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Abstract—The Single-chip Cloud Computer (SCC) is a 48-core
experimental processor created by Intel Labs targeting the many-
core research community. It has extensive frequency and voltage
scaling support as well as on board power monitors. In this
paper we present a detailed study of the power properties of the
SCC. Then, we show how the SCC can be used as a substrate to
emulate asymmetric multi processor systems on chip (AMPSoCs)
to be used for studying power/performance trade-offs.

I. INTRODUCTION

Single ISA, asymmetric multiprocessors can be exploited
to achieve a better power/performance trade-off [1]. It is to
be expected that we will see more asymmetric, single ISA,
multiprocessor system on chip (or AMPSoC) solutions in the
embedded domain where power and energy budgets are re-
stricted. Currently, we see such platforms emerge in the mobile
computing domain with the advent of the ARM big.LITTLE
design [2] and the recent NVIDIA Tegra MPSoCs [3]. In this
paper we use the term asymmetric (AMPSoCs) to indicate
heterogeneous, single ISA based systems. We distinguish from
general heterogeneous MPSoCs as it is common in the em-
bedded domain to have different types of cores with different
ISAs integrated in one system.

Schedulers and tools are required to efficiently exploit the
capabilities of such emerging asymmetric platforms. Both
during design space exploration (DSE) of a hardware-software
co-design as well as at run-time we need to devise optimal
mappings of applications to AMPSoCs.

To develop, train, test and validate these tools we require
a platform that can deliver feedback in the form of power
consumption for specific configurations. Traditionally this is
done with rough estimates [4], power modeling tools such as
McPAT [5], or FPGA prototypes [6]. However, these do not
expose the actual properties and challenges of receiving power
consumption feedback in real silicon MPSoC systems. Alter-
natively, evaluation boards for the aforementioned big.LITTLE
or Tegra platforms, or the experimental Intel QuickIA [7] only
provide fixed AMPSoC configurations.

In this paper, we propose to investigate the use of multi-
or many-core processors with extensive DVFS support to act
as a substrate to emulate the behavior of AMPSoCs. The
platform we study here consists of the 48-core experimental
Intel SCC many-core processor which is highly configurable in
terms of frequency and voltage, and has a power measurement
interface.

In Section II we compare our work with other asymmetric
platforms as well as similar approaches to emulate asymmetry
on homogeneous systems. We highlight the relevant architec-
tural features of the SCC in Section III. Our first contribution
is a characterization of the platform and its power behavior in
Section IV. Then we show how we can use these properties to
emulate power and performance of an MPSoC in Section V. To
evaluate the proposed platform we construct a simple design
space exploration experiment in Section VI which measures
the power consumed by different emulated MPSoC config-
urations running two synthetic component based streaming
applications where each component has a different workload
character and we summarize our final findings and discuss
future work in Section VII.

II. RELATED WORK

The closest currently available asymmetric platforms to our
approach here are the latest NVIDIA Tegra [3] platforms.
Here, a quad-core MPSoC is accompanied by a fifth com-
panion core, which is architecturally the same as the the four
other cores, but is made with a special production process to
be extra low-power and only runs at a lower clock frequency.
The biggest difference with our platform is that the migration
between the quad-core and companion-core is managed by
the hardware; when the OS only uses one of the four cores
and goes in a sufficiently low power state, the hardware will
transparently migrate the state to the companion core. When
the OS throttles the system up again, the state is migrated back
to the quad-core. Therefore, we do not have full control over
how the application is mapped and the performance settings
of the system, as it is geared towards specific mobile use-case
scenarios where the system is in standby most of the time,
solely using the companion core.

Another available asymmetric platform is the ARM
big.LITTLE architecture [2]. It consists of two cache-coherent
clusters where one has high performance out-of-order ARM
Cortex A15 cores, and the second has low power in-order
Cortex A7 cores. Operating system support is required to
migrate between the clusters, and both can be active at the
same time. An evaluation board with this architecture is
available and has been used in [8] to evaluate a hierarchical
power management and migration approach. The downside of
this platform is that frequency can only be set for a whole



cluster, but the advantage is that power can be measured per
cluster and not for the chip as a whole as with the SCC.

The third available asymmetric platform is the Intel QuickIA
prototype board [7]. While not publicly available, it has
been used [9], [10] to prototype scheduling techniques for
asymmetric multicores. While [9] focuses on power efficient
scheduling, a power estimation based on McPAT [5] is used
instead of actual power measurements from the board.

Others [11], [12] have also emulated asymmetry by using
DVFS on multicore/multiprocessor systems in the past allow-
ing investigation and development of scheduling techniques.
However, they only consider performance, and do not measure
the power consumption. The generation of CPUs used in
these experiments only supported clock modulation. A more
advanced method was used in [13], which besides DVFS also
used Intel proprietary methods to emulate in-order execution
on a complex Xeon out-of-order core by restricting the number
of retired operations per cycle. As the SCC cores are only in-
order, we are not able to create such asymmetry. Similarly,
in addition to using the QuickIA platform, [10] also used
DVFS on multicores, as well as Intel proprietary methods
to reduce cache sizes to introduce additional asymmetry. A
future addition to our work on the SCC could be to investigate
increasing asymmetry by selectively disabling the L2 cache for
sets of cores.

An approach to simulate MPSoCs using the SCC was
presented in [14]. However, this purely uses the SCC as
a massively parallel computing platform to execute cycle
accurate simulations of MPSoCs. This is unlike our approach
which emulates AMPSoC behavior executing applications
directly on the SCC which has less flexibility in architectural
configurations, but is expected to have a better performance
and accuracy trade-off.

III. BACKGROUND

A. SCC platform

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [15] is a 48-core concept vehicle created by Intel Labs
as a platform for many-core software research. Its features
are intended to aid investigation into software and hardware
technologies allowing to scale CPUs up to hundreds and
potentially thousands of cores.

The 48 cores of the SCC are based on the Intel IA-32 P54C
architecture, which features an in-order dual issue superscalar
pipeline, 16 KB L1 instruction and data caches, and a unified
256 KB L2 cache per core. Both the L1 and the L2 are 4-way
set associative with a cacheline size of 32 bytes, are write
back, and do not allocate on write miss, i.e. are write around.
The caches are not coherent between cores, and each core runs
an individual Linux operating system instance.

The chip is divided into 24 tiles with two cores each
organized on a 6x4 grid. Each tile has its own router to access
the on-chip mesh network which has a 256 GB/s bisection
bandwidth [16] and uses X-Y routing. The network connects
the tiles to the four on-chip DDR-3 memory controllers, as
well as to the voltage regulator interface and the FPGA-based

Table I
SCC SUPPORTED FREQUENCIES AND REQUIRED VOLTAGE. FREQUENCIES

BETWEEN 100-200 ARE LEFT OUT ON PURPOSE.

Freq. div Freq. Volt. Freq. div Freq. Volt.
2 800 1.16250 6 267 0.66875
3 533 0.85625 7 229 0.65625
4 400 0.75625 8 200 0.65625
5 320 0.69375 16 100 0.65625

chipset. The memory controllers and network bandwidth are
highly over-provisioned for the cores, as we have shown in
previous work [17].

The SCC is highly configurable and has many interfaces
that can be mapped to memory addresses that can be accessed
by a core. One example is the local 16 KB Message Passing
Buffer (MPB) on every tile which is suitable for sending short
messages between cores. With two cores per tile, each core
has an 8 KB area in the local MPB only by convention. Other
interfaces are the per-tile configuration registers, the voltage
regulator, and the special control and status registers in the
FPGA chipset. One of the most important registers in the
FPGA is the global timestamp counter (GTSC) which can be
used as a stable time source for correlating events on different
cores. The FPGA also acts as a bridge between the SCC on-
chip mesh and a PCI-express interface to a management PC
(MCPC) which is used to initialize the SCC and to launch
jobs on it.

B. DVFS Support

Voltage and frequency control are completely decoupled on
the SCC. The frequencies can be controlled in every individual
tile (two cores) by setting a divider from the base clock, which
by default runs at 1600 MHz. This divider can be set between
2 and 16 in whole steps, which yields frequencies between 800
and 100 MHz. Setting the divider consists of writing a value to
the clock configuration register of the tile, and can be changed
on the fly affecting the tile clock instantaneously. The mesh
network operates at either 1600 or 800 MHz and cannot be
dynamically changed. Similarly, the memory controllers can
be initialized at either 800 or 1066 MHz. We operate the mesh
and memory controllers at 800 MHz in our experiments for
this paper.

Voltages can be controlled by writing command values
to the voltage regulator. The chip is divided into 8 voltage
domains; one for the mesh network, one for the memory
controllers and 6 domains for the cores. Each voltage domain
for the cores consists of 4 tiles arranged in a 2x2 area, and
its voltage can be controlled individually in 6.25 mV steps
between 0 and 1.3 V. As a given frequency requires a minimum
voltage, we use the values as measured by [18], shown in
table I. The voltage regulator can only change the voltage of
one domain at a time, and it takes around 12 ms for the voltage
to settle before another change can be made.

C. Power Measurement Interface

The power infrastructure of the SCC is equipped with many
sensor ADCs that can measure the supply voltages at different
stages. However, the current can only be measured at a limited
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Figure 1. Plot of raw power measurement data with the cores running at
800 MHz in idle state.

set of stages, such as the current to the chip package on
the 3.3 V rails. Only the voltage but not the current can be
measured for the individual core and mesh voltage domains,
which means power can only be measured of all cores and the
mesh together as a whole.

The measurements are governed by the power measurement
controller (PMC) which is situated in the FPGA. It periodically
collects the data from the measurement ADCs and stores them
in the power measurement registers which can be memory
mapped and read by the cores or the MCPC. The controller
can be programmed to read out only a select group of sensors
which shortens the update cycle and therefore increases the
measurement frequency.

IV. PLATFORM CHARACTERIZATION

Before we can use the SCC as a substrate to emulate
AMPSoCs, we investigate the method and accuracy to measure
power, and determine the power characteristics of the platform.

A. Power Measurement Algorithm

In order to measure power, we need to read out both the
current and the voltage, and configure the PMC accordingly to
measure only these two values on the 3.3 V rail that supplies
the cores and the mesh network. We measure these two values
at the smallest sample time. With this setting, it turned out that
for a period of 4 ms the values in the power registers contained
invalid values, we assume while they are being updated by
the PMC, followed by an 8 ms period with stable valid values
which yields a total update frequency of 12 ms. We take this
behavior of the PMC into account in the power measuring
algorithm we developed; it only registers a new value after
the value read from the power register changed from invalid
to valid.

Using this measurement algorithm, it turned out that we
cannot measure the current as accurately as we can measure
the voltage. The resolution of the current is 0.1 A, while the
voltage can be measured with a resolution of 0.004 V. As the
power supply holds the voltage rail stable around 3.3 V, the
measured voltage only varies slightly between 3.292 V and
3.308 V. However, with a resolution of 0.1 A, this results in
a power measurement resolution of only 0.33 W. Increasing
the sample time in the PMC did not increase the resolution of
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Figure 2. Long term power fluctuation pattern of the SCC chip.

the provided values. Furthermore, there is a large fluctuation
in the raw measurements within a range of 0.3 A without
any load on the cores. Figure 1 shows the resulting power
calculated by multiplying the individual current and voltage
values, measuring the power of the SCC running at 800 MHz
over a period of 5 seconds.

To improve the resolution, we have adapted our algorithm
to average the individual power measurements over a longer
period of time in an attempt to filter out these fluctuations.
Using this approach, while averaging over a 1 second time
interval, we were able to detect much smaller changes in power
down to approximately 0.05 W, as we will show towards the
end of this section.

B. Power Fluctuations

We observed an effect while using our previously discussed
techniques to collect power measurements. Our measurements
showed a strange, but regular, power fluctuation over a long
period of time as shown in Figure 2. In this experiment, we
measure the power over one hour, while the cores run at
533 MHz without being booted. As can been seen in the figure,
the cores and mesh consume around 80 W of power, which
slowly ramps up for about 500 s, and then drops down again
in approximately 250 s, creating a slow moving 750-second
period sawtooth form, with an amplitude of almost 1 W.

We suspect, but could not get this confirmed, that this
long term power fluctuation is caused by the charging and
decharging of a capacitor used as a stabilizer in one of
the voltage regulator circuits, which is located between the
measurement ADC and the SCC chip. There, the 3.3 V supply
voltage is transformed to the requested voltages that are set
for the individual voltage domains on the chip, in the 0.65 V
to 1.3 V range. In order to understand this behavior, and
therefore the deviation in our individual power measurements,
we set up an experiment to characterize this fluctuation. In this
experiment we measured the power over a period of 1.5 hours,
which yields 7 whole periods of the fluctuation, and repeated
this for many different voltage configurations of the chip. We
start with all six core voltage domains at 1.25 V, and then
decrease each domain one by one to 0.0 V in steps of 0.25 V.
For each power level we measured the distance between the
minimum and maximum absolute amplitude from the average
power, and computed the relative amplitude. These results are
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Figure 3. Fluctuation in percentage of the average for different power states.

shown in Figure 3, which shows that the amplitude of the
fluctuation is proportional to the amount of power consumed
by the chip.

Using the data from this experiment, we made a fit to
express the relation between the power consumption and
fluctuation, and in the worst case the distance between the
minimum and maximum value of the deviation is 1.42% of
the consumed power. This means that if we assume that
the actual power is the average around which the power
fluctuates, that the error induced in a measurement is 0.71%.
Furthermore, as we know that the fluctuation moves rather
slowly, we know that the fastest maximum change in observed
power is 1.42% over a duration of 250 seconds, on the down
going flank of the power fluctuation pattern. Therefore, if
we want to compare two power consumption measurements
t seconds apart, and are only interested in the relative change,
we know that the maximum error introduced by the fluctuation
in these t seconds is min(t,250)

250 · 1.42%. To give a concrete
example, if we want to measure the power difference between
two consecutive measurements 5 seconds apart at a power
level around 75 W, we know that the maximum error in this
difference is 5

250 ·1.42%·75 W = 0.021 W , while the absolute
error in the values measured is 75 W · 0.71% = 0.5325 W .

As we have learned that the fluctuation is directly related to
the amount of power consumed, it is important for the accuracy
of future measurements to keep the total power consumption of
the chip as low as possible. This means that we should reduce
the voltage for components we do not use to reduce static
power, and the reduce or disable clocking to reduce dynamic
power. For example, we can set an unused voltage domain
to the lowest value possible and shut down unused cores and
their L2 caches by using a clock gating feature.
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Figure 4. Effect of temperature on power consumption.
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Figure 5. Relative performance of the Memory and FPU microbenchmarks
running on core 0 using different frequencies, compared to 533 MHz.

C. Temperature Effect

Another physical influence on power consumption is the
temperature of the chip. As conductivity increases with higher
temperatures, the chip will consume more power. We can
measure this effect with an experiment of which the results
are shown in Figure 4. Here we use DVFS to change an
idle chip from 100 MHz to 800 MHz after 5 seconds, while
measuring the power consumption. We see an instantaneous
increase in power from around 18 W (not shown) to 58.5 W
when the frequency and voltage are changed. As a result, the
chip then slowly starts to warm up, creating another gradual
power increase to 61.5 W over a time of 150 seconds. After
this the power consumption is stable and only shows the earlier
discussed fluctuation. When we decrease the frequency and the
chip cools down again, we can observe the reverse temperature
related settling behavior.

D. Workload Characterization

In order to characterize the power consumption for different
types of operations, we have developed 5 types of computa-
tional kernels to use as microbenchmarks. First, we have a
kernel that consists mainly of FPU operations named FPU,
and a similar kernel with Integer arithmetic named Integer.
We have three memory bound kernels that use memcpy(),
where we have constructed the access patterns in such a way
that one purely stresses the L1 cache (L1), the second stresses
the L2 cache (L2), and the third will always access the off-chip
memory (Memory).

We have calibrated our kernels at 533 MHz to have ap-
proximately the same execution time for a given number of
iterations. As the core and its L1 and L2 caches all run on
the same tile clock, the performance of all kernels scales
linearly with the clock frequency, except the Memory kernel.
The performance of the Memory kernel depends on traversing
the mesh network and the latency of the memory controller,
which are independent of the clock scaling of the tile. We show
the difference in performance scaling per clock frequency in
Figure 5, where we only compare the Memory and FPU kernel,
as the other three kernels have the same scaling behavior as
FPU.

In order to measure the energy consumption effect of
periodic processes we adapted our computational kernels to
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Figure 6. Power consumption of FPU kernel with increasing load on single
core at 800 MHz, showing the Min/Max envelope around the average.

execute in a duty cycle alternating with calls to usleep()
to allow for different levels of workload. The Linux images
we run on the cores are configured as minimal as possible,
therefore there are no other processes to schedule and the
usleep() call will result in the scheduler entering its idle
loop. The idle loop executes the HLT instruction which stops
the core and saves power, until the core wakes up again on
the next timer interrupt which signals the start of the next
time slice and our computational kernel is rescheduled again.
The time spent in usleep() is unpredictable (in the order
of 1 to 2 ms) as it depends on the time until the start of
the next time slice, we made our duty cycle self calibrating
by measuring the time spent in the usleep() call and
automatically adapting the computational load. This way we
can gradually and accurately vary the generated load on a core
between 0 and 100%.

Using this method we ran experiments on a single SCC
core (core 0) while having the rest of the chip powered down,
measuring the power consumption for loads varying from
5% to 100% in 20 steps, for each of our 5 microbenchmark
kernels. Every individual step is measured for 5 seconds, and
is repeated for all frequency/voltage combinations listed earlier
in Table I, except for 229 MHz. This whole process was
repeated 10 times and averaged to mitigate the fluctuation
effect described in IV-B. In Figures 6, 8 and 9 we show this
average together with the minimum and maximum values.

Figure 6 shows the result for the FPU kernel at 800 MHz,
and it shows that we can clearly measure the effect on
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Figure 7. Power consumption with increasing load on a single SCC core
running at 800 MHz.
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Figure 8. Power consumption of L1 kernel with increasing load on a single
core at 100 MHz, showing the Min/Max envelope around the average.

power for the increasing load on the core, detecting power
changes approximately as small as 0.05 W. It also shows, as
expected because dynamic power is affected, that our duty
cycle approach delivers a linear relation between the induced
load and the power consumption. Furthermore, we were also
able to measure differences between the different types of
kernels. This result is shown in Figure 7, where we compare
the average power consumption (over 10 runs) for increasing
load for all five kernels at 800 MHz. Due to the fact that
a core can have only one outstanding memory request, the
Memory benchmark consumes less power as the core is stalled
most of the time, waiting for the memory request to return.
In contrast, the L1 benchmark consumes the most power, as
it is accessing the L1 cache at a high rate while stressing
the cache and virtual memory logic. Interestingly enough, we
cannot observe a significant difference in power consumption
between FPU and Integer arithmetic.

When we measure the power for different loads on a core on
the lowest frequency setting, 100 MHz, we see that we have
much less accuracy at such low power levels as the differences
in power are much smaller than the fluctuation pattern. As
can be seen in Figure 8 for the L1 kernel at 100 MHz, the
uncertainty between the min and max values is greater than the
difference between 0 and 100% load. While our average value
still shows a clear linear relation to the load, it is impossible to
see clear differences for real-time measurements. We can only
be guaranteed to see a difference in power when the maximum
value at 0% load is smaller than the minimum value at 100%
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Figure 9. Power consumption of FPU kernel with increasing load on single
core at 320 MHz, showing the Min/Max envelope around the average.
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Figure 10. Power consumption of our microbenchmark kernels for different
frequencies, after subtracting idle power.

load. We determined that the lowest frequency setting at which
this is still the case is at 320 MHz, as shown by an experiment
using the FPU kernel in Figure 9.

Using the averaged values, we can determine the power
characteristics of our kernels for different frequencies. This
is summarized in Figure 10. We see that using the L1 cache
clearly consumes twice the amount of power than when we
compute Integer of FPU or access the off-chip memory.

We have measured the mesh network to consume 11.9 W of
power, when we powered down all the core voltage domains.

V. USING THE SCC AS AN AMPSOC

By using the configurable voltage islands and fine grained
frequency control per tile, we can set up the SCC in many
different asymmetric configurations. Using our power mea-
surement infrastructure, it can then act as a substrate to
emulate power aware AMPSoC systems.

As a concrete example, we can emulate a 6-core asymmetric
system by using one core per voltage domain, so that all six
cores are able to run at different frequencies and voltages. All
unused tiles are then set to 100 MHz and put in the lowest
possible power state using clock gating. This will create an
asymmetric architecture although the cores (ISA and pipeline)
are the same. While we can not influence the routing on
the mesh network, we can choose to use any core within a
voltage domain. Furthermore, we can configure which of the
four memory controllers are used by each core. Additional
heterogeneity can be introduced by selectively disabling L2
caches and/or FPUs. However, only disabling the cache will
result in a reduction in power consumption as the FPU can
not be clock gated.

As an extension to this, we can allow multiple cores on
the same voltage island to participate in the system, creating
an asymmetric system composed of homogeneous groups
of cores. Even more asymmetry can be created by setting
different frequencies between these cores in a group, though
the voltage is bound to the core with the highest frequency
in the voltage domain, which is the most dominant factor in
power consumption.

Using this technique, we are able to run and study different
kinds of application mappings on a static system. In this case,
a static system means that the number of cores and DVFS

Generator
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Figure 11. Example of a Process Network with 6 cores which is used in
experiment 1.

settings are fixed during run-time, but we can reconfigure the
platform to emulate a different fixed system between runs.
We did not experiment with network and memory effects by
using different placements, but we expect the effect to be
very small as both network and memory bandwidth are over-
provisioned [17].

A. Process Network Emulator

To validate our AMPSoC emulation approach we need to be
able to run distributed applications on different configurations
to show the effect on power consumption and performance.
We created a Process Network Emulator that mimics an
application workload specified as a Process Network. Based
on a simple graph description, we instruct the SCC cores to
read synchronization tokens from a push FIFO, implemented
in their local Message Passing Buffer (MPB). The first core
runs a generator that emits tokens with a configurable interval,
while the others read a token from their FIFO and perform a
(fixed) computation of a certain type. After each computation
step it updates the token and forwards it to all destination
processes located on different cores. By fixing the workload
that needs to be processed per token, we can easily see
what the differences are in terms of energy consumption and
execution time for mappings on cores with different DVFS
settings.

The Process Network Emulator can be configured to execute
different kinds of workloads per process, based on the mi-
crobenchmark kernels we presented in Section IV-D. Therefore
it contains the CPU intensive kernels, with either integer of
floating point operations, and memory intensive kernels, for
access to respectively L1, L2 and off-chip RAM. The amount
of workload required to process a single token is configurable,
or can be disabled to measure the raw communication latency
and throughput.

Figure 11 provides a graphical representation of one of the
process networks we used for the evaluation in Section VI.
Each node represents a process and each edge represents a
communication channel (FIFO) between processes.

VI. EVALUATION

A. Emulating a 6-core asymmetric MPSoC

In this section, we describe and analyze two experiments to
illustrate and verify how we can use the SCC as an emulation
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Figure 12. Results for the first Process Network execution at a permutation
of the frequencies 800 (2), 533 (3), 400 (4) and 200 MHz (8).

substrate for a 6-core AMPSoC. We limit ourselves to four
different DVFS settings, (800, 533, 400 and 200 MHz), in
order to be able to measure every possible configuration within
a reasonable amount of time. We run the token generating
process always on 100 MHz as it does not perform any
computation, which leaves us with 45 = 1024 possible
platform configurations. We keep the process network mapping
static, where all processes are pre-assigned to a specific core,
i.e. a one-to-one mapping. The process numbers 1 to 5 as
shown in the network graphs and the corresponding frequency
dividers 2, 3, 4 and 8 are used to identify the configurations in
this section. For example, configuration 8-4-3-2-4 means that
process 1 (Memory in both networks) runs at divider 8, i.e.
an 800 MHz core, process 2 on divider 4, and so on.

The first experiment focuses on performance, i.e. a fixed
workload done as fast and (energy) efficient as possible. We
show the trade-off between power consumption and execution
time, and the trade-off between energy and execution time. The
second experiment uses a more realistic continuous streaming
process network for which we check if the AMPSoC config-
uration is able to execute the network properly (i.e. it is able
to keep up with the demands of the workload and meet the
deadline) and explore which of the satisfactory configurations
consumes the least amount of power.

B. Results

The first experiment is based on the network shown in Fig-
ure 11. We configure the computational workloads to process
for 20 ms on each received token, calibrated at a frequency of
533 MHz. The FIFO size is set to 240 in this experiment, the
maximum our MPB based protocol supports, and 400 tokens
are put into the network. The results for all 1024 configurations
consist of the measured average power consumption and time
to completion. In Figure 12 the power/performance trade-
offs for these 1024 mappings are shown. The Pareto-optimal
configurations are individually marked and shown in the
legend, while all other points are marked with a grey cross.
We see that depending on the configuration there can be large
differences in both power consumption and execution time.

20 30 40 50 60 70 80 90 100

Execution Time (seconds)

0

100

200

300

400

500

600

700

E
n
e
rg

y
 (

Jo
u
le

s)

Other configurations
Configuration 8-3-2-2-3

Figure 13. Energy consumption for computation, corrected for surrounding
SCC cores not participating.

In this experiment we also calculated the amount of addi-
tional energy for the different configurations. In the calculation
we corrected for the amount of energy that the unused cores
on the same voltage island consume while their voltage
level is raised up. We do this by measuring the idle power
consumption for the chip at the used frequency settings and
subtract an equal part for the non-participating cores. Figure 13
is generated based on this corrected power, multiplied by
the execution time to calculate the total amount of energy
consumed by the application. In this case, we see that there is
still a significant overhead by the network and other leakage
power resulting in the conclusion that running faster on a high
frequency is more efficient than running for a longer period
on a lower frequency.

In the second experiment we simulate a periodic application,
where tokens are put into the network every 50 ms. The
network has been more balanced by removing some edges
from the network graph as shown in Figure 14, and uses a
computational load that can easily be performed within the
time the next token arrives on a sufficiently high frequency.
The FIFO size is set to 5 tokens. During normal execution,
the execution time for this network for 200 input tokens is just
over 10 s, if there are no stalls. We use the same permutations
of frequencies as in the previous experiment, again resulting
in 1024 different configurations.

The results for the 1024 configurations are shown in Fig-
ure 15. We immediately see that there are several configura-
tions that cannot keep up with the requested workload resulting
in an execution time much higher than 10 s. Some have even
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(3)

Float
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(5)

Figure 14. Process Network with 6 processes used in experiment 2.
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Figure 15. Results for the second Process Network experiment at a
permutation of the frequencies 800, 533, 400 and 200 MHz

higher execution times that are not shown within the scale of
this graph. We register the number of times a full target FIFO
is encountered and when this is larger than zero it means that
this configuration does not satisfy the throughput requirement
and should be considered invalid.

VII. CONCLUSION

In this paper we have shown how we can configure and
use the available infrastructure to measure power on the SCC
with the most accurate results. As the SCC is an existing
physical system we had to deal with some architecture specific
properties and behavior of which we have shown details and
solutions. We proposed a novel method to use the SCC as
a substrate to emulate AMPSoCs that can be used for both
validation and calibration of design-space exploration methods
for power and energy efficiency. Initial experiments show
that we are able to measure power changes between different
workloads and configurations. The emulation system we have
created for running process networks on the proposed system
shows that we are able to explore the trade-off between energy
or power on one hand and time or throughput on the other for
different asymmetric systems and (software) mappings on real
hardware.

A. Future Work

The future goals for this work are twofold. First we want
to modify our tools such that we can map multiple processes
on the same core and are able to run real-world streaming
applications with actual data communication, such that we can
validate energy models and run-time schedulers and provide
our DSE toolkit with real-world energy usage data instead of
rough estimations. The second goal is to explore and obtain
other experimental platforms or prototype boards in which
we can do fine-grained power measurements and have better
control over hardware features and configuration such as the
aforementioned ARM big.LITTLE, or the recent Intel Sandy
Bridge processors.
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