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Shared caches in multi-core processors introduce serious difficulties in providing guarantees on the real-time properties of embedded

software due to the interaction and the resulting contention in the shared caches. Prior work has studied the schedulability analysis of

global scheduling for real-time multi-core systems with shared caches. This paper considers another common scheduling paradigm:

partitioned scheduling in the presence of shared cache interference. To achieve this, we propose CITTA, a cache-interference aware

task partitioning algorithm. We first analyze the shared cache interference between two programs for set-associative instruction and

data caches. Then, an integer programming formulation is constructed to calculate the upper bound on cache interference exhibited

by a task, which is required by CITTA. We conduct schedulability analysis of CITTA and formally prove its correctness. A set of

experiments is performed to evaluate the schedulability performance of CITTA against global EDF scheduling and other greedy

partition approaches such as First-fit and Worst-fit over randomly generated tasksets and realistic workloads in embedded systems.

Our empirical evaluations show that CITTA outperforms global EDF scheduling and greedy partition approaches in terms of task sets

deemed schedulable.
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1 INTRODUCTION AND MOTIVATION

Caches are common on multi-core systems as they can efficiently bridge the performance gap between memory and

processor speeds. The last-level caches are usually shared by cores to improve utilization. However, this brings major

difficulties in providing guarantees on real-time properties of embedded software due to the interaction and the resulting

contention in a shared cache.

On a multi-core processor with shared caches, a real-time task may suffer from two different kinds of cache

interferences [29], which severely degrade the timing predictability of multi-core systems. The first is called intra-core

cache interference, which occurs within a core, when a task is preempted and its data is evicted from the cache by other

real-time tasks. The second is inter-core cache interference, which happens when tasks executing on different cores
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access the shared cache simultaneously. In this work, we consider non-preemptive task systems, which implies that

intra-core cache interference is avoided since no preemption is possible during task execution. We therefore focus on

inter-core cache interference.

It is necessary to conduct schedulability analysis when designing hard real-time application systems executing

on multi-core platforms with shared caches, as those systems cannot afford to miss deadlines and hence demand

timing predictability. Any schedulability analysis requires knowledge about the Worst-Case Execution Time (WCET) of

real-time tasks. However, as pointed out in [39], it is extremely difficult to predict the cache behavior to accurately

obtain the WCET of a real-time task considering cache interference since different cache behaviors (cache hit or miss)

will result in different execution times of each instruction. In this paper, we assume that a task’s WCET itself does

not account for shared cache interference but, instead, we determine this interference explicitly (as will be explained

later on). Hardy and Puaut [24] present such an approach to derive a task’s WCET without considering shared cache

interference.

On multi-core systems, two paradigms are widely used for scheduling real-time tasks: global and partitioned (semi-

partitioned) scheduling. For global scheduling, a job is allowed to execute on any core. In partitioned scheduling, on the

other hand, tasks are statically allocated to processor cores, i.e., each task is assigned to a core and is always executed

on that particular core. Although the partitioned approaches cannot exploit all unused processing capacity since a

bin-packing-like problem needs to be solved to assign tasks to cores, it offers lower runtime overheads and provides

consistently good empirical performance at high utilizations [7].

Furthermore, taking the shared cache interference into account, partitioned approaches can achieve better schedula-

bility than global scheduling. We provide a simple example to illustrate this. Consider three tasks 𝜏1, 𝜏2 and 𝜏3 with the

same period and relative deadline of 7, the WCETs of 𝜏1, 𝜏2 and 𝜏3 are 3, 3 and 2, respectively. The execution platform is

a processor with 2 cores including a last-level shared cache. If 𝜏1 and 𝜏2 run concurrently, we assume that the maximum

cache interference exhibited by 𝜏1 and 𝜏2 is 3. We also assume that 𝜏3 has no cache interference with 𝜏1 and 𝜏2.

It is impossible to conclude that this taskset is schedulable under global scheduling. Figure 1 shows a case where 𝜏3

misses its deadline. At time 𝑡 = 0, tasks 𝜏1 and 𝜏2 are scheduled to execute on the two cores. In the figure, the black area

of a cumulative length of 3 denotes the𝑊𝐶𝐸𝑇 , and the hatched area of a cumulative length of 3 represents the extra

execution time due to the cache interference. At 𝑡 = 6, 𝜏1 and 𝜏2 both finish their executions, after which 𝜏3 starts its

execution. At 𝑡 = 7, 𝜏3 misses its deadline. Similarly, consider another case: at 𝑡 = 0, 𝜏3 and 𝜏1 (or 𝜏2) are scheduled, at

𝑡 = 2, 𝜏3 finishes and 𝜏2 (or 𝜏1) starts its execution. Since cache interference is counted per job [43], in the worst case,

the cache interference exhibited by 𝜏2 (or 𝜏1) can still be 3 even though the duration of co-running 𝜏2 (or 𝜏1) and 𝜏1 (or

𝜏2) is less than in the previous case. Due to the cache interference, 𝜏2 (or 𝜏1) could finish its execution at 𝑡 = 8, leading

to a deadline miss for 𝜏2 (or 𝜏1).

However, the taskset is schedulable under the partitioned scheduling. Consider, e.g., the partitioning scheme in

which 𝜏1 and 𝜏2 are assigned to core 1, and task 𝜏3 is assigned to core 2. Since 𝜏1 and 𝜏2 are assigned to the same core,

they cannot run simultaneously. As no cache interference can occur during task execution, it can be verified that every

task meets its deadline.

Motivated by the above example, in this work, we propose a novel cache interference-aware task partitioning

algorithm, called CITTA. To the best of our knowledge, this is the first work on partitioned scheduling for real-time

multi-core systems, accounting for shared cache interference. An integer programming formulation is constructed

to calculate the upper bound on cache interference exhibited by a task, which is required by CITTA. We conduct

schedulability analysis of CITTA and formally prove its correctness. A set of experiments is performed to evaluate the
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Fig. 1. Case where 𝜏3 misses its deadline if 𝜏1, 𝜏2 and 𝜏3 are scheduled globally.

schedulability performance of CITTA against global EDF scheduling over randomly generated tasksets. Our empirical

evaluations show that CITTA outperforms global EDF scheduling in terms of tasksets deemed schedulable.

The original version of our cache interference-aware task partitioning algorithm for real-time multicore systems

with shared caches was presented in [45] for direct-mapped caches. Significant extensions are made in this paper,

including:

• We have extended the analysis on shared cache interference for set-associative instruction and data caches.

• We have implemented our analysis on shared cache interference between two programs and integrated it into

the Heptane [25] WCET estimation tool.

• We have conducted experiments to obtain the worst case cache interference among multiple applications using

the M ¥𝑎lardalen WCET benchmark suite [22] and TACLeBench [16]. With these realistic workloads in embedded

systems, we illustrate the advantage of CITTA over global scheduling.

The rest of the paper is organized as follows. Section 2 gives an overview of related work. The system model and

some other prerequisites for this paper are described in Section 3. Section 4 is the extended analysis on shared cache

interference between two programs for the set-associative instruction and data caches. Section 5 describes the proposed

CITTA, where we also detail the computation of the inter-core cache interference and schedulability analysis of CITTA.

Section 6 presents the experimental results, after which Section 7 concludes the paper.

2 RELATEDWORK

WCET estimation. For hard real-time systems, it is essential to obtain each real-time task’s WCET, which provides

the basis for the schedulability analysis. WCET analysis has been actively investigated in the last two decades, of which

an excellent overview can be found in [42]. There are well-developed techniques to estimate a real-time tasks’ WCET

for single processor systems. Unfortunately, the existing techniques for single processor platforms are not applicable to

multi-core systems with shared caches. Only a few methods have been developed to estimate task WCETs for multi-core
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systems with shared caches [23, 32, 49]. In almost all those works, due to the assumption that cache interference can

occur at any program point, WCET analysis will be extremely pessimistic, especially when the system contains many

cores and tasks. An overestimated WCET is not useful as it degrades system schedulability.

Shared cache interference. Since shared caches make it difficult to accurately estimate the WCET of tasks, many

researchers have recognized and studied the problem of cache interference in order to use shared caches in a predictable

manner. Cache partitioning is a successful and widely-used approach to address contention for shared caches in

(real-time) multi-core applications. There are two cache partitioning methods: software-based and hardware-based

techniques [19]. The most common software-based cache partitioning technique is page coloring [33, 41]. By exploiting

the virtual-to-physical page address translations present in virtual memory systems at OS-level, page addresses are

mapped to pre-defined cache regions to avoid the overlap of cache spaces. Hardware-based cache partitioning is

achieved using a cache locking mechanism [10, 37, 39], which prevents cache lines from being evicted during program

execution. The main drawback of cache locking is that it requires additional hardware support that is not available in

many commercial processors for embedded systems.

A few works address schedulability analysis for multi-core systems with shared caches [20, 47], but these works use

cache space isolation techniques to avoid cache contention for hard real-time tasks. In this work, we do not deploy any

cache partitioning techniques to mitigate the inter-core cache interference. Instead, we address the problem of task

partitioning in the presence of shared cache interference.

Shared cache interference is analyzed in [43], but that holds only for direct-mapped instruction caches. In this work,

we extend the analysis to set-associative caches as well as to data caches.

Real-time Scheduling. To schedule real-time tasks on multi-core platforms, different paradigms have been widely

studied: partitioned [5, 17, 48], global [4, 8, 31], and semi-partitioned scheduling [9, 12, 28]. A comprehensive survey of

real-time scheduling for multiprocessor systems can be found in [15]. Most multi-core scheduling approaches assume

that the WCETs are estimated in an offline and isolated manner and that WCET values are fixed.

Real-time scheduling for multi-core systems using cache partitioning techniques is done via two steps: it first

captures the relationship between the task’s WCET and cache allocation by analysis or measurement as the WCET of a

task depends on the number of cache partitions assigned to that task, and then develops a strategy that determines

the number of cache partitions assigned to each task in the system, so that the task system is schedulable. Existing

approaches typically adopt Mixed Integer Programming to find the optimal cache assignment. However, these methods

incur a very high execution time complexity, and are therefore too inefficient to be practical [46]. Guo et.al [21] address

the problem of intra-core cache interference, which occurs within one core, when a task is preempted. They leverage the

way-allocation technique to partition the last-level cache for individual cores to eliminate inter-core cache interference.

On the other hand, our work addresses inter-core cache interference and uses non-preemptive scheduling to avoid the

inter-task interference.

Different from the above approaches based on cache partitioning techniques, we address the problem of task

partitioning in the presence of shared cache interference. Our approach neither requires operating system modifications

for page coloring nor hardware features for cache locking, which are not supported by most existing embedded

processors.

The most relevant to our work is [44], which also addresses schedulability analysis for multi-core systems with shared

caches. However, the work of [44] only considers global scheduling. In this paper, we consider another scheduling

paradigm, namely partitioned scheduling, and propose CITTA, a cache interference-aware task partitioning algorithm.

Our empirical evaluations show that CITTA outperforms global EDF scheduling in terms of task sets deemed schedulable.

Manuscript submitted to ACM



Partitioned Scheduling for Real-time Systems with Shared Caches 5

3 SYSTEMMODEL AND PREREQUISITES

3.1 System Model

3.1.1 Task Model. A taskset 𝜏 comprises 𝑛 periodic or sporadic real-time tasks 𝜏1, 𝜏2, ... 𝜏𝑛 . Each task 𝜏𝑘 = (𝐶𝑘 , 𝐷𝑘 ,𝑇𝑘 ) ∈
𝜏 is characterized by a worst-case computation time 𝐶𝑘 , a period or minimum inter-arrival time 𝑇𝑘 , and a relative

deadline 𝐷𝑘 . All tasks are considered to be deadline constrained, i.e. the task relative deadline is less or equal to the

task period: 𝐷𝑘 ≤ 𝑇𝑘 . We further assume that all those tasks are independent, i.e. they have no shared variables, no

precedence constraints, and so on.

A task 𝜏𝑘 is a sequence of jobs 𝐽
𝑗

𝑘
, where 𝑗 is the job index. We denote the arrival time, starting time, finishing time

and absolute deadline of a job 𝑗 as 𝑟
𝑗

𝑘
, 𝑠

𝑗

𝑘
, 𝑓

𝑗

𝑘
and 𝑑

𝑗

𝑘
, respectively. Note that the goal of a real-time scheduling algorithm

is to guarantee that each job will complete before its absolute deadline: 𝑓
𝑗

𝑘
≤ 𝑑

𝑗

𝑘
= 𝑟

𝑗

𝑘
+ 𝐷𝑘 .

As explained, it is difficult to accurately estimate 𝐶𝑘 considering cache interference of other tasks executing concur-

rently. It should be pointed out that 𝐶𝑘 in this paper refers to the WCET of task 𝑘 , assuming task 𝑘 is the only task

executing on the multi-core processor platform, i.e. any cache interference delays are not included in 𝐶𝑘 .

Since time measurement cannot be more precise than one tick of the system clock, all timing parameters and variables

in this paper are assumed to be non-negative integer values.

3.1.2 Architecture Model. Our system architecture consists of a multi-core processor with𝑚 identical cores onto which

the individual tasks are scheduled. We assume a fully timing compositional architecture without timing anomalies [35].

In multi-core processors, caches are organized as a hierarchy of multiple cache levels to address the trade-off between

cache latency and hit rate. The lower level caches, for example L1, are private while the last-level caches (LLC) are shared

among all cores. Each cache implements the LRU replacement policy. We consider both set-associative instruction and

data caches. Furthermore, caches are assumed to be non-inclusive non-exclusive, which means that: (i) A memory block

is searched for in cache level 𝐿 (i.e., LLC), if and only if, a cache miss occurred when searching it in cache level 𝐿1.

(ii) When a cache miss occurs at cache level 𝐿, the entire cache line containing the missed information is loaded into

cache level 𝐿. (iii) The modification issued by a store instruction goes through the memory hierarchy. If the written

memory block is already present at cache level 𝐿, a write action is performed, along with the update of the main memory.

Otherwise, if the information is absent at cache level 𝐿, this cache is left unchanged.

In hard real-time systems, it is common to avoid the usage of virtual memory to improve timing predictability. In

this work, we assume that a real-time task is compiled as a single binary and its physical memory address space is

determined offline, before its execution. All real-time tasks directly use physical addresses. As the LLC in modern

processors are typically Physically-indexed and physically-tagged (PIPT), the mapping between a memory block and

the cache set where the block is stored can be derived.

The problem we are addressing in this paper originates from the cache sharing present in the multi-core architectures.

We illustrate the problem of cache interference by an example shown in Figure 2. Task 𝐴 and Task 𝐵 are scheduled on

two different cores. During the execution, Task 𝐴 and 𝐵 access their own variable 𝑎 and 𝑏, which are stored in different

locations in the main memory. When deriving the WCET of task 𝐴 (or 𝐵), we assume there are no other tasks running

simultaneously. The first access to 𝑎 (or 𝑏) is considered to be a cache miss, while later accesses to 𝑎 (or 𝑏) could be hits

in the shared cache if the data is evicted in the lower level caches by the execution of task 𝐴 (or 𝐵), but not evicted in

the shared cache. However, cache interference could occur if task 𝐴 and 𝐵 execute concurrently and the two memory

allocations storing 𝑎 and 𝑏 map to the same cache set in the shared cache. In this case, the data 𝑎 (or 𝑏) cached by task 𝐴
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(or 𝐵) previously gets evicted due to the assess to 𝑏 (or 𝑎) during the execution of task 𝐵 (or 𝐴). Consequently, 𝑎 (or

𝑏) is loaded from main memory instead of from the shared cache, causing an extra delay for task 𝐴’s (or 𝐵’s ) actual

execution.

Fig. 2. The architecture model and the problem of cache interference.

3.1.3 Partitioned Non-preemptive Schedulers. In this paper, we study non-preemptive partitioned scheduling to avoid

the analysis of cache related preemption delays, which has been intensively studied in [2, 30, 36]. Once a task instance

starts execution, any preemption during the execution is not allowed, it must run to completion. If not explicitly stated,

cache interference will therefore solely refer to inter-core cache interference in the following discussion. However,

the approach discussed in this work is not limited to non-preemptive real-time systems, and can also be applied to

preemptive systems with shared caches by taking the cache related preemption delays into account. We plan to extend

our approach to preemptive scheduling as future work.

Since partitioning tasks among a multi-core processor reduces the multi-core processor scheduling problem to a

series of single-core scheduling problems (one for each core), the optimality without idle inserted time [18, 26] of

non-preemptive EDF (𝐸𝐷𝐹𝑛𝑝 ) makes it a reasonable algorithm to use as the run-time scheduler on each core. Therefore,

we make the assumption that each core, and the tasks assigned to it by the partitioning algorithm, are scheduled at run

time according to an 𝐸𝐷𝐹𝑛𝑝 scheduler.

𝐸𝐷𝐹𝑛𝑝 assigns a priority to a job according to the absolute deadline of that job. A job with an earlier absolute deadline

has higher priority than others with a later absolute deadline. 𝐸𝐷𝐹𝑛𝑝 scheduling is work-conserving: using 𝐸𝐷𝐹𝑛𝑝 ,

there are no idle cores when a ready task is waiting for execution.

3.2 The Demand-Bound Function

A successful approach to analyzing the schedulability of real-time tasks is to use a demand bound function [6]. The

demand bound function 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) is the largest possible cumulative execution demand of all jobs that can be generated

by 𝜏𝑖 to have both their arrival times and their deadlines within any time interval of length 𝑡 . Let 𝑡0 be the starting
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time of a time interval of length 𝑡 , the cumulative execution demand of 𝜏𝑖 ’s jobs over [𝑡0, 𝑡0 + 𝑡] is maximized if one

job arrives at 𝑡0 and subsequent jobs arrive as soon as permitted i.e., at instants 𝑡0 +𝑇𝑖 , 𝑡0 + 2𝑇𝑖 , 𝑡0 + 3𝑇𝑖 ,... Therefore,

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) can be computed by Equation (0.1),

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) =𝑚𝑎𝑥 (0, (
⌊
𝑡 − 𝐷𝑖

𝑇𝑖

⌋
+ 1) ×𝐶𝑖 ). (0.1)

[1] proposed a technique for approximating the 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡). The approximated demand bound function 𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) is
given by the following equation:

𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) =


0 𝑡 < 𝐷𝑖

𝐶𝑖 +𝑈𝑖 × (𝑡 − 𝐷𝑖 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(0.2)

where𝑈𝑖 =
𝐶𝑖

𝑇𝑖
.

Observe that the following inequality holds for all 𝜏𝑖 and all 0 ≤ 𝑡 :

𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) ≥ 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) (0.3)

3.3 Uniprocessor Schedulability

The schedulabity analysis of uniprocessor scheduling is well studied. [3, 27] presented a necessary and sufficient

condition for the feasibility test of a sporadic task system 𝜏 scheduled by 𝐸𝐷𝐹𝑛𝑝 on a uniprocessor platform.

Theorem 1. A taskset 𝜏 is schedulable under 𝐸𝐷𝐹𝑛𝑝 on a uniprocessor platform if and only if

∀𝑡,
𝑛∑
𝑖=1

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) ≤ 𝑡 (1.1)

and for all 𝜏 𝑗 ∈ 𝜏 ,∀𝑖 ≤ 𝑗,𝑇𝑖 ≤ 𝑇𝑗 :

∀𝑡 : 𝐶 𝑗 ≤ 𝑡 ≤ 𝐷 𝑗 : 𝐶 𝑗 +
𝑛∑

𝑖=1;𝑖≠𝑗

𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) ≤ 𝑡 . (1.2)

Note that the computation of 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡) and 𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) by Equation (0.1) and (0.2) and the two schedulability test

conditions (1.1) and (1.2) do not account for shared cache interference. We will extend the computation of 𝐷𝐵𝐹 (𝜏𝑖 , 𝑡)
and 𝐷𝐵𝐹 ∗ (𝜏𝑖 , 𝑡) and the two schedulability conditions to the cases where shared cache interference is considered.

4 CACHE INTERFERENCE

TheWCET of a task can be obtained by performing a Cache Access Classification (CAC) and CacheHit/Miss Classification

(CHMC) analysis for each memory access at the private caches and the shared LLC cache separately [42]. The CAC

categorizes the accesses to a certain cache level as Always (A), Uncertain (U ), Never (N ) or Uncertain Never (UN ). CHMC

classifies the reference to a memory block as Always Hit (AH ), Always Miss (AM) , First Miss (FM) or Not-classified

(NC). Table 1 describes CAC and CHMC classification terms.

As an LLC is shared by multiple cores, it allows running tasks to compete among each other for shared cache space.

As a consequence, the tasks replace blocks that belong to other tasks, causing shared cache interference. Let 𝜏𝑘 be the

interfered and 𝜏𝑖 be the interfering task. We use 𝐼𝑐
𝑖,𝑘

to represent the upper bound on the shared cache interference

imposed on 𝜏𝑘 by only one job execution of 𝜏𝑖 .

Manuscript submitted to ACM
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Table 1. Description of CAC and CHMC analysis

Notation Description

CAC Classifies the references (abbreviated as 𝑟 ) used for the analysis at every cache level:

A the access to 𝑟 is always performed at cache level L

N the access to 𝑟 is never performed at cache level L

UN the first access to 𝑟 is unsure but next accesses are never performed at cache level L

U the access to 𝑟 is uncertain at cache level L

CHMC Classifies the access state of access 𝑟 to a memory block:

AH the access 𝑟 is guaranteed to be in cache level L

AM the access 𝑟 is guaranteed not to be in cache level L

FM the access 𝑟 is not guaranteed to be in cache the first time it is accessed, but is guaranteed afterwards

NC the access 𝑟 is not guaranteed to be in cache and is not guaranteed not to be in cache

HB a memory block whose access is classified as AH at the shared LLC cache

CB a memory block whose access is classified as A, U or UN at the shared LLC cache

𝐼𝑐
𝑖,𝑘

is bounded for direct-mapped instruction caches, as indicated by Lemma in [43]. In this work, we extend the

analysis of the cache interference for set-associative instruction and data caches.

4.1 Cache interference analysis for set-associative caches

Xiao. et.al [43] introduced the concept of Hit Block (HB), i.e. a memory block whose access is classified as AH or FM at

the shared cache and the concept of Conflicting Block (CB), i.e. a memory block whose access is classified as A or U at

the shared cache. By calculating the number of accesses to each 𝜏𝑘 ’s HB and the accesses to each 𝜏𝑖 ’s CB, 𝐼
𝑐
𝑖,𝑘

can be

derived by bounding the conflicting accesses to each shared cache set between 𝜏𝑘 and 𝜏𝑖 . In the following discussion,

we formally describe how cache interference is calculated.

Given the source code of a program, we first generate its control flow graph (CFG). For each basic block in the CFG,

CHMC and CAC is applied to the low-level analysis of instruction and data addresses. We use 𝐻𝐵𝑘 = {𝑚𝑘
1
,𝑚𝑘

2
, ...,𝑚𝑘

𝑝 }
to represent the set of 𝐻𝐵 for task 𝜏𝑘 . Furthermore, we denote age(𝑚𝑥 ) as the age of a memory block𝑚𝑥 in the LRU

stack, which is also one of the outcomes of CHMC analysis. Similarly, we define 𝐶𝐵𝑖 = {𝑚𝑖
1
,𝑚𝑖

2
, ...,𝑚𝑖

𝑞} as the set of 𝐶𝐵
for task 𝜏𝑖 that are classified as an A, U or UN at the 𝐿𝐿𝐶 cache. Note that 𝐻𝐵 and 𝐶𝐵 include all the basic blocks in

every program path that may be considered by the tasks.

In our system architecture, cache interference occurs only at the shared 𝐿𝐿𝐶 cache when a cache line used by 𝜏𝑘 is

evicted by 𝜏𝑖 and consequently causing reload overhead for 𝜏𝑘 . A cache line that may cause cache interference for 𝜏𝑘

needs to satisfy at least three conditions:

(1) access to that cache line will result in a cache hit at the 𝐿𝐿𝐶 cache in WCET analysis of 𝜏𝑘 ;

(2) the cache line may be used by 𝜏𝑖 ;

(3) the sum of distinguished accesses from 𝜏𝑘 and 𝜏𝑖 is larger than the cache associativity.

The first condition implies that only accesses in 𝐻𝐵𝑘 may result in cache interference for 𝜏𝑘 , while the second

condition indicates that accesses in 𝐶𝐵𝑖 by 𝜏𝑖 may interfere with 𝜏𝑘 . Furthermore, cache interference occurs only if 𝜏𝑘

accesses memory blocks in 𝐻𝐵𝑘 and 𝜏𝑖 access memory blocks in 𝐶𝐵𝑖 concurrently. The last condition for interference

entails that the total number of distinguished memory accesses by 𝜏𝑖 and 𝜏𝑘 that maps to the same cache set, requires

to be larger than the degree of associativity such that cache evictions actually could take place.
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Assuming that the cache set index of the 𝐿𝐿𝐶 ranges from 0 to 𝑁 − 1, we can divide 𝐻𝐵𝑘 into 𝑁 subsets according to

the mapping function 𝑖𝑑𝑥 that maps a memory address to the cache set index at the 𝐿𝐿𝐶 as follows,

𝑚̂𝑘
𝑢 = {𝑚𝑥 ∈ 𝐻𝐵𝑘 |𝑖𝑑𝑥 (𝑚𝑥 ) = 𝑢}, (0 ≤ 𝑢 < 𝑁,𝑢 ∈ N)

Similarly, we divide 𝐶𝐵𝑖 into 𝑁 subsets by

𝑛̂𝑖𝑢 = {𝑚𝑥 ∈ 𝐶𝐵𝑖 |𝑖𝑑𝑥 (𝑚𝑥 ) = 𝑢}, (0 ≤ 𝑢 < 𝑁,𝑢 ∈ N)

We define the characteristic function of a set 𝐴 which indicates membership of an element 𝑥 in 𝐴 as:

𝜒𝐴 (𝑥) =


1 𝑥 ∈ 𝐴

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Let 𝑁 𝑖
𝑢 represent the number of accesses to the 𝑢-th cache set by 𝜏𝑖 . It is bound by

𝑁 𝑖
𝑢 =

𝑞∑
𝑥=1

𝜒𝑛̂𝑖𝑢
(𝑚𝑥 ),𝑚𝑥 ∈ 𝐶𝐵. (1.3)

Cache interference can only happen among memory blocks that map to the same cache set. For the 𝑢-th cache set, 𝜏𝑘

can be interfered if the sum of the age of a memory block in 𝐻𝐵𝑘 and the total accesses from 𝜏𝑖 is larger than the cache

associativity. We use𝑀𝐼𝑘𝑢 to represent the set of memory blocks, by whose accesses that might be interfered at the 𝑢-th

cache set by task 𝜏𝑖 . It is calculated by:

𝑀𝐼𝑘𝑢 = {𝑚𝑥 |𝑚𝑥 ∈ 𝑚̂𝑘
𝑢 , 𝑎𝑔𝑒 (𝑚𝑥 ) + 𝑁 𝑖

𝑢 > 𝑁𝑎𝑠𝑜 }

The total number of accesses to each memory block in𝑀𝐼𝑘𝑢 is given by the number of iterations performed at the

basic block. One can obtain the maximum number of iterations from the source code annotations provided by the static

analysis with a WCET analysis tool, as will be explained in the next section. We use 𝐴𝑖,𝑢 as the bound on the accesses

to𝑚𝑖 ∈ 𝑀𝐼𝑘𝑢 .

The following formula gives an upper bound on the number of cache misses of accesses in 𝐻𝐵𝑘 for task 𝜏𝑘 :

𝑆 =

𝑁−1∑
𝑢=0

∑
𝑚𝑖 ∈𝑀𝐼𝑘𝑢

𝐴𝑖,𝑢 (1.4)

Suppose the penalty for an 𝐿𝐿𝐶 cache miss is a constant, 𝐶𝑚𝑖𝑠𝑠 , then 𝐼𝑐
𝑖,𝑘

satisfies:

𝐼𝑐
𝑖,𝑘

= 𝑆 ×𝐶𝑚𝑖𝑠𝑠 (1.5)

The computation only takes the memory accesses of 𝜏𝑘 and 𝜏𝑖 as input, so 𝐼
𝑐
𝑖,𝑘

only depends on memory access of 𝜏𝑘

and 𝜏𝑖 . Therefore, the following Lemma holds:

Lemma 1. 𝐼𝑐
𝑖,𝑘

can be bounded.

4.2 Implementation of cache interference analysis with Heptane

Heptane[25] is an open-source static WCET analysis tool. It has a special focus on analysis of cache hierarchies with

multiple replacement policies and it currently supports both MIPS and ARM v7 instruction sets.
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10 Jun Xiao, Yixian Shen, and Andy D. Pimentel

Fig. 3. The architecture of the Cache Interference Framework

As illustrated in Figure 3, given the source code of a pair of interfered program (𝑃𝑒𝑑 ) and interfering program

(𝑃𝑖𝑛𝑔), written in C or assembly language, Heptane first calls the compiler and linker to generate a binary file and then

constructs the CFG. It also identifies the different loops and attaches the loop bounds information provided in the

source files of 𝑃𝑒𝑑 and 𝑃𝑖𝑛𝑔 programs.

The Must, May and Persistence analyses [40] based on abstract interpretation [14] is performed at each cache level

for both instruction and data cache. The purpose of the analyses is to determine the CHMC classification for every

memory reference.

We have extended Heptane with our cache interference computation as presented in the previous section. Our

implementation performs a separate and sequential analysis for each level of caches in the memory hierarchy. As

mentioned before, since the L1 cache is private to the cores and we consider non-inclusive caches, there is no cache

interference at L1 caches. We only need to calculate cache interference at the 𝐿𝐿𝐶 .

The core of the cache interference calculation consist of four functions: GenerateHB, GenerateCB, CacheSetAccess

and CacheInterference. GenerateHB computes the hit block (𝐻𝐵) for the interfered task 𝜏𝑘 . GenerateCB generates the

conflicting block (𝐶𝐵) for the interfering task 𝜏𝑖 . Given the memory blocks in 𝐻𝐵 and 𝐶𝐵, CacheSetAccess calculates

the distinguished memory blocks in 𝐻𝐵 for each cache set and the total number of accesses to each cache set from 𝜏𝑖 .

Finally, CacheInterference computes the upper bound on cache interference exhibited by 𝜏𝑘 .

To validate our implementation, we have performed a comprehensive analysis of our extended version of Heptane

using small benchmarks with predicable sequences of instruction and data cache accesses.
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5 CACHE INTERFERENCE AWARE TASK PARTITIONING : CITTA

Given a taskset 𝜏 comprised of 𝑛 periodic or sporadic tasks and a processing platform 𝜋 with 𝑚 identical cores

𝜋 = {𝜋1, 𝜋2, ..., 𝜋𝑚}, a partitioning algorithm decides how to assign tasks to cores to avoid task deadline misses. The

problem of assigning a set of tasks to a set of cores is analogous to the bin-packing problem. In this case, the tasks are

the objects to pack and the bins are cores. The bin-packing problem is known to be NP-hard in the strong sense. Thus,

searching for an optimal task assignment is not practical.

[34] and [17] studied several bin-packing heuristics for the preemptive and non-preemptive task model. Typically,

each of the bin-packing heuristics follows the following pattern: tasks of the task system are first sorted by some

criterion, after which the tasks are assigned in order to a core that satisfies a sufficient condition.

Let 𝜏 (𝜋𝑥 ) denote the set of tasks assigned to processor core 𝜋𝑥 where 1 ≤ 𝑥 ≤ 𝑚. 𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) means 𝜏𝑖 is assigned to

core 𝜋𝑥 . If taskset 𝜏 can be scheduled by a partitioned algorithm, the outcome of running a partitioning algorithm is a

task partition such that:

• All tasks are assigned to processor cores:

∪1≤𝑥≤𝑚𝜏 (𝜋𝑥 ) = 𝜏

• Each task is assigned to only one core:

∀𝑦 ≠ 𝑥, 1 ≤ 𝑦 ≤ 𝑚, 1 ≤ 𝑥 ≤ 𝑚, 𝜏 (𝜋𝑦) ∩ 𝜏 (𝜋𝑥 ) = ∅

In Section 5.1, we describe our cache interference aware task partitioning : CITTA. Section 5.2 derives the calculation

of the upper bound on the shared cache interference. Section 5.3 conducts the schedulability analysis for CITTA.

Before describing CITTA, we first extend the𝐷𝐵𝐹 to account for shared cache interference. Due to the extra execution

delay caused by shared cache interference, a task 𝜏𝑖 may execute longer than 𝐶𝑖 . Given a task partitioning scheme, one

can compute the upper bound on cache interference exhibited by task 𝜏𝑖 , denoted as 𝐼𝑐
𝑖
. We will show the method to

compute this 𝐼𝑐
𝑖
later. In multiprogrammed environment, the actual execution time including cache interference of 𝜏𝑖

can be bounded by𝐶𝑖 + 𝐼𝑐𝑖 . We denote 𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) as the demand bound function which accounts for cache interference.

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) can be computed by extending Equation (0.1):

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) =𝑚𝑎𝑥 (0, (
⌊
𝑡 − 𝐷𝑖

𝑇𝑖

⌋
+ 1) × (𝐶𝑖 + 𝐼𝑐𝑖 )) . (1.6)

Similarly, the approximated demand bound function 𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡) is given by the following equation by extending

Equation (0.2):

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡) =


0 𝑡 < 𝐷𝑖

𝐶𝑖 + 𝐼𝑐𝑖 +𝑈
𝑐
𝑖
× (𝑡 − 𝐷𝑖 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.7)

where𝑈 𝑐
𝑖
=

𝐶𝑖+𝐼𝑐𝑖
𝑇𝑖

.

It can also be observed that:

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡) ≥ 𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) (1.8)

5.1 The Task Partitioning Algorithm: CITTA

We now propose CITTA, a task partitioning algorithm taking shared cache interference into account.
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12 Jun Xiao, Yixian Shen, and Andy D. Pimentel

We assume the tasks are sorted in non-decreasing order by means of a certain criterion. For example, if a task’s

relative deadline is chosen as criterion, then 𝐷𝑖 ≤ 𝐷𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛. More criteria for sorting the tasks will be discussed

in Section 6.

CITTA performs the following steps:

step 1: for each task 𝜏𝑖 ∈ 𝜏 :

(1) Attempt to assign 𝜏𝑖 to 𝜋𝑥 ,

(2) Calculate the upper bound on cache interference 𝐼𝑐
𝑘
for 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ) ∪ {𝜏𝑖 }, i.e. tasks that are already assigned to

𝜋𝑥 and 𝜏𝑖 , assuming 𝜏𝑖 is assigned to 𝜋𝑥 . We will show the calculation procedure in the next subsection.

(3) Check if the following condition holds for each

𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ) ∪ {𝜏𝑖 }
𝐷𝑘 ≥

∑
𝜏 𝑗 ∈𝜏 (𝜋𝑥 )∪{𝜏𝑖 }

𝐷 𝑗 ≤𝐷𝑘

𝐷𝐵𝐹𝑐∗ (𝜏 𝑗 , 𝐷𝑘 ) + max

𝜏 𝑗 ∈𝜏 (𝜋𝑥 )∪{𝜏𝑖 }
𝐷 𝑗>𝐷𝑘

𝐶 𝑗 + 𝐼𝑐𝑗 . (1.9)

(a) If no 𝜏𝑘 violates condition (1.9), the attempt is admitted and 𝜏𝑖 is added to 𝜏 (𝜋𝑥 ).
(b) If condition (1.9) is violated by at least one 𝜏𝑘 , the attempt is rejected. We attempt to assign 𝜏𝑖 to the next

core 𝜋𝑥+1 and repeat steps (2) and (3). If no core can be assigned to 𝜏𝑖 , then 𝜏𝑖 is added to the temporarily

non-allocable taskset, denoted as 𝜏𝑡𝑛𝑎 .

step 2: after performing step 1, the resulting 𝜏𝑡𝑛𝑎 is either an empty set or non-empty.

(a) If 𝜏𝑡𝑛𝑎 = ∅, which means all tasks have been allocated to cores, CITTA returns 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ,

(b) Otherwise, we perform step 1 to each 𝜏𝑡 ∈ 𝜏𝑡𝑛𝑎 . 𝜏𝑡 is removed from 𝜏𝑡𝑛𝑎 if it can be assigned to a core. We

repeatedly perform step 1 to 𝜏𝑡 ∈ 𝜏𝑡𝑛𝑎 until 𝜏𝑡𝑛𝑎 becomes empty or no more tasks in 𝜏𝑡𝑛𝑎 could be allocated to cores. If

𝜏𝑡𝑛𝑎 = ∅ at the end, CITTA returns 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 , otherwise CITTA returns 𝐹𝑎𝑖𝑙 : it is unable to determine if scheduling 𝜏 is

feasible on the multi-core platform.

We briefly explain the rationale behind condition (1.9). Given a task 𝜏𝑘 , the execution demand of tasks (including 𝜏𝑘 )

with a relative deadline no larger than 𝐷𝑘 is calculated by the first part (left-hand side) of the sum in condition (1.9).

Since we consider a non-preemptive task system, the second part of the sum accounts for the blocking time due to the

execution of a task with a larger relative deadline than 𝜏𝑘 at the time a job of 𝜏𝑘 arrives. If the sum of the execution

demand and the blocking time is smaller than 𝐷𝑘 , the task 𝜏𝑘 will not miss its deadline. We will prove this in Section 5.3.

A more formal version of the task partitioning algorithm CITTA is given by Pseudocode 1. The input to procedure

CITTA is the taskset 𝜏 to be partitioned and the execution platform 𝜋 consisting of𝑚 cores. CITTA repeatedly invokes the

procedure TaskPartition, illustrated by Pseudocode 2, to perform step 1 of the CITTA algorithm. The input to TaskPartition

is the temporarily non-allocable taskset 𝜏𝑡𝑛𝑎 , 𝜋 , and existing task assignment 𝜏 (𝜋) = (𝜏 (𝜋1), 𝜏 (𝜋2), ..., 𝜏 (𝜋𝑚). 𝜏𝑡𝑛𝑎 is

initialized as 𝜏 . Every time when TaskPartition finishes, some tasks in the taskset 𝜏𝑡𝑛𝑎 can be assigned to cores, and

thus 𝜏𝑡𝑛𝑎 and 𝜏 (𝜋) are updated.
Lines 5 − 7 in the procedure of TaskPartition perform step 1.(2) of CITTA to compute the upper bound on cache

interference for tasks. When CITTA attempts to assign 𝜏𝑖 to 𝜋𝑥 , the upper bound on cache interference caused by

𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ), i.e. tasks that are already assigned to 𝜋𝑥 , is recomputed. This is because a tighter bound can be possibly

obtained by the recalculation, as will be shown soon. Considering 𝜏𝑖 is more likely to be assigned to 𝜋𝑥 if the upper

bound on the cache interference caused by 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ) is smaller, the recalculation makes CITTA less pessimistic.
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Pseudocode 1: CITTA(𝜏 , 𝜋 )

1: sort 𝜏 in non-decreasing order by a selected criterion

2: 𝜏𝑡𝑛𝑎 ← 𝜏 , 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← true, 𝜏 (𝜋1), 𝜏 (𝜋2), ..., 𝜏 (𝜋𝑚) ← ∅
3: 𝜏 (𝜋) = (𝜏 (𝜋1), 𝜏 (𝜋2), ..., 𝜏 (𝜋𝑚))
4: while 𝜏𝑡𝑛𝑎 ≠ ∅ and 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 == true do
5: 𝜏𝑡𝑛𝑎, 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝜏 (𝜋)=TaskPartition(𝜏𝑡𝑛𝑎 , 𝜋 , 𝜏 (𝜋))
6: end while
7: if 𝜏𝑡𝑛𝑎 == ∅ then
8: return 𝑆𝑢𝑐𝑐𝑒𝑠𝑠

9: else
10: return 𝐹𝑎𝑖𝑙𝑒𝑑

11: end if=0

Pseudocode 2: TaskPartition(𝜏 , 𝜋 , 𝜏 (𝜋))
1: 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← false, 𝜏𝑡𝑛𝑎 ← ∅
2: for all 𝜏𝑖 ∈ 𝜏 do
3: 𝑎𝑠𝑠𝑖𝑔𝑛𝑇𝑜 ← 𝑁𝑈𝐿𝐿, 𝑐𝑜𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ← true
4: for all 𝜋𝑥 ∈ 𝜋 do
5: for all 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ) ∪ {𝜏𝑖 } do
6: calculate 𝐼𝑐

𝑘
7: end for
8: for all 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ) ∪ {𝜏𝑖 } do
9: if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (1.9) violates for 𝜏𝑘 then
10: 𝑐𝑜𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ← false
11: break;
12: end if
13: end for
14: if 𝑐𝑜𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠 then
15: 𝜏 (𝜋𝑥 ) ← 𝜏 (𝜋𝑥 ) ∪ {𝜏𝑖 }
16: 𝑎𝑠𝑠𝑖𝑔𝑛𝑇𝑜 ← 𝜋𝑥 , 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← true
17: break;
18: end if
19: end for
20: if 𝑎𝑠𝑠𝑖𝑔𝑛𝑇𝑜 == 𝑁𝑈𝐿𝐿 then
21: 𝜏𝑡𝑛𝑎 ← 𝜏𝑡𝑛𝑎 ∪ {𝜏𝑖 }
22: end if
23: end for
24: return 𝜏𝑡𝑛𝑎, 𝑡𝑎𝑠𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝜏 (𝜋) =0

5.2 Calculation of the Upper Bound on Cache Interference: 𝐼𝑐
𝑘

The CITTA algorithm requires to calculate the upper bound on cache interference before it assigns a new task to a core.

We now describe such a procedure for the calculation of 𝐼𝑐
𝑘
.

[43] presented an approach to calculating the upper bound on cache interference for tasks that are globally scheduled.

By extending the approach in [43], we compute the upper bound on cache interference for partitioned scheduling. This

is done by two steps. First, given the existing task assignment represented by 𝜏 (𝜋) = (𝜏 (𝜋1), 𝜏 (𝜋2), ..., 𝜏 (𝜋𝑚) and 𝜏𝑛𝑎 as

the taskset consisting of the tasks that have not been assigned, we construct an integer programming (𝐼𝑃 ) formulation
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to calculate the upper bound on the cache interference exhibited by a task within an execution window. Then, we use

an iterative algorithm to obtain the upper bound on cache interference a task may exhibit during its job executions.

5.2.1 IP formulation. In the following discussion, we compute the upper bound on cache interference exhibited by 𝜏𝑘 ,

assuming 𝜏𝑖 is the interfering task and 𝜏𝑘 is assigned to 𝜋𝑥 .

The Execution Window (EW) of the 𝑗-th job of 𝜏𝑘 (𝐽
𝑗

𝑘
) is defined as the time interval [𝑠 𝑗

𝑘
, 𝑓

𝑗

𝑘
] from the staring time to

the finishing time of 𝐽
𝑗

𝑘
. We use𝐶 ′

𝑘
as the length of the 𝐸𝑊 because of the iterative computation which will be described

later on.

The objective function of the 𝐼𝑃 formulation is to maximize the total cache interference exhibited by task 𝜏𝑘 . If 𝑁𝑖,𝑘

jobs of 𝜏𝑖 are executing concurrently with 𝜏𝑘 , the cache interference that 𝜏𝑖 causes on 𝜏𝑘 is bounded by 𝑁𝑖,𝑘 · 𝐼𝑐𝑖,𝑘 . The
total cache interference for one job execution of 𝜏𝑘 is bounded by the sum of the contributions of all tasks 𝜏𝑖 in the

taskset 𝜏 . So the objective function is:

max

∑
𝑁𝑖,𝑘 · 𝐼𝑐𝑖,𝑘 . (1.10)

To get a bounded solution, we analyze the constraints on 𝑁𝑖,𝑘 .

If tasks 𝜏𝑖 and 𝜏𝑘 are assigned to the same core 𝜋𝑥 , at each time instance, at most one task of 𝜏𝑖 and 𝜏𝑘 executes on

core 𝜋𝑥 . No jobs from 𝜏𝑖 could interfere with 𝜏𝑘 . Therefore, we have the following:

∀𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ), 𝑁𝑖,𝑘 = 0. (1.11)

𝑁𝑖,𝑘 reaches its minimal value when a job of 𝜏𝑖 starts to execute as soon as it is released and the execution finishes

just before the start of the 𝐸𝑊 . Taking the smallest execution time of 𝜏𝑖 , 𝐶
𝑚𝑖𝑛
𝑖

, as 0, we have the following constraint:

∀𝜏𝑖 ∉ 𝜏 (𝜋𝑥 ),
⌊

max(0,𝐶 ′
𝑘
−𝑇𝑖 )

𝑇𝑖

⌋
+ 𝜉𝑖 ≤ 𝑁𝑖,𝑘 (1.12)

where 𝜉𝑖 =


1 (𝐶 ′

𝑘
mod 𝑇𝑖 ) − 𝐷𝑖 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.

The term 𝜉𝑖 indicates whether or not the last job of 𝜏𝑖 released within the 𝐸𝑊 interferes with 𝜏𝑘 .

The maximum value of 𝑁𝑖,𝑘 is taken when the first interfering job of 𝜏𝑖 finishes just after the start of the 𝐸𝑊 and the

last interfering job of 𝜏𝑖 starts to execute at the time when it is released. Thus, we have the second constraint on 𝑁𝑖,𝑘 :

∀𝜏𝑖 ∉ 𝜏 (𝜋𝑥 ), 𝑁𝑖,𝑘 ≤ 1 +
⌈

max(0,𝐶 ′
𝑘
−𝑇𝑖 + 𝐷𝑖 )

𝑇𝑖

⌉
. (1.13)

If 𝑁𝑖,𝑘 > 2, the first and last interfering jobs of 𝜏𝑖 may occupy almost 0 computation capacity in the 𝐸𝑊 . Let 𝐽
𝑗
𝑖
be a

job among the remaining 𝑁𝑖,𝑘 − 2 interfering jobs of 𝜏𝑖 between the first and the last ones. Both release time 𝑟
𝑗
𝑖
and

deadline 𝑑
𝑗
𝑖
of 𝐽

𝑗
𝑖
are within the EW of 𝜏𝑘 .

If 𝜏𝑖 is (or will be) successfully assigned to core 𝜋𝑦 , at least𝐶𝑖 computation capacity of the processing core is reserved

for the execution of 𝐽
𝑗
𝑖
during [𝑟 𝑗

𝑖
, 𝑑

𝑗
𝑖
]. The total execution of interfering tasks 𝜏𝑖 on each processor 𝜋𝑦 (with 𝜋𝑦 ≠ 𝜋𝑥 )

cannot exceed 𝐶 ′
𝑘
. Since we do not know the core assignment for tasks in 𝜏𝑛𝑎 , those tasks are allowed to execute on

any core. Thus, we have the following inequality (1.14),

∀𝑦 ≠ 𝑥,
∑

𝜏𝑖 ∈𝜏 (𝜋𝑦 )∪𝜏𝑛𝑎
max(0, 𝑁𝑖,𝑘 − 2)𝐶𝑖 ≤ 𝐶 ′

𝑘
. (1.14)
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The objective function (1.10) together with constraints on 𝑁𝑖,𝑘 , i.e. inequalities (1.11), (1.12), (1.13) and (1.14), form

our 𝐼𝑃 problem. As task parameters such as 𝐶𝑖 , 𝐷𝑖 , 𝑇𝑖 are known, the input of the 𝐼𝑃 formulation is the length of EW:

𝐶 ′
𝑘
, existing task assignment: 𝜏 (𝜋) = (𝜏 (𝜋1), 𝜏 (𝜋2), ..., 𝜏 (𝜋𝑚), and remaining tasks that need to be assigned: 𝜏𝑛𝑎 . Thus,

we use 𝐼𝑃 (𝐶 ′
𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) to denote the 𝐼𝑃 problem and use 𝐼𝑐 (𝐶 ′

𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) to denote the optimal solution.

When CITTA attempts to assign a task 𝜏𝑖 to a core 𝜋𝑥 , the upper bound on cache interference caused by 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ),
i.e. tasks that are already assigned to 𝜋𝑥 , is recomputed. We now show that a tighter upper bound for task 𝜏𝑘 can be

possibly obtained by the re-computation.

Given a task 𝜏𝑘 and an execution window of length𝐶 ′
𝑘
, let us suppose the 𝐼𝑃 formulation in the previous computation

of cache interference is 𝐼𝑃 (𝐶 ′
𝑘
, 𝜏𝑝 (𝜋), 𝜏𝑛𝑎𝑝 ), and the 𝐼𝑃 formulation for the re-computation is 𝐼𝑃 (𝐶 ′

𝑘
, 𝜏𝑞 (𝜋), 𝜏𝑛𝑎𝑞 ).

Between the two computations for the same task 𝜏𝑘 , CITTAmay assign some tasks to cores. If a task 𝜏𝑖 is assigned to a

core 𝜋𝑥 , 𝜏𝑖 is removed from 𝜏𝑛𝑎𝑝 and is added to 𝜏𝑞 (𝜋𝑥 ). Obviously, we have 𝜏𝑛𝑎𝑞 ⊆ 𝜏𝑛𝑎𝑝 and ∀1 ≤ 𝑥 ≤ 𝑚,𝜏𝑝 (𝜋𝑥 ) ⊆ 𝜏𝑞 (𝜋𝑥 ).

Lemma 2. Given 𝜏𝑘 and 𝐶 ′
𝑘
,

𝐼𝑐 (𝐶 ′
𝑘
, 𝜏𝑞 (𝜋), 𝜏𝑛𝑎𝑞 ) ≤ 𝐼𝑐 (𝐶 ′

𝑘
, 𝜏𝑝 (𝜋), 𝜏𝑛𝑎𝑝 ) .

Proof Sketch:We show the proof sketch.

From condition 1.9, one can prove the following: if 𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) and 𝜏𝑘 ∈ 𝜏 (𝜋𝑥 ), then 𝐶𝑘 + 𝐼𝑐𝑘 ≤ 𝐷𝑖 .

By the above statement and the constraints of the IP problem, we can prove that any solution of 𝐼𝑃 (𝐶 ′
𝑘
, 𝜏𝑞 (𝜋), 𝜏𝑛𝑎𝑞 ) is

also feasible for 𝐼𝑃 (𝐶 ′
𝑘
, 𝜏𝑝 (𝜋), 𝜏𝑛𝑎𝑝 ). Thus,

𝐼𝑐 (𝐶 ′
𝑘
, 𝜏𝑞 (𝜋), 𝜏𝑛𝑎𝑞 ) ≤ 𝐼𝑐 (𝐶 ′

𝑘
, 𝜏𝑝 (𝜋), 𝜏𝑛𝑎𝑝 ) .

Lemma 2 is the reason CITTA forces the recalculation of upper bound on cache interference caused by tasks that are

already assigned to cores by CITTA.

5.2.2 Iterative Computation. Due to the presence of cache interference, a job may execute longer than𝐶𝑘 on amulti-core

platform with shared caches. However, a larger execution time may introduce more cache interference.

We give a sufficient condition for a certain value that can be used as an upper bound on cache interference exhibited

by 𝜏𝑘 , denoted by 𝐼𝑐
𝑘
.

Lemma 3. Given 𝜏 (𝜋) and 𝜏𝑛𝑎 , if ∃ 𝐶∗
𝑘
≥ 𝐶𝑘 such that 𝐶∗

𝑘
= 𝐶𝑘 + 𝐼𝑐 (𝐶∗𝑘 , 𝜏 (𝜋), 𝜏

𝑛𝑎), then 𝐼𝑐
𝑘
= 𝐼𝑐 (𝐶∗

𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎).

The equation can be solved by means of fixed point iteration: the iteration starts with an initial value for the length

of 𝐸𝑊 and upper bound on cache interference, i.e. 𝐶 ′
𝑘
= 𝐶𝑘 and 𝐼𝑐 (𝐶 ′

𝑘
) = 0. By solving the IP, we compute a new upper

bound of the cache interference 𝐼𝑐 (𝐶 ′
𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) and a new corresponding length of 𝐸𝑊 , 𝐶 ′

𝑘
= 𝐶𝑘 + 𝐼𝑐 (𝐶 ′𝑘 , 𝜏 (𝜋), 𝜏

𝑛𝑎).
The iterative computation for 𝜏𝑘 stops either if no update on 𝐼𝑐 (𝐶 ′

𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) is possible anymore or if the computed

𝐼𝑐 (𝐶 ′
𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) is large enough to make 𝜏𝑘 unschedulable i.e. 𝐼𝑐 (𝐶 ′

𝑘
, 𝜏 (𝜋), 𝜏𝑛𝑎) +𝐶 ′

𝑘
> 𝐷𝑘 .

Computational complexity: The original 𝐼𝑃 can be easily transformed to an Integer Linear Programming (𝐼𝐿𝑃 )

problem by introducing a new integer variable 𝑦𝑖,𝑘 for each 𝑁𝑖,𝑘 with two additional constraints: 𝑦𝑖,𝑘 ≥ 0 and

𝑦𝑖,𝑘 ≥ 𝑁𝑖,𝑘 − 2. Inequality (1.14) can be replaced by

∑
𝜏𝑖 ∈𝜏 (𝜋𝑦 )∪𝜏𝑛𝑎 𝑦𝑖,𝑘𝐶𝑖 ≤ 𝐶 ′

𝑘
. In the transformed 𝐼𝐿𝑃 problem, we

have totally 2𝑛 variables and 4𝑛 +𝑚 − 1 constraints. The complexity of the 𝐼𝑃 is the same as the complexity of solving

the transformed 𝐼𝐿𝑃 problem, which is O((4𝑛 +𝑚)64
𝑛

ln 4𝑛 +𝑚) [13].
Let𝑛 represent the number of tasks in the taskset. For 𝜏𝑘 , let 𝐼

𝑚𝑖𝑛
𝑘

be the smallest difference between cache interference

caused by one job of 𝜏𝑖 and 𝜏 𝑗 , i.e. 𝐼
𝑚𝑖𝑛
𝑘

= min

𝑖, 𝑗
(𝐼𝑐
𝑖,𝑘
−𝐼𝑐

𝑗,𝑘
), the iterative algorithm takes at most𝛾 = max

𝑘

(𝐷𝑘−𝐶𝑘 )
𝐼𝑚𝑖𝑛
𝑘

iterations
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to terminate since 𝐶 ′
𝑘
either stays the same or increases at least with 𝐼𝑚𝑖𝑛

𝑘
in each iteration. Thus, the complexity to

compute the upper bound on cache interference exhibited by each task is O(𝛾 (4𝑛2+𝑚𝑛)64
𝑛𝑙𝑛4𝑛+𝑚). In TaskPartition, at

most 𝑛 tasks in 𝜏 are checked for at most𝑚 cores, thus, the complexity of TaskPartition is O(𝛾 (4𝑛2𝑚+𝑛𝑚2)64
𝑛𝑙𝑛4𝑛+𝑚).

Since the while loop in CITTA executes at most 𝑛 times, the complexity of CITTA is O(𝛾 (4𝑛3𝑚 +𝑚2𝑛2)64
𝑛𝑙𝑛4𝑛 +𝑚).

5.3 Schedulability Analysis

5.3.1 Uniprocessor feasibility. Task partitioning reduces the problem of multi-core processor scheduling into a set of

single-core processor scheduling problems (one for each core). Following Theorem 1, we first propose a schedulability

condition, as stated in Theorem 2, for uniprocessor scheduling, taking shared cache interference into consideration.

Note that the condition in Theorem 2 is sufficient and not necessary as 𝐼𝑐
𝑗
is the calculated upper bound on the shared

interference exhibited by 𝜏 𝑗 , the actual cache interference can be smaller than 𝐼𝑐
𝑗
.

Theorem 2. A taskset 𝜏 (𝜋𝑥 ) is schedulable under 𝐸𝐷𝐹𝑛𝑝 on a uniprocessor platform if

∀𝑡,
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) ≤ 𝑡 (2.1)

and for all 𝜏 𝑗 ∈ 𝜏 (𝜋𝑥 ):
∀𝑡 : 𝐶 𝑗 + 𝐼𝑐𝑗 ≤ 𝑡 ≤ 𝐷 𝑗 : 𝐶 𝑗 + 𝐼𝑐𝑗 +

∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝑖≠𝑗

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡) ≤ 𝑡 . (2.2)

5.3.2 Schedulability analysis of CITTA. We first derive one property that must be satisfied for tasks assigned to the

same core by CITTA. This is useful for the proof of the feasibility analysis conducted later for CITTA.

Lemma 4. If tasks are assigned to cores by CITTA,

∀𝜋𝑥 ∈ 𝜋,
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝑈 𝑐
𝑖 ≤ 1. (2.3)

Proof. Let 𝜏𝑢 be the task with the largest relative deadline among tasks in 𝜏 (𝜋𝑥 ), so, 𝐷𝑢 = 𝑚𝑎𝑥{𝐷𝑖 |𝜏𝑖 ∈ 𝜏 (𝜋𝑥 )}.
Obviously,

𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) =⇒ 𝐷𝑖 ≤ 𝐷𝑢 .

Since 𝜏𝑢 satisfies Inequality (1.9), we have

𝐷𝑢 ≥
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑢 ) . (2.4)

From Equation (1.7), 𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑢 ) is computed by:

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑢 ) = 𝑈 𝑐
𝑖 × (𝐷𝑢 − 𝐷𝑖 +𝑇𝑖 ) ≥ 𝑈 𝑐

𝑖 × 𝐷𝑢 .

Replacing 𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑢 ) in Inequality (2.4),

𝐷𝑢 ≥
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝑈 𝑐
𝑖 × 𝐷𝑢 =⇒

∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝑈 𝑐
𝑖 ≤ 1.

This is Inequality (2.3). □

On each core 𝜋𝑥 ∈ 𝜋 , tasks in 𝜏 (𝜋𝑥 ) are scheduled under 𝐸𝐷𝐹𝑛𝑝 . The next lemma shows the feasibility of 𝜏 (𝜋𝑥 ).

Lemma 5. If the tasks are assigned to cores by CITTA, ∀𝜋𝑥 ∈ 𝜋 , 𝜏 (𝜋𝑥 ) is feasible on core 𝜋𝑥 by 𝐸𝐷𝐹𝑛𝑝 .
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Proof. For the sake of contradiction, assume that each task in 𝜏 (𝜋𝑥 ) satisfies condition (1.9), but that a task’s deadline
is missed when scheduling the tasks in 𝜋 (𝜏𝑘 ) on core 𝜋𝑥 . Let 𝑡𝑓 be the time that a task misses a deadline on core 𝜋𝑥 .

By Theorem 2, either ∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡𝑓 ) > 𝑡𝑓 , (2.5)

or ∃𝜏𝑝 , 𝜏𝑝 ∈ 𝜏 (𝜋𝑥 ) and ∃𝑡𝑓 ,𝐶𝑝 + 𝐼𝑐𝑝 ≤ 𝑡𝑓 ≤ 𝐷𝑝 , such that

𝐶𝑝 + 𝐼𝑐𝑝 +
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝑖≠𝑝

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡𝑓 ) > 𝑡𝑓 . (2.6)

It will be shown that if either Inequality (2.5) or (2.6) holds, then a contradiction is reached.

We first prove the existence of 𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) that satisfies 𝐷𝑖 ≤ 𝑡𝑓 . Assuming ∀𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ), 𝐷𝑖 > 𝑡𝑓 , from Equation (1.7),∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) = 0.

By the assumption, neither Inequality (2.5) nor (2.6) will hold. So the assumption is false.

Therefore, we can always find 𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) that satisfies 𝐷𝑖 ≤ 𝑡𝑓 . Let 𝜏𝑠 be the task with the largest relative deadline,

i.e. 𝐷𝑠 =𝑚𝑎𝑥{𝐷𝑖 |𝜏𝑖 ∈ 𝜏 (𝜋𝑥 ) ∧ 𝐷𝑖 ≤ 𝑡𝑓 }
(A) we first prove that if Inequality (2.5) holds, it would lead to contradiction.

From Inequality (1.8) and (2.5), ∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) > 𝑡𝑓 . (2.7)

By the definition of 𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ), we have ∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖>𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) = 0.

∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 )

=
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) +
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖>𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 )

=
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐶𝑖 + 𝐼𝑐𝑖 +𝑈
𝑐
𝑖 × (𝑡𝑓 − 𝐷𝑖 )

=
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐶𝑖 + 𝐼𝑐𝑖 +𝑈
𝑐
𝑖 × (𝑡𝑓 − 𝐷𝑠 + 𝐷𝑠 − 𝐷𝑖 )

=
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑠 ) +𝑈 𝑐
𝑖 × (𝑡𝑓 − 𝐷𝑠 ) .

(2.8)

𝜏𝑠 satisfies condition (1.9):

𝐷𝑠 ≥
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑠 ).
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From Equation (2.8) and Inequality (2.7), we have

𝐷𝑠 +
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝑈 𝑐
𝑖 × (𝑡𝑓 − 𝐷𝑠 ) > 𝑡𝑓 (2.9)

=⇒
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝑈 𝑐
𝑖 > 1 =⇒

∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝑈 𝑐
𝑖 > 1.

This contradicts to Lemma 4.

(B) we now prove that if Inequality (2.6) holds, it would also lead to contradiction.

We know that ∃𝜏𝑠 , 𝜏𝑝 such that 𝐷𝑠 ≤ 𝑡𝑓 ≤ 𝐷𝑝 . We consider two cases (B1): 𝐷𝑠 = 𝐷𝑝 and (B2): 𝐷𝑠 < 𝐷𝑝 .

(B1) if 𝐷𝑠 = 𝐷𝑝 , then 𝑡𝑓 = 𝐷𝑝

𝐷𝐵𝐹𝑐∗ (𝜏𝑝 , 𝑡𝑓 ) = 𝐶𝑝 + 𝐼𝑐𝑝
From Inequality (2.6), ∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡𝑓 ) > 𝑡𝑓 .

This leads to contradiction as proved in case (A).

(B2) if 𝐷𝑠 < 𝐷𝑝 , we have

𝐶𝑝 + 𝐼𝑐𝑝 ≤ max

𝜏 𝑗 ∈𝜏 (𝜋𝑥 )
𝐷 𝑗>𝐷𝑠

𝐶 𝑗 + 𝐼𝑐𝑗 ,

and ∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝑖≠𝑝

𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡𝑓 ) ≤
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝐵𝐹𝑐 (𝜏𝑖 , 𝑡𝑓 ) .

From Inequality (2.6), we have

max

𝜏 𝑗 ∈𝜏 (𝜋𝑥 )
𝐷 𝑗>𝐷𝑠

𝐶 𝑗 + 𝐼𝑐𝑗 +
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) > 𝑡𝑓 .

Replacing

∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 ) 𝐷𝐵𝐹

𝑐∗ (𝜏𝑖 , 𝑡𝑓 ) in the above inequality using equation (2.8), we have

max

𝜏 𝑗 ∈𝜏 (𝜋𝑥 )
𝐷 𝑗>𝐷𝑠

𝐶 𝑗 + 𝐼𝑐𝑗 +
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑠 ) +𝑈 𝑐
𝑖 × (𝑡𝑓 − 𝐷𝑠 ) > 𝑡𝑓 . (2.10)

Since 𝜏𝑠 satisfies condition (1.9),

𝐷𝑠 ≥
∑

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖 ≤𝐷𝑠

𝐷𝐵𝐹𝑐∗ (𝜏𝑖 , 𝐷𝑠 ) + max

𝜏𝑖 ∈𝜏 (𝜋𝑥 )
𝐷𝑖>𝐷𝑠

𝐶𝑖 + 𝐼𝑐𝑖 . (2.11)

From Inequality (2.10) and (2.11), ∑
𝜏𝑖 ∈𝜏 (𝜋𝑥 )

𝑈 𝑐
𝑖 > 1.

This also contradicts to Lemma 4. □

The correctness of Algorithm CITTA follows, by application of Lemma 5:

Theorem 3. If the task partitioning algorithm CITTA returns 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 on taskset 𝜏 , then the resulting partitioning is

schedulable by 𝐸𝐷𝐹𝑛𝑝 on each core.
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6 EXPERIMENTS

We assess the performance of CITTA and the proposed schedulability test in terms of acceptance ratio, that is, the

number of tasksets that are deemed schedulable divided by the number of tasksets tested. CITTA is compared against

Global non-preemptive EDF (GEDF), which is proposed in [44], the only, at least to the best of our records, work on

real-time multiprocessor scheduling taking the shared cache interference into account. Moreover, we also compare

CITTA against other greedy partition algorithms (First-fit, Worse-fit) in the context of non-preemptive scheduling.

As mentioned in the beginning of Section 5.1, the CITTA algorithm first sorts tasks in non-decreasing order using

some criterion and then assigns tasks to the processor cores according to Equations (1.9).

We consider the following five sorting criteria: the reciprocal of a task’s WCET
1

𝐶𝑖
, a task’s period 𝑇𝑖 , the reciprocal

of a task’s utilization
1

𝑈𝑖
=

𝑇𝑖
𝐶𝑖
, a task’s slack 𝑆𝑖 = 𝑇𝑖 −𝐶𝑖 and 𝑟𝑎𝑛𝑑𝑜𝑚 order.

We first conduct systematic evaluation to compare the performance of CITTA with global scheduling using randomly

generated workloads, after which we illustrate the advantage of CITTA by taking an example of realistic workloads in

embedded systems.

6.1 Systematic evaluation

6.1.1 Workloads Generation. We systematically generated synthetic workloads by varying i) the number of tasks

𝑛 (𝑛 = 10, 20) in the taskset, ii) total task utilization 𝑈𝑡𝑜𝑡 (𝑈𝑡𝑜𝑡 from 0.1 to𝑚 − 0.1 with steps of 0.2), iii) the cache

interference factor 𝐼𝐹 (𝐼𝐹 = 0.2 or 0.8), and iv) the probability of two tasks having cache interference on each other: 𝑃

(𝑃 = 0.1 or 0.4). Given those four parameters, we have generated 20000 tasksets in each experiment.

As the task generation policies may significantly affect experimental results, we give the policies used in the

experiments as follows.

Task utilization generation policy.We use Randfixedsum [38] to generate vectors that consist of 𝑁 elements and

whose components sum to the 𝑈𝑡𝑜𝑡 . Each element in the vector is assigned an individual task utilization 𝑈𝑘 in the

taskset.

Task period andWCET generation policy. For each task 𝜏𝑘 ,𝑇𝑘 is uniformly distributed over the interval [100, 200].
The WCET of 𝜏𝑘 is derived by 𝐶𝑘 = 𝑇𝑘 ×𝑈𝑘 . We consider an implicit deadline task system, which implies that 𝐷𝑘 = 𝑇𝑘 .

Cache interference generation policy. The probability of two tasks having cache interference is 𝑃 . If two tasks

𝜏𝑘 and 𝜏𝑖 interfere with each other, 𝐼𝑐
𝑖,𝑘

is generated as 𝐼𝑐
𝑖,𝑘

= 𝐼𝐹 ×𝑚𝑖𝑛(0.5𝐶𝑖 , 0.5𝐶𝑘 ).
To evaluate the schedulability performance of CITTA versus𝐺𝐸𝐷𝐹 , we measure the number of tasksets that can

be successfully partitioned by CITTA with different sorting criteria and the number of tasksets that can be scheduled

by 𝐺𝐸𝐷𝐹 . Similarly, we select the same criteria to verify the performance of CITTA against the First-fit and Worst-fit

partition algorithms. The acceptance ratio is the number of schedulable tasksets divided by the total number of tasksets.

6.1.2 Results. We report the major trends characterizing the experimental results, illustrated in Figures 4, 5 and 6. In

the figures, CITTA-<criterion> represents a variant of CITTA using <criterion> for sorting tasks, whereas GLB stands

for the GEDF scheduler.

CITTA outperforms global EDF. Our results clearly show that CITTA outperforms global EDF in all the test

cases.

Figure 4 compares the acceptance ratio of CITTA and GLB when no cache interference exists in the system, i.e.,

𝐼𝐹 = 0 and 𝑃 = 0. It is clear that CITTA, as a partitioned scheduler, is more efficient than global scheduling.
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(a) m=4, n=10. (b) m=4, n=20.

Fig. 4. Acceptance ratio without cache interference: 𝐼𝐹 = 0, 𝑃 = 0.

(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.

Fig. 5. Acceptance ratio with different 𝐼𝐹 and 𝑃 when𝑚 = 4, 𝑛 = 10.

When the degree of cache interference is generated by 𝐼𝐹 = 0.2, 𝑃 = 0.1, as shown in Figure 5(a), all the generated

tasksets can be successfully partitioned by all variants of CITTA if 𝑈𝑡𝑜𝑡 < 2.5. while the global EDF achieves the

full acceptance ratio when 𝑈𝑡𝑜𝑡 < 1.5. CITTA is able to partition tasksets with the highest tested total utilization, i.e.

𝑈𝑡𝑜𝑡 = 3.9. Global EDF can only schedule tasksets with a total utilization of up to𝑈𝑡𝑜𝑡 = 2.5.

If cache interference is small, the gap of acceptance ratio between all variants of CITTA and global scheduling (GLB)

is large for𝑈𝑡𝑜𝑡 ∈ [2.5, 3.5]. From Figure 4(a), 5(a) and 5(b), when cache interference increases, the advantage of CITTA

is less than GLB, which can be caused by the pessimism of the cache interference analysis. However, the schedulability

performance gap still exists even when the cache interference is large, e.g., 𝐼𝐹 = 0.4, 𝑃 = 0.8.

The comparison between Figure 4 and Figure 5 clarifies that the schedulability benefit of CITTA does not come much

from CITTA’s cache analysis itself, but mainly from the partitioned scheduling approach used by CITTA. However, this
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(a) IF=0.2, P=0.1. (b) IF=0.4, P=0.8.

Fig. 6. Acceptance ratio with different 𝐼𝐹 and 𝑃 when𝑚 = 4, 𝑛 = 20.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Task utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

CITTA-1/U
First-fit
Worst-fit

(a) IF=0.2, P=0.1,m=4,n=10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Task utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

CITTA-1/U
First-fit
Worst-fit

(b) IF=0.4, P=0.8,m=4,n=10.

Fig. 7. Acceptance ratio with CITTA against First-fit and Worst-fit partition algorithm

doesn’t hurt the contribution of the proposed work since, without CITTA, partitioned scheduling cannot be used safely

and effectively in the presence of inter-core cache interference unless cache partitioning is used.

We have also compared the schedulability performance of CITTA and GEDF using heterogeneous task periods i.e.

𝑇𝑖 ∈ [100, 300] or 𝑇𝑖 ∈ [100, 500] (of which the results are omitted due to space limitations). In those tests, CITTA still

outperforms GEDF.

Performance gap among different variants of CITTA is small. As is depicted in Figures 5(a) and 6(a), when

the cache interference is small (𝐼𝐹 = 0.2, 𝑃 = 0.1), CITTA-𝑇 and CITTA-𝑟𝑎𝑛𝑑𝑜𝑚 performed worse than the CITTA-1/𝐶 ,
CITTA-𝑆 and CITTA-1/𝑈 when 𝑈𝑡𝑜𝑡 > 3. while as the degree of cache interference increases, the schedulability

performance gap becomes smaller, as shown in Figure 5(b) and Figure 6(b). One reason could be that even though tasks

are sorted by different criteria, all variants of CITTA force recalculation of the upper bound on cache interference

to obtain an upper bound that is as small as possible. The cache interference obtained by all variants of CITTA thus
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is likely to be similar. Therefore, if cache interference dominates the schedulability result, the gap of schedulability

performance among different variants of CITTA is small.

Cache interference degrades schedulability performance. Figure 5(a) and Figure 5(b) compare the acceptance

ratio with different 𝑃 and 𝐼𝐹 for tasksets consisting of 10 tasks. With the same𝑈𝑡𝑜𝑡 , the acceptance ratio achieved by

all variants of CITTA and global EDF decrease as 𝑃 and 𝐼𝐹 increase. This is because a larger 𝑃 and 𝐼𝐹 indicate more

tasks in the taskset having larger cache interference with each other, which can potentially increase the upper bound

on cache interference, eventually making the interfered tasks unschedulable. A similar observation can be made from

Figure 6(a) and Figure 6(b) for tasksets consisting of 20 tasks.

CITTA outperforms the greedy partitioned algorithms (First-fit, Worse-fit) as well. As illustrated in Figure

7, we observe that CITTA with the sorting criterion of the reciprocal of a task’s utilization 1/𝑈𝑖 = 𝑇𝑖/𝐶𝑖 outperforms

the first-fit and worse-fit partition algorithms with different degrees of cache interference. This is due to the fact that

CITTA employs 𝜏𝑡𝑛𝑎 to collect the unschedulable tasks and then forces an iterative recalculation of the upper bound

cache interference of these unschedulable tasks to obtain an upper bound that is as small as possible, thereby achieving

better schedulability performance.

6.1.3 Average Execution Time. We measured the execution time of CITTA with different taskset sizes. The executions

are conducted on an Intel Xeon processor using only one core running at 2.4𝐺𝐻𝑧. On average, it takes 0.85 seconds to

run CITTA for assignment of the taskset consisting of 10 tasks to a processor with 4 cores, while it takes 2.3 seconds

for tasksets with 20 tasks.

6.2 A closer look at CITTA: a case study

We now take a closer look at selected, representative workloads from the embedded systems domain to better understand

how CITTA performs better than global scheduling as well as the impact of cache interference on system schedulability.

We analyze the scenario where eight periodic tasks are to be scheduled on a multi-core processors with m cores.

Benchmarks. The workload is composed of three programs from M ¥𝑎lardalen WCET benchmarks [22], namely

expint, statemate and nsichneu, and five programs from the TACLeBench benchmark suite [16], e.g. countnegative,

deg2rad, ifdctint, minver and rad2deg. A brief description of the selected programs is provided in Table 2.

Table 2. WCETs, periods and utilization of the 10 selected tasks in TacleBench

Name Description WCET (Cycles) Period (Cycles)

expint Series expansion for computing 630291 1200000

an exponential integral function

statemate Automatically generated code 242220 1300000

nsichneu Simulate an extended Petri net 408567 1200000

countnegative Counts negative and non-negative numbers in a matrix 368490 1200000

deg2rad Conversion of degree to radiant 96600 900000

jfdctint Discrete Cosine Transform on a 8x8 pixel block 116291 800000

minver Matrix inversion for 3x3 floating point matrix 131740 900000

rad2deg Conversion of radiant to degree 96588 1300000

Architecture. We consider an embedded ARM processor with 2 cores. The cache hierarchy is composed of a 4-way

L1 private cache with a cache line size of 32B and an 8-way shared L2 cache with a cache line size of 64B. The size
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of the L1 and L2 caches is 8KB and 1MB, respectively. The access latency of L1 cache, L2 cache and main memory is

assumed to be 1, 10 and 100 cycles, respectively.

We first derive the WCET for the 8 selected programs using the Heptane tool [25], targeting the ARM architecture.

Since we consider periodic tasks, we determine the periods for the selected tasks in such a way that the task utilizations

are in the range of [5%, 60%]. The derived WCETs, periods and task utilization without cache interference of the 8

selected programs are listed in Table 2. Note that a task’s WCET and period are measured in clock cycles.

As mentioned previously, Heptane is extended with the implementation of our analysis of cache interference between

two programs. Table 3 lists the derived cache interference measured in clock cycles using our extended tool. Note that

𝜏𝑘 denotes the interfered task while 𝜏𝑖 is the interfering task.

Table 3. The cache interference between two programs, measured by cycles.(TacleBench)

𝜏𝑘

𝜏𝑖
𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑔2𝑟𝑎𝑑 𝑒𝑥𝑝𝑖𝑛𝑡 𝑗 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡 𝑚𝑖𝑛𝑣𝑒𝑟 𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 𝑟𝑎𝑑2𝑑𝑒𝑔 𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒

𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 - 13300 3100 10900 3500 11000 13300 11200

𝑑𝑒𝑔2𝑟𝑎𝑑 5800 - 900 2600 2000 5400 73300 6800

𝑒𝑥𝑝𝑖𝑛𝑡 16400 900 - 15900 9200 14500 800 11600

𝑗 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡 4500 1800 5600 - 17700 23900 1900 21100

𝑚𝑖𝑛𝑣𝑒𝑟 6700 2200 7900 23300 - 28900 2300 27700

𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 24600 12000 31000 123600 95300 - 11900 182200

𝑟𝑎𝑑2𝑑𝑒𝑔 5800 73400 1000 2600 2000 5400 - 6800

𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒 11100 6800 11000 60400 56900 86400 6700 -

Schedulability analysis. Given the task parameters and the underlying execution platform, we now perform the

schedulability analysis to check whether the taskset is schedulable by global scheduling and CITTA.

Global scheduling. It can be verified that the taskset is not schedulable under GEDF by checking the schedulability

condition of GEDF, proposed in [44].

Partitioned scheduling. The taskset is scheduleable by 𝐶𝐼𝑇𝑇𝐴 − 1/𝑈 . As the outcome of 𝐶𝐼𝑇𝑇𝐴 − 1/𝑈 partitioning

algorithm, tasks countnegative and expint are assigned to core 0 and the remaining tasks are assigned to core 1.

Comparison of cache interference between GEDF and CITTA. The difference in schedulbility performance between GEDF

and CITTA comes from the amount of cache interference among the tasks. Figure 8 compares the cache interference

exhibited by each task in the taskset under GEDF and CITTA. As can be seen from Figure 8, countnegative exhibits

the same interference under both GEDF and CITTA. When switching from GEDF to CITTA, the cache interference is

reduced dramatically from 96,800 to 6,700, from 711,500 to 55,600, from 97000 to 6800, and from 239300 to 22100 for the

tasks deg2rad, nsichneu, rad2deg and statemate, respectively. This is due to the fact that the two task pairs, e.g. deg2rad

and rad2deg, statemate and nsichneu interfere heavily with each other under global scheduling. With CITTA, deg2rad,

nsichneu, rad2deg and statemate are executed on the same core, hence it is not possible for them to interfere with each

other.

Analysis time. We measure the analysis time taken by the Heptane tool for estimating tasks’ WCET and our

extended tool for calculating cache interference between two programs, as shown in Table 4. The analysis time is

measured in seconds. The Heptane analysis time ranges from 0.05s to 25s and the extended analysis takes from 0.01s to

1s.
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Fig. 8. Comparison of cache interference (measured in cycles) exhibited by each task under GEDF and CITTA.
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Fig. 9. Cache interference of 8 periodic tasks with respect to the entire WCET by varying numbers of cores. The x-axis indicates the
percentage of cache interference to tasks’ WCET, and the y-axis shows 4 groups of experiments by varying the number of processing
cores.

Pessimism of cache interference analysis.We evaluate the pessimism of the proposed approach to calculating

cache interference by comparing the derived upper bound with tasks’ WCET. When 𝑒𝑥𝑝𝑖𝑛𝑡 is interfered by 𝑑𝑒𝑔2𝑟𝑎𝑑 , the

cache interference exhibited by 𝑒𝑥𝑝𝑖𝑛𝑡 is 0.014% of its WCET. The task 𝑒𝑥𝑝𝑖𝑛𝑡 exhibits the most interference when it is
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Table 4. The analysis time of Heptane and cache interference(s)

𝜏𝑘

𝜏𝑖
𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑔2𝑟𝑎𝑑 𝑒𝑥𝑝𝑖𝑛𝑡 𝑗 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡

𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑

𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 0.121346 0.015748 0.121346 0.020486 0.121346 0.014998 0.121346 0.046885

𝑑𝑒𝑔2𝑟𝑎𝑑 0.076086 0.010398 0.076086 0.012172 0.076086 0.01188 0.076086 0.030758

𝑒𝑥𝑝𝑖𝑛𝑡 0.124165 0.017548 0.124165 0.01704 0.124165 0.015415 0.124165 0.038458

𝑗 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡 0.398735 0.044896 0.398735 0.043877 0.398735 0.046991 0.398735 0.065401

𝑚𝑖𝑛𝑣𝑒𝑟 0.823939 0.066835 0.823939 0.069955 0.823939 0.069974 0.823939 0.087381

𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 24.163975 0.605423 24.163975 0.535292 24.163975 0.594377 24.163975 0.716172

𝑟𝑎𝑑2𝑑𝑒𝑔 0.075225 0.010308 0.075225 0.008084 0.075225 0.011574 0.075225 0.039327

𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒 4.175256 0.132362 4.175256 0.139073 4.175256 0.137318 4.175256 0.156777

𝜏𝑘

𝜏𝑖
𝑚𝑖𝑛𝑣𝑒𝑟 𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 𝑟𝑎𝑑2𝑑𝑒𝑔 𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒

𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐻𝑒𝑝𝑡𝑎𝑛𝑒 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑

𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 0.121346 0.060591 0.121346 0.466175 0.121346 0.01163 0.121346 0.09574

𝑑𝑒𝑔2𝑟𝑎𝑑 0.076086 0.050501 0.076086 0.470338 0.076086 0.010827 0.076086 0.099271

𝑒𝑥𝑝𝑖𝑛𝑡 0.124165 0.057069 0.124165 0.468208 0.124165 0.012944 0.124165 0.104446

𝑗 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡 0.398735 0.086509 0.398735 0.519875 0.398735 0.041931 0.398735 0.119838

𝑚𝑖𝑛𝑣𝑒𝑟 0.823939 0.107192 0.823939 0.529744 0.823939 0.067896 0.823939 0.149169

𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 24.163975 0.558716 24.163975 0.919925 24.163975 0.533269 24.163975 0.670215

𝑟𝑎𝑑2𝑑𝑒𝑔 0.075225 0.054823 0.075225 0.499051 0.075225 0.011605 0.075225 0.098118

𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒 4.175256 0.170983 4.175256 0.607783 4.175256 0.15993 4.175256 0.180884

interfered by 𝑖 𝑓 𝑑𝑐𝑡𝑖𝑛𝑡 , which accounts for 2.52% of its WCET. However, in some cases, the analysis is more pessimistic.

For example, when 𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒 and 𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢 interfere each other, the upper bound on cache interference is 35.67% of the

WCET for 𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑒 and 44.59% for 𝑛𝑠𝑖𝑐ℎ𝑛𝑒𝑢.

Additionally, we evaluate the cache interference exhibited by each task when the workload consisting of 8 periodic

tasks execute on platformswith different number of processing cores. Figure 9 shows the percentage of cache interference

to tasks’ WCET. When the processing core is 2, the minimum, maximum, and average of cache interference concerning

the entire execution time is 0.0649%, 0.12% and 0.886% respectively. As the number of cores increases to 4, the cache

interference of most tasks slightly increase. However, when the processing cores are more, i.e.,𝑚 = 8, the system suffers

from pessimistic cache interference: the minimum, maximum and average cache interference is 10.99%, 100% and 70.75%

respectively. When the cores are less, a task is interfered by less tasks. With the increasing number of cores, a task can

be interfered by more tasks, which leads to accounting for more eviction from interfering tasks on the cache sets in HB.

Another factor that could influence the pessimism of the proposed schedulability analysis is the number of tasks in

the task set. The proposed cache interference analysis calculates 𝐼𝑖,𝑘 for each interfering task and simply aggregates 𝐼𝑖,𝑘

from all interfering tasks without checking which cache blocks are evicted. This could lead to duplicate counting of the

same evicted cache blocks and the upper bound on cache interference can be over-estimated. As for future work, we

plan to develop methods to tighten the upper bound on cache interference.

Discussion on the integration of CITTA into a RTOS. The integration of CIITA into real-time operating systems

such as 𝐿𝐼𝑇𝑀𝑈𝑆𝑅𝑇 [11] involves two steps. The first step is to determine the task partitioning strategy. This is performed
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offline by CITTA, which is already exhibited and implemented in this work. The second step is to enforce the obtained

partitioning scheme by setting the scheduling affinity of each task. Note that the schedulability analysis of CITTA

assumes that tasks in each core are scheduled by non-preemptive EDF, this can be realized by setting the scheduler of

each core to non-preemptive EDF. The second step is already supported by 𝐿𝐼𝑇𝑀𝑈𝑆𝑅𝑇 .

7 CONCLUSIONS

Shared caches in multi-core processors introduce serious difficulties in providing guarantees on the real-time properties

of embedded software. In this paper, we addressed the problem of task partitioning in the presence of cache interference.

To achieve this, CITTA, a cache-interference aware task partitioning algorithm was proposed. To the best of our

knowledge, this is the first work on partitioned scheduling for real-time multi-core systems, accounting for shared

cache interference. We analyzed the shared cache interference between two programs for set-associative instruction and

data caches. An integer programming formulation was constructed to calculate the upper bound on cache interference

exhibited by a task, which is required by CITTA. We conducted schedulability analysis of CITTA and formally proved

the correctness of CITTA. A set of experiments was performed to evaluate the schedulability performance of CITTA

against global EDF scheduling over randomly generated tasksets and realistic workloads in embedded system. Our

empirical evaluations shows that CITTA outperforms global EDF scheduling and other greedy partition approachs

such as First-fit and Worst-fit in terms of tasksets deemed schedulable. As for future work, we plan to combine the task

partitioning and cache partitioning approaches to design a new real-time scheduling algorithm that can achieve even

better schedulability.
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