM approach
has the smallest algorithmic cost. As in this approach there is no actual computation

4In case the violation cannot be remedied by the STM algorithm, the user can be notified and/or a strategy
for graceful termination of applications could be used, but this is beyond the scope of this article.
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Fig. 11. Run-time task migration costs when applying the EIM and STM algorithms

of a new mapping, it just involves memory access time to retrieve the pre-optimized
mapping from the SDB for each active application. On the other hand, the EIM part of
our HTM algorithm has the heaviest computational cost to find a new mapping, which
happens at the detection of a new workload scenario (mapping initialization). Accord-
ing to the cycle count for a 2.17GHZ CPU, the average computation time of the EIM
algorithm is in the order of a few milliseconds, which is in our opinion still acceptable
for the workload scenario initialization process. For the other part of HTM algorithm
– the STM algorithm – the computation cost is much smaller.

5.2.5. Task Migration Cost. Here, we would like to give an intuition of the run-time cost
in terms of the number of tasks that need to be migrated when applying our proposed
algorithm. The actual time needed to perform these migrations highly depends on the
mechanism used to implement such task migrations. A relatively simple implemen-
tation of task migration for our heterogeneous platform could be that each processor
on the system keeps a copy of each task (the binary code compiled for the processor)
or loads the corresponding task from shared memory when needed [Cannella et al.
2012]. When the scheduler decides to do task migration, it sends a stop and start com-
mand to the old processor and the new processor of the migrating task respectively,
and also redirects the communication channels from the old processor to the new pro-
cessor. As we are targeting the multi-media application domain, the task migration
event could be triggered at the end of each input ’frame’ which means the old proces-
sor will stop after having processed a whole input frame and the new processor will
start to process the next new frame. In this case, there is no need to save and migrate
the intermediate state of the migrating task. Other task migration mechanisms can
also be implemented, but this is beyond the scope of this article.

In this experiment, the intra-application scenarios 28, 29 and 30 from Figure 9, in
which the STM algorithm achieved larger performance improvements, will be consid-
ered as the target scenarios. In these three scenarios, the MP3 application has a dif-
ferent execution mode, while the execution modes of MJPEG and Sobel do not change.
As mentioned before, the number of tasks in each scenario is 41. For the purpose of
determining the migration costs for the STM algorithm, each scenario is executed 10
times before changing to the next scenario. The results of this experiment are shown in
Figure 11, where Figure 11.a illustrates the number of tasks that need to be migrated
by applying our EIM algorithm when the workload scenario changes and Figure 11.b
shows the number of migrations caused by the STM algorithm during the execution
of a certain workload scenario. We can see that the number of migrations due to our
EIM algorithm can be relatively high, depending on the workload scenario. This is
why we make the assumption in this article that each workload scenario will execute
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for a long enough time so that the system is able to benefit from our EIM algorithm.
However, more research is needed on efficient migration implementations and effec-
tive migration policies (deciding whether or not to migrate) to improve the potential
impact of run-time mapping algorithms in general. As can be seen from Figure 11.b,
the migration cost due to the STM algorithm is quite low.

6. RELATED RESEARCH
In recent years, much research has been performed in the area of run-time task map-
ping for embedded systems. Singh et al. [Singh et al. 2013b] provide a nice survey
of current and emerging trends for the task mapping problem on multi/many-core
systems. In the context of performance optimization, the authors of [Chou and Mar-
culescu 2008] propose a run-time mapping strategy that incorporates user behaviour
information in the resource allocation process. An agent based distributed application
mapping approach for large MPSoCs is presented in [Al Faruque et al. 2008]. The
work of [Hölzenspies et al. 2008] proposes a run-time spatial mapping technique to
map streaming applications onto MPSoCs. In [Brião et al. 2008], dynamic task allo-
cation strategies based on bin-packing algorithms for soft real-time applications are
presented. A run-time task allocator is presented in [Huang et al. 2011] that uses
an adaptive task allocation algorithm and adaptive clustering approach for efficient
reduction of the communication load. The approach proposed in [Schranzhofer et al.
2010] produces multiple mappings for each application with a trade-off between re-
source requirement and throughput. Mariani et al. [Mariani et al. 2010] proposed a
run-time management framework in which Pareto-fronts with system configuration
points for different applications are determined during design-time DSE, after which
heuristics are used to dynamically select a proper system configuration at run time. A
similar approach is presented in [Singh et al. 2013a] targeting a generic architecture.
In [Ykman-Couvreur et al. 2011], the authors propose a lightweight run-time manager,
linked with an automated design-time exploration and incorporated in the host proces-
sor of the platform, to dynamically and efficiently configure the applications according
to the available platform resources. Compared with these algorithms, our hybrid al-
gorithm takes an application scenario-based approach, and takes computational and
communication behaviour embodied in design-time optimized mappings into account
when optimizing the mapping at run time.

Recently, Schor et al. [Schor et al. 2012] and Quan et al. [Quan and Pimentel 2013b]
also proposed scenario-based run-time mapping approaches in which mappings de-
rived from design-time DSE are stored for run-time mapping decisions. However,
[Schor et al. 2012] does not address the reduction of mapping storage (all workload
scenarios are stored) and does not dynamically optimize the mappings at run time.
In [Quan and Pimentel 2013b], an approach is proposed in which mappings for inter-
application scenarios are stored and used as a basis for run-time mapping decisions, af-
ter which a run-time algorithm aims at gradually further optimizing these mappings.
The work presented in this article is based on the work of [Quan and Pimentel 2013b]
but extends it in several directions in order to address several limitations of the latter
work. A first limitation of the work in [Quan and Pimentel 2013b] is that it only works
for homogeneous multi-processor systems. Another drawback is that the method from
[Quan and Pimentel 2013b] needs to search for optimal mappings for inter-application
scenarios at design time, which implies that it should already been known at design
time which applications can execute on the target platform. For example, extending
the system with a new application would require to redo the entire design-time DSE
for all inter-application scenarios. In our approach, this problem is avoided by tak-
ing intra-applications as the basis for doing design-time DSE (i.e., performing DSE on
applications in isolation) similar to the approach in [Quan and Pimentel 2013a]. How-
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ever, in [Quan and Pimentel 2013a], the mapping is optimized only at the beginning of
each new workload scenario. There is no run-time performance constraint set for each
application, which means that the mapping is fixed during the execution of a certain
workload scenario.

7. CONCLUSION
We have proposed a hybrid mapping algorithm, called HTM, for MPSoC-based embed-
ded systems to improve their performance by capturing the dynamism of the applica-
tion workloads executing on the system. Our approach is based on the idea of applica-
tion scenarios and consists of three steps: design-time preparation, run-time mapping
initialization and run-time mapping customization. The design-time preparation ex-
ploits optimal mappings for each mode of each application which will be stored on the
target platform for further mapping optimization. At run time, the mapping initializa-
tion process dynamically optimizes the mapping of the running application(s) with the
objective of maximizing the throughput under a predefined energy budget based on the
optimal mappings of the corresponding applications stored on the system when a new
workload scenario emerges. During the execution of a certain workload scenario, map-
ping customization is performed to further improve the performance of the mapping
under an application-dependent objective. In various experiments, we have evaluated
our algorithm and compared it with other run-time mapping algorithms. These ex-
periments indicate that our proposed approach can achieve considerable performance
improvements (45.9% - 105.9%) and energy savings (14.6% - 23.5%) compared with the
other algorithms for workload scenarios in which multiple applications are simultane-
ously active.
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