
0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 1

Schedulability Analysis of Global Scheduling for
Multicore Systems with Shared Caches

Jun Xiao, Member, IEEE, Sebastian Altmeyer, Member, IEEE,
and Andy D. Pimentel, Senior Member, IEEE

Abstract—Shared caches in multicore processors introduce serious difficulties in providing guarantees on the real-time properties of
embedded software due to the interaction and the resulting contention in the shared caches. To address this problem, we develop a
new schedulability analysis for real-time multicore systems with shared caches, globally scheduled by Earliest Deadline First (EDF)
and Fixed Priority (FP) algorithms. We construct an integer programming formulation, which can be transformed to an integer linear
programming formulation, to calculate an upper bound on cache interference exhibited by a task within a given execution window. Using
the integer programming formulation, an iterative algorithm is presented to obtain the upper bound on cache interference a task may
exhibit during one job execution. The upper bound on cache interference is subsequently integrated into the schedulability analysis to
derive a new schedulability condition. A range of experiments is performed to investigate how the schedulability is degraded by shared
cache interference. We also evaluate the schedulability performance of EDF against FP scheduling over randomly generated tasksets.
Our empirical evaluations show that EDF is better than FP scheduling in terms of the number of task sets deemed schedulable.

Index Terms—Real-Time Systems, Multi-Core Systems, Schedulability Analysis, Shared Caches, Global Scheduling.

F

1 INTRODUCTION

MULTICORE architectures are increasingly used in both
the desktop and the embedded markets. Modern

multicore processors incorporate shared resources between
cores to improve performance and efficiency. Shared caches
are among the most critical shared resources on multicore
systems as they can efficiently bridge the performance gap
between memory and processor speeds by backing up small
private caches. However, this brings major difficulties in
providing guarantees on real-time properties of embedded
software due to the interaction and the resulting contention
in a shared cache.

In a multicore processor with shared caches, a real-time
task may suffer from two different kinds of cache interfer-
ences [1], which severely degrade the timing predictability
of multicore systems. The first is called intra-core cache
interference, which occurs within a core, when a task is pre-
empted and its data is evicted from the cache by other real-
time tasks. The second is inter-core cache interference, which
happens when tasks executing on different cores access the
shared cache simultaneously. Inter-core cache interference
may cause several types of cache misses including capacity
misses, conflict misses and so on [2]. In this work, we
consider non-preemptive task systems, which implies that
intra-core cache interference is avoided since no preemption
is possible during task execution. We therefore focus on
inter-core cache interference.

It is challenging to design real-time applications execut-
ing on multicore platforms with shared caches, which can-
not afford to miss deadlines and hence demand timing pre-
dictability. Any schedulability analysis requires knowledge

• J. Xiao, S. Altmeyer and A. D. Pimentel are with the Informatics Institute,

University of Amsterdam, Amsterdam, Netherlands, 1098XH.

E-mail: J.Xiao@uva.nl, S.J.Altmeyer@uva.nl, A.D.Pimentel@uva.nl

Manuscript received May 08, 2019; revised xxxx xx, xxxx.

about the Worst-Case Execution Time (WCET) of real-time
tasks. With a multicore system, the WCETs are strongly de-
pendent on the amount of inter-core interference on shared
hardware resources such as main memory, shared caches
and interconnects. In this paper, we shall only focus on
the shared cache interferences and study the schedulability
analysis problem for hard real-time tasks that exhibit shared
cache interferences.

A major obstacle is to predict the cache behavior to
accurately obtain the WCET of a real-time task considering
inter-core cache interference since different cache behaviors
(cache hit or miss) will result in different execution times of
each instruction. In [3], it was even pointed out that ”it will
be extremely difficult, if not impossible, to develop analysis
methods that can accurately capture the contention among
multiple cores in a shared cache”. In this paper, we assume
that a task’s WCET itself does not account for shared cache
interference but, instead, we determine this interference
explicitly (as will be explained later on). [4] presents such
an approach to derive a task’s WCET without considering
shared cache interference.

This paper proposes a novel schedulability analysis
of global real-time scheduling for multicore systems with
shared caches. We construct an integer programming for-
mulation, which can be transformed to an integer linear
programming formulation, to calculate an upper bound on
cache interference exhibited by a task within a given execu-
tion window. Using the integer programming formulation,
an iterative algorithm is presented to obtain the upper
bound on cache interference a task may exhibit during one
job execution. The upper bound on cache interference is
subsequently integrated into the schedulability analysis to
derive a new schedulability condition. A range of experi-
ments is performed to investigate how the schedulability
is degraded by shared cache interference for a range of

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 2

different tasksets.
The original version of our schedulability analysis for

real-time multicore systems with shared caches was pre-
sented in [5]. Significant extensions are made in this paper,
including:

• a more general framework for the schedulability
analysis of global scheduling, accounting for shared
cache interference. The original scheduling analysis
mainly focuses on FP scheduling, while the extended
scheduling analysis presented in this work applies
not only to FP scheduling but also to EDF scheduling;

• evaluation of the schedulability performance of EDF
against FP scheduling over randomly generated
tasksets. Our empirical evaluations show that EDF
is slightly better than FP scheduling in terms of task
sets deemed schedulable.

The rest of the paper is organized as follows. Section 2
gives an overview of the related work. The system model
is described in Section 3. Section 4 describes the proposed
schedulability analysis, where we also detail the computa-
tion of processor-contention and inter-core cache interfer-
ences applied in the analysis. Section 5 presents an iterative
computation to obtain the upper bound of inter-core cache
interferences. Section 6 presents the experimental results,
after which Section 7 concludes the paper.

2 RELATED WORK

WCET estimation. For hard real-time systems, it is essential
to obtain each real-time task’s WCET, which provides the
basis for the schedulability analysis. WCET analysis has
been actively investigated in the last two decades, of which
an excellent overview can be found in [6]. There are well-
developed techniques to estimate real-time tasks’ WCET
for single processor systems. Unfortunately, the existing
techniques for single processor platforms are not applicable
to multicores with shared caches. Only a few methods
have been developed to estimate task WCETs for multi-
core systems with shared caches [7], [8], [9]. In almost all
those works, due to the assumption that cache interferences
can occur at any program point, WCET analysis will be
extremely pessimistic, especially when the system contains
many cores and tasks. An overestimated WCET is not useful
as it degrades system schedulability.

Shared cache interference. Since shared caches consider-
ably complicate the task of accurately estimating the WCET,
many researchers in the real-time systems community have
recognized and studied the problem of cache interference
in order to use shared caches in a predictable manner.
Cache partitioning, which isolates application workloads
that interfere with each other by assigning separate shared
cache partitions to individual tasks, is a successful and
widely-used approach to address contention for shared
caches in (real-time) multicore applications. There are two
cache partitioning methods: software-based and hardware-
based techniques [10]. The most common software-based
cache partitioning technique is page coloring [11], [12], [13],
[14]. By exploiting the virtual to physical page address
translations present in virtual memory systems at OS-level,
page addresses are mapped to pre-defined cache regions to

avoid the overlap of cache spaces. While cache partitioning
technique using page coloring has the following drawbacks.
First, it requires heavy modifications to virtual memory
subsystem in the operating system. Second, the number
0f partitions is limited as a cache partition is coarsely
sized (multiples of page size⇥ cache ways). Hardware-
based cache partitioning is achieved using a cache locking
mechanism [3], [13], [15], which prevents cache lines from
being evicted during program execution. For example, [16]
presented vCAT, an approach for dynamic shared cache
management on multicore virtualization platforms based on
Intel’s Cache Allocation Technology(CAT). The drawback of
cache locking is that it requires specific hardware support
that is not available in many commercial processors. Cache
way-partitioning like CAT has also significant limitation due
to a small number of coarsely-sized partitions (in multiples
of way size).

Real-time Scheduling. The schedulability analysis of
global multiprocessor scheduling has been intensively stud-
ied [17], [18], [19], [20], [21], [22], [23], of which compre-
hensive surveys can be found in [24], [25]. Most multi-
core scheduling approaches assume that the WCETs are
estimated in an offline and isolated manner and that WCET
values are fixed.

A few works address schedulability analysis for multi-
core systems with shared caches [26], [27], [28], but these
works deployed cache partitioning techniques. Real-time
scheduling for multi-core systems using cache partitioning
techniques is done via two steps: it first captures the rela-
tionship between the task’s WCET and cache allocation by
analysis or measurement as the WCET of a task depends
on the number of cache partitions assigned to that task,
and then develops a strategy that determines the number
of cache partitions assigned to each task in the system, so
that the task system is schedulable. Existing approaches
typically adopt Mixed Integer Programming to find the
optimal cache assignment. However, these methods incur
a very high execution time complexity, and are therefore too
inefficient to be practical [28].

Different from the above work, we developed a new
schedulability analysis of global scheduling for multicore
systems in which cache space isolation techniques are not
deployed. Instead of using cache partitioning to eliminate
shared cache interference, we focus on the analysis of shared
cache interference that a task may exhibited during its
execution. Our approach neither requires operating system
modifications for page coloring nor hardware features for
cache locking.

Our work also differs from other approaches to the
timing verification of multicore systems [29] in that all other
sources of interferences are assumed to be included within
the WCET. We analyze the effect of shared cache interference
on the schedulability. To the best of our knowledge, this
is among the first works that integrates inter-core cache
interference into schedulability analysis.

3 SYSTEM MODEL

3.1 Task Model
We consider a set ⌧ of n periodic or sporadic real-time tasks
{⌧1, ⌧2, ... ⌧n} to be scheduled on a multicore processor. Each

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 3

task ⌧k = (Ck, Dk, Tk) 2 ⌧ is characterized by a worst-case
computation time Ck, a period or minimum inter-arrival
time Tk, and a relative deadline Dk. All tasks are considered
to be deadline constrained, i.e. the task relative deadline is
less or equal to the task period: Dk  Tk.

We further assume that all those tasks are indepen-
dent, i.e. they have no shared variables, no precedence
constraints, and so on. Moreover, jobs of any task cannot
be executed at the same time on more than one core. A
task ⌧k is a sequence of jobs J

j
k , where j is the job index.

We denote the arrival time, starting time, finishing time and
absolute deadline of a job j as rjk, sjk, f j

k and d
j
k, respectively.

Note that the goal of a real-time scheduling algorithm is to
guarantee that each job will complete before its absolute
deadline: f j

k  d
j
k = r

j
k +Dk.

As explained, it is difficult to accurately estimate Ck

considering cache interference of other tasks executing con-
currently. It should be pointed out that Ck in this paper
refers to the WCET of task k, assuming task k is the only
task executing on the multicore processor platform, i.e. any
cache interference delays are not included in Ck.

Since time measurement cannot be more precise than one
tick of the system clock, all timing parameters and variables
in this paper are assumed to be non-negative integer values.

3.2 Architecture Model
Our system architecture consists of a multicore processor
with m identical cores onto which the individual tasks are
scheduled. Most multicore processors have instruction and
data caches. Caches are organized as a hierarchy of multiple
cache levels to address the tradeoff between cache latency
and hit rate. The low level caches (L1) in our considered
multicore processor are assumed to be private, while the
last level caches (LLC, for example L2) are shared between
all cores. Furthermore, we assume that the LLC cache is
noninclusive with respect to the private caches (L1), and
that LLC caches are direct-mapped caches.

Data caches, in general, are hard to analyze statically. In
this work, we focus on instruction caches and we adopt the
approach in [4] to derive task WCET. The analysis would
require further extension in order to be applied to data
caches.

3.3 Global Schedulers
In this paper, we focus on non-preemptive global schedul-
ing. Once a task instance starts execution, any preemp-
tion during the execution is not allowed, so it must run
to completion. So we do not have to consider intra-core
cache interference. If not explicitly stated, cache interference
will therefore refer to inter-core cache interference in the
following discussion. We consider two well-known global
scheduling algorithms: Non-Preemptive Earliest Deadline
First (EDFnp) and Non-Preemptive Fixed Priority (FPnp).

EDFnp assigns a priority to a job according to the
absolute deadline of that job. A job with an earlier absolute
deadline has higher priority than others with a later absolute
deadline. Since each job’s absolute deadline changes over
time, the priority of a task changes dynamically.

For FPnp scheduling, a fixed priority Pk is assigned
to each task ⌧k (k = 1, 2, ...n). As each task has a unique

priority, we use hp(k) to denote the set of tasks with higher
priorities than ⌧k, and hep(k) = hp(k) [{⌧k} the set of
tasks whose priorities are not lower than ⌧k. Similarly,
lp(k) is the set of tasks with lower priorities than ⌧k and
lep(k) = lp(k) [{⌧k} the set of tasks whose priorities are
not higher than ⌧k.

The EDFnp and FPnp scheduling algorithms are work-
conserving, according to the following definition.

Definition 1. A scheduling algorithm is work-conserving if
there are no idle cores when a ready task is waiting for
execution.

4 SCHEDULABILITY ANALYSIS
In this section, we give an overview of the new schedula-
bility analysis that accounts for cache interference. We also
present the approaches to derive the upper bound on the
parameters used in the schedulability condition.

4.1 Overview
We first analyze the execution of one job J

j
k of a task ⌧k. Let

o
j
k denote the latest time-instant no later than r

j
k (ojk  r

j
k) at

which at least one processor is idle and let Ak = r
j
k� o

j
k. As

all processors are idle when the system starts, there always
exists such a o

j
k. The time interval [ojk, d

j
k] can be divided

into two parts [ojk, s
j
k] and [sjk, d

j
k].

Figure 1: Overview of the schedulability analysis that ac-
counts for cache interference.

As shown in Figure 1, a job J
j
k of task ⌧k exhibits two

kinds of interferences during [ojk, d
j
k]. The first interference

is called processor-contention interference, denoted by I
pre
k .

It is the cumulative length of all intervals over [ojk, s
j
k] in

which all the processing cores are busy executing jobs other
than J

j
k . We define the interference I

pre
i,k of a task ⌧i on a

task ⌧k over the interval [ojk, s
j
k) as the cumulative length

of all intervals in which ⌧i is executing. The second type of
interference is the cumulative length of all extra execution
delays caused by shared cache interference from all other
tasks running concurrently on other cores, denoted as I

sc
k .

We also define the interference I
sc
i,k as the cumulative length

of all extra execution delays of ⌧k caused by shared cache
accesses between task ⌧i and task ⌧k.

Furthermore, we define the upper bound on processor-
contention interference as Ī

pre
k and similarly the upper

bound on shared cache interference as Īsck .

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 4

Note that the processor-contention interference I
pre
k oc-

curs during [ojk, s
j
k], so I

pre
k depends on Ak and the length

of [rjk, s
j
k]. While the shared cached interference I

sc
k occurs

only during ⌧k’s execution. We will present the derivation of
Ī
sc
k in the next section and it can be shown that Īsck does not

depend on Ak and the length of [rjk, s
j
k]. Let us now assume

Ī
sc
k is known.

We can compute the latest start time of job J
j
k from

task ⌧k: ljk = d
j
k � Ck � Ī

sc
k i.e., if J

j
k starts its execution

before l
j
k, it will be able to finish execution before deadline

d
j
k. The length of [rjk, l

j
k] is Sk = Dk � Ck � Ī

sc
k . Since

we consider non-preemptive scheduling, in order for J
j
k to

miss its deadline, all m cores must be continuously busy
executing tasks other than ⌧k in the time interval [ojk,ljk]. In
other words, if Sk < 0, Jj

k will miss its deadline. Therefore,
we name the time interval [ojk, l

j
k] as a problem window. We

assume Sk � 0 in the following description.
As the processor-contention interference only occurs be-

fore the start of the ⌧k’s execution, we restrict Iprek , Iprei,k and
Ī
pre
k to the time interval [ojk, l

j
k].

By construction, we have the first schedulability test for
⌧ .

Theorem 1. A task set ⌧ is schedulable with a EDFnp or

FPnp scheduling policy on a multicore processor composed of

m identical cores with shared caches if for each task ⌧k 2 ⌧ and

all Ak � 0:

Ī
pre
k + Ck + Ī

sc
k < Dk +Ak.

4.2 Computation of Īprek

The workload Wi,k of a task ⌧i is the time task ⌧i executes
during time interval [ojk, l

j
k) of length Ak + Sk, according to

a given scheduling policy.

Lemma 1. The processor-contention interference that a task ⌧i

causes on a task ⌧k in [ojk, l
j
k) is never greater than the workload

of ⌧i in [ojk, l
j
k),

8i, k, j I
pre
i,k Wi,k.

Lemma 1 is obvious, since Wi,k is an upper bound on
the execution of ⌧i in [ojk, l

j
k).

Note that ⌧i may execute more than Ci due to the shared
cache interference. That is, the actual execution time of ⌧i’s
job is bounded by C

⇤
i = Ci+Ī

sc
i . In the following discussion,

we use C⇤
i as the upper bound on the workload contribution

from a single job of ⌧i.
As the number of ⌧i’s jobs released in [ojk, l

j
k) is at mostl

Ak+Sk
Ti

m
, Wi,k can be roughly bounded by

l
Ak+Sk

Ti

m
⇥ C

⇤
i .

However, a tighter upper bound on the worst-case workload
can be calculated by categorizing each job of ⌧i in [ojk, l

j
k] into

one of the three types [30]:
carry-in job: a job with its release time earlier than o

j
k

but with its deadline earlier than l
j
k;

body job: a job with both its release time and its deadline
in [ojk, l

j
k];

carry-out job: a job with its release time in [ojk, l
j
k], but

with its deadline later than l
j
k.

As shown in Figure 2, the worst-case workload of ⌧i

occurs when a carry-in job (if ⌧i has a carry-in job) finishes
execution as late as possible and a carry-out job starts its

⌧i

⌧k

carry-in job carry-out jobbody job

o
j
k l

j
k

Figure 2: Three types of contribution jobs and problem
window.

execution as early as possible. We use W
n
i,k to denote an

upper bound of ⌧i’s workload in [ojk, l
j
k] if ⌧i has no carry-in

job, and use W c
i,k to denote an upper bound of ⌧i’s workload

if ⌧i has a carry-in job.
Following the approach in [19], we derive a tighter

upper bound on W
n
i and W

c
i for the EDFnp and FPnp

scheduling policies, separately. We omit the proof due to
space limitations. Interested readers can refer to [19] for a
detailed explanation.

4.2.1 Upper bound on W
n
i,k for EDFnp.

EDFnp assigns a priority of a job by the absolute deadline
of that job. We have the following lemma.

Lemma 2. For EDFnp, if Di > Dk, the necessary condition for

J
j
i to cause interference to J

j
k is r

j
i < r

j
k, i.e.,J

j
i must be released

earlier than J
j
k ; if Di  Dk, the necessary condition for J

j
i to

cause interference to J
j
k is di  dk, i.e., Ji’s absolute deadline

must be no later than that of Jk.

Proof. Lemma 2 is from [19]. See the proof of Lemma 2
in [19].

Since ⌧i has no carry-in jobs in this case, the worst case
of Wn

i,k occurs when the first job of ⌧i is released at time o
j
k.

The next jobs of ⌧i are then released periodically every Ti

time units. Thus, Wn
i,k is computed by three cases: (1) i = k,

(2) Di  Dk, (3) Di > Dk.
(1) i = k. As shown in Figure 3, only body jobs in

[ojk, r
j
k] contribute to processor-contention interference and

the number of ⌧i’s body instances is
j
Ak
Tk

k
. So we have

W
n1
i,k =

�
Ak

Tk

⌫
C

⇤
k (1)

⌧k

o
j
k d

j
kr

j
k

Ak

Tk

Figure 3: The densest possible packing of jobs of ⌧i without
carry-in job, if i = k.

(2) Di  Dk. Figure 4 shows the worst case of Wn
i,k for

Di  Dk. The number of body jobs of ⌧i is
j
Ak+Sk

Ti

k
. We use

↵ to denote the distance between o
j
k and the deadline of ⌧i’s

carry-out job, ↵ =
j
Ak+Sk

Ti

k
Ti + Di. The deadline of ⌧i’s

carry-out job is ojk + ↵.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 5

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): ↵

(b): ↵
Ak +Dk

Ak + Sk

Di

Ak Dk

Ti

Figure 4: The densest possible packing of jobs of ⌧i without
carry-in job and Di  Dk. Case (a): ↵  Ak +Dk, Case (b):
↵ > Ak +Dk.

(2.A) If ↵  Ak + Dk, as shown in case (a) in Fig-
ure 4, the contribution of the carry-out job is bounded by
min(C⇤

i , (Ak + Sk) mod Ti). In this case, we have:

W
n2
i,k =

�
Ak + Sk

Ti

⌫
C

⇤
i +min(C⇤

i , (Ak+Sk) mod Ti) (2)

(2.B) If ↵ > Ak +Dk, shown as case (b) in Figure 4, the
contribution of the carry-out job is 0, we have

W
n3
i,k =

�
Ak + Sk

Ti

⌫
C

⇤
i (3)

(3) Di > Dk. Figure 5 shows the worst case of W
n
i,k

for Di > Dk. The number of body jobs of ⌧i is
j
Ak+Sk

Ti

k
.

By Lemma 2, a job of ⌧i can interfere with J
j
k only if its

release time is earlier than r
j
k. We use � to denote the

distance between o
j
k and the release time of ⌧i’s carry-out

job, � =
j
Ak+Sk

Ti

k
Ti.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): �

(b): �
Ak

Ak Dk

Ti

Ak + Sk

Figure 5: The densest possible packing of jobs of ⌧i without
carry-in job and Di > Dk. Case (a): � < Ak, Case (b): � �
Ak.

(3.A) If Ak = 0, then o
j
k = r

j
k. Since Di > Dk, any task

instance released no earlier than o
j
k has a deadline later than

d
j
k, so, Wn

i,k = 0.
(3.B) If � < Ak, shown as case (a) in Figure 5. The contri-

bution of ⌧i’s carry-out job is bounded by min(C⇤
i , (Ak+Sk)

mod Ti). Wn
i,k is computed by Equation (2).

(3.C) If � � Ak > 0, as shown in Figure 5 case (b), the
contribution of ⌧i’s carry-out job is 0, and W

n
i,k is computed

by Equation (3).
By the discussions above, we can compute W

n
i,k for

EDFnp by:

W
n
i,k =

8
>>>>>><

>>>>>>:

0 Di > Dk ^Ak = 0

W
n1
i,k i = k

W
n2
i,k (i 6= k ^Di  Dk ^ ↵  Ak +Dk)

_(Di > Dk ^ � < Ak)

W
n3
i,k otherwise

(4)

where W
n1
i,k , W

n2
i,k , W

n3
i,k are defined in Equations (1), (2)

and (3) respectively.

4.2.2 Upper bound on W
c
i,k for EDFnp.

We now compute the upper bound on W
c
i,k by four cases: (1)

i = k, (2) Di  Dk and Si > C
⇤
k (3) Di > Dk and Si � C

⇤
k

(4) the remaining cases.
(1) i = k, shown in Figure 6. The number of body jobs of

⌧k is
j
Ak
Tk

k
. The contribution of the carry-in job is bounded

by min(C⇤
k ,max(0, (Ak mod Tk) � Tk + Dk)). So in this

case, we have:

W
c1
i,k =

�
Ak

Tk

⌫
C

⇤
k+min(C⇤

k ,max(0, (Ak mod Tk)�Tk+Dk))

(5)

⌧k

o
j
k d

j
kr

j
k

Ak

Tk

Figure 6: The densest possible packing of jobs of ⌧i with
carry-in job, if i = k.

(2) Di  Dk^Si > C
⇤
k . Shown as case (a) in Figure 7, the

worst case of W
c
i,k occurs when ⌧i’s last released instance

has its deadline at d
j
k. The number of ⌧i’s body jobs isj

Ak+Dk
Ti

k
. The contribution of the carry-in job is bounded

by min(C⇤
i , (Ak +Dk) mod Ti). So, we have:

W
c2
i,k =

�
Ak +Dk

Ti

⌫
C

⇤
i +min(C⇤

i , (Ak +Dk) mod Ti)

(6)

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

Ak
Ak � 1

Ti

Ti

Ak Dk

Ak +Dk

Figure 7: The densest possible packing of jobs of ⌧i with
carry-in job. Case (a): Di  Dk ^ Si > C

⇤
k , Case (b):Di >

Dk ^ Si � C
⇤
k .

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 6

(3) Di > Dk ^ Si � C
⇤
k . Case (b) in Figure 7 shows the

worst case of W c
i,k. By Lemma 2, ⌧i’s job can interfere with

J
j
k only if its release time is earlier than r

j
k. So, the worst

case of W c
i,k occurs when one of ⌧i’s instances is released at

r
j
k � 1.

(3.A) If Ak > 0, the number of ⌧i’s body instances isj
Ak�1
Ti

k
, the carry-out is C⇤

i , the carry-in is bounded by µ =

min(C⇤
i ,max(0, (Ak � 1) mod Ti � (Ti �Di))).

(3.B) If Ak = 0, only the carry-out job contributes at most
C

⇤
i � 1. So, we have

W
c3
i,k =

(
C

⇤
i � 1 Ak = 0

(
j
Ak�1
Ti

k
+ 1)C⇤

i + µ Ak > 0
(7)

(4) For the remaining cases, i.e. (Di  Dk ^ Si  C
⇤
k) _

(Di > Dk ^ Si < C
⇤
k), the worst case of W c

i,k occurs when
one of ⌧i’s instances is released at l

j
k � C

⇤
i , as shown in

Figure 8.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

Ak Sk

C
⇤
i

(a):Ak + Sk � C
⇤
i

Ak + Sk

C
⇤
i

(b):Ak + Sk � C
⇤
i

Ti

Figure 8: The densest possible packing of jobs of ⌧i with
carry-in job. Case (a): Di  Dk ^ Si  C

⇤
k , case (b):Di >

Dk ^ Si < C
⇤
k .

(4.A) If Ak + Sk  C
⇤
i , then W

c
i,k = Ak + Sk.

(4.B) If Ak + Sk > C
⇤
i , the number of ⌧i’s body job isj

Ak+Sk�C⇤
i

Ti

k
, the contribution of the carry-out job is C

⇤
i ;

carry-in is bounded by ⌫ = min(C⇤
i ,max(0, (Ak +Sk�C

⇤
i)

mod Ti � (Ti �Di))).

W
c4
i,k =

(
Ak + Sk Ak + Sk  C

⇤
i

(
j
Ak+Sk�C⇤

i
Ti

k
+ 1)C⇤

i + ⌫ Ak + Sk > C
⇤
i

(8)
By the discussion above, we can compute W

c
i,k for

EDFnp by:

W
c
i,k =

8
>>><

>>>:

W
c1
i,k i = k

W
c2
i,k i 6= k ^Di  Dk ^ Si > C

⇤
k

W
c3
i,k Di > Dk ^ Sk � C

⇤
i

W
c4
i,k otherwise

(9)

where W
c1
i,k, W

c2
i,k, W

c3
i,k and W

c4
i,k are defined in Equa-

tions (5), (6), (7) and (8) respectively.

4.2.3 Upper bound on W
n
i,k for FPnp.

The following lemma describes the condition of processor-
contention interference on ⌧k caused by lower-priority tasks
in lp(k) for FPnp.

Lemma 3. For FPnp, a task instance J
j
i of ⌧i 2 lp(k) can

interfere with J
j
k only if J

j
i is released before r

j
k.

We compute the upper bound on W
n
i,j by three cases: (1)

i = k, (2) ⌧i 2 hp(k), (3) ⌧i 2 lp(k).
(1) i = k. The worst-case workload is the same as in the

case of EDFnp, thus Wn
i,j can be computed by Equation (1).

(2) ⌧i 2 hp(k). The worst-case workload of task ⌧i occurs
when a job of ⌧i arrives at o

j
k, as shown in case (a) in

Figure 4. Wn
i,j can be computed using Equation (2).

(3) ⌧i 2 lp(k). The worse case of Wn
i,k occurs when one

of ⌧i’s instances is released at ojk. The number of body jobs
of ⌧i is

j
Ak+Sk

Ti

k
. Let � be the distance between o

j
k and the

release time of ⌧i’s last instance. So � =
j
Ak+Sk

Ti

k
.

⌧i : (a)

⌧i : (b)

⌧k

o
j
k r

j
k d

j
kl

j
k

(a): �

(b): �
Ak

Ak Sk

Figure 9: The densest possible packing of jobs of ⌧i with
carry-in job. Case (a): � < Ak, Case (b):� � Ak > 0.

(3.A) If Ak = 0, then o
j
k = r

j
k, according to Lemma 3,

W
n
i,k = 0.

(3.B) If � < Ak, ⌧i’s last job is released earlier than r
j
k, as

shown in Figure 9 case (a), its contribution is bounded by
min(Ak + Sk mod Ti, C

⇤
i). In this case, Wn

i,k is computed
by Equation (2).

(3.C) If � � Ak > 0, as shown in case (b) of Figure 9, the
contribution of the last released job of ⌧i is 0. In this case,
W

n
i,k can be computed by Equation (3).

By the above discussion, we can compute W
n
i,k by:

W
n
i,k =

8
>>><

>>>:

0 ⌧i 2 lp(k) ^Ak = 0

W
n1
i,k i = k

W
n2
i,k ⌧i 2 hp(k) _ (⌧i 2 lp(k) ^ � < Ak)

W
n3
i,k otherwise

(10)

where W
n1
i,k , W

n2
i,k , W

n3
i,k are defined in Equations (1), (2)

and (3) respectively.

4.2.4 Upper bound on W
c
i,k for FPnp.

We compute the upper bound on W
c
i,k by three cases: (1)

i = k, (2) ⌧i 2 lp(k) ^ Sk � C
⇤
i , (3) the remaining cases.

(1) i = k. The worst case of W
c
i,k occurs as it does for

EDFnp, and therefore W
c
i,k is computed by Equation (5).

(2) ⌧i 2 lp(k) ^ Sk � C
⇤
i . The worst case of W c

i,j occurs
when one of ⌧i’s job is released at rjk � 1, as shown in case
(b) of Figure 7. We can compute W

c
i,j by Equation (7).

(3) The remaining cases, i.e. ⌧i 2 hp(k) or ⌧i 2 lp(k) ^
C

⇤
i > Sk. The worst-case workload of ⌧i is generated when

one of ⌧i’s instances is released at time instance s
j
k � C

⇤
i .

Such a situation is depicted in Figure 8. In this case, we can
compute W

c
i,j by Equation (8).

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 7

By the above discussion, we compute W
c
i,j by:

W
c
i,k =

8
><

>:

W
c1
i,k i = k

W
c3
i,k ⌧i 2 lp(k) ^ Sk � C

⇤
i

W
c4
i,k otherwise

(11)

where W
c1
i,k, W c3

i,k and W
c4
i,k are defined in Equations (5), (7)

and (8) respectively.

4.2.5 Upper bound on I
pre
k .

By the definition of ojk, at least one core is idle at ojk, therefore
at most m � 1 tasks have carry-in jobs. The task set ⌧

can be partitioned into two subsets ⌧
c and ⌧

n that include
tasks with carry-in jobs and tasks without carry-in jobs,
respectively. Now we define ⌦k as the maximal value of
the sum of all tasks’ workloads in [ojk, l

j
k] among all possible

cases:

⌦k = max
X

⌧i2⌧

Wi,k

= max
(⌧n,⌧c)2⌧

(
X

⌧i2⌧n

W
n
i,k +

X

⌧i2⌧c

W
c
i,k)

(12)

where ⌧
n and ⌧

c satisfy ⌧
n
[⌧

c = ⌧ , ⌧n \ ⌧
c = ? and

|⌧
c
|  m� 1.
By taking the maximum over the task set, ⌦k describes

an upper bound on the total worst-case workload in [ojk, l
j
k].

The complexity to compute ⌦k is O(n), as explained in [18].
Since both EDFnp and FPnp are work-conserving, the

processor-contention interference exhibited by ⌧k can be
bounded by ⌦k

m . So, we have the following Lemma.

Lemma 4. If tasks are scheduled with an EDFnp or FPnp

scheduling policy on a multicore processor composed of m identical

cores with shared cache,

I
pre
k 

⌦k

m
.

The pessimism of the analysis of upper bound on the
processor-contention interference mainly comes from the
assumption that every tasks take the their worst-case ex-
ecution time and the computational loads are equally dis-
tributed to m cores.

4.3 Computation of Īsck
We first identify the maximum cache interference between
two tasks and then we construct an integer programming
formulation to calculate the upper bound on the shared
cache interference exhibited by a task within an execution
window.

4.3.1 Cache interference between two tasks
We first analyze the cache interference during one job exe-
cution between ⌧k and ⌧i. Let ⌧k be the interfered and ⌧i be
the interfering task.

Following the approach in [4], we can obtain the WCET
of a task by performing a Cache Access Classification (CAC)
and Cache Hit/Miss Classification (CHMC) analysis for each
instruction memory access at the private caches and the
shared LLC cache separately.

CAC and CHMC The CAC determines the possibility
that an instruction being fetched from memory will access a

certain cache level, and the access to a certain cache level can
be Always (A), Uncertain (U) or Never (N). A reference r at a
cache level L is considered as A if the access to r is always
performed at cache level L and r is considered as N if the
access to r is never performed at cache level L, while the
access is classified as U if it is not A nor N . CHMC assigns a
cache lookup result to each memory reference according to
the cache states. As a result, a reference to a memory block
of instructions can be classified as Always Hit (AH), Always

Miss (AM) or Uncertain (U).
The CAC for a reference r at a cache level L depends on

the results of CAC and CHMC of the reference r at the level
L-1. Since we consider noninclusive caches, accesses to the
private caches cannot be affected by tasks executing on other
cores. Accesses classified as AM or U at the shared LLC

cache will also not be affected by shared cache interferences,
since they are already counted as misses in the WCET
analysis.

We start the cache interference analysis by defining two
concepts for cache blocks.

Definition 2. A Hit Block (HB) is a memory block whose
access is classified as AH at the shared LLC cache.

Definition 3. A Conflicting Block (CB) is a memory block
whose access is classified as A or U at the shared LLC cache.

HB and CB can be identified by the approach proposed
in [4].

We use HBk = {mk,1,mk,2, ...,mk,p} to represent the
set of HB for task ⌧k and use nk,x (x = 1, 2, ..., p) to
denote the number of mk,x’s accesses that are classified
as a AH at the LLC cache. Similarly, we define CBi =
{mi,1,mi,2, ...,mi,q} as the set of CB for task ⌧i and denote
ni,x as the number of mi,x’s accesses that are classified as
an A or U at the LLC cache. Note that HBk and CBi

include the memory blocks that meet the requirement in
every program path that may be taken by the task.

In our system architecture, cache interference occurs
only at the shared LLC cache when a cache line used by ⌧k

is evicted by ⌧i and consequently causing reload overhead
for ⌧k. A cache line that may cause cache interference for ⌧k
needs to satisfy at least two conditions:

(i) access to that cache line will result in a cache hit at the
LLC cache in WCET analysis of ⌧k,

(ii) the cache line may be used by ⌧i.
From the above two conditions, we can analyze memory

block accessing that may cause interference. The first con-
dition implies that only accessing to HBk may cause cache
interference for ⌧k, while the second condition indicates that
accessing to CBi by ⌧i may interfere with ⌧k. Furthermore,
cache interference occurs only if ⌧k accesses memory blocks
in HBk and ⌧i accesses memory blocks in CBi concurrently,
and those memory blocks have the same cache index.

We use I
sc
i,k to represent the upper bound on the shared

cache interference imposed on ⌧k by only one job execution
of ⌧i.

Suppose the indexes of the LLC cache range from 0 to
N � 1, we can derive N subsets of HBk according to the
mapping function idx that maps a memory address to the
cache line index at the LLC cache as follows,

m̂k,u = {mk,x 2 HBk|idx(mk,x) = u} , (0  u < N, u 2 N).

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 8

We define the characteristic function of a set A which
indicates membership of an element x in A as:

�A(x) =

(
1 x 2 A

0 otherwise
.

Let Nk,u represent the number of hit accesses to the u-th
cache line by ⌧k without cache interference. Nk,u equals to
the total number of access to the HBs mapping to the k-th
cache line,

Nk,u =
pX

x=1

nk,x�m̂k,u(mk,x).

Similarly, we divide CBi into N subsets by

êi,u = {mi,x 2 CBi|idx(mi,x) = u} , (0  u < N, u 2 N).

The number of accesses to the k-th cache line by ⌧i is
bounded by

Ni,u =
qX

x=1

ni,x�êi,u(mi,x),

Cache interference can only happen among memory
blocks that are in the same subset that maps to the same
cache line. For the u-th cache line, ⌧k can be interfered at
most Nk,u times and ⌧i can interfere at most Ni,u times. The
following formula gives an upper bound on the number of
cache misses by accessing the HBs for task ⌧k.

S(⌧i, ⌧k) =
N�1X

u=0

min(Ni,u, Nk,u)

Suppose the penalty for an LLC cache miss is a constant,
Cmiss, then I

sc
i,k can by calculated by:

I
sc
i,k = S(⌧i, ⌧k)Cmiss.

Lemma 5. The shared cache interference imposed on ⌧k by only

one job execution of ⌧i can be bounded and I
sc
i,k = S(⌧i, ⌧k)Cmiss.

Proof. The lemma holds as discussed above.

The computation of Isci,k only takes the memory accesses
of ⌧k and ⌧i as input, so I

sc
i,k only depends on memory

accesses of ⌧k and ⌧i. Given a taskset, Isci,k can be computed.
In the following discussion, we assume I

sc
i,k is known.

Lemma 5 gives an upper bound on cache interference
for ⌧k imposed by only one job of ⌧i. It is possible that more
than one job of ⌧i interfere with ⌧k. We denote the number
of jobs of ⌧i that interfere with ⌧k as Ni,k.

Lemma 6. The total cache interference ⌧k exhibited from Ni,k

jobs of ⌧i is bounded by Ni,kI
sc
i,k.

Proof. For Ni,k jobs of ⌧i, the total number of accesses to
each memory block mi,x is bounded by Ni,kni,x. Thus, the
execution of Ni,k jobs of ⌧i accesses the k-th cache line also
at most Ni,kNi,u times. From the proof of Lemma 5, the

upper bound of the total cache interference exhibited by ⌧k

from Ni,k jobs of ⌧i is
PN�1

u=0 min(Ni,kNi,u, Nk,u)Cmiss.

Ni,kI
sc
i,k = Ni,k

N�1X

u=0

min(Ni,u, Nk,u)Cmiss

=
N�1X

u=0

min(Ni,kNi,u, Ni,kNk,u)Cmiss

�

N�1X

u=0

min(Ni,kNi,u, Nk,u)Cmiss

4.3.2 IP formulation
We can compute an upper bound of the maximum cache
interference a task may exhibit during an execution window
by introducing an Integer Programming (IP) formulation,
which can be transformed to an integer linear programming
formulation.

It is necessary to check the schedulability of the task-set
without considering cache interference. If the task-set does
not pass the initial schedulability test, there is no need to
calculate the cache interference. Only if all tasks (including
⌧i) pass the schedulability test (without considering cache
interference), the IP is solved to compute the upper bound
on cache interference. Therefore, the IP formulation is
based on the assumption that ⌧i is schedulable without
cache interference.

If Ni,k jobs of ⌧i are executing concurrently with ⌧k,
the cache interference that ⌧i causes on ⌧k is bounded by
Ni,kI

sc
i,k according to Lemma 6. As a task may exhibit cache

interference from more than one task during a job execution,
the total cache interference for one job execution of ⌧k is
bounded by the sum of the contributions of all other tasks
⌧i(i 6= k) in the task set ⌧ . Thus, the objective function of the
IP formulation is:

max
X

i 6=k

Ni,kI
sc
i,k. (13)

The IP formulation will have an unbounded solution
without further constraints to the variable Ni,k. To get a
bounded solution, we analyze the constraints on Ni,k. First,
we define the concept of the execution window of a job.

Definition 4. The Execution Window (EW) of the j-th job
of ⌧k (Jj

k) is time interval [sjk, f
j
k] from the staring time to

the finishing time of Jj
k .

Note that the length of an execution window may be
larger than Ck, since the EW includes the cache interfer-
ence. We use C

0
k as the length of the EW because of the

iterative computation which will be described later on.
Ni,k reaches its minimal value when a job of ⌧i starts to

execute as soon as it is released and the execution finishes
just before the start of the EW , as shown the case (a) in
Figure 10. Denoting C

min
i as the smallest execution time of

⌧i, often called Best-Case Execution Time (BCET), we have
the following constraint:

8i 6= k,

�
max(0, C 0

k � Ti + C
min
i)

Ti

⌫
+ ⇠i  Ni,k (14)

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 9

where ⇠i =

(
1 ((C 0

k + C
min
i) mod Ti)�Di + C

min
i > 0

0 otherwise
.

The term ⇠i indicates whether the last job of ⌧i released
within the EW will interfere with ⌧k, since the last released
job should start its execution C

min
i before its relative dead-

line if the task is schedulable.

⌧i : (a)

⌧i : (b)

⌧k

s
j
k f

j
k

C
min
i

Execution window: C 0
k

Figure 10: Situations where ⌧i interferes ⌧k with the most
and least number of jobs.

The maximum value of Ni,k is taken when the first
interfering job of ⌧i finishes just after the start of the EW

and the last interfering job of ⌧i starts to execute at the time
when it is released. Such a situation is depicted as case (b)
in Figure 10. Thus, we have the second constraint on Ni,k:

8i 6= k, Ni,k  1 +

⇠
max(0, C 0

k � Ti +Di)

Ti

⇡
(15)

If Ni,k > 2, the first and last interfering jobs of ⌧i may
occupy almost 0 computation capacity in the EW . Let Jj

i be
such a job among the remaining Ni,k � 2 interfering jobs of
⌧i between the first and the last ones. Both release time r

j
i

and deadline d
j
i of Jj

i are within the EW of ⌧k.

Lemma 7. If ⌧i is schedulable without considering cache in-

terference, Ci computation capacity of the processing core is

reserved for the execution of J
j
i during [rji , d

j
i]. If J

j
i executes

for C
act
i < Ci, the processing core will be accumulatively idle

(executing nothing, simply wasting the processing capacity for

⌧i) for at least Ci � C
act
i during [rji , d

j
i].

Proof. If ⌧i satisfies the schedulability condition without
considering cache interference: ⌦i(C)

m + Ci < Di, the core
on which J

j
i is executed spends at most Di � Ci in total

for the execution of other interfering tasks during [rji , d
j
i].

J
j
i is guaranteed to have Ci computation capacity during

[rji , d
j
i].

The remaining computation capacity of a multicore pro-
cessor with m cores is (m�1)C 0

k since one core is dedicated
to the execution of ⌧k. Due to the limited computation
capacity of the processor, the total execution of the tasks
that may interfere with ⌧k within the EW can not exceed
(m� 1)C 0

k. Hence, we have the third constraint:
X

i 6=k

max(0, Ni,k � 2)Ci  (m� 1) C 0
k. (16)

The objective function (13) together with three con-
straints on Ni,k, i.e. inequalities (14), (15) and (16), form
our IP problem. Since C

min
i is a relatively small number,

we take the extreme case: Cmin
i = 0. As task parameters

such as Ci, Di, Ti are known, the optimal solution of the IP

only depends on the length of EW . Thus, we use I
sc(C 0

k)
to denote the optimal value of the IP problem if C 0

k is used
as the length of the EW in the IP .

Note that inequalities (14) and (16) are based on the
assumption that ⌧i is schedulable. Thus, before solving the
IP , we have to check the schedulability of the taskset
assuming no cache interference between tasks, i.e. Īsci = 0.

Computation complexity of the IP . The original IP can
be easily transformed to an Integer Linear Programming
(ILP) problem by introducing a new integer variable yi,j

for each Ni,j with two additional constraints: yi,j � 0
and yi,j � Ni,k � 2. Inequality (16) can be replaced byP

i 6=k yi,kCi  (m � 1) C 0
k. In the transformed ILP prob-

lem, we have totally 2(n � 1) variables and 4(n � 1) + 1
constraints. The complexity of the IP is the same as the
complexity of solving the transformed ILP problem, which
is O(n64n ln 4n) [31]. Despite the exponential complexity,
current LP solver implementations are very efficient and
capable of solving realistic LP problem formulations. We
will demonstrate this in Section 6.

5 ITERATIVE COMPUTATION

Due to the presence of cache interference, a job may execute
longer than Ck on a multicore platform with shared caches.
However, a larger execution time may introduce more cache
interference, as illustrated in Figure 11.

In Figure 11 (a), if the job of ⌧k executes for C 0
k, only one

job of ⌧i interferes with ⌧k. In Figure 11(b), if the job of ⌧k
executes for a larger execution time, say C

0
k + I

sc(C 0
k), two

jobs of ⌧i could possibly interfere with ⌧k, which potentially
may increase the cache interference exhibited by ⌧k. This
example suggests an iterative method is needed to find an
upper bound on the cache interference.

Figure 11: More cache interference if ⌧k executes for a longer
time.

Lemma 8. I
sc(C 0

k) is non-decreasing with respect to C
0
k.

Lemma 8 is explained by the above example.
We give a sufficient condition for a certain value that can

be used as an upper bound on cache interference.

Lemma 9. if 9 C
⇤
k � Ck such that C

⇤
k = Ck + I

sc(C⇤
k), then

Ī
sc
k = I

sc(C⇤
k).

Proof. If C
⇤
k = Ck + I

sc(C⇤
k), then I

sc(C⇤
k) = I

sc(Ck +
I
sc(C⇤

k)). According to Lemma 8, given an execution win-
dow of ⌧k that is no more than Ck + I

sc(C⇤
k), the cache

interference exhibited by ⌧k is not larger than I
sc(C⇤

k).

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 10

Therefore, Isc(C⇤
k) is the upper bound on cache interference

for ⌧k. By definition, Īsck = I
sc(C⇤

k).

We now derive the iterative algorithm, called
CacheInterference(⌧,m) to compute an upper bound on
cache interference for each task ⌧k 2 ⌧ :

• Since the constraints of our IP formulation assume
the taskset is schedulable, we first the schedulability
of the taskset assuming no cache interference be-
tween each task. Only if all tasks pass schedulability
test, the following steps will be taken.

• C
0
k is initialized with Ck and an upper bound value

on the cache interference I
sc(C 0

k) is created which is
initially set to zero

• By solving the IP , we compute a new upper bound
of the cache interference I

sc(C 0
k).

• If the new upper bound of cache interference is the
same as the old upper bound, the I

sc(C 0
k) is the

final upper bound of ⌧k. Otherwise, another round
of computing the upper bound on cache interference
is performed using the upper bound derived at the
previous iteration. The iteration for ⌧k stops either
if no update on I

sc(C 0
k) is possible anymore or if

the computed I
sc(C 0

k) is large enough to make ⌧k

unschedulable.
• The previous steps are repeated for every task in ⌧ .

Pseudocode 1: CacheInterference(⌧ , m)
1: Input: Task parameters, number of cores: m
2: I

⇤
 empty list, used to store I

sc(C⇤
k) for each task

3: C
⇤
 empty list, used to store C

⇤
k for each task

4: for all ⌧k 2 ⌧ do
5: update true, Ioldk 0, Inewk 0
6: C

0
k Ck

7: while update do
8: I

old
k I

new
k

9: I
new
k Solution of IP with C

0
k as the EW

10: C
0
k = Ck + I

new
k

11: if Inewk == I
old
k or C 0

k � Dk then
12: update false

13: end if
14: end while
15: Add I

new
k to I

⇤

16: Add C
0
k to C

⇤

17: end for
18: return I

⇤, C⇤

A more formal version of the CacheInterference(⌧,m)
algorithm is given by Pseudocode 1. The algorithm returns
I
⇤ which includes the upper bounds on cache interference

I
sc(C⇤

k) for each task ⌧k and C
⇤ which includes the upper

bounds on the execution length C
⇤
k for each ⌧k. If I⇤ and C

⇤

are empty, the taskset is not schedulable.
Since the solution of the IP is non-decreasing with

respect to C
0
k according to Lemma 8 and one termination

condition is C
0
k � Dk, the termination of the iterative

algorithm is guaranteed.
Before presenting the final theorem to check the schedu-

lability of the task set, we define the following notations.

We denote U(⌧i) as task ⌧i’s utilization taking shared
cache interference into account, U(⌧i) is defined by:

Ui =
C

⇤
i

Ti
.

The utilization of taskset ⌧ , denoted by U(⌧), is defined
by:

U(⌧) =
X

⌧i2⌧

Ui =
X

⌧i2⌧

C
⇤
i

Ti
.

We sort all C⇤
i in a non-increasing order, and use �m�1

C⇤
i

to denote the sum of the first (m � 1) elements in this list,
so

�m�1
C⇤

i
=

X

the (m�1) largest

C
⇤
i

For task ⌧k, we also define a constant Lk by:

Lk =

P
⌧i2⌧ C

⇤
i +�m�1

C⇤
i

m� U(⌧)
� Sk. (17)

We propose the following Theorem to check the schedu-
lability of the task set.

Theorem 2. A task set ⌧ is schedulable with the EDFnp or

FPnp scheduling policy on a multicore platform composed of m

identical cores with shared caches if for each task ⌧k 2 ⌧ and

0  Ak  Lk,

(1) 9 C
⇤
k � Ck such that C

⇤
k = Ck + I

sc(C⇤
k),

(2)
⌦k
m + C

⇤
k < Dk +Ak.

Proof. From (1), Īsck is bounded and Ī
sc
k = I

sc(C⇤
k) according

to Lemma 9.
From Lemma 4, Īprek = ⌦k(C

⇤)
m .

8Ak � 0, if ⌦k
m + C

⇤
k = ⌦k

m + Ck + I
sc(C⇤

k) < Ak +Dk

then Ī
pre
k + Ck + Ī

sc
k < Ak + Dk. Theorem 2 follows from

Theorem 1.
We further prove that if condition (2) is to be violated for

any Ak, then it must also be violated for some Ak  Lk.
W

n
i,k can be bounded by considering the number of body

jobs to be
j
Ak+Sk

Ti

k
and the contribution of the carry-out to

be C
⇤
i , so

W
n
i,k 

�
Ak + Sk

Ti

⌫
C

⇤
i + C

⇤
i 

Ak + Sk

Ti
C

⇤
i + C

⇤
i

= (Ak + Sk)Ui + C
⇤
i

Similarly, W c
i,k can be bounded by considering the contribu-

tion of both the carry-in and the carry-out are C
⇤
i :

W
c
i,k 

�
Ak + Sk

Ti

⌫
C

⇤
i + 2C⇤

i  (Ak + Sk)Ui + 2C⇤
i

From Equation (12)

⌦k = max
(⌧n,⌧c)2⌧

(
X

⌧i2⌧n

W
n
i,k +

X

⌧i2⌧c

W
c
i,k)

 (Ak + Sk)
X

⌧i2⌧

Ui +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i

= (Ak + Sk)U(⌧) +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 11

If condition (2) is to be violated for any Ak, then
9Ak,

⌦k
m + C

⇤
k � Dk +Ak,

=) ⌦k � m(Dk +Ak � C
⇤
k)

=) (Ak + Sk)U(⌧) +
X

⌧i2⌧

C
⇤
i +�m�1

C⇤
i
� m(Sk +Ak).

Solve the above inequality for Ak, we have:

Ak 

P
⌧i2⌧ C

⇤
i +�m�1

C⇤
i

m� U(⌧)
� Sk = Lk.

This tells us the range of Ak that should be tested.

Finally, we give the procedure
CheckSchedulability(⌧,m) to perform the schedulability
test, as illustrated by Pseudocode 2.

Pseudocode 2: CheckSchedulability(⌧ , m)

1: Input: Task parameters, number of cores: m
2: I

⇤, C⇤
 CacheInterference(⌧,m)

3: for all ⌧k 2 ⌧ do
4: calculate Lk by Equation (17)
5: for all Ak 2 [0, LK] do
6: ⌦k calculation of Equation (12) using C

⇤
, Ak

7: if ⌦k
m + C

⇤
k � Dk +Ak then

8: return Unschedulable
9: end if

10: end for
11: end for
12: return Schedulable

Computational complexity: Let n represent the number
of tasks in the task-set. For ⌧k, let I

min
k be the smallest

difference between cache interference caused by one job
of ⌧i and ⌧j , i.e. I

min
k = min

i,j
(Isci,k � I

sc
j,k), the iterative

algorithm takes at most ⌘ = max
k

(Dk�Ck)
Imin
k

iterations to
terminate since C

0
k either stays the same or increases at

least with I
min
k in each iteration. Thus, the complexity of

the iterative algorithm to compute the upper bound on
cache interference is O(⌘n264nln4n). The complexity of
computing Lk,⌦k is polynomial. Therefore, the complexity
to perform the schedulability test is O(⌘n264nln4n).

6 EXPERIMENTS

In this section, we systematically generate synthetic work-
loads to evaluate the performance of the proposed schedu-
lability test for EDFnp and FPnp in terms of acceptance
ratio. More specifically, we will quantify the effects of cache
interference on the schedulability of the generated tasksets.
We will also compare the schedulability performance of
EDFnp against FPnp over randomly generated tasksets.

The experiments have been performed varying i) the
probability of two tasks having cache interference on each
other: P (P = 0.1, 0.2, 0.3 or 0.4), ii) the cache interference
factor IF (IF = 0, 0.3, 0.6 or 0.9), iii) the number of
cores m (m = 2, 4 or 8), iv) total task utilization Utot

(Utot from 0.1 to m � 0.1 with steps of 0.2). Given those
three parameters, we have generated 20000 tasksets in each
experiment. The number of tasks n in each tasksets is 10,

i.e. n = 10. As the task generation policies may significantly
affect experimental results, we give the policies used in the
experiments as follows.

Task utilization generation policy. We use Randfixed-
sum [32] to generate vectors that consist of n elements and
whose components sum to the Utot. Each element in the
vector is assigned an individual task utilization Uk in the
taskset.

Task period and WCET generation policy. For each task
⌧k, Tk is uniformly distributed over the interval [100, 200].
The WCET of ⌧k is derived by Ck = Tk⇥Uk. We consider an
implicit deadline task system, which implies that Di = Ti.

Cache interference generation policy. The probability
of two task having cache interference is P . If two tasks ⌧k

and ⌧i interfere with each other, Isci,k is generated as I
sc
i,k =

IF ⇥min(0.5Ci, 0.5Ck).
In each experiment, we measure the number of schedu-

lable tasksets that pass the proposed schedulability test.
The acceptance ratios, which is the number of schedulable
tasksets divided by the total number of tasksets (20000), are
shown in Figure 12 and Figure 13 for EDFnp and FPnp,
respectively.

Fixing m = 4, n = 10, IF = 0.3, Figure 12a and
Figure 13a illustrate the acceptance ratio with different P

for EDFnp and FPnp, respectively. With the same Utot, the
acceptance ratio for both EDFnp and FPnp decreases as
P increases because a larger P indicates more tasks in the
taskset could interfere with each other, which may poten-
tially increase the upper bound on cache interference for
each task. Fixing P , it can be observed that the acceptance
ratio of EDFnp is higher than FPnp when Utot 2 [1.1, 2.5].
For example, when P = 0.2, IF = 0.3 and Utot = 1.7,
60.1% of tasksets are schedulable by EDFnp, while FPnp

schedules 50.45% of the generated tasksets.
Figure 12b and Figure 13b show the acceptance ratio

achieved by EDFnp and FPnp, respectively, for the cases
IF = 0, 0.3, 0.6, 0.9, fixing m = 4, n = 10, P = 0.4. The
red line with IF = 0 represents the acceptance ratio when
tasks have no cache interference. Evidently, the acceptance
ratios with a lower IF are better than those with a larger
IF . As we increase IF with the same amount, the average
acceptance ratio decreases in a slower fashion. However,
it does not indicate that a lower bound on the average
acceptance ratio is possible since the cache interference gets
larger as IF increases, eventually making the interfered
tasks unschedulable. Fixing IF , it is also clear that the ac-
ceptance ratio achieved by EDFnp is better than FPnp when
Utot 2 [0.7, 2.5]. For example, when P = 0.4, IF = 0.6 and
Utot = 1.1, 66.9% of tasksets are schedulable by EDFnp,
while FPnp schedules 59.3% of the generated tasksets.

Figure 12c and Figure 13c illustrate the acceptance ratio
with respect to the number of cores for EDFnp and FPnp,
respectively. In the two figures, the acceptance ratio for tasks
having no cache interference are also plotted. Instead of
using Utot as horizontal axis, we scale the horizontal axis
with Utot⇥8

m for m = 2, 4. It is worth noting that an exe-
cution platform with fewer cores is more efficient in terms
of acceptance ratio than those with more cores. This is due
to the fact that the pessimism of the analysis of processor-
contention interference and shared cache interference be-
comes worse when the number of cores increases. However,

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 12

(a) IF = 0.3,m = 4, n = 10 (b) P = 0.4,m = 4, n = 10 (c) IF = 0.3, n = 10

Figure 12: Acceptance ratio of EDFnp when varying cache interference factor: IF , probability: P and number of cores: m.

(a) IF = 0.3,m = 4, n = 10 (b) P = 0.4,m = 4, n = 10 (c) IF = 0.3, n = 10

Figure 13: Acceptance ratio of FPnp when varying cache interference factor: IF , probability: P and number of cores: m.

for processors with different numbers of cores scheduled
by EDFnp (or FPnp), the difference in the acceptance ratio
of scheduling between the baseline (tasks having no cache
interference, P = 0) and tasks having cache interference is
almost similar.

Average Execution Time. We measured the execution
time of running the proposed schedulability test with differ-
ent task-set scales. The executions are conducted on an Intel
Xeon processor using only one core running at 2.4GHz. On
average, it takes 0.13 seconds to check the schedulability of
tasksets consisting of 10 tasks, 0.27 seconds for tasksets with
20 tasks, and 0.56 seconds for tasksets with 30 tasks.

7 CONCLUSIONS

In this paper, we developed a new schedulability analy-
sis of global scheduling (EDFnp and FPnp) for real-time
multicore systems with shared caches. We constructed an
integer programming formulation that can be transformed
to an integer linear programming formulation to calculate
the upper bound on cache interference exhibited by a task
during a given execution window. Using this integer for-
mulation, we subsequently proposed an iterative algorithm
to obtain an upper bound on the shared cache interference
a task may exhibit during one job execution. We derived
a new schedulability condition by integrating the upper
bound on the cache interference into the schedulability

analysis. A set of experiments has been performed using our
proposed schedulability analysis to demonstrate the effects
of cache interference for a range of different tasksets. We also
compared the schedulability performance of EDFnp against
FPnp in the presence of cache interference. Our empirical
evaluations showed that EDFnp is better than FPnp in
terms of tasksets deemed schedulable. As for future work,
we plan to extend our schedulability analysis to real-time
multicore systems with shared caches that use preemptive
task scheduling.

REFERENCES

[1] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach
for practical os-level cache management in multi-core real-time
systems,” in ECRTS’ 13, July 2013, pp. 80–89.

[2] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiprocessor
cache model,” in 2006 IEEE International Symposium on Performance

Analysis of Systems and Software, March 2006, pp. 89–99.
[3] V. Suhendra and T. Mitra, “Exploring locking & partitioning for

predictable shared caches on multi-cores,” in DAC’ 08, June 2008,
pp. 300–303.

[4] D. Hardy and I. Puaut, “Wcet analysis of multi-level non-inclusive
set-associative instruction caches,” in RTSS’08, Nov 2008, pp. 456–
466.

[5] J. Xiao, S. Altmeyer, and A. Pimentel, “Schedulability analysis
of non-preemptive real-time scheduling for multicore processors
with shared caches,” in 2017 IEEE Real-Time Systems Symposium

(RTSS), Dec 2017, pp. 199–208.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2974224, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 13

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström,
“The worst-case execution-time problem—overview of methods
and survey of tools,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, pp. 36:1–36:53, May 2008. [Online]. Available:
http://doi.acm.org/10.1145/1347375.1347389

[7] W. Zhang and J. Yan, “Accurately estimating worst-case execution
time for multi-core processors with shared direct-mapped instruc-
tion caches,” in RTCSA ’09, Aug 2009, pp. 455–463.

[8] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten
wcet estimates for multi-core processors with shared instruction
caches,” in RTSS ’09, Dec 2009, pp. 68–77.

[9] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li,
and V. Suhendra, “Timing analysis of concurrent programs
running on shared cache multi-cores,” Real-Time Systems,
vol. 48, no. 6, pp. 638–680, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s11241-012-9160-2

[10] G. Gracioli and A. A. Fröhlich, “An experimental evaluation of
the cache partitioning impact on multicore real-time schedulers,”
in RTCSA’ 03, Aug 2013, pp. 72–81.

[11] J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache
predictability for real-time systems,” in RTAS’ 97, Jun 1997, pp.
213–224.

[12] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson,
“Making shared caches more predictable on multicore platforms,”
in ECRTS’ 13, July 2013, pp. 157–167.

[13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-
core architectures,” in 2013 IEEE 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS), April 2013, pp. 45–
54.

[14] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic memory hierarchy and virtualization
for modern multi-core embedded systems,” in 2019 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), April
2019, pp. 1–14.

[15] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, “Semi-
partitioned hard-real-time scheduling under locked cache migra-
tion in multicore systems,” in ECRTS’ 12, ser. ECRTS ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 331–340.

[16] M. Xu, L. Thi, X. Phan, H. Choi, and I. Lee, “vcat: Dynamic
cache management using cat virtualization,” in 2017 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),
April 2017, pp. 211–222.

[17] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” in 2006 27th IEEE

International Real-Time Systems Symposium (RTSS’06), Dec 2006, pp.
101–110.

[18] S. Baruah, “Techniques for multiprocessor global schedulability
analysis,” in RTSS’07, ser. RTSS ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 119–128. [Online]. Available:
http://dx.doi.org/10.1109/RTSS.2007.48

[19] N. Guan, G. Yu, W. Yi, Q. Deng, and Z. Gu, “New
schedulability test conditions for non-preemptive scheduling
on multiprocessor platforms,” in 2008 Real-Time Systems

Symposium(RTSS), vol. 00, 11 2008, pp. 137–146. [Online].
Available: doi.ieeecomputersociety.org/10.1109/RTSS.2008.17

[20] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE

Transactions on Parallel and Distributed Systems, vol. 20, no. 4, pp.
553–566, April 2009.

[21] F. Zhang and A. Burns, “Schedulability analysis for real-time
systems with edf scheduling,” IEEE Transactions on Computers,
vol. 58, no. 9, pp. 1250–1258, Sep. 2009.

[22] J. Lee, K. G. Shin, I. Shin, and A. Easwaran, “Composition
of schedulability analyses for real-time multiprocessor systems,”
IEEE Transactions on Computers, vol. 64, no. 4, pp. 941–954, April
2015.

[23] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and
W. Yi, “Scheduling analysis of imprecise mixed-criticality real-time
tasks,” IEEE Transactions on Computers, vol. 67, no. 7, pp. 975–991,
July 2018.

[24] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real
time scheduling theory: A historical perspective,” Real-Time Syst.,

vol. 28, no. 2-3, pp. 101–155, Nov. 2004. [Online]. Available:
https://doi.org/10.1023/B:TIME.0000045315.61234.1e

[25] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978814

[26] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling
and analysis for multicores,” in 7th ACM international conference on

Embedded software. ACM, 2009, pp. 245–254.
[27] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee, “Analysis and

implementation of global preemptive fixed-priority scheduling
with dynamic cache allocation,” in RTAS, 2016, pp. 1–12.

[28] M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee,
“Holistic resource allocation for multicore real-time systems,”
in 2019 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), April 2019, pp. 345–356.
[29] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and

J. Reineke, “A generic and compositional framework for multicore
response time analysis,” in 23rd RTNS. ACM, 2015, pp. 129–138.

[30] T. P. Baker, “Multiprocessor edf and deadline monotonic schedu-
lability analysis,” in RTSS ’03, Dec 2003, pp. 120–129.

[31] K. L. Clarkson, “Las vegas algorithms for linear and integer
programming when the dimension is small,” J. ACM, vol. 42, pp.
488–499, 1995.

[32] R. Stafford. (2006) Random vectors
with fixed sum. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/9700

Jun Xiao is a postdoc researcher in University of
Amsterdam. He received his PhD degree in com-
puter science from University of Amsterdam in
October, 2019, the MS degree from the Univer-
sity of Trento and Scuola Superiore Sant’Anna,
Italy, in 2014 and the BE degree in automa-
tion and control engineering from Nanchang Uni-
versity, China, in 2012. His research interests
include the fields of embedded and real-time
systems, schedulability analysis and computer
architecture.

Sebastian Altmeyer is Assistant Professor (Uni-
versitair Docent) at the University of Amsterdam.
He has received his PhD in Computer Science in
2012 from Saarland University, Germany with a
thesis on the analysis of preemptively scheduled
hard real-time systems. From 2013 to 2015 he
has been a postdoctoral researcher at the Uni-
versity of Amsterdam, and from 2015 to 2016
at the University of Luxembourg. In 2015, he
has received an NWO Veni grant on the timing
verification of real-time multicore systems. He

has been program chair of ECRTS 2018 and has served on many
conferences on real-time embedded systems, including RTSS, RTAS,
RTNS, DATE, and DAC. His research targets various aspects of the de-
sign, analysis and verification of hard real-time systems, with a particular
interest in timing verification and multicore architectures.

Andy D. Pimentel is an Associate Professor
at the System and Network Engineering Lab of
the University of Amsterdam. His research cen-
ters around system-level modeling, simulation,
and exploration of (embedded) multicore and
manycore computer systems with the purpose
of efficiently and effectively designing and pro-
gramming these systems. Pimentel has an MSc
and PhD in computer science from the Univer-
sity of Amsterdam. He is a cofounder of the In-
ternational Conference on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS). He has
(co)authored more than 100 scientific publications and is an Associate
Editor of Elseviers Simulation Modelling Practice and Theory as well
as Springers Journal of Signal Processing Systems. He served as
the General Chair of HIPEAC15, as Local Organization Co-Chair of
ESWeek15, and as Program (Vice-)Chair of CODES+ISSS in 2016 and
2017. Furthermore, he has served on the TPC of many leading (em-
bedded) computer systems design conferences, such as DAC, DATE,
CODES+ISSS, ICCD, ICCAD, FPL, SAMOS, and ESTIMedia.

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 19,2020 at 08:04:30 UTC from IEEE Xplore. Restrictions apply.

