
14

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs

WEI QUAN, University of Amsterdam; National University of Defense Technology
ANDY D. PIMENTEL, University of Amsterdam

The application workloads in modern MPSoC-based embedded systems are becoming increasingly dynamic.
Different applications concurrently execute and contend for resources in such systems, which could cause
serious changes in the intensity and nature of the workload demands over time. To cope with the dynamism
of application workloads at runtime and improve the efficiency of the underlying system architecture, this
article presents a hybrid task mapping algorithm that combines a static mapping exploration and a dynamic
mapping optimization to achieve an overall improvement of system efficiency. We evaluate our algorithm
using a heterogeneous MPSoC system with three real applications. Experimental results reveal the effec-
tiveness of our proposed algorithm by comparing derived solutions to the ones obtained from several other
runtime mapping algorithms. In test cases with three simultaneously active applications, the mapping solu-
tions derived by our approach have average performance improvements ranging from 45.9% to 105.9% and
average energy savings ranging from 14.6% to 23.5%.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Performance Attributes

General Terms: Algorithm, Design, Performance

Additional Key Words and Phrases: Embedded systems, KPN, MPSoC, task mapping, simulation

ACM Reference Format:
Wei Quan and Andy D. Pimentel. 2015. A hybrid task mapping algorithm for heterogeneous MPSoCs. ACM
Trans. Embedd. Comput. Syst. 14, 1, Article 14 (January 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2680542

1. INTRODUCTION
Modern embedded systems, which are more and more based on Multiprocessor System-
on-Chip (MPSoC) architectures, often require supporting an increasing number of ap-
plications and standards. In these systems, multiple applications can run concurrently
and are thus simultaneously contending for system resources. For each single applica-
tion, there are often also different execution modes (or program phases) with different
requirements. For example, a video application could dynamically lower its resolution
to decrease its computational demands in order to save the battery. As a consequence,
the behavior of application workloads executing on the embedded system can change
dramatically over time. Typically, the target MPSoC architecture platforms are het-
erogeneous in nature, as such systems are capable of providing better performance
and energy tradeoffs than their homogeneous counterparts [Kumar et al. 2004]. Here,

This work is supported by the National Nature Science Foundation of China under NSFC No. 61033008,
61272145.
Author’s addresses: W. Quan and A. D. Pimentel, Informatics Institute, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands; email: {w.quan, a.d.pimentel}@uva.nl; W. Quan, School of
Computer Science, National University of Defence Technology, Yanwachi Main Street 47, Changsha, Hunan,
China; email: quanwei02@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1539-9087/2015/01-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2680542

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

http://dx.doi.org/10.1145/2680542
http://dx.doi.org/10.1145/2680542

14:2 W. Quan and A. D. Pimentel

the process of application task mapping plays a crucial role in exploiting the system
properties such that applications can meet their, often diverse, demands on perfor-
mance and energy efficiency [Sun and Sugawara 2011].

The problem of optimally mapping tasks onto a given set of heterogeneous proces-
sors for maximal throughput (performance) or minimal overall energy consumption
has been known, in general, to be NP-complete. When considering mapping multiple
applications onto a target architecture, this problem is exacerbated as the resource
contention between applications should be carefully considered in this case. State-of-
the-art methods for solving this problem can be divided into three categories: static,
dynamic, and hybrid task mapping algorithms, which, respectively, work at design time,
runtime, and both design time and runtime. Traditionally, the task mapping problem
is solved statically at design time for which there are many known task mapping algo-
rithms targeting different application domains and different hardware architectures.
These algorithms typically use computationally intensive search methods to find the
optimal mapping or near-optimal mapping for the applications that may run on the sys-
tem. Dynamic task mapping techniques, on the other hand, cannot be computationally
intensive, as they have to efficiently make task mapping decisions at runtime. There-
fore, these techniques typically use heuristics to find good task mappings. Evidently,
static task mapping techniques usually obtain mappings of higher quality compared
to those derived from dynamic algorithms, as the former allow for exploring a larger
design space for the underlying architecture. This, of course, at the cost of consuming
more time. Another drawback of static mapping techniques is that they cannot cope
with dynamic application behavior in which different combinations of applications can
be executing concurrently over time that are contending for system resources. To over-
come the shortcomings of pure static and dynamic task mapping algorithms, hybrid
(semistatic) approaches have become increasingly popular in recent years. Usually, in
these kinds of approaches, multiple mapping solutions are found at design time and
applied at runtime based on the current state of the system. However, most hybrid
mapping approaches still suffer from shortcomings regarding the support of adaptivity
to cope with application dynamism. For example, many approaches do not support the
handling of new, incoming applications that were not known at design time, or they
cannot capture fine-grained application dynamism, such as the dynamism that exists
within each application. In this work, we propose a novel hybrid task mapping (HTM)
algorithm for heterogeneous multimedia MPSoCs that tries to capture dynamic behav-
ior both between and within applications and that exploits the advantages from both
static and dynamic mapping algorithms.

Like all hybrid approaches, our proposed approach distinguishes two stages. First,
the design-time stage performs design space exploration (DSE) to find two optimal
mappings for each application with the objectives of maximizing the throughput and
maximizing the throughput under a predefined energy budget, respectively. Second,
the runtime stage dynamically optimizes the mapping of the running application(s)
based on the optimal mappings of the corresponding applications explored in the first
(design-time) stage and the system execution state. The second stage can be further
split into two steps, mapping initialization and mapping customization, which opti-
mize the mapping with the objective of maximizing the throughput under the prede-
fined energy budget and further improve the performance of the mapping using an
application-dependent objective respectively. Using a range of experiments, we show
the effectiveness of our proposed approach by comparing derived solutions to the ones
obtained from several other runtime mapping algorithms.

The remainder of this article is organised as follows. Section 2 presents a motivational
example for our work. Section 3 gives some prerequisites and the problem definition
for this work. Section 4 provides a detailed description of our hybrid task mapping

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:3

Fig. 1. Intra-application scenario performance of MJPEG.

(HTM) algorithm. Section 5 introduces the experimental environment and presents
the results of our experiments. Section 6 discusses related work, after which Section 7
concludes the article.

2. MOTIVATIONAL EXAMPLE
To support dynamism between and within applications, we use the concept of scenarios
[Paul et al. 2006; Gheorghita et al. 2009; van Stralen and Pimentel 2010b]. Here, one
can distinguish two forms of scenarios to capture dynamic application behavior: inter-
application scenarios describe the simultaneously running applications in the system,
while intra-application scenarios define the different execution modes within each ap-
plication. The combination of these inter- and intra-application scenarios are called
workload scenarios, and specify the application workload in terms of the different ap-
plications that are concurrently executing and the mode of each application. At design
time, a system designer could aim at finding the optimal mapping of application tasks
to MPSoC processing resources for each workload scenario with different objectives
(performance/energy). However, when the number of applications and application
modes increase, the total number of workload scenarios will explode exponentially.
Consider, for example, 10 applications with 5 execution modes for each application. In
this case, there will be 60 million workload scenarios. If it takes 1 second to find the
optimal mapping for each scenario at design time, then one would need nearly 2 years
to obtain all the optimal mappings. Moreover, storing all these optimal mappings (610-1
mappings) such that they can be used at runtime by the system to remap tasks when
a new scenario is detected would also be unrealistic as this would take up too much
memory storage.

A general hybrid approach to solve this problem is by clustering workload scenar-
ios and only storing a single mapping per cluster of workload scenarios to facilitate
runtime mapping [Gheorghita et al. 2009; Quan and Pimentel 2013b]. Such clustering
implies a significant space reduction needed to store the mappings. Moreover, so-called
scenario-based design space exploration [van Stralen and Pimentel 2010a] can be de-
ployed to efficiently find these mappings by only evaluating a representative subset of
scenarios for each cluster. For example, let us consider a clustering method in which we
find and store a single mapping for each inter-application scenario that yields, on aver-
age, the best performance for all possible intra-application scenarios within the inter-
application scenario [Quan and Pimentel 2013b; Schor et al. 2012]. However, as we
can see from the behavior of a Motion-JPEG (MJPEG) encoder application in Figure 1,
using such a single mapping to represent an entire inter-application scenario shows
considerable performance variations for the different intra-application scenarios that

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:4 W. Quan and A. D. Pimentel

exist in this inter-application scenario. In this particular example, the inter-application
scenario contains, besides the MJPEG encoder, two other simultaneously running mul-
timedia applications: a MP3 decoder and a Sobel filter for edge detection in images.

From this example, we can observe that the use of cluster-level mappings (i.e., map-
pings found to be good for an entire cluster of workload scenarios) could provide a
runtime mapping system with enough information to quickly find an adequate map-
ping for a detected workload scenario, but it will not immediately lead to finding the
optimal system mapping for any identified workload scenario. Besides this, there are
two additional drawbacks of this hybrid approach, as already discussed in the previous
section: it lacks the adaptivity of supporting new applications (i.e., adding an applica-
tion would require to redo the entire process of clustering and design-time DSE) and it
still suffers from relatively high memory usage for storing all the preoptimized map-
pings when the number of applications increases (for the example clustering method,
210-1 mappings need to be stored for 10 applications with 5 modes in each application).

In this work, we solve the first problem by splitting the handling of application
dynamism using two runtime steps: mapping initialization and mapping customiza-
tion. In the first step, an adequate mapping for a detected workload scenario is found
(as above), after which the second step performs runtime mapping optimization by
continuously monitoring the system and trying to perform (relatively small) mapping
customizations to gradually further improve the system performance. To address the
aforementioned problems of supporting new applications and storage requirements,
the design-time phase of our approach explores two optimal mappings for each intra-
application scenario in every single application. It does so for two different objectives:
maximizing the throughput and maximizing the throughput under a predefined energy
budget. By using this method, the number of mappings that need to be determined and
stored at design time is greatly reduced (100 mappings need to be stored for 10 applica-
tions with 5 modes in each application). Also, if a new application needs to be supported
on the system, only two preoptimized mappings for each intra-application scenario of
this application need to be provided to the system, avoiding the need of exploring the
mappings for all possible new inter-application scenarios.

3. PREREQUISITES AND PROBLEM DEFINITION
In this section, we explain the necessary prerequisites for this work and provide a
detailed problem definition.

3.1. Application Model
In this article, we target the multimedia application domain. For this reason, we use
the Kahn Process Network (KPN) model of computation [Kahn 1974] to specify appli-
cation behavior because this model of computation fits well to the streaming behavior
of multimedia applications. In a KPN, an application is described as a network of
concurrent processes that are interconnected via FIFO channels. This means that an
application can be represented as a directed graph KPN = (P, F) where P is set of
processes (tasks)1 pi in the application and fij ∈ F represents the FIFO channel be-
tween two processes pi and pj . Figure 2 shows the KPN of the Motion-JPEG (MJPEG)
decoder application used in the previous section.

3.2. Architecture Model
In this work, we restrict ourselves to heterogeneous MPSoC architectures with shared
memory. An architecture can be modeled as a graph MPSoC = (PE, C), where PE is the
set of processing elements used in the architecture and C is a multiset of pairs cij =
(pei, pe j) ∈ PE × PE representing a buffered communication medium, composed of a

1We use the terms process and task interchangeably in this article.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:5

Fig. 2. KPN for MJPEG.

network channel (like a Bus, NoC, etc.) and a buffer located in shared memory, between
processors pei and pe j . Combining the definition of application and architecture models,
the computation cost of task (process) pi on processing element pe j is expressed as T j

i
and the communication cost between tasks pi and pj via channel cxy that connects pex

and pey is Ccxy
ij . Here, the time units for the communication cost and the computation

cost should be unified to the cycles under the same clock frequency in case of different
clock frequencies on the target system. With respect to power consumption, SPi and
DPi refer to the static and dynamic power consumption for pei. Besides processing
elements, another main component of energy consumption in our target system is the
shared memory. For this component, we denote the static and average dynamic power
consumption (for read/write transactions) as SM and DM, respectively.

3.3. Task Mapping
The task mapping defines the binding of the components in a KPN application (includ-
ing the processes and the FIFO communication channels) to the underlying architec-
ture resources. For a single application, given the KPN of this application and a target
MPSoC, a correct mapping is a pair of unique assignments (µ : P → PE, η : F → C)
such that it satisfies ∀ f ∈ F, src(η(f)) = µ(src(f)) ∧ dst(η(f)) = µ(dst(f)). When tasks
are mapped onto the underlying architecture, the usage Uk of each pek can be calcu-
lated by Equation (1), where pi &→ pek and pj &→ pey mean that tasks pi, pj are mapped
onto processors pek and pey, respectively. Note that, if two tasks are mapped onto the
same processor (k equals to y in Equation (1)), then the communication cost between
these two tasks will be neglected as it uses the internal memory on the processor for
communication.

Uk =
∑

pi &→pek,pj &→pey

(
T k

i + Ccky
ij

)
(1)

In the case of a multi-application workload, the state of simultaneously running
applications that are distinguished as inter- and intra-application scenarios should
be considered in the task mapping. Let A = {app0, app1, . . . , appm} be the set of all
applications that can run on the system, and Mi = {mdi

0, mdi
1, . . . , mdi

n} be the set of
possible execution modes for appi ∈ A. Then, SE = {se0, se1, . . . , seninter }, with sei =
{app0 = 0/1, . . . , appm = 0/1} and appi ∈ A (if appi is active, then appi = 1, else
appi = 0), is the set of all inter-application scenarios. And sai

j = {. . . , appk = mdk
jk, . . .},

with 0 ≤ k ≤ m, appk ∈ A ∧ appk = 1 ∈ sei and mdk
jk ∈ Mk, represents the j-th intra-

application scenario in inter-application scenario sei ∈ SE. The set of all workload
scenarios can then be defined as the disjoint union S = (i∈SESAi, with SAi = {sai

1,

sai
2, . . . , sai

ni
intra

}.
As already explained in the previous section, we propose to perform the task map-

ping of applications in two stages. In the first stage, which is performed at design time,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:6 W. Quan and A. D. Pimentel

we perform DSE for each intra-application scenario of each application (denoted by
scenario si in the whole workload scenario space S) to find two mappings that show
(i) the maximal throughput (optimization objective Ot) and (ii) the maximal throughput
under a certain energy budget bi (optimization objective Otb), respectively. Here, bi is
defined as the energy budget for workload scenario si. As will be explained in detail
in the next section, the two mappings derived from design-time DSE are stored so
they can be used for mapping initialization in the second (runtime) stage to get a final
mapping—either by directly using the stored mappings (if a newly detected workload
scenario only contains a single active application) or by deriving a new system mapping
from the stored per-application mappings—when a new workload scenario has been
detected. As mentioned earlier, both the Ot and Otb objectives are used in design-time
mapping exploration, whereas only Otb will be used for runtime mapping optimiza-
tion. To allow our design-time DSE to construct a Pareto Front with regard to the
performance and energy consumption of mapping solutions, we change the objective
of maximal throughput into a minimal objective (i.e., Op = 1/Ot). Consequently, the
system objectives turn into minimizing Op and Opb. More specifically, we use system
energy consumption Esi , si ∈ S and total workload scenario execution time Xsi , si ∈ S
for workload scenario si to find the optimal or near-optimal mappings that satisfy the
two aforementioned objectives at design time. For the purpose of runtime mapping
customization, we also use an application-specific objective (besides the system-wide
objective Opb), denoted as Oβi for application appi. This objective defines the perfor-
mance requirements of each separate application, which in our case is still defined in
terms of throughput.

Under these definitions and given the KPN = (P, F) for each application and an
MPSoC = (PE, C), our goal is to find the optimal or near-optimal mapping at runtime
for each detected workload scenario si ∈ S with the objective to minimize Opb and
where each application should also satisfy its own objective Oβ .

4. A NOVEL HYBRID TASK MAPPING (HTM) ALGORITHM
As shown in Figure 3, the entire workflow of our approach can be divided into three
steps: design-time preparation, runtime mapping initialization, and runtime mapping
customization. As mentioned before, in the step of design-time preparation, two op-
timized mappings for each intra-application scenario are prepared by exploring the
corresponding mapping space. These preoptimized mappings will be stored in system
memory for runtime mapping initialization/optimization. At runtime, when the sys-
tem detects a new workload scenario, our HTM algorithm will try to produce a good
mapping for the active applications in the scenario using (a combination of) the stored
per-application mappings derived from the design-time preparation step. Here, we
make the assumption that each workload scenario will execute long enough to jus-
tify a possible remapping of application tasks. Otherwise, a tradeoff needs to be made
between the cost of remapping and the mapping performance improvement, which is
beyond the scope of this article. This process of determining a new mapping for all
applications when a new workload scenario has been detected, is referred to as map-
ping initialization. The objective of this process is to maximize the system throughput
under the predefined energy budget (or, in other words, minimize Opb). The mapping
initialisation, which uses the stored mapping information of isolated applications, may
not immediately lead to finding the optimal system mapping for a complete identified
workload scenario (i.e., the combination of applications that form the scenario). There-
fore, during the execution of a certain workload scenario, the HTM algorithm will try
to actively further improve the mapping performance when application-specific objec-
tives are (about to be) violated. To this end, it continuously monitors the system and
tries to perform relatively small mapping customizations to gradually further improve

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:7

Fig. 3. The workflow of HTM.

the system performance. Evidently, to reduce migration overheads, the algorithm aims
at keeping the number of required task migrations as low as possible. This process is
called mapping customization. The details of these three steps will be explained in the
following subsections.

4.1. Design-time Preparation
At design time, the mappings with minimal Op and Opb will be searched for all intra-
application scenarios in each isolated application (i.e., in those inter-application sce-
narios with only a single active application). As shown in Figure 3, it would also be
possible to cluster intra-application scenarios of applications, and only determine map-
pings with minimal Op and Opb for an entire cluster of intra-application scenarios. This
would further reduce the number of mappings that need to be explored and stored. How-
ever, in this article, we assume that mappings with minimal Op and Opb are searched
for all separate intra-application scenarios of applications. To find these mappings,
we deploy a scenario-based DSE approach [van Stralen and Pimentel 2010a], which
is based on the well-known NSGA-II genetic algorithm (GA). As our target MPSoC
platform is known, we can use a simplified version of the approach in van Stralen
and Pimentel [2010a]. The implementation of the genetic algorithm is explained in the
following.

4.1.1. Chromosome Representation. We use a standard approach for representing map-
pings within the GA’s chromosomes [Erbas et al. 2006]. It contains two parts. The first
part contains the mapping of the processes in the application, whereas the second part
describes the mapping of the communication channels of the application. Implicitly,
this also contains the resource allocation for the platform. Resources that are not used
in any binding (processing or communicating resources) are also not allocated on the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:8 W. Quan and A. D. Pimentel

Fig. 4. Pareto front of a workload scenario with application Sobel active.

platform. This representation method could also be applied to store the preoptimized
mapping on the target system. In that case, for each process and FIFO channel in the
application KPN, it would need log|PE|

2 bits and log|C|
2 bits, respectively, to encode the

mapping information. To store a mapping in system memory for application appi that
contains |Pi| processes and |Fi| FIFO channels, it would need |Pi| ∗ log|PE|

2 +|Fi| ∗ log|C|
2

bits.

4.1.2. Fitness Function. To find the mappings with minimal Op and Opb for workload
scenario si in the mapping space in question, the Pareto Front of mapping performance
and mapping energy consumption is generated by solving the following multiobjective
optimization problem:

min[Esi , Xsi]. (2)

Evaluating the fitness value of each individual (i.e., design point) is performed using
the Sesame system-level MPSoC simulation framework [Pimentel et al. 2006]. After
the GA-based DSE, a Pareto Front of solutions is generated, as illustrated in Figure 4.
Looking at the Pareto Front, one can easily obtain the mappings satisfying the minimal
Op and Opb, which equal to the mappings with minimal Xsi and minimal Xsi under the
energy budget of bi. This energy budget of bi is calculated using Equation (3). The
first part α in Equation (3) is a constant scaling factor set for the energy budget and
the second part represents the minimal energy consumption for workload scenario si.
Here, we assume that the energy budget bi should be higher than the minimal energy
consumption of the solution mappings found for the workload scenario si.

bi = α ∗ argmin(Esi), with α > 1 (3)

4.1.3. Operators for NSGA-II. To effectively search for global optimal mapping solutions
and escape possible local ones, the crossover and mutation operators are important
components of a GA. With respect to the crossover operator, the most common methods
are one-point crossover, two-point crossover, and uniform crossover. In our work, the
one-point crossover is used because it is simple and yields more or less the same effect
as the other approaches. Regarding mutation, we use an operator that randomly selects
an application task that is subsequently moved to a randomly selected processor. The
last step is to set appropriate parameters for the GA, such as population size, crossover
and mutation probabilities, and so forth. The parameters used in our work will be
introduced in the experiment section.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:9

4.2. Runtime Mapping Initialization
In the mapping initialization stage, we use an Energy-aware Iterative multi-application
Mapping (EIM) algorithm [Quan and Pimentel 2013a] to find a good initial mapping
for a newly detected workload scenario. Our EIM algorithm, which is outlined in
Algorithm 1, can be divided into a static part and a dynamic part. The static part
is used to capture the intra-application dynamism in those inter-application scenarios
with only a single active application.

The mappings derived from the design-time preparation stage are used by the EIM
algorithm, as shown in lines 1–3 of Algorithm 1. To this end, these mappings are stored
in a so-called scenario database. Besides storing these two mappings, the estimated
minimum energy consumption for each intra-application scenario of each application
is also stored in the database. This value is based on the most energy efficient mapping
found in the Pareto Front generated by design-time DSE (e.g., the left-most point in
Figure 4) and is calculated using Equation (4). The calculation and use of this value
will be explained later on. When the system detects a new workload scenario, the
EIM algorithm will first choose the corresponding optimal mapping—as stored in the
scenario database—for each application active in the workload scenario as the initial
mapping. As the database only stores mappings for the intra-application scenarios of
each single application, its size typically is relatively small. However, if its size becomes
too large, then the size can be controlled by clustering intra-application scenarios (as
explained in Section 4.1) and choosing a proper granularity of scenario clusters.

If there is only a single application active in the workload scenario, then the map-
ping selected from the scenario database as the initial mapping is the mapping with
the maximal throughput under a given energy budget for that particular application.
Hereafter, the algorithm directly returns this initial mapping as a final mapping de-
cision. Otherwise, if there are multiple applications active simultaneously, then the
mapping with maximal throughput for each active application will be chosen as initial
mappings. These initial per-application mappings will then simply be merged together
to form the initial mapping for the complete workload scenario. Here, there are two
reasons for not choosing the mapping with maximal throughput under a certain en-
ergy budget as the initial mapping. First, the communication locality behavior of the
mapping with maximal throughput under an energy budget typically is not as good as
the one with maximal throughput without an energy budget. Our runtime algorithm
exploits this locality incorporated in the initial per-application mappings for further
improvement of the workload scenario mapping. Second, we will consider the energy
constraints during the mapping optimization process at runtime, so we do not yet have
to consider an energy budget for the initial mapping in the case of a workload scenario
with multiple active applications.

ALGORITHM 1: EIM algorithm
Input: KPNappactive , MPSoC, scenario id(si)
Output: (µ, η)
1: (µ, η) = getInitMapping(si);
2: if singleAppActive(si) == true:
3: return (µ, η);
4: else:
5: U = peUsage(KPNappactive , MPSoC, µ, η);
6: Mp = maxPUsage(U);
7: Vp = varPUsage(U);
8: bi = eBudget(si);
9: return iterativePOpt(µ, η, Mp, Vp, bi);

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:10 W. Quan and A. D. Pimentel

The dynamic part of our EIM algorithm is only used for those workload scenarios
that contain multiple simultaneously active applications. It aims at further optimizing
the initial mapping found during the static part of the EIM algorithm, as described
earlier. The strategy used in the dynamic part of the EIM algorithm is described in the
following text.

For the active multi-application scenario, our algorithm will optimize the mapping
with the objective to minimize the system metric Opb. Consequently, the optimal map-
ping for each scenario is the one that has the minimal Op among all the possible
mappings under energy budget of bi for workload scenario si. It is, however, extremely
hard to find the optimal mapping for each workload scenario at runtime because of
the following reasons. First, as one cannot obtain the true value of Op before actually
executing the application on the target platform, an estimated O′

p needs to be used to
guide the algorithm to find the optimal mapping. Here, there exists of course a clear
accuracy/overhead tradeoff between different estimation techniques. Efficient but less
accurate runtime mapping-performance estimation techniques may lead to subopti-
mal mappings, while the high overhead of more accurate techniques may neutralize
the performance benefits of the mapping optimization itself. Second, the mapping prob-
lem is NP-complete, as was mentioned before. It is unrealistic for a runtime mapping
algorithm to explore the entire mapping space to determine the optimal mapping for a
scenario.

To solve the aforementioned problems, we use an alternative method using heuristics
to search a part of the mapping space that may contain the optimal or a near optimal
mapping. To this end, we change the objective of performance into the optimization of
two alternative metrics: Mp and Vp that, respectively, represent the maximal usage and
usage variation in Uk, pek ∈ PE (see also Equation (1)). In this case, we do not need to
use the metric Op as the optimization objective, thereby addressing the first of the two
aforementioned problems. Regarding the second problem, by using an optimization
heuristic based on the metrics Mp and Vp, we aim at finding an optimal or near-
optimal mapping in a computationally efficient fashion. The rationale behind this
heuristic is that a better mapping for the objective of high throughput usually has
smaller Mp and Vp values. For the purpose of restricting the energy consumption of the
resulting mapping, we use the estimated energy consumption of a mapping (µi, ηi) for
workload scenario sj given by Equation (4) and the system energy budget bj calculated
by Equation (5), to control the search space of possible mappings. Here, Emk represents
the estimated minimal energy consumption for application appk, which is stored in the
scenario database.

In Equation (4), E′
p is the dynamic and static energy consumed by all active pro-

cessors and E′
m represents the dynamic and static energy consumption of the shared

memory. This relatively simple energy model is built on several assumptions of the tar-
get architecture: (1) the power model used for the shared memory in the system already
includes the power consumption of the bus connected to it; (2) for simplicity, we ignore
the energy consumption caused by resource contention and communication delays. We
make these assumptions to control the complexity of the analytical energy model and
reduce the computation cost at runtime. It is hard (and computationally much more
expensive) to analytically derive the task stalls incurred by delays due to communi-
cation and resource contention in heterogeneous MPSoCs as considered in this work.
So, here we make a tradeoff between accuracy and computation complexity. Under
these assumptions, the system active time for a specific workload scenario is simply
assumed to be argmax(Ui), which is subsequently used to calculate the static energy
consumption. Notice that the energy budget defined here is different from the energy
budget used for design-time DSE (Equation (3)). In Equation (5), the estimated minimal

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:11

energy consumption is used instead of the actual minimal energy consumption deter-
mined (using the Sesame simulator) by design-time DSE like is used in Equation (3).
The estimated minimal energy is computed by applying Equation (4) to the mapping
that has been found to yield the highest energy efficiency after performing design-time
DSE and is stored in the scenario database (as was explained earlier). This is moti-
vated by the fact that the energy consumption of possible mapping solutions explored
at runtime are also estimated using Equation (4). Therefore, we also make a projection
of the energy budget using Equation (4).

Eij = E′
p + E′

m (4a)

E′
p =

∑

active pek

(DPk ∗ Uk + SPk ∗ argmax(Uk)) (4b)

E′
m = DM ∗

∑

cxy=mem
frt &→cxy∈ηi

(
Ccxy

rt
)
+ SM ∗ argmax(Uk) (4c)

bj = α ∗
∑

active appk∈sj

Emk (5)

The mapping algorithm for the workload scenarios with multiple active applications
is outlined in Algorithm 2, which will be executed in an iterative fashion. The starting
mapping used in this algorithm is the one derived from Algorithm 1. In each iteration,
the algorithm first proposes a new mapping for each active application as shown in
line 2 of Algorithm 2. In this process, the algorithm searches the mapping space using
the following greedy pattern: it checks the processors in Uk in descending order to
determine whether the KPN application in question has a task or a bundle of adjacent,
communicating tasks2 resident on this processor. If so, then the algorithm finds a
possible substitute processor for the task/adjacent tasks that satisfies the following
conditions:

(1) The M′
p of the new mapping is smaller than the Mp of the old mapping.

(2) If the previous condition cannot be satisfied, then the algorithm tries to find a
substitute processor for which the resulting M′

p is equal to Mp and V ′
p is smaller

than Vp. If the first condition was satisfied, then this condition will never be used
in this particular iteration.

(3) The estimated energy consumption of the new mapping should be smaller than the
energy budget bi of the (intra-application) scenario si in question.

This process proposes new mappings for those applications that satisfy the conditions
(for the other applications, the mapping remains unaltered). These newly proposed
mappings are either a mapping that has a minimal M′

p (if condition 1 has been satisfied)
or a mapping with minimal V ′

p. However, in the aforementioned process, it can also be
the case that there are multiple new mappings proposed for an application, for example,
when there are multiple tasks (or task bundles) that can be remapped and for which
the aforementioned conditions hold. In these cases, we use another metric, L, to decide
on the final proposed mapping, where the value of L needs to be minimized. The metric
L tries to capture the performance loss of a task remapping for the application in

2Mapping such a task bundle to a single processor is the outcome of the design-time mapping optimization
to reduce communication overhead.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:12 W. Quan and A. D. Pimentel

ALGORITHM 2: IPO algorithm
iterativePOpt(µ, η, Mp, Vp, bi):
1: for each active appj :
2: (µ j, η j) = getPSubstitute(µ, η);
3: if (µ j, η j) != (µ, η):
4: U = peUsage(KPNappactive , MPSoC, µ j , η j);
5: M j

p = maxPUsage(U);
6: V j

p = varPUsage(U);
7: Lj = perfLoss(appj , µ, η, µ j , η j);
8: Mk

p = argmin(M j
p);

9: if Mk
p < Mp:

10: (µ∗, η∗) = (µk, ηk);
11: iterativePOpt(µ∗, η∗, Mk

p, V k
p , bi);

12: else:
13: V t

p = argmin(V j
p + Lj);

14: (µ∗, η∗) = (µt, ηt);
15: if (µ∗, η∗) == (µ, η):
16: return (µ, η);
17: else:
18: iterativePOpt(µ∗, η∗, Mt

p, V t
p, bi);

question3 and is calculated using Equation (6).

L =
∑

pk∈Bj
i

(
T j

k − T i
k
)
+

(
Ccjl

kt − Ccil
kt

)
(6)

Here, we denote the task/task bundle that needs to be remapped from pei to pe j as Bj
i .

After the algorithm has proposed a new mapping for each application, the next step
is to select the most effective among these remapping proposals to be used for the next
optimization iteration of the algorithm or return a mapping as the final one, as shown
in lines 8–18 of Algorithm 2. If no new mapping has been proposed for any of the
applications in the workload scenario in the previous step, then the input mapping will
be returned as the final optimized result. Otherwise, we use the following conditions
to select the most effective remapping for the next iteration of the algorithm:

(1) If there is one and only one proposed mapping that has the minimal M′
p and this M′

p
is smaller than the Mp of the original mapping, then this mapping will be passed
to the next mapping optimization iteration.

(2) If the first condition has not been satisfied, then the proposed mapping with
argmin(V ′

p + L) will be taken as the input mapping for the next iteration. The
rationale behind this is that the algorithm tries to gradually optimize the mapping
for the entire workload scenario while keeping the performance loss for a single
application due to task remapping as small as possible (i.e., taking into account the
processor affinity of the tasks proposed to be remapped).

The time complexity of our EIM algorithm is highly dependent on the diversity
of each preoptimized (i.e., statically derived) mapping stored in system memory, es-
pecially considering the iteration count of our EIM algorithm. The diversity |Di| of
an application (appi) mapping is defined as the number of pipeline segments in this

3We note that L can be negative, implying that the task/task bundle has a higher affinity with the processor
it is proposed to be mapped on.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:13

mapping. Under this definition, |Di| = 1 and |Di| = |Pi| mean that all the tasks in
appi are mapped onto a single processor and different processors, respectively. Here,
|Pi| represents the number of tasks in appi. In the function on line 2 in Algorithm 2,
the maximal number of possible new mappings is |PE| ∗ |Di| ∗ |PE|. For each pos-
sible new mapping, the time consumed for computing the values of Mp and Vp is
O(|PE||P| + |F||C| + 2|PE|). Consequently, the time complexity of each active applica-
tion in each iteration is O(|PE|2|Di|(|PE||P| + |F||C| + 2|PE|)). The approximate time
complexity of each iteration then is O(|PE|2|D|(|PE||P| + |F||C| + 2|PE|)), where |PE|,
|D|, |P|, |F|, and |C|, respectively, represent the total number of processor elements,
the sum of |Di| of each active application appi, the total number of active tasks, the to-
tal number of active FIFO channels and the total number of communication channels.
As the algorithm searches the mapping space to minimize Mp and Vp simultaneously,
the maximal iteration count of Algorithm 2 is argmax(|D|, |D||PE|), where the first and
the second argument represent the maximal iteration count needed for searching each
of the aforementioned metrics. Then, the overall time complexity of Algorithm 2 is
O(|PE|3|D|2(|PE||P| + |F||C| + 2|PE|)).

4.3. Runtime Mapping Customization
After the mapping is initialized for the active workload scenario, the system will mon-
itor the execution of this workload scenario. As mentioned before, the application-
specific objective of each active application will be applied at runtime, which will be
used to determine whether or not a performance problem arises. Here, we assume that
the target MPSoC should, in principle, be dimensioned such that it can accommodate
all possible target applications but that a particular application’s performance objec-
tive may be violated due to a bad mapping. When the system detects that an objective
is unsatisfied, a Scenario-based runtime Task Mapping (STM) algorithm is applied to
find a new task mapping for that particular application that missed the performance
goal. If multiple applications miss their performance goal, then the STM algorithm will
start optimizing the most problematic application first. This STM algorithm is based
on our previous work in Quan and Pimentel [2013b], but it has been extended in this
work to also work for heterogeneous MPSoC architectures. The main steps of our STM
algorithm are described in the following text.

4.3.1. Finding the Critical Task. The first step of our STM algorithm is to find the so-
called critical task for the application that missed its objective, as shown in lines 5–8
of Algorithm 3. The rationale behind this is that by remapping this critical task and
possibly its neighboring tasks (forming a bottleneck in the application), the resulting
effect will be optimal. To find the critical task, the STM algorithm maintains three
lists. The first list stores the task costs (TC). For every application, it contains the cost
of the application’s tasks, where the cost is determined by the sum of the execution and
communication times of a task. These task costs are arranged in descending order in
the list. The two other lists concern the storing of two other metrics for each task: the
proportion of task cost in the total busy time of the PE (i.e., processor) onto which the
task is currently mapped (CIB), and the proportion of task communication time (read
and write transactions) in the task cost (CIC).

Using the TC list, the algorithm checks the task at the top of the list to find the
critical task, taking the following two conditions into account: (1) whether the task’s
CIB proportion is lower than a specific threshold, defined by pCIB. Here, the rationale
is that a high-cost task receiving only a small fraction of processor time may imply
that the processor is overloaded. If the task satisfies this condition, then this task
is considered as the critical task and the process of finding the critical task ends.
Otherwise, the algorithm continues to check the other tasks in the TC list with lower

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:14 W. Quan and A. D. Pimentel

ALGORITHM 3: STM algorithm
Input: KPNappi , µ, η
Output: New(µ, η)
list: TC, CIC, CIB, PU
pCIC = δc, pCIB = δb
1: results[] = getStatistics();
2: taskCost(KPNappi , results, TC, CIC, CIB);
3: peUsage(results, PU);
4: while(1) :
5: if (apptype = getType(KPNappi)) == DATA PARALLEL :
6: critical = findDPCritical(KPNappi , TC, CIC, CIB, pCIB, pCIC);
7: else :
8: critical = findCritical(KPNappi , TC, CIC, CIB, pCIB, pCIC);
9: reason = findReason(critical, CIC, CIB, pCIB, pCIC);
10: if reason == POOR LOCALITY :
11: MCC[] = minCircle(KPNappi , results, critical);
12: if GetSubstitute(PU, µ, η, MCC, apptype) == true :
13: return New(µ, η);
14: else failed;
15: else if reason == LOAD IMBALANCE :
16: if GetSubstitute(PU, µ, η, apptype) == true :
17: return New(µ, η);
18: else failed;
19: else :
20: pCIB += ε;
21: pCIC −= ε;

costs until it finds the critical task. If there is no task in the application that satisfies the
first condition, then the second condition will be used: (2) whether the CIC proportion
is higher than the threshold pCIC. The algorithm checks all the tasks using this second
condition just like it did for the first condition. If all the tasks do not satisfy these two
conditions, then the algorithm will, respectively, increase and decrease the pCIB and
pCIC thresholds by ε, after which the aforementioned process is restarted again.

For data-parallel applications, the process of finding the critical task has one addi-
tional test as compared to regular applications. This extra test (performed in the func-
tion findDPCritical) involves the checking whether all data-parallel tasks are mapped
onto different PEs. If there are data-parallel tasks that are mapped onto the same pro-
cessor, then those tasks with higher task costs will be treated as critical tasks. Other-
wise, the process of finding the critical task will be the same as for regular applications.

4.3.2. Remapping the Critical Task. After the critical task has been found, the STM algo-
rithm tries to analyze the reason for missing the application’s performance goal. In this
respect, we recognize two different reasons: poor locality and load imbalance. Here, we
use the process of determining the critical task to also determine the reason for not
meeting the performance goal: If the CIC proportion of the critical task is higher than
the value of the current pCIC threshold, then the algorithm assumes that poor locality
is the reason. Otherwise, it takes load imbalance as the reason for not meeting the
application demands. This means that poor locality has a higher priority than load
imbalance as a reason for not meeting the application demands, which is helpful to
reduce the energy consumption due to communications.

Subsequently, the function GetSubstitute in the STM algorithm can follow differ-
ent strategies to find a target PE to which the critical task will be remapped. The

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:15

Fig. 5. Example of an MCC for a critical task (gray task on the left-hand side).

selection of remapping strategy depends on the reason for not meeting the applica-
tion’s performance demands as well as on the type of application (data parallel or not).
The strategies that are used to find the substitute PE for data-parallel applications
are similar to the ones for regular applications except that one additional condition is
taken into account for finding the substitute PE: the substitute PE should not be a PE
onto which its parallel tasks are mapped.

Poor locality. In the case of poor locality, the STM algorithm will try to find a better
mapping for the application in question based on a minimal cost circle (MCC) approach.
A situation that has been identified as “poor locality” is mainly due to the communi-
cation overhead between tasks. Evidently, if the communicating frequency between
two tasks is very high or the communicating data size is very large, then these two
tasks should preferably be mapped onto the same PE or onto two different PEs that
contain a more efficient interconnect between each other. The MCC strategy aims at
redistributing the critical task and possibly its neighboring tasks over PEs such that
communication overhead is reduced while trying to avoid creating new computational
bottlenecks. To this end, it first finds the minimal cost circle based on Equation (7) for
the critical task pi:

min
(
Circle Cost(pi)z

mn
)
, with 0 ≤ m, n < |P|, m ≤ i ≤ n, 0 ≤ z < |PE| (7)

where:

Circle Cost(pi)z
mn =

∑

m≤k≤n
pk &→ pez

T z
k +

∑

m≤k≤n
pk &→ pez

∑

0≤ j<|P|
Cczy

kj , (8)

where T z
k denotes the execution time of task k for PE z, and Cczy

kj denotes the commu-
nication overhead between tasks k and j (see Section 3.2). Figure 5 shows an example
of an MCC (indicated by the oval on the right-hand side) consisting of a task bundle of
three tasks, including the critical task (gray task).

After the MCC of the critical task has been determined, the function GetSubstitute
will choose a substitute PE for all the tasks included in the identified MCC to achieve
a new mapping. As the task to processor binding is part of the calculation of the MCC
of the critical task, implying that the binding with the minimal MCC is known after
this calculation, the substitute PE is the processor used in this binding. However,
if the MCC solely consists of the critical task itself, then the critical task will be
mapped together with the neighboring task with which the critical task has the heaviest
communication to the processor that yields the minimal task cost for the combined
tasks. After the substitute PE has been found, the FIFO channels between the tasks

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:16 W. Quan and A. D. Pimentel

Fig. 6. Extended Sesame framework.

that need to be remapped are either mapped as internal communication onto the new
PE (if communicating tasks are mapped onto this PE) or onto the system bus.

Load imbalance. In the case a load imbalance has been identified as the reason for
not meeting the application demands, a load balancing strategy is used to remap the
critical task. For this purpose, the PU list is used, containing the processor utilizations
for each PE. The substitute PE for the critical task is the PE with the lowest utilization
in the PU list that is different from the PE onto which the critical task is currently
mapped. If such a substitute does not exist, then the algorithm cannot find a better
mapping.

In the STM algorithm, the most time-consuming part is the function for finding
the MCC of the critical task in line 11 of Algorithm 3. The time consumption of an
exhaustive search method to find the result of Equation (7) is O(|Pi||PE||Fi||C|). To
reduce the time complexity of this function, we find the MCC by gradually adding a
communicating task into the bundle of tasks around the critical task to see whether the
minimal cost of the new MCC task bundle (if the task bundle is mapped to a different
processor) is larger than the previous task bundle. If so, this communicating task will
not be added to the MCC task bundle. By using this greedy method, the maximal time
complexity is reduced to O(|Pi||PE|∗N), where |Pi||PE| represents the maximal number
of times of selecting the MCC task bundle and N represents the time complexity of
calculating the cost of a new MCC task bundle.

5. EXPERIMENTS
5.1. Experimental Framework
To evaluate the efficiency of our HTM algorithm and the mappings found at runtime
by this algorithm, we deploy the Sesame system-level MPSoC simulator [Pimentel
et al. 2006]. To this end, we have extended this simulator with our runtime resource
scheduling framework, as illustrated in Figure 6. Our extension includes the Scenario
DataBase (SDB), a Runtime System Monitor (RSM), and a Runtime Resource Sched-
uler (RRS). The SDB is used to store the mappings for intra-application scenarios of

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:17

each application as derived from design-time DSE as well as the application-specific
information like the performance objective, energy budget, and so forth. The RSM is in
charge of detecting and identifying the active workload scenario and also collects the
statistics (e.g., performance of each application, system execution information) from
the underlying system during the execution of a certain workload scenario. Here, we
would like to note that the mechanism for the actual scenario detection and identifi-
cation is beyond the scope of this article. The RRS uses the HTM algorithm (the EIM
part) and the identified workload scenario by the RSM to do mapping initialization at
the beginning of each new workload scenario. During the execution of a workload sce-
nario, the RRS uses the HTM algorithm (the STM part) and the statistics collected by
the RSM to do mapping customization when there is a predefined application-specific
performance objective violated (triggered by RSM).

When a new application needs to be added to the framework, two design-time prepa-
rations for this application are required. First, as mentioned in Section 2, two mappings
for each intra-application scenario of this application need to be explored at design time.
These preoptimized mappings will be stored in the SDB. Second, a standard function
needs to be provided that helps the RSM to collect the appropriate application execu-
tion statistics and to decide whether the application violates its performance objective.
Also, the user-defined application-specific performance objective and energy budget
need to be stored in the system memory.

5.2. Experimental Results
5.2.1. Experiment Setup. In this subsection, we present several experimental results

in which we investigate various aspects of our HTM algorithm. For our experiments,
we use three typical multimedia applications: a Motion-JPEG (MJPEG) encoder, an
MP3 decoder, and a Sobel filter for edge detection in images. These applications are
denoted as A1, A2, and A3, respectively, in Table II and Figure 7. The KPN of the
MJPEG application contains 8 processes and 18 FIFO channels, Sobel contains 6 pro-
cesses and 6 FIFO channels, and MP3 contains 27 processes and 52 FIFO channels.
Moreover, MJPEG has 11 intra-application scenarios, MP3 has 3 intra-application sce-
narios, whereas Sobel only has 1 intra-application scenario. This results in a total of
95 different workload scenarios. Here, the 11 intra-application scenarios (execution
modes) of MJPEG represent 11 different levels of computation complexity due to dif-
ferences in the characteristics of the images being processed. For MP3, however, the
intra-application scenarios are defined by the way of how the input music is decoded
(left mono, right mono, and stereo). The simultaneously active tasks are, therefore, dif-
ferent among the different intra-application scenarios of MP3. At design time, we have
determined the optimal mappings for each intra-application scenario of each applica-
tion targeting the two throughput objectives Op and Opb, as explained in Section 4.1. For
all three applications, there are 15 intra-application scenarios (MJPEG : 11, Sobel : 1
and MP3 : 3) in total. That means that we need to store 30 optimal mappings in system
memory (i.e., the scenario database).

The parameters of the NSGA-II genetic algorithm we have used for design-time DSE
are listed in Table I, which have been tuned for obtaining high-quality mappings for
each workload scenario in our benchmark set.

With respect to the target architecture, we target a heterogeneous MPSoC contain-
ing five different processors, connected to a shared bus and memory. In this work, we
assume that these five processors can execute all application tasks. However, we want
to stress that our framework is not restricted to this assumption: dedicated processors
could also be used in our framework. In that case, some additional information like
the possible target processor of each task is needed for the RRS to derive a correct

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:18 W. Quan and A. D. Pimentel

Table I. Parameters of NSGA-II

Parameter Value
initial population size 256
generation size 256
generations 512
crossover probability 0.8
mutation probability 0.2

Table II. Studied Application Workload Scenarios

Inter-application scenario Workload scenario
A1 mjpeg 7
A2 sobel 0
A3 mp3 2
A1A2 mjpeg 7, sobel 0
A1A3 mjpeg 7, mp3 2
A2A3 sobel 0, mp3 2
A1A2A3 mjpeg 7, sobel 0, mp3 2

mapping. The architecture model also includes the required components for our run-
time scheduling framework.

In the following experiments, we will evaluate the effectiveness of our HTM algorithm
by studying how the runtime part of HTM (the EIM algorithm for mapping initializa-
tion and the STM algorithm for mapping customization) improves the mapping quality
in terms of scenario execution time and scenario energy consumption.

5.2.2. Mapping Initialization. In this experiment, we compare the EIM algorithm to three
different runtime mapping algorithms: Simple Mapping Merge (SMM), which simply
merges together the (statically derived) optimal mappings of each active application
for the corresponding intra-application scenario; Task Processor Affinity (TPA), which
uses the affinity between tasks and processors to greedily determine a mapping with-
out considering resource contention; and Output-Rate Balancing (ORB) [Castrillon
et al. 2011], which aims at balancing the computation and communication load of each
processor. Moreover, we also compare the runtime mapping results to the results of
optimal mappings for each workload scenario. These optimal mappings have been stat-
ically determined by means of design-time DSE using the NSGA-II genetic algorithm.

Here, we focus on those workload scenarios that have the heaviest computational
demands, instead of all workload scenarios. These workload scenarios are listed in
Table II, where the first column specifies the encoded (in terms of A1, A2, and A3)
inter-application scenarios and the second column specifies the intra-application sce-
narios (labeled by the integer following the application name) used to form the work-
load scenario. For the scaling factor α of the energy budget in our EIM algorithm (see
Equation (5)) we use the values 1.5 and 1.3 in our experiments.

The experimental results are shown in Figure 7. In Figure 7(a), we compare the
performance of the mappings resulting from the EIM, SMM, TPA, and ORB algorithms
as well as from NSGA-II-based design-time DSE. The energy consumption of these
mappings is shown in Figure 7(b). In these two figures, the bars of NSGA-BP and
NSGA-BE respectively represent the mappings with best performance and minimal
energy consumption found by the NSGA-II-based design-time DSE. These are used
as a baseline for comparison. From Figure 7(a), we can see that our EIM algorithm
in most cases produces a better mapping for the tested workload scenarios than the
SMM, TPA, and ORB algorithms. For the workload scenarios in which only a single
application is active (i.e., bars for A1, A2, and A3) our EIM algorithm directly uses the
mapping from design-time DSE, which results in a mapping performance that is very

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:19

Fig. 7. Comparing the quality of mapping solutions derived from different runtime mapping algorithms for
different inter-application scenarios.

close or even equivalent to the optimal mapping. However, although the mappings have
similar performance, they could still have a different energy consumption behavior. In
the case of our EIM algorithm, we use the energy budget in the search for an efficient
mapping to limit the energy consumption of the resulting mapping. Consequently, and
as shown in Figure 7(b), the EIM algorithm can yield mappings for single-application
workload scenarios that are more energy efficient than the ones obtained by NSGA-BP.

In the workload scenarios with multiple simultaneously active applications, we can
see that the EIM algorithm yields clear performance improvements compared to the
other three runtime mapping algorithms, especially in the case of workload scenario
A1A2A3. By setting the parameter α of our EIM algorithm to different values, we can
notice that in some workload scenarios, like A1, A3, and A2A3, the mapping perfor-
mance with a higher energy budget is better than the one with a lower energy budget.
However, in other workload scenarios, there is no such behavior. This can be explained
by the fact that for the latter workload scenarios the energy budget is high enough
for the algorithm with a lower energy budget to find a mapping that is as good as the
one found by EIM with a higher energy budget. In Figure 7(b), we can see that even
if we have an energy budget in our EIM algorithm, the actual energy consumption of
the final mapping may still exceed the energy budget: like for EIM-1.5E in the A2A3
workload scenario and for EIM-1.3E in a few other workload scenarios. This is caused
by estimation inaccuracies of the energy model used in our algorithm. Even if the es-
timated energy consumption of a new mapping is under the predefined energy budget,
the actual resulting system energy consumption after the remapping has taken place
may still not fully satisfy our desired energy budget.

5.2.3. Mapping Customization. The experiment in this subsection shows the results
of further mapping optimization by applying the mapping customization process.
Figures 8(a) and 8(b) show the scenario execution time and energy consumption of
mappings found by the SMM, TPA, ORB, EIM, and STM algorithms in all the intra-
application scenarios of a particular inter-application scenario, namely A1A2A3. In
the case of the STM algorithm, the algorithm uses and tries to improve on the re-
sults of the EIM algorithm, as sketched in Figure 3. Using inter-application scenario
A1A2A3, there are 33 workload scenarios in total that are considered as the application
workload in this experiment. The error bars in the graphs show the variability of the
results. From Figure 8(a), we can see that the mappings from our STM and EIM algo-
rithm with a scaling factor α = 1.5 achieve the best average performance among the
investigated five algorithms. Note that the mapping customization process is applied
during the execution of a certain workload scenario after the mapping initialization

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:20 W. Quan and A. D. Pimentel

Fig. 8. Comparing the quality of mapping solutions derived from different runtime mapping algorithms for
the intra-application scenarios of A1A2A3.

Fig. 9. Final mapping comparison of EIM and STM for all intra-application scenarios of A1A2A3.

process. The STM algorithm is, therefore, used to further optimize the mapping solu-
tions derived from the EIM algorithm. Comparing the results from STM and EIM, we
found that the STM algorithm can achieve an additional performance improvement
of 2.2%, on average, for all 33 considered intra-application scenarios. The reason for
this relatively small performance improvement is twofold. First, the mapping derived
by EIM for each new workload scenario is already a near-optimal solution, which im-
plies that the potentials for further improvement by the STM algorithm are limited.
Second, the STM algorithm is designed for the situation in which the (user-defined)
application-specific performance objective is violated. However, as the EIM algorithm
can handle fine-grained application dynamism, such performance objective violations
for an application will typically not be very large. When there is a (small) performance
objective violation, the STM algorithm tries to find a new mapping by only making
small changes to the old mapping in an on-the-fly manner. If the new mapping satisfies
the predefined performance objective, then the STM algorithm will stop.4

Figure 9 shows the details of the mapping performance comparison between the
STM and EIM algorithms. Figure 8(b) shows the average energy consumption of the
final mappings as shown in Figure 8(a). The results in this figure illustrate that
the mappings from our STM and EIM algorithms have the lowest average energy

4In case the violation cannot be remedied by the STM algorithm, the user can be notified and/or a strategy
for graceful termination of applications could be used, but this is beyond the scope of this article.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:21

Fig. 10. Average algorithm computation cost (cycles on a 2.17GHZ CPU) for intra-application scenarios of
A1A2A3.

consumption, where the STM algorithm achieves an additional energy improvement
of 0.5%, on average, compared to the EIM algorithm. Overall, in this experiment, we
have demonstrated that the STM algorithm is capable of further improving the map-
ping performance compared with the EIM algorithm, without sacrificing the energy
consumption of the mapping.

Compared with the mapping solutions derived from the SMM, TPA, and ORB al-
gorithms, the average performance and energy consumption of the final mapping so-
lutions generated by applying the HTM algorithm (the mapping is first optimized by
EIM followed by STM at runtime) for the 33 workload scenarios in A1A2A3 improve
by 67.2%, 105,9%, 45.9% (performance) and 14.6%, 23.5%, 14.9% (energy), on average,
respectively.

5.2.4. Algorithm Computation Cost. In this subsection, we investigate the computation
cost of the runtime stage (EIM and STM) of our HTM algorithm and compare it to the
overhead of the other runtime mapping algorithms. The results of an experiment in
which we average the algorithmic overhead for executing different intra-application
scenarios of A1A2A3 (the most complicated workload scenario where all three applica-
tions are active) are shown in Figure 10. Note that the time unit (cycles on a 2.17GHZ
CPU) used in this figure is different from the time unit used for the mapping per-
formance, as presented in the previous figures, which are based on simulation cycles
measured by the Sesame simulator. From Figure 10, we can see that the SMM approach
has the smallest algorithmic cost. As in this approach, there is no actual computation
of a new mapping, it just involves memory access time to retrieve the preoptimized
mapping from the SDB for each active application. On the other hand, the EIM part
of our HTM algorithm has the heaviest computational cost to find a new mapping,
which happens at the detection of a new workload scenario (mapping initialization).
According to the cycle count for a 2.17GHZ CPU, the average computation time of the
EIM algorithm is in the order of a few milliseconds, which in our opinion is still ac-
ceptable for the workload scenario initialization process. For the other part of HTM
algorithm—the STM algorithm—the computation cost is much smaller.

5.2.5. Task Migration Cost. Here, we would like to give an intuition of the runtime cost
in terms of the number of tasks that need to be migrated when applying our proposed
algorithm. The actual time needed to perform these migrations highly depends on the
mechanism used to implement such task migrations. A relatively simple implementa-
tion of task migration for our heterogeneous platform could be that each processor on
the system keeps a copy of each task (the binary code compiled for the processor) or
loads the corresponding task from shared memory when needed [Cannella et al. 2012].

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:22 W. Quan and A. D. Pimentel

Fig. 11. Runtime task migration costs when applying the EIM and STM algorithms.

When the scheduler decides to do task migration, it sends a stop and start command
to the old processor and the new processor of the migrating task, respectively, and
also redirects the communication channels from the old processor to the new proces-
sor. As we are targeting the multimedia application domain, the task migration event
could be triggered at the end of each input “frame,” which means the old processor
will stop after having processed a whole input frame and the new processor will start
to process the next new frame. In this case, there is no need to save and migrate the
intermediate state of the migrating task. Other task migration mechanisms can also
be implemented, but this is beyond the scope of this article.

In this experiment, the intra-application scenarios 28, 29, and 30 from Figure 9,
in which the STM algorithm achieved larger performance improvements, will be
considered the target scenarios. In these three scenarios, the MP3 application has
a different execution mode, while the execution modes of MJPEG and Sobel do not
change. As mentioned before, the number of tasks in each scenario is 41. For the
purpose of determining the migration costs for the STM algorithm, each scenario is
executed 10 times before changing to the next scenario. The results of this experiment
are shown in Figure 11, where Figure 11(a) illustrates the number of tasks that need
to be migrated by applying our EIM algorithm when the workload scenario changes,
and Figure 11(b) shows the number of migrations caused by the STM algorithm during
the execution of a certain workload scenario. We can see that the number of migrations
due to our EIM algorithm can be relatively high, depending on the workload scenario.
This is why we make the assumption in this article that each workload scenario will
execute for a long enough time so that the system is able to benefit from our EIM
algorithm. However, more research is needed on efficient migration implementations
and effective migration policies (deciding whether or not to migrate) to improve the
potential impact of runtime mapping algorithms in general. As shown in Figure 11(b),
the migration cost due to the STM algorithm is quite low.

6. RELATED RESEARCH
In recent years, much research has been performed in the area of runtime task map-
ping for embedded systems. Singh et al. [2013b] provide a nice survey of current and
emerging trends for the task mapping problem on multi-/many-core systems. In the
context of performance optimization, Chou and Marculescu [2008] propose a runtime
mapping strategy that incorporates user behavior information in the resource allo-
cation process. An agent-based distributed application mapping approach for large
MPSoCs is presented in Al Faruque et al. [2008]. Hölzenspies et al. [2008] propose
a runtime spatial mapping technique to map streaming applications onto MPSoCs.
Brião et al. [2008] present dynamic task allocation strategies based on bin-packing

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:23

algorithms for soft real-time applications. A runtime task allocator is presented in
Huang et al. [2011] that uses an adaptive task allocation algorithm and adaptive
clustering approach for efficient reduction of the communication load. The approach
proposed by Schranzhofer et al. [2010] produces multiple mappings for each application
with a tradeoff between resource requirement and throughput. Mariani et al. [2010]
proposed a runtime management framework in which Pareto fronts with system con-
figuration points for different applications are determined during design-time DSE,
after which heuristics are used to dynamically select a proper system configuration at
runtime. A similar approach is presented in Singh et al. [2013a], targeting a generic
architecture. Ykman-Couvreur et al. [2011] propose a lightweight runtime manager,
linked with an automated design-time exploration and incorporated in the host proces-
sor of the platform, to dynamically and efficiently configure the applications according
to the available platform resources. Compared with these algorithms, our hybrid al-
gorithm takes an application scenario-based approach and takes computational and
communication behavior embodied in design-time optimized mappings into account
when optimizing the mapping at runtime.

Recently, Schor et al. [2012] and Quan and Pimentel [2013b] also proposed scenario-
based runtime mapping approaches in which mappings derived from design-time DSE
are stored for runtime mapping decisions. However, Schor et al. [2012] do not address
the reduction of mapping storage (all workload scenarios are stored) and does not
dynamically optimize the mappings at runtime. Quan and Pimentel [2013b] propose
an approach in which mappings for inter-application scenarios are stored and used as a
basis for runtime mapping decisions, after which a runtime algorithm aims at gradually
further optimizing these mappings. The work presented in this article is based on the
work of Quan and Pimentel [2013b] but extends it in several directions in order to
address several limitations of the latter work. A first limitation of the work in Quan
and Pimentel [2013b] is that it only works for homogeneous multiprocessor systems.
Another drawback is that the method from Quan and Pimentel [2013b] needs to search
for optimal mappings for inter-application scenarios at design time, which implies that
it should already been known at design time which applications can execute on the
target platform. For example, extending the system with a new application would
require to redo the entire design-time DSE for all inter-application scenarios. In our
approach, this problem is avoided by taking intra-applications as the basis for doing
design-time DSE (i.e., performing DSE on applications in isolation) similar to the
approach in Quan and Pimentel [2013a]. However, in Quan and Pimentel [2013a],
the mapping is optimized only at the beginning of each new workload scenario. There
is no runtime performance constraint set for each application, which means that the
mapping is fixed during the execution of a certain workload scenario.

7. CONCLUSION
We have proposed a hybrid mapping algorithm, called HTM, for MPSoC-based embed-
ded systems to improve their performance by capturing the dynamism of the application
workloads executing on the system. Our approach is based on the idea of application
scenarios and consists of three steps: design-time preparation, runtime mapping ini-
tialization, and runtime mapping customization. The design-time preparation exploits
optimal mappings for each mode of each application that will be stored on the target
platform for further mapping optimization. At runtime, the mapping initialization pro-
cess dynamically optimizes the mapping of the running application(s) with the objective
of maximizing the throughput under a predefined energy budget based on the optimal
mappings of the corresponding applications stored on the system when a new workload
scenario emerges. During the execution of a certain workload scenario, mapping cus-
tomization is performed to further improve the performance of the mapping under an

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

14:24 W. Quan and A. D. Pimentel

application-dependent objective. In various experiments, we have evaluated our algo-
rithm and compared it with other runtime mapping algorithms. These experiments in-
dicate that our proposed approach can achieve considerable performance improvements
(45.9%–105.9%) and energy savings (14.6%–23.5%) compared with the other algorithms
for workload scenarios in which multiple applications are simultaneously active.

REFERENCES
Mohammad Abdullah Al Faruque, Rudolf Krist, and Jörg Henkel. 2008. ADAM: Run-time agent-based

distributed application mapping for on-chip communication. In Proceedings of the 45th Annual Design
Automation Conference (DAC’08). ACM, New York, NY, 760–765. DOI:http://dx.doi.org/10.1145/1391469.
1391664

Eduardo Wenzel Brião, Daniel Barcelos, and Flávio Rech Wagner. 2008. Dynamic task allocation strategies in
MPSoC for soft real-time applications. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE’08). ACM, New York, NY, 1386–1389. DOI:http://dx.doi.org/10.1145/1403375.1403709

Emanuele Cannella, Onur Derin, Paolo Meloni, Giuseppe Tuveri, and Todor Stefanov. 2012. Adaptivity
support for MPSoCs based on process migration in polyhedral process networks. VLSI Des. 2012, Article
2 (Jan. 2012), 1 page. DOI:http://dx.doi.org/10.1155/2012/987209

Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. 2011. MAPS: Mapping concurrent dataflow applica-
tions to heterogeneous MPSoCs. IEEE Trans. Indust. Inf. PP, 99 (2011), 1. DOI:http://dx.doi.org/10.1109/
TII.2011.2173941

Chen-Ling Chou and R. Marculescu. 2008. User-aware dynamic task allocation in networks-on-chip. In
Proceedings of the Design, Automation and Test in Europe (DATE’08). 1232–1237. DOI:http://dx.doi.org/
10.1109/DATE.2008.4484847

Cagkan Erbas, Selin Cerav-Erbas, and Andy D. Pimentel. 2006. Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans.
Evolut. Comput. 10, 3 (2006), 358–374.

Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecappelle, Stelios Mamagkakis,
Twan Basten, Lieven Eeckhout, Henk Corporaal, Francky Catthoor, Frederik Vandeputte, and Koen De
Bosschere. 2009. System-scenario-based design of dynamic embedded systems. ACM Trans. Des. Autom.
Electron. Syst. 14, 1, Article 3 (Jan. 2009), 45 pages. DOI:http://dx.doi.org/10.1145/1455229.1455232

Philip K. F. Hölzenspies, Johann L. Hurink, Jan Kuper, and Gerard J. M. Smit. 2008. Run-time spatial
mapping of streaming applications to a heterogeneous multi-processor system-on-chip (MPSoC). In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE’08). ACM, New York,
NY, 212–217. DOI:http://dx.doi.org/10.1145/1403375.1403427

Jia Huang, A. Raabe, C. Buckl, and A. Knoll. 2011. A workflow for runtime adaptive task allocation on
heterogeneous MPSoCs. In Proceedings of the Design, Automation Test in Europe Conference Exhibition
(DATE’11). 1–6. DOI:http://dx.doi.org/10.1109/DATE.2011.5763189

Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In Information Processing.
North Holland, Amsterdam, 471–475.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and Keith I. Farkas.
2004. Single-ISA heterogeneous multi-core architectures for multithreaded workload performance. In
Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA’04). IEEE
Computer Society, Washington, DC, 64.

G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur, G. Palermo, C. Silvano, and V. Zaccaria.
2010. An industrial design space exploration framework for supporting run-time resource management
on multi-core systems. In Proceedings of the Design, Automation Test in Europe Conference Exhibition
(DATE’10). 196–201. DOI:http://dx.doi.org/10.1109/DATE.2010.5457211

JoAnn M. Paul, Donald E. Thomas, and Alex Bobrek. 2006. Scenario-oriented design for single-chip hetero-
geneous multiprocessors. IEEE Trans. VLSI Syst. 14, 8 (2006), 868–880. DOI:http://dx.doi.org/10.1109/
TVLSI.2006.878474

Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. 2006. A systematic approach to exploring embedded
system architectures at multiple abstraction levels. IEEE Trans. Comput. 55, 2 (2006), 99–112.

Wei Quan and A. D. Pimentel. 2013a. An iterative multi-application mapping algorithm for heterogeneous
MPSoCs. In Proceedings of the 2013 IEEE 11th Symposium on Embedded Systems for Real-time Multi-
media (ESTIMedia’13). 115–124. DOI:http://dx.doi.org/10.1109/ESTIMedia.2013.6704510

Wei Quan and Andy D. Pimentel. 2013b. A scenario-based run-time task mapping algorithm for MPSoCs. In
Proceedings of the 50th Annual Design Automation Conference (DAC’13). ACM, New York, NY, Article
131, 6 pages. DOI:http://dx.doi.org/10.1145/2463209.2488895

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1145/1403375.1403709
http://dx.doi.org/10.1155/2012/987209
http://dx.doi.org/10.1109/TII.2011.2173941
http://dx.doi.org/10.1109/TII.2011.2173941
http://dx.doi.org/10.1109/DATE.2008.4484847
http://dx.doi.org/10.1109/DATE.2008.4484847
http://dx.doi.org/10.1145/1455229.1455232
http://dx.doi.org/10.1145/1403375.1403427
http://dx.doi.org/10.1109/DATE.2011.5763189
http://dx.doi.org/10.1109/DATE.2010.5457211
http://dx.doi.org/10.1109/TVLSI.2006.878474
http://dx.doi.org/10.1109/TVLSI.2006.878474
http://dx.doi.org/10.1109/ESTIMedia.2013.6704510
http://dx.doi.org/10.1145/2463209.2488895

A Hybrid Task Mapping Algorithm for Heterogeneous MPSoCs 14:25

Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang, and Lothar Thiele. 2012.
Scenario-based design flow for mapping streaming applications onto on-chip many-core systems. In Pro-
ceedings of the 2012 International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES’12). ACM, New York, NY, 71–80. DOI:http://dx.doi.org/10.1145/2380403.2380422

Andreas Schranzhofer, Jian-Jian Chen, and Lothar Thiele. 2010. Dynamic power-aware mapping of appli-
cations onto heterogeneous MPSoC platforms. IEEE Transactions on Industrial Informatics 6, 4 (2010),
692–707. DOI:http://dx.doi.org/10.1109/TII.2010.2062192

Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. 2013a. Accelerating throughput-aware
runtime mapping for heterogeneous MPSoCs. ACM Trans. Des. Autom. Electron. Syst. 18, 1 (Jan. 2013),
Article 9, 29 pages. DOI:http://dx.doi.org/10.1145/2390191.2390200

Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013b. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Proceedings of the 50th Annual Design Au-
tomation Conference (DAC’13). ACM, New York, NY, Article 1, 10 pages. DOI:http://dx.doi.org/10.1145/
2463209.2488734

Wei Sun and Tomoyoshi Sugawara. 2011. Heuristics and evaluations of energy-aware task mapping on
heterogeneous multiprocessors. In Proceedings of the 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum (IPDPSW’11). 599–607. DOI:http://dx.doi.org/
10.1109/IPDPS.2011.209

P. van Stralen and A. Pimentel. 2010a. Scenario-based design space exploration of MPSoCs. In Proceedings of
the 2010 IEEE International Conference on Computer Design (ICCD’10). 305–312. DOI:http://dx.doi.org/
10.1109/ICCD.2010.5647727

P. van Stralen and A. D. Pimentel. 2010b. A trace-based scenario database for high-level simulation of
multimedia MP-SoCs. In Embedded Computer Systems (SAMOS), 2010 International Conference on.
11–19. DOI:http://dx.doi.org/10.1109/ICSAMOS.2010.5642097

C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria. 2011. Linking run-
time resource management of embedded multi-core platforms with automated design-time exploration.
Computers Digital Techniques, IET 5, 2 (2011), 123–135. DOI:http://dx.doi.org/10.1049/iet-cdt.2010.0030

Received May 2013; revised December 2013; accepted April 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 14, Publication date: January 2015.

http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1109/TII.2010.2062192
http://dx.doi.org/10.1145/2390191.2390200
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1109/IPDPS.2011.209
http://dx.doi.org/10.1109/IPDPS.2011.209
http://dx.doi.org/10.1109/ICCD.2010.5647727
http://dx.doi.org/10.1109/ICCD.2010.5647727
http://dx.doi.org/10.1109/ICSAMOS.2010.5642097
http://dx.doi.org/10.1049/iet-cdt.2010.0030

