
Hindawi Publishing Corporation
VLSI Design
Volume 2012, Article ID 196984, 13 pages
doi:10.1155/2012/196984

Research Article
A Signature-Based Power Model for MPSoC on FPGA

Roberta Piscitelli and Andy D. Pimentel

Computer Systems Architecture Group, Informatics Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

Correspondence should be addressed to Roberta Piscitelli, r.piscitelli@uva.nl

Received 13 August 2011; Accepted 2 November 2011

Academic Editor: Luigi Raffo

Copyright © 2012 R. Piscitelli and A. D. Pimentel. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper presents a framework for high-level power estimation of multiprocessor systems-on-chip (MPSoC) architectures on
FPGA. The technique is based on abstract execution profiles, called event signatures, and it operates at a higher level of abstraction
than, for example, commonly used instruction-set simulator (ISS)-based power estimation methods and should thus be capable
of achieving good evaluation performance. As a consequence, the technique can be very useful in the context of early system-
level design space exploration. We integrated the power estimation technique in a system-level MPSoC synthesis framework.
Subsequently, using this framework, we designed a range of different candidate architectures which contain different numbers of
MicroBlaze processors and compared our power estimation results to those from real measurements on a Virtex-6 FPGA board.

1. Introduction

The complexity of modern embedded systems, which are
increasingly based on multiprocessor SoC (MPSoC) archi-
tectures, has led to the emergence of system-level design.
System-level design tries to cope with the design complexity
by raising the abstraction level of the design process. Here,
a key ingredient is the notion of high-level modeling and
simulation in which the models allow for capturing the
behavior of system components and their interactions at a
high level of abstraction. These high-level models minimize
the modeling effort and are optimized for execution speed.
Consequently, they facilitate early architectural design space
exploration (DSE).

An important element of system-level design is the
high-level modeling for architectural power estimation. This
allows to verify that power budgets are approximately met
by the different parts of the design and the entire design and
evaluate the effect of various high-level optimizations, which
have been shown to have much more significant impact on
power than low-level optimizations [1].

The traditional practice for embedded systems evalua-
tion often combines two types of simulators, one for simu-
lating the programmable components running the software
and one for the dedicated hardware parts. However, using

such a hardware/software cosimulation environment during
the early design stages has major drawbacks: (i) it requires
too much effort to build them, (ii) they are often too slow
for exhaustive explorations, and (iii) they are inflexible in
quickly evaluating different hardware/software partitionings.
To overcome these shortcomings, a number of high-level
modeling and simulation environments have been proposed
in recent years. An example is our Sesame system-level
modeling and simulation environment [2], which aims at
efficient design space exploration of embedded multimedia
system architectures.

Until now, the Sesame framework has mainly been
focused on the system-level performance analysis of multi-
media MPSoC architectures. So, it did not include system-
level power modeling and estimation capabilities. In [3],
we initiated a first step towards this end; however, by
introducing the concept of computational event signatures,
allowing for high-level power modeling of microprocessors
(and their local memory hierarchy). This signature-based
power modeling operates at a higher level of abstraction
than commonly used instruction-set simulator (ISS)-based
power models and is capable of achieving good evaluation
performance. This is important since ISS-based power
estimation generally is not suited for early DSE as it is
too slow for evaluating a large design space: the evaluation



2 VLSI Design

of a single-design point via ISS-based simulation with a
realistic benchmark program may take in the order of
seconds to hundreds of seconds. Moreover, unlike many
other high-level power estimation techniques, the signature-
based power modeling technique still incorporates an explicit
microarchitecture model of a processor, and thus is able to
perform micro-architectural DSE as well.

In this paper, we extend the aforementioned signature-
based power modeling work, and we present a full system-
level MPSoC power estimation framework based on the
Sesame framework, in which the power consumption of all
the system components is modeled using signature-based
models. The MPSoC power model has been incorporated
into Daedalus, which is a system-level design flow for the
design of MPSoC-based embedded multimedia systems [4,
5]. Daedalus offers a fully integrated tool flow in which
system-level synthesis and FPGA-based system prototyping
of MPSoCs are highly automated. This allows us to quickly
validate our high-level power models against real MPSoC
implementations on FPGA.

In the next section, we briefly describe the Sesame frame-
work. Section 3 introduces the concept of event signatures
and explains how they are used in the power modeling of
architectures. Section 4 gives an overview of our MPSoC
power modeling framework and the different components
used for modeling processors, memories, and communica-
tion channels. Section 5 presents a number of experiments in
which we compare the results from our models against real
measurements of real MPSoC implementations on a Virtex-
6 FPGA board. In Section 6, we describe related work, after
which Section 7 concludes the paper.

2. The Sesame Environment

Sesame is a modeling and simulation environment for the
efficient design space exploration of heterogeneous embed-
ded systems. Using Sesame, a designer can model embedded
applications and MPSoC architectures at the system level,
map the former onto the latter, and perform application-
architecture cosimulations for rapid performance evalua-
tions. Based on these evaluations, the designer can further
refine (parts of) the design, experiment with different
hardware/software partitionings, perform simulations at
multiple levels of abstraction, or even have mixed-level
simulations where architecture model components operate
at different levels of abstraction. To achieve this flexibility,
the Sesame environment uses separate application and
architectures models. According to the Y-chart approach
[2], an application model derived from a target application
domain describes the functional behavior of an application
in an architecture-independent manner. This model cor-
rectly expresses the functional behavior, but is free from
architectural issues, such as timing characteristics, resource
utilization, or bandwidth constraints. Next, a platform
architecture model defined with the application domain
in mind defines architecture resources and captures their
performance constraints. Finally, an explicit mapping step
maps an application model onto an architecture model
for cosimulation, after which the system performance can

be evaluated quantitatively. The layered infrastructure of
Sesame is illustrated in Figure 1.

For application modeling, Sesame uses the Kahn process
network (KPN) model of computation [6] in which parallel
processes implemented in a high-level language communi-
cate with each other via unbounded FIFO channels. Hence,
the KPN model unveils the inherent task-level parallelism
available in the application and makes the communication
explicit. Furthermore, the code of each Kahn process is
instrumented with annotations describing the application’s
computational actions which allows to capture the com-
putational behavior of an application. The reading from
and writing to FIFO channels represent the communication
behavior of a process within the application model. When
the Kahn model is executed, each process records its
computational and communication actions, and generates
a trace of application events. These application events are
an abstract representation of the application behavior and
are necessary for driving an architecture model. Application
events are generally coarse-grained, such as read(channel id,
pixel block) or execute(DCT).

An architecture model simulates the performance con-
sequences of the computation and communication events
generated by an application model. It solely accounts for
architectural (performance) constraints and does not need
to model functional behavior. This is possible because the
functional behavior is already captured by the application
model, which drives the architecture simulation. The timing
consequences of application events are simulated by param-
eterizing each architecture model component with an event
table containing operation latencies. The table entries could
include, for example, the latency of an execute(DCT) event
or the latency of a memory access in the case of a memory
component. With respect to communication, issues such as
synchronization and contention on shared resources are also
captured in the architecture model.

To realize trace-driven cosimulation of application and
architecture models, Sesame has an intermediate mapping
layer with two main functions. First, it controls the mapping
of Kahn processes (i.e., their event traces) onto architecture
model components by dispatching application events to the
correct architecture model component. Second, it makes
sure that no communication deadlocks occur when multiple
Kahn processes are mapped onto a single architecture model
component. In this case, the dispatch mechanism also
provides various strategies for application event scheduling.

Extending the Sesame framework to also support power
modeling of MPSoCs could be done fairly easily by adding
power consumption numbers to the event tables. So, this
means that a component in the architecture model not
only accounts for the timing consequences of an incoming
application event, but also accounts for the power that is
consumed by the execution of this application event (which
is specified in the event tables now). The power numbers
that need to be stored in the event tables can, of course, be
retrieved from lower-level power simulators or from (pro-
totype) implementations of components. However, simply
adding fixed power numbers to the event tables would be a
rigid solution in terms of DSE: these numbers would only be



VLSI Design 3

Video-in DMUX

RGB
to

YUV

DCT

Quant VLE

Quality
control

Video-

out

Kahn application
model

Mapping
layer

Architecture
model

P0 P1 P2 P3 P4

Bus

Mem
OP Cycles
X 750
Y 150
Z 1500

Event table

=Mapping

Event
trace

Figure 1: The Sesame system-level simulation environment.

valid for the specific implementation used for measuring the
power numbers. Therefore, we propose a high-level power
estimation method based on so-called event signatures that
allows for more flexible power estimation in the scope of
system-level DSE. As will be explained in the next sections,
signature-based power estimation provides an abstraction
of processor activity and communication in comparison to
traditional ISS-based power models, while still incorporating
an explicit microarchitecture model and thus being able to
perform microarchitectural DSE.

3. Event Signatures

An event signature is an abstract execution profile of an
application event that describes the computational complex-
ity of an application event (in the case of computational
events) or provides information about the data that is com-
municated (in the case of communication events). Hence, it
can be considered as metadata about an application event.

3.1. Computational Events Signatures. A computational sig-
nature describes the complexity of computational events in a
(micro-)architecture-independent fashion using an abstract
instruction set (AIS) [3]. Currently, our AIS is based on
a load-store architecture and consists of instruction classes,
such as Simple Integer Arithmetic, Simple Integer Arithmetic
Immediate, Integer Multiply, Branch, Load, and Store. The
high level of abstraction of the AIS should allow for
capturing the computational behavior of a wide range of

RISC processors with different instruction-set architectures.
To construct the signatures, the real machine instructions
of the application code represented by an application
event (derived from an instruction-set simulator as will be
explained here in after) are first mapped onto the various
AIS instruction classes, after which a compact execution
profile is made. This means that the resulting signature is a
vector containing the instruction counts of the different AIS
instruction classes. Here, each index in this vector specifies
the number of executed instructions of a certain AIS class
in the application event. We note that the generation of
signatures for each application event is a one-time effort,
unless for example, an algorithmic change is made to an
application event’s implementation.

To generate computational signatures, each Kahn appli-
cation process is simulated using a particular instruction-set
simulator (ISS); depending on the class of target processor,
the application will be mapped on. For example, we currently
use ISSs from the SimpleScalar simulator suite [7] for the
more complex multiple-issue processors, while we deploy
the MicroBlaze cycle-accurate instruction-set simulator pro-
vided by Xilinx for the more simple soft cores. Taking the
signature generation for the MicroBlaze processor as an
example in Figure 2, application files are loaded into mb-
gdb, which is the GNU C debugger for MicroBlaze. Mb-gdb
is used to send instructions of the loaded executable files
to the MicroBlaze instruction-set simulator and to perform
cycle-accurate simulation of the execution of the software
programs, as in [8].



4 VLSI Design

Signature structure

Mapping instructions to usage counts 
of the microprocessor components

C 
application

Mb-gdb

Microblaze 
ISS

Parametrized 

microprocessor 

power model

Microarchitecture
description

signature 
appl. event 

appl. event 

power 
consumption 

IIMM: 18,
ISIMPLE: 9,

IMUL: 6,

FSIMPLE: 9,
FMUL: 3,

 Microblaze 

<node name=“ALL” class=“AIS”> <port 
name=“bpred” dir=“in”>
<property name=“execute” value=“1” /> </port>
<port name=“il1” dir=“in”> <property 
name=“read” value=“1” />
</port> <port name=“RUU” dir=“in”>
<property name=“read” value=“1” />
<property name=“write” value=“1” /> </port>
</node></node> <node name=“LOAD” 
class=“AIS”>
<port name=“dl1” dir=“in”> <property 
name=“read” value=“1” />
</port> <port name=“irf” dir=“in”>
<property name=“read” value=“1.5” />
<property name=“write” value=“1” /> </port>
<port name=“alu” dir=“in”> <property 
name=“execute” value=“1” />
</port> </node>

FSQRT: 1

Total number of cycles: 90

BRANCH: 15,
BRANCHL: 1,

LOAD: 9,
STORE: 4,

Figure 2: Computational event signature generation for MicroBlaze.

Using these ISSs, the event signatures are constructed—
by mapping the executed machine instructions onto the AIS
as explained above—for every computational application
event that can be generated by the Kahn process in question.
The event signatures act as an input to our parameterized
microprocessor power model, which will be described in
more detail in the next section. For each signature, the ISS
may also provide the power model with some additional
microarchitectural information, such as cache missrates, and
branch misprediction rates. In our case, only instruction
and data cache miss-rates are used. As will be explained
later on, the microprocessor power model subsequently uses
a microarchitecture description file in which the mapping
of AIS instructions to usage counts of microprocessor
components is described.

The microprocessor power model also uses a microar-
chitecture description file in which the mapping of AIS
instructions to usage counts of microprocessor components
is described. An example fragment of this mapping descrip-
tion is shown in Figure 2. It specifies that for every AIS
instruction (indicated by the ALL tag), the instruction cache
(il1) is read, the register update unit (RUU) is read and
written, and branch prediction is performed. Furthermore,
it specifies that for the AIS instruction LOAD, the ALU
is used (to calculate the address), the level-1 data cache
(dl1) is accessed, and the integer register file (irf) is read
and written. With respect to the latter, it takes register
and immediate addressing modes into account by assuming
1.5 read operations to the irf on average. In addition,
the microarchitecture description file also contains the

parameters for our power model, such as, the dimensions
and organization of memory structures (caches, register file,
etc.) in the microprocessor, clock frequency, and so on.
Clearly, this microarchitecture description allows for easily
extending the AIS and facilitates the modeling of different
microarchitecture implementations.

3.2. Communication Event Signatures. In Sesame, the Kahn
processes generate read and write communication events as
a side effect of reading data from or writing data to ports.
Hence, communication events are automatically generated.
For the sake of power estimation, the communication events
are also extended with a signature, as shown in Figure 4.
A communication signature describes the complexity of
transmitting data through a communication channel (e.g.,
FIFO, Memory Bus, PLB Bus) based on the dimension of
the transmitted data and the statistical distribution of the
contents of the data itself.

More specifically, we calculate the average Hamming
distance of the data words within the data chunk commu-
nicated by a read or write event (which could be, e.g., a pixel
block or even an entire image frame), after which the result
is again averaged with Hamming distance of the previous
data transaction on the same communication channel. In
this way, we can get information about the usage of the
channel and the switching factor, which is related to the data
distribution. In our transaction-level architecture models,
we use the assumption that the communications performed
by the KPN application model are not interleaved at the
architecture level. For example, if a pixel block is transferred



VLSI Design 5

MJPEG

page

Input data 
Set 1

Input data 
Set 2

Pw (data set 2) = 2.000523472 W

Pw(data set 1) = 2.000498706 W

Figure 3: Measured power consumption of MJPEG application
mapped on one MicroBlaze using two different input sets.

Type of instruction
Id of the communication channel
Transmitted data size
Communication id

distribution
communication 

signature

Communication event

{ Statistics on data

Figure 4: Structure of communication events.

between two KPN processes, then the architecture model
simulates the (bus/network) transactions of the consecutive
data words in the pixel block, without interleaving these
transactions with other ones. In Figure 3, we show the
impact of power on a MJPEG application using input sets
with different data distribution. In the first input data set
picture, the correlation between pixel blocks is very high, and
consequently the average Hamming distance of the data will
be zero. This results in lower power values with respect to
the second input data set picture, which presents a higher
Hamming distance distribution.

3.3. Signature-Based, System-Level Power Estimation. In
Figure 5, the entire signature-based power modeling frame-
work is illustrated. First the event traces are generated,
together with the communication signatures.

The Kahn application model is used to generate the
event traces, which represent the workload that is imposed
on the underlying MPSoC architecture model. During this
stage, the average Hamming distance, as explained in the
previous subsection, is computed. This information is then
integrated in the trace events, forming the communica-
tion signature. The communication signature generation is
mapping dependent: communication patterns change with
different mappings.

In addition, the computational signatures are generated
(Figure 5, left side). In particular, the Kahn application
processes for which a power estimation needs to be per-
formed, are simulated using the ISS, constructing the event
signatures (as explained in the previous section) for every
computational application event that can be generated by the
Kahn process in question. After that the computational event
signatures are generated, the power consequences of trace

Table 1: Different possibilities of reusing signatures in DSE.

Comp. signatures Comm. signatures

µ-architectural exploration µ-architectural exploration
Mapping exploration (limited) Architectural exploration

events generated by the application model, are computed.
As will be explained in the next section, the microprocessor
power model uses a microarchitecture description file in
which the mapping of AIS instructions to usage counts of
microprocessor components is described.

The Sesame architecture model simulates the perfor-
mance and power consequences of the computation and
communication events generated by the application model.
To this end, each architecture model component is param-
eterized with an event table containing the latencies of the
application events it can execute (as explained in Section 2).
Moreover, each architecture model component now also has
an underlying signature-based power model. These models
are activity-based. The activity counts are derived from the
different application events in the event traces as well as the
signature information of the separate events. The total power
consumption is then obtained by simply adding the average
power contributions of microprocessor(s), memories, and
interconnect(s).

The structure of the entire system-level power model
is composed by separate and independent modules, which
allow for the reuse of the different underlying component
models as well as the generated signatures (as shown in
Table 1). For example, once computational signatures are
generated for application events, it is possible to explore
different microarchitectures executing the same application
with the same mapping. Moreover, given the computational
event signatures, it is also possible to do mapping explo-
ration, limited to the case of homogeneous systems. Commu-
nication signatures can be reused for both microarchitectural
and architectural exploration.

4. Power Model

We propose a high-level power estimation method based on
the previously discussed event signatures that allows for flexi-
ble power estimation in the scope of system-level DSE. As will
be explained in the subsequent subsections, signature-based
power estimation provides an abstraction of processor (and
communication) activity in comparison to, for example,
traditional ISS-based power models, while still incorporating
an explicit microarchitecture model and thus being able
to perform microarchitectural DSE. The power models are
based on FPGA technology, since we have incorporated these
models in our system-level MPSoC synthesis framework
Daedalus [5], which targets FPGA-based (prototype) imple-
mentations. The MPSoC power model is formed by three
main building blocks, modeling the microprocessors, the
memory hierarchy, and the interconnections, respectively.
The model is based on the activity counts that can be
derived from the application events and their signatures as
described before and on the power characteristics of the



6 VLSI Design

Application

SESAME application
model

simulation and
mapping

Communication

event signature

µArchitecture
description

SESAME
architecture

model
simulation

Parametrized

interconnection

power model

Cycle-accurate

instruction set

simulator (ISS)

Computation
event

signature
Microprocessor

power model
CACTI 6.5

comp. signature
generation

comm. signature generation

Power

consumption

appl. events

Power
consumption

memory

Power

Total power consumption

consumption
comm. events

Architectural DSE
power model

Event trace

Event 
trace

Comm. 
signature

App. event

counts

Figure 5: System-level power estimation framework.

components themselves, measured in terms of LUTs used.
In particular, we estimate through synthesis on FPGA the
maximum number of LUTs used for each component. The
resulting model is therefore a compositional power model,
consisting of the various components (for which the models
are described below) used in the MPSoC under study. In
the remainder of this paper, we will focus on homogeneous
systems, but the used techniques do allow the modeling and
simulation of heterogeneous systems as well.

4.1. Interconnection Power Model. In this section, we derive
architectural level parameterized, and activity-based power
models for major network building blocks within our
targeted MPSoCs. These include FIFO buffers, crossbar
switches, buses, and arbiters. The currently modeled building
blocks—network components as well as processor and
memory components—are all part of the IP library of our
Daedalus synthesis framework [5], which allows the con-
struction of a large variety of MPSoC systems. Consequently,
all our modeled MPSoCs can actually be rapidly synthesized
to and prototyped on FPGA, allowing us to easily validate
our power models.

Our network power models are composed of models for
the aforementioned network building blocks, for which each
of them we have derived parameterized power equations.
These equations are all based on the common power
equation for CMOS circuits:

Pinterconnect = V 2
dd f Cα, (1)

where f is the clock frequency, Vdd the operating voltage,
C the capacitance of the component, and α is the aver-
age switching activity of the component, respectively. The
capacitance values for our component models are obtained

through an estimation of the number of LUTs used for the
component in question as well as the capacitance of a LUT
itself. Here, we estimate the number of LUTs needed for every
component through synthesis, after which the capacitance is
obtained using the X-Power tool from Xilinx. The activity
rate α is primarily based on the read and write events from
the application event traces that involve the component in
question. For example, for an arbiter component of a bus,
the total time of read and write transactions to the arbiter
(i.e., the number of read and write events that involve the
arbiter) as a fraction of the total execution time is taken as
the access rate (i.e., activity rate). Consequently, the power
consumption of an arbiter is modeled as follows:

Parbiter = β ×V 2
dd × f × CLUT × nLUTs × access rate, (2)

where CLUT, nLUTs, f , and Vdd are, respectively, the estimated
capacitance of a LUT, the estimated number of LUTs needed
to build the arbiter, the clock frequency, and the operating
voltage. β is a scaling factor obtained through precalibration
of the model, and

access rate = Treads + Twrites

Ttotal exec
. (3)

Here, Treads and Twrites are the total times spend on the
execution of read and write transactions, respectively, and
Ttotal exec is the total execution time.

For communication channels like busses, not only the
number of read and write events play a role to determine
the activity factor, but also the data that is actually com-
municated. To this end, we consider the Hamming distance
distribution between the data transactions, as explained in the
previous section on communication signatures. Thus, every
communication trace event is carrying the statistical activity-
based information of the channel from/to which the data is



VLSI Design 7

read/written. Consequently, for any activity (read/write of
data) in the channel, the dynamic power of the interconnec-
tion is calculated according to technology parameters and
the statistical distribution of the data transmitted. Hence,
for every packet transmitted over the channel, the estimated
power is computed in the following way:

Pchan = β ×V 2
dd × f × Cchan × nLUTs ×Hamm dist(e),

(4)

where β, Cchan, f , Vdd, and nLUTs are again the scaling
factor, estimated capacitance of the communication channel,
clock frequency, the operating voltage, and number of
LUTs needed to build the interconnection channel. The
Hamm dist(e) parameter is the average Hamming distance
of the data transmitted in the read/write events. In our mod-
els, leakage power is calculated according to the estimated
look-up tables needed to build a particular interconnection.

4.2. Memory Power Model. For on-chip memory (level 1
and 2 caches, register file, etc.) and main memory, we use
the analytical energy model developed in CACTI 6.5 [9]
to determine the power consumption of read and write
accesses to these structures. These power estimates include
leakage power. The access rates for the processor-related
memories, such as caches and register file, are derived from
the computational signatures, as will be explained in the next
subsection. Moreover, we use the cache missrate information
provided by the ISS used to generate the computational
signatures to derive the access counts for structures like the
level-2 cache and the processor’s load/store queue.

For the main memory and communication buffers, we
calculate the access rate in the same fashion as for a network
arbiter component as explained above: the communication
application events are used to track the number of accesses to
the memory. That is, the total time taken by read and write
accesses (represented by the communication application
events) to a memory as a fraction of the total execution
time is taken as the access rate. Subsequently, the signal
rate represents the switching probability of the signals. For
every read/write event to the memory, the average Hamming
distance contained in the communication event signature is
extracted, and the signal rate is calculated as follows:

signal rate = γ ×Hamm dist(e), (5)

where the γ is again a scaling factor obtained through
precalibration of the model.

4.3. Microprocessor Power Model. The microprocessor model
that underlies our power model is based on [3]. It assumes
a dynamic pipelined machine, consisting of one arithmetic
logical unit, one floating point unit, a multiplier, and two
levels of caches. However, this model can easily be extended
to other processor models, by simply introducing new units.
For the power model of the clock component, three sub-
components are recognized: the clock distribution wiring,
the clock buffering, and the clocked node capacitance. We
assume a H-tree-based clock network using a distributed
driver scheme (i.e., applying clock buffers) [3].

Level 1 
cache

Register 
files

Register 
update 

unit

Other units

+

Level 2 
cache

Load/store 
queue

Processor 
bus

Clock

C
om

pu
ta

ti
on

al
 e

ve
nt

 
si

gn
at

ur
e

Execution time 
of comp. 

events
Power estimation 
for comp. events

Figure 6: Different components in the microprocessor power
model.

The power consumption of a computational application
event is calculated by accumulating the power consumption
of each of the components that constitute the microprocessor
power model, as shown in Figure 6. More specifically, the first
step to calculate an application event’s power consumption is
to map its signature to usage counts of the various processor
components. So, here it is determined how often for example,
the ALU (see other units in Figure 6), the register file and the
level-1 instruction and data caches are accessed during the
execution of an application event. The microprocessor power
model uses an XML-based micro-architecture description
file in which the mapping of AIS instructions to usage counts
of microprocessor components is described. This micro-
architecture description file also contains the parameters for
our microprocessor power model, such as, the dimensions
and organization of memory structures (caches, register file,
etc.) in the microprocessor, clock frequency, and so on.
Clearly, this micro-architecture description allows for easily
extending the AIS and facilitates the modeling of different
micro-architecture implementations.

The above ingredients (the event signatures, additional
micro-architectural information per signature such as cache
statistics, and the micro-architecture description of the
processor) subsequently allow the power model to produce
power consumption estimates for each computational appli-
cation event by accumulating the power consumption of the
processor components used by the application event.

5. Validation

As mentioned before, we have integrated our power model
into the Daedalus system-level design flow for the design
of MPSoC-based embedded multimedia systems [4, 5]. This
allows direct validation and calibration of our power model.

5.1. The Daedalus Design Flow. Daedalus offers a fully
integrated tool flow in which design space exploration (DSE),
system-level synthesis, application mapping, and system
prototyping of MPSoCs are highly automated, which allows



8 VLSI Design

V
al

id
at

io
n/

ca
lib

ra
ti

on

U
A

R
T

PMB

Platform 
netlist

Platform 
netlist

Platform 
netlist

Platform 
netlist

models

IP library

High-level 
models

Sequential 
program in C

Platform spec. 

in XML

Mapping spec. 
in XML

Kahn process 
network in 

XML

Parallelization
KPNgen

uP

uP

Mem

HW 
IP

uP

Mem

Interconnect, e.g., 

Power 
monitor Mb

FPGA

system-level 
specification

specification

specification

RTL

RTL

Gate-level 

MPSoC

System-level architectural exploration: Sesame

Automated system-level synthesis: ESPAM

RTL synthesis: commercial tool, e.g., Xilinx Platform

P2P, Xbar, or Bus

Figure 7: The Daedalus design and validation tool flow.

a direct validation and calibration of our power model.
In Figure 1, the conceptual design flow of the Daedalus
framework is depicted.

A key assumption in Daedalus is that the MPSoCs are
constructed from a library of predefined and preverified
IP components. These components include a variety of
programmable and dedicated processors, memories, and
interconnects, thereby allowing the implementation of a
wide range of MPSoC platforms. So, this means that
Daedalus aims at composable MPSoC design, in which
MPSoCs are strictly composed of IP library components.
Daedalus consists of three core tools.

Starting from a sequential multimedia application speci-
fication in C, the KPNgen tool [6] allows for automatically
converting the sequential application into a parallel Kahn
process network (KPN) specification. Here, the sequential
input specifications are restricted to so-called static affine-
nested loop programs, which is an important class of
programs in, for example, the scientific and multimedia
application domains. The generated or handcrafted KPNs
(the latter in the case that, e.g., the input specification
did not entirely meet the requirements of the KPNgen
tool) are subsequently used by the Sesame modeling and
simulation environment [2, 10] to perform system-level
architectural design space exploration. To this end, Sesame
uses (high-level) architecture model components from the IP
component library (see the left part of Figure 7). As discussed
before, Sesame allows for quickly evaluating the performance

of different application to architecture mappings, HW/SW
partitionings, and target platform architectures. Such explo-
ration should result in a number of promising candi-
date system designs, of which their specifications (system-
level platform description, application-architecture mapping
description, and application description) acting as an input
to the ESPAM tool [4, 5]. This tool uses these system-
level input specifications, together with RTL versions of the
components from the IP library, to automatically generate
synthesizable VHDL that implements the candidate MPSoC
platform architecture. In addition, it also generates the C
code for those application processes that are mapped onto
programmable cores. Using commercial synthesis tools and
com pilers, this implementation can be readily mapped onto
an FPGA for prototyping. Such prototyping also allows
calibrating and validating Sesames system-level models, and
as a consequence, improving the trustworthiness of these
models.

5.2. Experimental Results. By deploying Daedalus, we have
designed several different candidate MPSoC configurations
and compared our power estimates for these architectures
with the real measurements. The studied MPSoCs contain
different numbers of MicroBlaze processors that are inter-
connected using a crossbar network and also a point-to-
point network. The softcores on the FPGA device used in
the framework do not use caches at this moment. This is
considered to be future work. The validation environment



VLSI Design 9

400

450

500

550

600

650

700

750

800

850

900

950

Real
measurements

Power model

Mjpeg_2MB_mp1_ds1
Mjpeg_2MB_mp2_ds1
Mjpeg_3MB_mp1_ds1

Mjpeg_3_mp2_ds1
Mjpeg_4_mp1_ds1
Mjpeg_4_mp2_ds1

Po
w

er
−2

W
 (
µW

)

(a)

400

450

500

550

600

650

700

750

800

850

900

950

Real
measurements

Power model

Mjpeg_2MB_mp1_ds2
Mjpeg_2MB_mp2_ds2
Mjpeg_3MB_mp1_ds2

Mjpeg_3MB_mp2_ds2
Mjpeg_4MB_mp1_ds2
Mjpeg_4MB_mp2_ds2

Po
w

er
−2

W
 (
µW

)

(b)

Figure 8: Mjpeg application with input set ds1 (a) and input set ds2 (b).

is formed by the architecture itself and an extra MicroBlaze.
This extra MicroBlaze polls the power values in the internal
measurement registers in our target Virtex-6 FPGA and
interfaces an I2C controller in the FPGA design with the I2C
interface of the PMBus controller chip [11]. In order to do
this, it runs a software driver which implements the PMBus
protocol [11]. The extra MicroBlaze “polls” the power values
in the Virtex-6 FPGA internal measurement registers and
prints out the read values through the UART to the pc, as
shown in Figure 7. In this way, we have a fully automated
system to register the power values of an architecture
running a particular application with a given mapping. As we
introduced an extra MicroBlaze in the design, the resulting
power consumption of the system is scaled by a fixed factor,
which is dependent on the measurement infrastructure. This
is, however, not a problem since our primary aim is to
provide high fidelity rankings in terms of power behavior
(which is key to early design space exploration) rather
than obtaining near-perfect absolute power estimations [12].
Evidently, the additional power consumed by the extra
MicroBlaze does not affect the fidelity of the rankings (i.e.,
the extra MicroBlaze exists in every MPSoC configuration),
while the power measurements obtained are much more
accurate compared to, for example, using a simulator
[13].

The results of the validation experiments are shown in
Figures 8, 9, 10, and 11. In the experiments, we compare the
total power consumption, which is both leakage and dynamic
power. In these experiments, we mapped three different
parallel multimedia applications onto the target MPSoCs:
a Motion-JPEG encoder (Mjpeg), a Periodogram, which is
an estimate of the spectral density of a signal, and a Sobel

filter for edge detection in images. In addition, for each
of the applications, we also investigated two different task
mappings onto the target architectures. Here, we selected
one “good” mapping, in terms of task communication, as
well as a “poor” one for each application. That is in the
“good” mapping we minimize task communications, while
in the “poor” one we maximize task communications. The
experiments in Figures 8, 9, 10, and 11 apply the following
notation: appname nproc mappingtype, where appname is the
application considered, nproc indicates the number of proces-
sors used in the architecture (e.g., “3mb” indicates an MPSoC
with 3 MicroBlaze processors), and mappingtype refers to the
type of mapping used. With respect to the latter, the tag
mp1 indicates the good mapping, while mp2 refers to the
poor mapping. For the Motion-JPEG application, we also
considered two different data input sets: the first input set
(ds1) is characterized by a high data correlation, while the
second input set (ds2) has a very low data correlation, in
terms of measured average Hamming distance distribution of
the input data. With respect to our previous work [14], we
extend the analysis to a point-to-point architecture based on
FIFOs. That is we tested the power model on two different
communication architecture configurations: the first one is
crossbar-based, while the second one is a point-to-point
network based on FIFOs. The power values in Figures 8,
9, 10, and 11 are scaled by a factor of 2 W for the sake of
improved visibility. Most charts show a very little difference
between the good and bad configurations (mp1 versus mp2)
for a number of processors greater than 2; this is explained
by the fact that a design with a larger number of processors
implies a higher use of the communication channels. Given
an application with m tasks and n processors, if m # n,



10 VLSI Design

400

450

500

550

600

650

700

750

800

850

900

950

Real
measurements

Power model

Sobel_2_mp1
Sobel_2_mp2
Sobel_3_mp1

Sobel_3_mp2
Sobel_4_mp1
Sobel_4_mp2

Po
w

er
−2

W
 (
µW

)

(a)

400

450

500

550

600

650

700

750

800

850

900

950

Periodogram_2_mp1
Periodogram_2_mp2
Periodogram_3_mp1

Periodogram_3_mp2
Periodogram_4_mp1
Periodogram_4_mp2

Real
measurements

Power model

Po
w

er
−2

W
 (
µW

)

(b)

Figure 9: Sobel filter (a) and Periodogram application (b).

400

450

500

550

600

650

700

750

800

850

Mjpeg_2MB_mp1
Mjpeg_2MB_mp2
Mjpeg_3MB_mp1

Mjpeg_3MB_mp2
Mjpeg4MB_mp1
Mjpeg_4MB_mp2

Po
w

er
−2

W
 (
µW

)

Real
measurements

Power model

(a)

400

450

500

550

600

650

700

750

800

850

Sobel_2mb_mp1
Sobel_2mb_mp2
Sobel_3mb_mp1

Sobel_3mb_mp2
Sobel_4mb_mp1
Sobel_4mb_mp2

Po
w

er
−2

W
 (
µW

)

Real
measurements

Power model

(b)

Figure 10: Mjpeg (a) and Sobel (b) applications in a point-to-point FIFO architecture.

then this implies that a good mapping can be beneficial
for reducing tasks communication. However, in the case
of m = n, the tasks mapping cannot avoid substantial
communications.

The results in Figures 8, 9, 10, and 11 show that our
power model performs quite decently in terms of absolute
accuracy. We observed an average error of our power
estimations of around 7%, with a standard deviation of
5% for the crossbar networks and an average error of our
power estimations of around 10%, with a standard deviation
of 6% for the point-to-point networks. More important in

the context of early design space exploration, however, is
the fact that our power model appears to be very capable
of estimating the right power consumption trends for the
various MPSoC configurations, applications, and mappings.
We explicitly checked the fidelity of our estimations in terms
of quality ranking of candidate architectures by ranking all
design instances according to their consumed power for a
specific application. Our estimates result in a ranking of
the power values that is correct for every application we
considered, therefore showing a high fidelity. This high-
fidelity quality-ranking of candidate architectures thus allows



VLSI Design 11

400

450

500

550

600

650

700

750

800

850

Periodogram_2mb_mp1
Periodogram_2mb_mp2
Periodogram_3mb_mp1

Periodogram_3mb_mp2
Periodogram_4mb_mp1
Periodogram_4mb_mp2

Po
w

er
−2

W
 (
µW

)

Real
measurements

Power model

Figure 11: Periodogram application in a point-to-point FIFO
architecture.

for a correct candidate architecture generation and selection
during the process of design space exploration.

Since every design point evaluation takes only 0.16
seconds on average, the presented power model offers
remarkable potentials for quickly experimenting with differ-
ent MPSoC architectures and exploring system-level design
options during the very early stages of design.

6. Related Work

There exists a fairly large body of related work on system-
level power modeling of MPSoCs. For example, in [15]
developed a SoC power estimation method based on a
SystemC TLM modeling strategy. It adopts multiaccuracy
models, supporting the switch between different models at
run time according to the desired accuracy level. The authors
validate their model using the STBus NoC and an analytical
power model of this NoC. An MPEG4 application was tested,
achieving up to 82% speed-up compared to TLM BCA (bus
cycle-accurate) simulation.

Atitallah et al. [16] uses a stack of abstract models.
The higher-abstraction model, named Timed Programmer
View (PVT), omits details related to the computation and
communication resources. Such an abstract model enables
designers to select a set of solutions to be explored at lower
abstraction levels. The second model, CABA (cycle-accurate
bit-accurate), is used for power estimation and platform
configuration.

In [17], a system-level cycle-based framework to model
and design heterogeneous MPSoC (called GRAPES) is

presented. C++/SystemC-based IP system modules can be
wrapped to act as plugins, which are managed by the
simulation kernel in a TLM fashion. Those modules are
managed by the GRAPES kernel, which is the core of
the simulation framework. To estimate power during a
simulation, they add a dedicated port to each component,
which communicates with the corresponding power model.
This feature permits to characterize each component with
a set of activity monitors (inside the component module)
necessary for the power estimation.

Reference [18] presents a simulation-based methodology
for extending system performance modeling frameworks to
also include power modeling. They demonstrate the use
of this methodology with a case study of a real, complex
embedded system, comprising the Intel XScale-embedded
microprocessor, its WMMX SIMD co processor, L1 caches,
SDRAM, and the on-board address and data buses.

In [19], a power estimation framework for SoCs is
presented, using power profiles to produce cycle-accurate
results. The SoC is divided in its building blocks (e.g.,
processors, memories, communication, and peripherals),
and the power estimation is based on the RTL analysis of each
component. The authors validate the framework using an
ARM926EJ-S CPU and the AMBA AXI 3.0 as NoC. speed-up
compared to a gate-level simulation is on average 100 times
faster. Previous work was not addressing high-level power
modeling of MPSoCs on FPGA.

In [20], an efficient hybrid system level (HSL) power esti-
mation methodology for FPGA-based MPSoC is proposed.
Within this methodology, the functional level power analysis
(FLPA) is extended up to set up generic power models for the
different parts of the system. Then, a simulation framework
is developed at the transactional level to evaluate accurately
the activities used in the related power models. With respect
to this work, our processor model can easily model different
kinds of RISC processors by simply introducing new units.

Moreover, there also exist a considerable number of
research efforts that only focus on the power modeling of the
on-chip network of MPSoCs. Examples are [21–24]. Many
of the above approaches calibrate the high-level models with
parameters extracted from RTL implementations, using low-
level simulators for the architectural components. In [21],
a rate-based power estimation method is presented. In the
first phase, it considers data volume, estimating the average
power in function of the total transmitted data: in the
second phase, it calibrates the model through definition of
the consumed power for each transition rate. In particular,
the calibration uses RTL model of the NoC, while the latter
uses an actor-oriented model. After the calibration, a power
dissipation table is generated for each injection rate and
router element. Using linear approximation, they determine
the power dissipation for each injection rate. In [22], an
energy estimation model based on the traffic flow in the
NoCs building blocks (routers and interconnection wires)
is presented. The authors represents the amount of energy
consumed in the transmission of a data bit throughout the
NoC (in its routers and interconnection wires). In [23], a
NoC power and performance analysis with different traffic
models, using analytical models, is presented. The authors



12 VLSI Design

target a NoC with a mesh topology. The employed traffic
models are: uniform, local, hot-spot, and matrix transpose.
Results were compared to Synopsys Power Compiler and
ModelSim, showing an error of 2% for power estimation
and 3% for throughput. In [24], a methodology for accurate
analysis of power consumption of message-passing primi-
tives in a MPSoC is proposed, and, in particular, an energy
model which allows to model the traffic-dependent nature
of energy consumption through the use of a single, abstract
parameter, namely, the size of the message exchanged. The
ISS performs cycle-accurate simulation of the cores, while
the rest of the system is described in SystemC at signal level.
In [25], the authors employ a framework that takes as input
message flows and derives a power profile of the network
fabric. The authors map the CPU data path as a graph and
the application as a set of messages that flow in this graph.
Those mapped CPUs are connected into the network fabric,
mapping the entire MPSoC as a network. The authors make
use of a network power estimation tool, called LUNA, to
evaluate the power dissipation of the entire MPSoC.

To the best of our knowledge, none of the existing efforts
have incorporated the power models in a (highly automated)
system-level MPSoC synthesis framework, allowing for accu-
rate and flexible validation of the models. Instead, most exist-
ing works either use simulation-based validation (e.g., [15,
21–23, 25]) or validation by means of measurements on fixed
target platforms (e.g., [18, 19]). Consequently, in general,
related system-level MPSoC modeling efforts do also not
target FPGA technology in their system-level power models.

7. Conclusion

We presented a framework for high-level power estimation of
multiprocessor systems-on-chip (MPSoC) architectures on
FPGA. The technique is based on abstract execution profiles
called “event signatures”, and it operates at a higher level of
abstraction than, for example, commonly-used instruction-
set simulator (ISS)-based power estimation methods and
should thus be capable of achieving good evaluation perfor-
mance. The model is based on the activity counts from the
signatures and from the power characteristics of the com-
ponents themselves, measured in terms of LUTs used. The
signature-based power modeling technique has been inte-
grated in our Daedalus system-level MPSoC synthesis frame-
work, which allows a direct validation and calibration of the
power model. We compared the results from our signature-
based power modeling to those from real measurements on
a Virtex-6 FPGA board. These validation results indicate that
our high-level power model achieves good power estimates
in terms of DSE. As future work, we plan to perform addi-
tional experiments (e.g., using different memory hierarchies
and different processor components) as well as to deploy the
power model in real system-level DSE experiments.

Acknowledgments

This work has been partially supported by the MADNESS
STREP-FP7 European Project and the NWO EASY Project.

We would like to give special credits to Todor Stefanov and
Mohamed Bamakhrama for their support on implementing
the MicroBlaze software driver for the PMBus controller.

References

[1] A. B. Kahng, L. Bin, L. S. Peh, and K. Samadi, “ORION 2.0:
A fast and accurate NoC power and area model for early-
stage design space exploration,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’09), pp. 423–428, April 2009.

[2] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic
approach to exploring embedded system architectures at
multiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–111, 2006.

[3] P. Stralen and A. D. Pimentel, “A high-level microprocessor
power modeling technique based on event signatures,” in
Proceedings of the IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia ’07), 2007.

[4] M. Thompson, H. Nikolov, T. Stefanov et al., “A framework for
rapid system-level exploration, synthesis, and programming of
multimedia MP-SoCs,” in Proceedings of the 5th International
Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS ’07), pp. 9–14, October 2007.

[5] H. Nikolov, M. Thompson, T. Stefanov et al., “Daedalus:
Toward composable multimedia MP-SoC design,” in Proceed-
ings of the 45th Design Automation Conference (DAC ’08), pp.
574–579, June 2008.

[6] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proceedings of the IFIP Congress, J. L. Rosen-
feld, Ed., vol. 74, pp. 471–475, North-Holland Puplishing
Company, New York, NY, USA, 1974.

[7] T. Austin, E. Larson, and D. Ernest, “SimpleScalar: An
infrastructure for computer system modeling,” Computer, vol.
35, no. 2, pp. 12–67, 2002.

[8] J. Ou and V. K. Prasanna, “Rapid energy estimation for
hardware-software codesign using FPGAs,” EURASIP Journal
on Embedded Systems, vol. 2006, Article ID 98045, 11 pages,
2006.

[9] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing NUCA organizations and wiring alternatives
for large caches with CACTI 6.0,” in Proceedings of the
40th IEEE/ACM International Symposium on Microarchitecture
(MICRO ’07), pp. 3–14, December 2007.

[10] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra,
“A framework for system-level modeling and simulation
of embedded systems architectures,” EURASIP Journal on
Embedded Systems, vol. 2007, Article ID 82123, 11 pages, 2007.

[11] http://pmbus.org/specs.html.
[12] P. K. Huang, M. Hashemi, and S. Ghiasi, “System-level perfor-

mance estimation for application-specific MPSoC intercon-
nect synthesis,” in Proceedings of the Symposium on Application
Specific Processors (SASP ’08), pp. 95–100, June 2008.

[13] J. Becker, M. Huebner, and M. Ullmann, “Power estimation
and power measurement of xilinx virtex fpgas: Trade-offs
and limitations,” in Proceedings of the 16th Symposium on
Integrated Circuits and Systems Design (SBCCI ’07), p. 283,
IEEE Computer Society, Washington, DC, USA, 2003.

[14] R. Piscitelli and A. D. Pimentel, “A high-level power model
for mpsoc on fpga,” in Proceedings of the 18th Reconfigurable
Architectures Workshop (RAW ’11), 2011.

[15] D. Sciuto, G. Beltrame, and C. Silvano, “Multi-accuracy power
and performance transaction-level modeling,” in Proceedings



VLSI Design 13

of the Conference on Design, Automation and Test in Europe
(DATE ’08), 2008.

[16] J. L. Dekeyser, R. B. Atitallah, and S. Niar, “MPSoC power
estimation framework at transaction level modeling,” in
Proceedings of the 19th International Conference on Microelec-
tronics (ICM ’07), pp. 245–248, December 2007.

[17] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “A
modular approach to model heterogeneous MPSoC at cycle
level,” in Proceedings of the 11th EUROMICRO Conference on
Digital System Design Architectures, Methods and Tools (DSD
’08), pp. 158–164, September 2008.

[18] A. Varma, E. Debes, I. Kozintsev, P. Klein, and B. Jacob,
“Accurate and fast system-level power modeling: An XScale-
based case study,” Transactions on Embedded Computing
Systems, vol. 7, no. 3, article 25, 2008.

[19] I. Lee, H. Kim, P. Yang et al., “PowerViP: SoC power estimation
framework at transaction level,” in Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC ’06),
pp. 551–558, IEEE Press, January 2006.

[20] S. Niar, E. Senn, S. K. Rethinagiri, R. B. Atitallah, and
J. L. Dekeyser, “Hybrid system level power consumption
estimation for fpga-based mpsoc,” in Proceedings of the 29th
IEEE International Conference on Computer Design (ICCD ’11),
October 2011.

[21] L. Ost, G. Guindani, L. Indrusiak, S. Maatta, and F. Moraes,
“Using abstract power estimation models for design space
exploration in NoCbased MPSoC,” IEEE Design and Test of
Computers, vol. 28, no. 2, pp. 16–29, 2011.

[22] J. Hu and R. Marculescu, “Energy-aware mapping for tile-
based noc architectures under performance constraints,” in
Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC ’03), pp. 233–239, New York, NY, USA,
2003.

[23] S. Koohi, M. Mirza-Aghatabar, S. Hessabi, and M. Pedram,
“High-level modeling approach for analyzing the effects of
traffic models on power and throughput in mesh-based nocs,”
in Proceedings of the 21st International Conference on VLSI
Design (VLSID ’08), 2008.

[24] M. Loghi, L. Benini, and M. Poncino, “Power macromodeling
of MPSoC message passing primitives,” ACM Transactions in
Embedded Computing Systems, vol. 6, no. 4, article 31, 2007.

[25] N. Eisley, V. Soteriou, and L. Peh, “High-level power analysis
for multi-core chips,” in Proceedings of the International con-
ference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES ’06), pp. 389–400, New York, NY, USA, 2006.


