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ABSTRACT
The analysis and correct categorisation of software performance
anomalies is a major challenge in current industrial Cyber-Physical
Systems (CPS). The automated evaluation of runtime performance
metrics provides an overview of the software behaviour of CPS
and may allow discovering or even predicting the occurrence of
software performance anomalies. We present an approach to auto-
matically identify deviations from expected performance behaviour
of software processes running in a distributed industrial CPS. Our
approach consists of collecting process performance signatures,
using regression modelling techniques. This involves determining
per process signatures and signature violations, enabling system
anomaly type detection and classification. We evaluate different
classification algorithms and predict the type of system perfor-
mance anomaly that a signature violation can provoke. We demon-
strate in our experiment that our design is capable of detecting and
classifying synthetically introduced performance anomalies to real
execution tracing data from a real semiconductor photolithogra-
phy machine. Initial results show that we can achieve up to 93% of
accuracy when classifying performance anomalies.
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1 INTRODUCTION
Nowadays, the domain of Cyber-Physical Systems (CPS) is one of
the largest information technology sectors and CPS are present in
many industrial applications, such as health, industrial automation,
avionics, and military systems, amongst others. These machines
typically are very complex distributed CPS, integrating a mixture
of heterogeneous subsystems, including several nodes, intercon-
nected via different types of networks. They are containing multiple
dependent computing nodes with hardware and software compo-
nents that perform different tasks, e.g., data processing, control,
monitoring, logging and reporting, thereby realising a wide range
of functionality and features.

The mentioned high integration of CPS in current industrial
solutions is creating an increasing variety of complex computa-
tional systems that are tailored to specific scenarios and in some
cases, even systems produced by the same manufacturer could have
unique characteristics. The uniqueness of a specific CPS not only
comes from the underlying system architecture, but also from differ-
ent environments where they operate, different types of workloads
that they manage, and different configurations applying to them.
Considering this increasing complexity, numerous challenges arise
with regards to functional and extra-functional operation of CPS.
Classical performance analysis and performance anomaly detection
techniques are facing major complications to model global and
emergent behaviour of these systems.

As mentioned in [17], the emerging complexities in terms of
management and configuration of CPS, urge the development of
approaches to create self-adaptive systems, where human inter-
vention is minimised. Moreover, a software performance anomaly
could be translated to increased number of costly downtimes for
the types of systems involved in high-tech industry, e.g., a semi-
conductor photolithography machine. To address these challenges,
unexpected functional or extra-functional behaviour should be de-
tected and corrected. However, the aforementioned uniqueness of
each CPS added to the complexity of these systems is making on-
line performance evaluation and performance anomaly detection
almost infeasible through purely analytical, e.g., queueing theory,
or purely experimental methods.

Our intention is to tackle the challenge of online software per-
formance anomaly detection by analysing performance behaviour
of software processes, e.g., CPU utilisation, occupied memory size,
frequencies of exchanged messages. Any unexpected performance
behaviour collected from the software components of an industrial
CPS is a strong indication of the whole system behaving outside its
expected boundaries. Many of these CPS perform highly repetitive
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tasks. For instance, a semiconductor photolithography machine
is designed to perform collections of tasks over and over for a
large number of wafers. Also, industrial printers normally have
to schedule and print the same or similar content thousands of
times. Hence, it is a valid expectation to have similar performance
behaviour during the execution of similar tasks, as long as the
system is performing correctly. This knowledge serves as a precur-
sor for developing reference executions and metric readings, to be
compared with future ones.

To be able to detect deviations from the expected performance
behaviour, there is a need for comparative analysis of monitored
performance behaviour against reference ones. In this paper, we
present a methodology for automatic detection and classification
of software performance anomalies in distributed industrial CPS
with repetitive tasks. Figure 1 shows the complete workflow of our
approach to create self-adaptive CPS, highlighting the main focus
of this paper.

Online 

monitoring
Detection Identification Actuation

Analysis

Figure 1: The high-level view of our performance anomaly
identification workflow, including this paper’s main focus,
the identification step (highlighted in yellow)

Our approach can be considered as a form of analytics and thus
involves two main stages, descriptive and predictive.

Descriptive analytics. With the purpose of creating a high-level
but accurate representation of an industrial distributed CPS, we
have developed a lightweight monitoring framework that is able to
extract representative behaviour of a CPS by capturing information
from the perspective of major communication libraries used by
the software processes. The collected traces are used to drive a
high-level simulation model of the CPS, based on discrete events
and modelled behaviour is compared to real CPS behaviour [16].

Predictive analytics. The information collected in the previous
stage is used to create baseline representations of active software
processes. We create abstract performance representations of pro-
cesses using regression modelling techniques, allowing us to collect
insights regarding the process or processes responsible for anoma-
lous behaviour, as well as their contribution. Process traces coming
from different executions are collected and used to represent pro-
cess behaviours belonging to normal and abnormal operation of the
CPS. A database of system behaviours is created from the captured
traces and classification techniques are trained to be able to detect
abnormal behaviour while the system is operational.

Our approach sets the basis to perform prescriptive analytics, i.e.,
recommend corrective actions, while a CPS is operational. This
is a step forward towards the creation of self-adaptive CPS. The
presented methods and techniques are supported by experimental
results based on traces obtained from real executions of ASML
semiconductor photolithography machines.

The remainder of this paper is structured as follows: After pro-
viding a handful of important background information in Section 2,
we will proceed to explain our methodology in Section 3. This will
be complimented by our experimental results, elaborating achieve-
ments in Section 4. We will also provide information around the
related literature in Section 5 and finalise with conclusions and
future research lines in Section 6.

2 BACKGROUND
As a point of reference, here we will provide the basic notions and
building blocks that we rely on throughout this paper.

2.1 Communication-centric monitoring
As part of the work for this paper, following the work done in [16],
we have concentrated on a communication-centric perspective for
our monitoring. Here, the goal of monitoring is to capture the be-
haviour of a CPS with enough detail. In communication-centric
monitoring, this is achieved by collecting traces from purposefully
planted probes in the code of the target system. Such an inva-
sive probing provides us with enough data to support modelling
and simulation efforts. This approach collects behavioural infor-
mation for the whole system by only probing one or more major
communication subsystems, passing messages between different
software processes. Collected information include Extra-Functional
Behaviour (EFB) metrics that are read and processed. In its final
form, the tracing data consists of communication (read and write)
and compute events. Communication events contain information
such as, senders, receivers, message sizes, and timing information.
Compute events contain information such as, CPU utilisation, CPU
waiting times, process IDs and timing information.

A common choice for complex CPS is the deployment of com-
munication subsystems, based on a publish-subscribe architecture.
Semiconductor photolithography machines and radar systems can
be considered as examples of such deployments. The aforemen-
tioned type of monitoring is well-suited for such communication
subsystems and the traces obtained from this type of monitoring
reflect the system behaviour with sufficient accuracy [16].

2.2 High-level modelling and simulation
We employ high-level modelling and trace-driven simulation of the
CPS with the purpose of reasoning about the system behaviour.
Accordingly, we have a detailed view of how different resources
in the system are being used at different stages of the execution
of a workload, e.g., CPU status and buffer utilisation. Moreover,
the usage of high-level simulation models allows us to explore
the effects of possible actuation mechanisms or countermeasures,
to software performance anomalies in a safe environment before
applying these actuations to the real system.

High-level modelling and simulation are rather intertwined no-
tions, as a simulation is the execution of a calibrated model. The
model is a simplified, but descriptive enough representation of the
studied system, hence high-level. Having the knowledge of involved
actor types, i.e., data producers (writers), data consumers (readers),
and data brokers (communication libraries), complimented with
interconnection information (topology), is sufficient to construct
the high-level model. Calibrating this model for simulation is done
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by considering metric recordings, collected during the system’s op-
eration. All that information is available through communication-
centric monitoring. The aforementioned tracing format, i.e., read,
write, compute, is especially suitable for a discrete-event simula-
tion. The high-level models and the trace-driven simulation will be
covered in more detail in Section 3.3.2.

2.3 Software passports and signatures
There is a need for meaningful representations when it comes to
system executions for various workloads. These representations
should facilitate their storage and comparison of different execu-
tions. In general, representations of executions can be considered
their signatures, while software passports are signatures of special
cases, namely, reference executions. Software passports and software
signatures focus on describing the EFB of software executions. Since
the notions of software passports and software signatures apply
to systems with repetitive nature, here we refer to an execution as
a bounded segment of the overall operation of the system. These
bounded segments, phases, can be in different granularities, namely
atomic phases and combo-phases [18].

Signatures are generated by applying regression modelling tech-
niques to EFB metrics captured over time.The comparison between
a fresh execution and a reference one is based on goodness of fit
tests. We consider such a comparison as a performance anomaly
detection mechanism, which will also reveal the type of anomaly,
based on the amount of deviation seen for goodness of fit tests.
Anomaly types are derived from user composed conventions, as
will be explained in Section 4.2.

2.4 Classification techniques
In this paper we consider that software performance anomalies
can be of different types, for example persistently harmless, persis-
tently dangerous, transiently harmless, and transiently dangerous.
Automated and correct classification of executions is desirable with
the purpose of providing online detection of software performance
anomalies. Having enough known samples will allow us to bene-
fit from different classification algorithms and identify the right
category to which the execution at hand belongs. In this paper
specifically, we have experimented with k-Nearest Neighbours (k-
NN) [6], Linear Support Vector Clustering (Linear SVC) [1], De-
cision Tree (DT) [20], Random Forest (RF) [3] and Naive Bayes
Classifier (NBC) [11] algorithms.

3 METHODOLOGY
According to Fowler and Rose, the main grand challenges in mod-
elling and simulation of complex industrial CPS are: (1) the need
to reduce the problem-solving cycles, i.e., time needed to design,
collect information, build, execute, and analyse simulation models
to support decision making; (2) development of real-time simu-
lation-based problem-solving capability; and (3) interoperability
between simulation models and CPS software, to have a complete
cycle in place [10].

Although the mentioned challenges have been in the focus of
the embedded and complex system design research community in
the past, holistic approaches that cover monitoring, online repre-
sentation, performance anomaly detection and activation in CPS

are still missing. The development of self-adaptive systems requires
the application of low-overhead system monitoring, high-level sys-
tem modelling, trend prediction and online adaptation. Numerous
research efforts still focus on bringing novel solutions in the afore-
mentioned areas [7, 9]. However, few efforts have been made to
combine all of these ingredients into a methodology that can set
the basis for self-adaptive CPS. Moreover, CPS self-adaptation and
optimal system resource utilisation has been in the focus of the sci-
entific community as grand challenges. Our methodology focuses
on addressing the grand challenges while keeping a holistic vision
of cyber-physical systems.

3.1 An analytics-based approach to
self-adaptive CPS

As depicted in Figure 2, our approach focuses on using descriptive,
predictive and prescriptive analytics stages for a self-adaptive CPS.

Descriptive stage. Monitoring probes are used to capture the
extra-functional behaviour of software processes running in the
CPS. As mentioned before, a high-level, trace-driven, simulation
model of the system is created, where software process behaviours
are represented by traces of abstract events, and the hardware
resources are modelled according to the CPS specifications. This
simulation model allows us to perform system analysis in terms of
resource utilisation and also to explore future behaviour of the sys-
tem when testing suitable actuation mechanisms, such as changing
process priorities or process scheduling policies.

Predictive stage. Simulation output traces corresponding to base-
line executions are used to create software passports, intended to
act as a signature construct for runtime performance behaviour of
reference executions. During system operation, software signatures
are dynamically created with the purpose of detecting abnormal
performance behaviour of processes that can cause system-level
performance anomalies [18]. As will be explained later on, regres-
sion modelling is used to create software signatures and passports
for comparative purposes. The comparison reveals inconsistencies
between the execution at hand (reflected by software signatures)
and related software passports. Such inconsistencies are consid-
ered indicators for the presence of performance anomalies. In this
approach, a comparison and classification engine, as shown in Fig-
ure 2, performs the online comparison of software signatures and
passports, attempting to classify the type of detected performance
anomalies. To this end, the classification engine has been trained
by a database of training signatures that includes a large number
of (labelled) performance anomaly samples of different types.

Prescriptive stage. Depending on the system-level performance
anomaly predicted, different software-based actuation policies are
explored and tested on a duplicated version of the aforementioned
high-level simulation model. This high-level model is initially a
copy of the model used during the descriptive stage. Although both
models are synchronised, the one in the prescriptive stage is also
modified to reflect applied actuation policies. Continuous feedback
is given to the Actuation policy dispatcher, and once a suitable
policy to address the predicted performance anomaly is found, it
is applied to the CPS. Moreover, successful policies for different
scenarios are saved for future use in the actuation policy database.
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Figure 2: Self-adaptive CPS design, involving threemain analytics stages, descriptive, predictive (this paper’s main focus, high-
lighted in yellow), and prescriptive

Throughout the rest of this paper, it is important to distinguish
between the two notions of software signatures used for training
(training software signatures) and software signatures used for
detection (detecting software signatures).

The aforementioned stages are continuous, which allows the
creation of online reconfiguration policies for CPS, based on the
history of behaviours and also considering new observations. In the
following section, we will describe in detail the predictive analytics
stage of our methodology, which is the main focus of this paper.

3.2 Predictive stage in detail
The passport and signature generation flows depicted in Figure 3
rely on traces collected from the CPS and in our case, we capture
these traces from a communication-centric perspective, as discussed
in Section 2.1. Traces are collected on a per process basis and then
parsed, in order to create communication and computation events
that are later normalised for consistency. For example, for send or
write events, the patched traces contain a list of receivers, so the
simulation engine can keep track of missing or delayed reads.

To create our software passports, reference executions are used
and patched traces are simulated, after which the output is pro-
cessed to extract performance related values such as, CPU utilisa-
tion, read and write counts over time, per process and per execution
phase [18]. Different regression models are evaluated considering
different goodness of fit tests, and the best regression function is
selected to represent each performance metric for each process in
a phase. These regression models allow us to track how the per-
formance metrics of software processes evolve over time, which
would not be possible if a simple average, minimum, or maximum
value was considered to represent process behaviours.

To create training software signatures, a fault injection mecha-
nism is used to synthetically modify the reference output, adding
extra delays in specific events. This step is needed to collect data
corresponding to different scenarios and corner cases that cannot
be directly obtained from real machines due to the limitations of
injecting faults in a running system. These anomalous traces are

used as input to the simulator in order to assess the impact to per-
formance metrics at the system level, e.g., execution time, read and
write frequencies. Our fault injector implementation is capable of
editing collected traces to introduce a chosen amount of delay to a
chosen portion of processes at random. Modified traces need to be
simulated since the cascade effect of event delays should be consid-
ered when analysing process behaviours. Then, once anomalous
output traces are obtained, the same regression modelling tech-
niques employed to create the software passports are used to create
the training software signatures.

Software signatures are checked against software passports, eval-
uating the deviation of the goodness of fit coefficients. Evaluation is
based on the percentage of deviation for the coefficient of determi-
nation (R2) and for the Root-Mean-Square Deviation (RMSD) [15],
as shown in Figure 3. We provide the formulas for R2 and RMSD
as a reminder, in Equations (1) and (2) respectively, such that

R2 = 1 −
∑n
i=1(yi − ŷi )

2∑n
i=1(yi − ȳ)2

and (1)

RMSD =

√∑n
i=1(yi − ŷi )2

n − 3
. (2)

In these equations, ŷi represents the estimated response for the
ith observation, ȳ represents the sample mean, yi represents the
observed response and n the number of data points. Note that n − 3
is the degree of freedom here, since these regression models have
three parameters [15]. When it comes to detection, if we consider
the comparison between software passports and signatures, yi rep-
resents the data points collected for generation of the detecting
software signatures, while ŷi will be the values estimated by the
software passports. Figure 3 depicts the details about passport and
signature generation, as well as the classification flow.

Depending on the amount of detected deviation, and the type
of performance anomaly injected, i.e., permanent or transient, the
scenarios are labelled based on the projected effects. These effects
are in the form of changes in process execution times. As it can be
seen in Table 1, each row of the generated dataset includes devia-
tions for each process, execution phase and metric combination, as
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Figure 3: Steps involved in passport generation, signature generation, and signature classification flows

well as the assigned label. Different types of performance anom-
alies that we consider will be described later in Section 4.2. This
dataset is used to create automated detection and anomaly classifi-
cation techniques. The dataset is used to train different classifiers,
which in turn are evaluated for their accuracy and timing, since
this approach is aimed to work in an online set-up. These trained
classifiers can be used for prediction of upcoming anomalous states,
by classifying preceding phases, i.e., time windows.

The advantage of using classification techniques alongside re-
gression and goodness of fit tests is that they allow for better re-
sponse time. In this fashion, there will be no need for the phase
to finish and the execution time to be known. Our approach is
focused on obtaining combined performance behavioural patterns
that could potentially lead to an anomaly. Additionally, we can
have causality information (feature importance) by knowing the
contributing PID-Phase-Metric combinations, which would have
otherwise required the knowledge of the system’s internals, e.g.,
critical path.

3.3 Implementation
The approach described in Section 3.1 is supported by four main
software components, making up the backbone of three analyt-
ics stages and their respective tool collections. These components
enable self-adaptivity and self-reconfiguration capabilities for CPS.

3.3.1 Lightweight communication-centric monitoring. To capture
the trend of the system, our tracing tool follows a communication-
centric approach, which allows us to limit the overhead introduced
by invasive tracing [16]. The monitoring module is implemented
at the system communication module, and when communication
takes place, involved processes are indirectly traced. This approach
introduces less overhead than fully invasive tracing of each and
every separate software process at the cost of a reduction in the
amount of information captured. The current information captured
by our tracing tool includes per process data such as, event start
and end timestamps, CPU utilisation, message sizes, message ids,
messages sources and destinations, and memory utilisation.

3.3.2 Discrete-event simulation environment. The high-level simu-
lationmodel of the CPS is trace-driven and consists of an application
workload model and a hardware architecture model. The workload
model is automatically generated based on the number of processes
captured from the real system. This information is available through
our lightweight communication-centric monitoring approach. The
behaviour of processes in the workload model is automatically
inferred from the collected traces and each simulated process exe-
cutes, i.e., replays, one event at a time from these traces. Each time
an event is executed, simulated versions of real hardware (CPU,
memory, etc.) and software resources (communication libraries,
etc.) are requested, with the purpose of simulating the competition
for resources in the real machine. The simulation engine has been
built using the OMNeT++ framework [21].

3.3.3 Fault injection mechanisms. Our fault injection implemen-
tation focuses on affecting the duration of events by modifying
the end-time of events [18]. The software allows us to completely
configure the percentage of processes to be affected, the percentage
of events to be affected, the types of events (communication or
computation), the type of performance anomaly to be introduced
(transient or persistent), as well as the overlap between the pro-
cesses selected to be modified, introducing transient or persistent
anomalies.

3.3.4 Passport and signature generation. A complete ETL (Extract,
Transform, Load) software pipeline has been created to extract
per process, per metric and per execution phase information from
the simulated traces. Regression modelling techniques are used
to transform the extracted data into regression functions that are
most accurately approximating the performance of processes over
time. Another transformation takes place after comparing software
passports against training software signatures, in order to generate
a dataset where each row contains RMSD or R2 deviation percent-
ages for each process, phase and metric, as shown in Table 1. Data
is then labelled according to the type of performance anomaly in-
troduced and lastly, different classification algorithms, written in
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Table 1: Different categories associated to scenario IDs, based on RMSD or R2 deviation per metric, considering the categories,
normal (0), persistently harmless (1), persistently dangerous (2), transiently harmless (3), and transiently dangerous (4)

Scenario ID (PID-Phase-Metric)1 (PID-Phase-Metric)2 ... Label (anomaly category)

1 RMSD or R2 deviation RMSD or R2 deviation ... 0-4
2 RMSD or R2 deviation RMSD or R2 deviation ... 0-4
...

Python, are trained. These classifiers will be used to detect if and
when abnormal behaviour is being observed during runtime.

4 EXPERIMENTAL RESULTS
The results presented in this section aim to show the validity of
our descriptive and predictive analytics stages, given in Section 3.1.
First, we show examples of our software passports and signatures
with the purpose of explaining how performance anomalies can
be identified in advance by observing deviations in the goodness
of fit test results for regression functions. We will follow this with
performance evaluation of different classifiers during training and
prediction, with the purpose of assessing our anomaly detection
and classification engine.

The experiments performed during this study are based on a mix-
ture of production and synthetic data. In order to create sufficient
training scenarios, where different types of software performance
anomalies could be assessed, we have used the fault injection mech-
anisms described in Section 3.3, introducing synthetic modifications
to production traces.

4.1 Software passports and signatures
The creation of software passports, as explained in [18], consid-
ers a workload to be divided in different, but repetitive execution
phases. In this set of experiments, we have considered one execu-
tion phase that corresponds to a repetitive task performed by an
ASML semiconductor photolithography system.

The simulation output traces, corresponding to the baseline exe-
cution, were used to generate software passports for each process,
metric and experiment. Figure 4a depicts the cumulative CPU us-
age, of one process during one phase (dots in red), alongside the
polynomial regression that approximates its trend. For this set of
experiments, we have evaluated linear and polynomial regressions
and selected the ones with the highest coefficients of determination
(R2) and the lowest RMSD.

In order to generate a proper dataset containing different types of
performance anomalies, we have composed several fault injection
scenarios, elaborated in the following steps,

(1) From the total number of available processes, 15%, 30% and
45% of them were selected randomly to introduce modifica-
tions in their traces.

(2) From the processes selected in the previous step, two main
performance anomaly groups, persistent and transient, were
created. Software processes in the traces were randomly
assigned to each group, while a 10% overlap between the
two groups was ensured. For example, if we have the option
to inject performance anomalies in twenty processes and we
have to generate two groups with 10% overlap, the resulting
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Figure 4: (a) Regressionmodelling result for a reference soft-
ware passport, (−6.447e−11)x2 + (3.996e−2)x − 10523.271, using
cumulative CPU time, and (b) the corresponding violation

groups will be,

Persistent group = {0, 1, 2, 5, 7, 8, 10, 11, 12, 13} and
Transient group = {0, 3, 4, 6, 9, 14, 15, 16, 17, 18}.

The overlap percentage is configurable and its purpose is
to create a more realistic scenario, where there is no clear
separation between the set of processes that could cause
persistent anomalies and the ones that could cause transient
anomalies.

(3) Computation, read, write, or all types of events are selected
from the designated group of processes in the previous step.
For each of the event types selected, either 10%, 15%, 30%,
or 45% of them are modified, adding some overhead to the
event’s elapsed time.

(4) The overhead applied to each event is either of 5%, 15%, 30%,
or 45% of their total event elapsed time.
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(5) Finally, the above steps were repeated five times to create
sufficient data for different resulting categories.

Using the configurations described above, we created 1920 differ-
ent scenarios, where each scenario contains traces corresponding to
the monitored software processes. These modified traces were sim-
ulated, using the simulation environment described in Section 3.3,
to determine the impact in the phase execution time. Figure 4b
depicts the cumulative CPU usage software signature, obtained
from one of the generated scenarios. The major difference with the
passport shown in Figure 4a can be appreciated by observing the
RMSD values.

4.2 Performance Anomaly classification
The signatures described before were created using a second-degree
polynomial regression function and theRMSD deviation percentage
was used as a feature for each PID-Phase-Metric combination (Ta-
ble 1). The considered metrics in software passports and signatures,
are cumulative CPU usage, cumulative writes and cumulative reads.
With these metrics, we aim to correctly categorise the obtained sig-
natures into five different categories, namely, normal, persistently
harmless anomalies, persistently dangerous anomalies, transiently
harmless anomalies, and transiently dangerous anomalies.

The original phase execution time is used as baseline and be-
haviour is considered to be normal when the observed execution
time deviates between 0% to 2% from the reference execution time.
When the observed execution time deviates between 2% to 4%, it is
considered a harmless anomaly. Above 4% difference, the anomaly
is considered dangerous for the operation of the CPS. Anomalies
are considered persistent if the behaviour is repeated during several
phases and they are considered transient if the misbehaviour occurs
during a small set of phases.

The different metrics collected from different executions, to-
gether with the corresponding category, are used as input for five
different classifiers, namely, k-Nearest Neighbours (k-NN), Linear
Support Vector Clustering (Linear SVC), Decision Tree (DT), Ran-
dom Forest (RF), and Gaussian Naive Bayes Classifier (Gaussian
NBC)1.

Three-fold cross validation was used to assess the score and
timing behaviour of each classifier. Table 2 shows the obtained
results for each classifier. As it can be observed, the two tree-based
classifiers, DT and RF, outperform the other classifiers in terms of
accuracy and scoring time. These two metrics are highly important
to our set-up, considering the online performance anomaly cate-
gorisation needed to create self-adaptive CPS. Although RF seems
to perform better in general, considering its score reaching to 93%
of accuracy, the confusion matrices given in Figure 5 show that
DTs, reaching to almost 91% of accuracy, make less errors when
predicting labels. The confusion matrices are good indicators of
which classes are misclassified and where hyperparameters can be
tweaked to improve the accuracy according to the requirements of
the use-case.

The set-up running the anomaly classification pipeline was exe-
cuted on an Intel® Core™ i7-4770HQ processor at 2.20 GHz system
1The hyperparameters used with Scikit-learn library for each classifier are as fol-
lows: n_jobs = −1 for k-NN; C = 1.0 and max_iter = 10000 for Linear SVC;
max_leaf _nodes = 1000 and random_state = 1 for DT; n_est imators =
100 and random_state = 1 for RF; and default configuration for the Gaussian NBC.
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Figure 5: Normalised confusion matrices for (a) Decision
tree classifier and (b) Random forest classifier, considering
the categories, normal (0), persistently harmless (1), per-
sistently dangerous (2), transiently harmless (3), and tran-
siently dangerous (4) as True labels

Table 2: Accuracy and timing evaluation of classifiers

Classifier Test score Fit time (sec.) Score time (sec.)

k-NN 0.899 0.082 0.361
Linear SVC 0.891 6.213 0.002
DT 0.906 0.014 0.001
RF 0.932 0.546 0.001
Gaussian NBC 0.762 0.005 0.004

with 8 GB of main memory, running Ubuntu 18.04.1 LTS. The de-
ployed software infrastructure included Python 3.6.7, Scikit-learn
0.20.2 [19], and Luigi 2.8.3 [2].

It is also worthmentioning that the classification of a normal case
has the highest accuracy. This is due to its frequency in the scenario
pool, which is also the case in real-world situations. About 70%
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of our scenarios are normal cases. We have also performed initial
experiments to apply oversampling and undersampling techniques,
resulting in lower accuracy for RF and DT. On the other hand, k-NN
demonstrated high accuracy levels, even with oversampling and
undersampling applied.

5 RELATEDWORK
Anomaly detection and classification have been on the agenda of the
research community for a long period. The relevant body of knowl-
edge is fairly large, but is also covered rather well in two extensive
survey papers. Both Chandalo [4] and Ibidunmoye [14] give collec-
tions of papers, diving into different aspects of anomaly detection.
Numerous applications of anomaly detection techniques are given
for intrusion detection systems, car fraud detection, mobile phone
fraud detection, insider trading detection, medical applications, im-
age processing applications, and text data applications, to name a
few [4]. We are the first, as far as we know, to study online anomaly
detection methods in the context of industrial CPS using concepts
such as software passports and software signatures to identify de-
viations from baseline behaviours. The majority of the publications
aiming at performance anomaly detection, given in [14], are indeed
focused on distributed systems [13], cloud environments [12], and
web application [5], domains.

When it comes to detection techniques, regression modelling is
a recognised one [4]. We have based both our software passport
generation and sample execution signature generation on regres-
sion modelling [18]. We are yet to utilise more complex techniques
such as multivariate analysis, especially for regression modelling.

Classification-based techniques [8], involving training and test-
ing steps have been used for anomaly detection before. Chandalo
mentions a number of algorithms from the literature [4], but we
have specifically considered five popular ones, k-NN [6], Linear
SVC [1], DT [20], RF [3], and Gaussian NBC [11].

Our analytics-based approach involves grey box monitoring, as
well as behavioural modelling and simulation. Most importantly,
what separates our approach from the rest is its tailoring to in-
dustrial CPS, taking advantage of repetitive tasks over time and
utilising the repetition metadata from the system.

6 CONCLUSIONS
In order to create self-adaptive CPS, the usage of descriptive, pre-
dictive and prescriptive analytics stages appears to be a promising
path to follow. In this paper, we have shown that the creation of
high-level models of CPS, the extraction of representative extra-
functional behaviour, the comparison of baseline behaviour against
runtime behaviour, and the usage of classification-based techniques
to detect performance anomalies based on compressed representa-
tions of process performance readings, serve as a basis to develop
autonomous CPS.

We have shown that the use of software performance passports
and signatures can be advantageous for performance anomaly de-
tection of systems with repetitive tasks. We have also described
our experimental set-up and our anomaly detection method, based
on process behaviour classification. Our initial experiments have
shown that performance anomalies can be classified with 93% ac-
curacy using per process and per metric goodness of fit deviations

as features. We can conclude that software signatures in combina-
tion with classification techniques display a promising potential
for comparative performance anomaly detection. Future work will
focus on increasing the accuracy of current classifiers by enriching
the collected signatures, considering other important metrics that
determine process behaviour. We also plan on exploring the pos-
sibilities regarding the online re-training of classifiers, when new
software behaviour is captured.
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