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Abstract—Prevalent large transformer models present signifi-
cant computational challenges for resource-constrained devices
at the Edge. While distributing the workload of deep learn-
ing models across multiple edge devices has been extensively
studied, these works typically overlook the impact of failures
of edge devices. Unpredictable failures, due to, e.g., connectivity
issues or discharged batteries, can compromise the reliability
of inference serving at the Edge. In this paper, we introduce
a novel methodology, called EASTER, designed to learn robust
distribution strategies for transformer models against device
failures that consider the trade-off between robustness (i.e.,
maintaining model functionality against failures) and resource
utilization (considering memory usage and computations). We
evaluate EASTER with three representative transformers – ViT,
GPT-2, and Vicuna – under device failures. Our results demon-
strate EASTER’s efficiency in memory usage, and possible end-
to-end latency improvement for inference across multiple edge
devices while preserving model accuracy as much as possible
under device failures.

Index Terms—Deep Learning, Robustness, Embedded System,
Design Space Exploration, Distributed Inference

I. INTRODUCTION

As Artificial Intelligence (AI) continues to evolve rapidly,
transformer models are increasingly prevalent in various ap-
plications [1]. Advanced pre-trained models such as BERT
and GPT-4 [2] have spurred a range of novel tools, including
Copilot and ChatGPT. Typically, these models are executed on
high-performance clusters with hundreds of GPUs, available as
cloud services. However, the rise of Internet-of-Things (IoT)
devices has driven a demand for deploying transformer-based
tools at the Edge. Deploying these tools on edge or IoT
devices offers significant advantages in terms of efficiency,
security, and privacy. For example, a network of IoT devices in
smart healthcare systems [3] within a hospital such as bedside
monitors, and portable diagnostic devices are equipped with
sensors to collect vital signs and patient data in real-time.
By deploying deep neural networks, like transformer models,
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directly onto these devices, the system can locally analyze
data, make immediate health assessments, or predict medical
events without the need to send or store sensitive patient
data in centralized cloud servers, thus enhancing user privacy
and data security. This also allows for faster, potentially life-
saving decisions by reducing the latency associated with data
being sent to the cloud and the cloud processing of the
data. However, deploying transformer-based tools at the Edge
presents a significant challenge for edge or IoT devices due
to the intensive computational and memory requirements of
transformer models. For instance, the Vicuna-13B chatbot [4]
requires 26 GB of memory for the model parameters and
substantial computational resources for inference.

While constructing lightweight transformer models from
larger counterparts using methods like model compression [5]
or neural architecture search [6] is one approach, it often
leads to a reduced performance/accuracy score and resource-
intensive retraining of the newly derived models. In response,
research has focused on fully distributing transformer infer-
ence across multiple edge devices without resorting to model
compression or cloud servers. Methods like model partitioning
[7] and data partitioning [8] have been explored to bridge the
gap between limited edge device resources and the demands of
large transformer models. However, these methods generally
assume continuous availability of all participating devices,
which is often unrealistic due to potential device unavailability
or failures.

Addressing this issue, our study emphasizes the need for ro-
bust partitioning methods for distributed transformer inference.
Distributed inference across multiple devices offers a promis-
ing solution for handling large transformer models (e.g., Llama
[9]) that exceed the memory capacities of individual devices,
such as IoT devices, smart surveillance cameras, user laptops,
etc. Existing frameworks, like Alpa [10] and DeepSpeed [11],
effectively support distributed Large Language Model (LLM)
training, but do not address at all robust distributed inference
on edge devices and do not cater for resource heterogeneity
in edge systems or IoT settings.

Therefore, this paper introduces a novel methodology, called
EASTER, designed to learn robust distribution strategies for
transformers that ensure functional inference and maintain
close-to-original results under potential device failures. Learn-
ing such optimal strategies to distribute millions of neurons is
challenging because a vast and complex design space needs
to be explored. Typical transformer-based models consist of
several stacked encoder and decoder blocks. The embedding
dimension within each block, which represents the size of
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vectors used to encode images, words, or tokens, usually
exceeds 100. For example, if the embedded dimension of an
encoder block is 768 [12], and we consider each dimension-
related connection as a neuron, then the encoder block has
768 neurons. If we want to distribute these 768 neurons over
four devices evenly, the exact number of possible distributions
is

(
768
192

)
×

(
576
192

)
×

(
384
192

)
. The vast number of potential pos-

sibilities to distribute just one encoder block across multiple
devices is almost unimaginable, let alone when considering the
distribution of multiple blocks in large transformer models.
There is a critical need to explore this extensive design
space efficiently to identify a neuron distribution strategy
that maintains performance against potential device failures to
ensure the robustness and reliability of the distributed system.

For different distribution strategies (design points) of trans-
formers in the vast space, our algorithm is designed to effi-
ciently and quickly explore and identify optimal design points,
enabling robust and memory-efficient splitting of transformer
models across multiple devices. We first narrow down the
design space by considering the neuron importance in the
transformer layers, as this assessment allows us to group
neurons within each layer, significantly reducing their dis-
tribution complexity. Further, we achieve this by adaptively
and recursively splitting the design space into several sub-
spaces and learning the expected rewards associated with
different sub-spaces. To this end, we have developed a variant
of the Upper Confidence bounds applied to Trees (UCT)
algorithm [13], aiming to enhance splitting and prioritizing
sub-spaces with the highest potential for robustness. By navi-
gating and sampling both the most and potential promising
sub-spaces rather than the entire vast space, our approach
enhances search efficiency, while balancing exploration and
exploitation to avoid the pitfalls of local optima. The final
Pareto points/solutions offer an optimal blend of robustness
against device failures and operational efficiency regarding
computation and memory.

We also automate the process of dividing transformer
models for distributed computing by converting them into
a unified neural network intermediate representation (IR).
This step is followed by automated code generation and the
subsequent deployment of the models across multiple edge
devices. Our experimental results demonstrate that the system
configurations identified as Pareto optimal points through the
aforementioned design space exploration (DSE) method not
only maintain system robustness but also achieve a notable
reduction in memory usage. Furthermore, these configura-
tions reduce the end-to-end inference latency for very large
transformer models, demonstrating the effectiveness of our
approach in optimizing both the performance and efficiency
of distributed deep learning systems.

Our main novel contributions are summarized as follows:
• A novel UCT-based design space exploration algorithm

is proposed that efficiently narrows down the vast design
space, facilitating the discovery of effective model parti-
tioning strategies for robust transformer distribution that
balance performance and resource usage.

• By empirical validation, we demonstrate the efficacy
of our EASTER methodology using typical transformers

like ViT-16 [12], GPT2-Large [14], and Vicuna-7B [4],
showcasing resilient model performance in image and
common reasoning tasks.

• We provide the first implementation of an end-to-end tool
for splitting transformer models, and also validate the
advantages of distributed inference in terms of end-to-
end inference latency and memory utilization compared
to single-device inference.

II. RELATED WORK

The proliferation of transformer models in various applica-
tions has necessitated their adaptation beyond the confines of
powerful cloud computing resources, directing significant re-
search interest towards edge deployments. This section reviews
pertinent literature across three main themes relevant to our
work on EASTER: 1) adaptation of large transformer models
for resource-constrained edge devices, 2) resilience against
device failures, and 3) efficiency in design space exploration.

1) Adaptation of Transformer Models for Edge Con-
straints. The push towards deploying AI capabilities at the
edge, driven by privacy concerns, latency reduction, and
energy efficiency, has seen approaches like model compres-
sion [15]–[17] and neural architecture search [18]–[21] gain
prominence. Such approaches can compress original trans-
former models to smaller models for resource-constrained
devices. However, they typically require iterative retraining
and may result in accuracy loss. Another approach is to
deploy the original models onto distributed edge computing
platforms such as health care systems [22], smart home
systems [23], etc., in order to leverage all available resources
collaboratively. Traditional layer and data partitioning methods
like [7], [24] are applied to fully distribute the workload
of a large Convolution Neural Network or a transformer-
based model among multiple edge devices, thereby reducing
the required computation resources of edge devices [25]. It
involves breaking down a model’s computational graph into
smaller, manageable parts that can be processed in parallel
across multiple devices. This is particularly challenging in
edge computing due to the heterogeneous nature of devices
and their limited computational capabilities. Model parallelism
techniques like AlpaServe [10] developed for homogeneous
data center clusters are targets for multi-batch inference which
would perform poorly for single batches in heterogeneous
edge environments. PipeEdge [24] partitions a neural network
model into multiple pipeline stages and applies a dynamic pro-
gramming (DP) algorithm to determine the optimal partition
scheduling strategy for heterogeneous computation and com-
munication. However, all of the aforementioned approaches
and methods assume that the involved edge computing devices
and communication links between them are always available
and work properly. In contrast, our partitioning approach
not only aims at maintaining computational efficiency but
also considers the resilience of the system against possible
temporary or permanent failures of devices, an aspect often
overlooked in conventional partitioning strategies.

2) Resilience against Edge Failures. Resilience against
device failures at the Edge concerns the property of a model
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being resilient in terms of inference accuracy to the failure
of physical computing devices due to power outages, unstable
inter-device connections, other hardware/software failures, etc.
In distributed inference settings, the missing neurons mapped
on those failed devices may result in a significant accuracy
drop of CNN or transformer models (Fig. 1(b)). Existing
approaches and methods to mitigate this risk introduce various
strategies. The Code Distributed Computing (CDC) method
proposed in [26] exemplifies an early attempt to enhance
the resilience by utilizing an additional device to backup the
computations of distributed devices. This method effectively
mitigates the impact of single device failures but does not
scale well to scenarios involving multiple simultaneous device
failures without introducing excessive redundancy and associ-
ated computational overheads. ElasticDL, introduced by Jun
et al. [27], represents a significant advancement by integrating
fault tolerance and elastic scheduling within a Kubernetes-
native deep learning framework. While ElasticDL enhances
system resilience and adaptability, its practical deployment on
edge devices is hampered by Kubernetes’ complexity and the
limited computational resources of edge environments.

In contrast to the aforementioned approaches, our methodol-
ogy EASTER introduces a comprehensive solution designed
to enhance the resilience of transformer models in the face
of the unpredictable and dynamic nature of edge comput-
ing environments. Unlike previous methods that often rely
on additional hardware resources, complex orchestration, or
prior knowledge of potential failure types, EASTER employs
a novel partitioning strategy that inherently accommodates
multiple device failures without necessitating extra devices or
computational redundancy. Our approach leverages advanced
machine learning techniques to adaptively distribute model
computations across edge devices, optimizing for both re-
silience and resource efficiency. By intelligently partitioning
the model in a manner that anticipates and mitigates the
impact of device failures, EASTER ensures robust inference
accuracy under a wide range of failure conditions without the
limitations imposed by specific assumptions or the need for
supplementary computational overhead.

3) Efficiency in Design Space Exploration (DSE). In
the context of Design Space Exploration (DSE), the original
UCT algorithm [13], known for its efficacy in balancing the
exploration-exploitation trade-off in single-objective optimiza-
tion problems, is ingeniously adapted to the multi-objective
optimization landscape in our work. This adaptation involves
selecting promising parts of the search space by not only
leveraging the UCT’s inherent strengths but also enhancing it
with traditional machine learning techniques for more efficient
splitting and exploration of the design space. Such an integra-
tion significantly augments the UCT framework, enabling it
to navigate complex, multi-dimensional optimization problems
with greater precision and efficiency.

Existing DSE methods such as the Multi-Objective Tree-
structured Parzen Estimator (MOTPE) [28] and the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [29] are
well-known for their efficiency in multi-objective optimization.
MOTPE is renowned for its sample efficiency and capabil-
ity to handle high-dimensional spaces through its Bayesian
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Fig. 1: Comparative analysis of layer partitioning and its
impact on memory reduction and for accuracy.

optimization framework, which is particularly beneficial in
scenarios with limited evaluation budgets. NSGA-II, on the
other hand, excels in finding a diverse set of solutions across
the Pareto front through its evolutionary algorithm, effectively
managing the trade-offs between conflicting objectives. How-
ever, existing methods fall short in adapting to our specific sce-
nario, which requires robust splitting of the transformer model
block by block while simultaneously optimizing memory
usage and inference latency. These methods lack customization
for navigating the vast design space of our scenario.

To address this gap, we enhance the UCT algorithm with
machine learning techniques to combine the UCT’s dynamic
exploration-exploitation mechanism with the predictive and
generalization capabilities of machine learning. This not only
provides an efficient method to identify and explore promising
spaces but also enhances the algorithm’s ability to adaptively
refine its search strategy based on learned insights. Our
enhanced UCT approach, when compared to methods like
MOTPE and NSGA-II, offers a complementary strategy ide-
ally suited for scenarios where understanding and leveraging
the structure of the search space is crucial. This tailored
approach significantly boosts our search efficiency and the
quality of outcomes, making it a particularly effective solution
for our specific robustness needs for splitting transformer
models.

III. ROBUST MODEL SPLITTING

In this section, we provide an example to illustrate why
splitting a transformer model robustly is needed and why
DSE matters in this context. Moreover, we describe how
transformers can be splitted in a robust fashion.

A. Motivational Example

The process of splitting a transformer model for distributed
inference across edge devices is crucial for running large mod-
els in environments with limited resources. Although some
frameworks like PipeEdge [24] could distribute transformer
models across multiple IoT devices with orchestration, the
crux of the problem lies in the robustness of the pipeline
paradigm they utilize: a single failure within the pipeline
can compromise the entire computation process. Thus, our
discussion focuses on an alternative paradigm, namely par-
titioning the layers themselves within a deep learning model
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across multiple devices [7]. A transformer model, composed
of N encoder or decoder blocks, is designed for various
tasks such as classification or text generation. As illustrated
in Fig. 1(a), by dividing blocks in the transformer model into
two parts evenly, specifically on a block-by-block basis, we
can distribute its workload across two devices. Each device
then processes its allocated half blocks, necessitating periodic
synchronization of their intermediate results to maintain con-
sistency throughout the computation process. However, such
a distribution strategy still introduces a vulnerability: should
one of the two devices fail, it results in the loss of half the
blocks’ processing capability, thereby significantly impacting
the model’s overall performance and reliability. This scenario
underlines the need for a robust distribution strategy that can
minimize the risk and impact of device failures.

Taking the ViT-16 transformer model [12] as an example, it
contains 12 encoder blocks stacked one by one. The significant
impact of a device failure on the model performance is
highlighted in Fig. 1(b). When splitting and distributing the
model’s blocks across two devices, a device failure leads
to a substantial drop in Top-1 accuracy, as critical block
information is lost. This scenario is graphically represented
with Top-1 accuracy (red line) and memory reduction ratio
(blue line) against the number of distributed blocks (x-axis),
demonstrating that as more blocks are distributed instead of
fully replicated, the memory efficiency on the operational
device improves, but at the cost of reduced accuracy due to
the potential loss of computational resources during a device
failure. For instance, when distributing all 12 encoder blocks
of the ViT model across two devices, should one device fail
due to a power outage or disconnection, half of the weights
and intermediate results would be lost. In such a scenario, the
top-1 accuracy could drop to 20.95%, significantly impairing
the model performance of distributed inference.

This trade-off between memory reduction and model ac-
curacy underlines the challenge: finding a method to split en-
coder/decoder blocks that maximizes model accuracy retention
while achieving optimal memory efficiency. The goal is to
develop a strategy that ensures even if one or more devices fail,
the distributed model can maintain as much of its original per-
formance as possible. As mentioned in Section I, given the vast
design space for distributing neurons in each encoder/decoder
block, it is crucial to employ Design Space Exploration (DSE)
to identify the most efficient distribution pattern, aiming to
minimize accuracy loss while maximizing resource utilization
for optimal model deployment in distributed environments.

B. Robust Model Splitting

In the context of a transformer model containing N encoder
or decoder blocks, we introduce an innovative uneven splitting
method, called Partial Split, for distributing these blocks
across multiple devices with robustness in mind. This method
particularly aims at enhancing the model’s resilience to device
failures while reducing the memory usage on each device.

As illustrated in Fig. 2(a) for example, evenly distributing a
transformer block among four edge devices poses a significant
risk, namely the model functionality is severely compromised,
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Fig. 2: Partial Split

for example, when three out of these four devices fail or lose
connection, as only a minimal fraction of attention connections
remains operational for inference. To address this vulnerability,
our method diverges from this conventional even splitting
approach.

Instead, our method illustrated in Fig. 2(b) employs a strate-
gic replication of a certain fraction r of critical connections
(the yellow box) across multiple devices, based on their weight
importance. The remaining, less critical connections (the large
green box), constituting a (1 − r) fraction, are then evenly
distributed. This selective replication ensures that even in the
event of multiple device failures, the most vital connections
within each transformer block are retained, thereby preserving
the model functionality and inference capabilities to a large
extent. During runtime, the device initiating an inference
request for image classification or text generation tasks loads
both the replicated part (the yellow box) and its split part
(the small green box) of the model. The other devices in the
network load only their respective split parts. Notably, the
replicated part remains unloaded on these devices (the dotted
yellow boxes). This runtime loading strategy ensures that extra
replicas are not redundantly loaded on other devices, thereby
optimizing resource utilization and enhancing overall system
efficiency.

IV. PROBLEM FORMULATION

The aforementioned uneven splitting method facilitates ro-
bust distribution of the computational workload of a trans-
former model across edge devices. However, the limited
memory capacities of edge devices introduce challenges in
determining the optimal fraction r for each transformer block
that could preserve the model functionality and inference capa-
bilities to a large extent. A large fraction r would require high
memory usage per device, potentially exceeding the memory
capacity of resource-limited edge devices. Conversely, a very
small fraction r might compromise the proper model function-
ality in case multiple devices fail. Thus, an important trade-off
emerges between the memory usage per device and the model
functionality that is dependent on the fraction r of critical
connections that are replicated for each block.

For a transformer model with N blocks, we define a pa-
rameter set R = {r1, r2, . . . , rN}, where ri ∈ [0..1] represents
the fraction of replicated connections for block i. Each set of
parameter values R corresponds to different memory usage
mj per device Dj ∈ D and different model functionality in
case some devices fail at runtime when a transformer model
is distributed over a set of edge devices D. Therefore, our



5

 Attention

Multi-Head
Attention

Feed
Forward

attention score

Intermediate Out

Feed-ForwardPartial SplitTransformer

Allreduce

Q

Intermediate Out

Hidden States

Hidden States
vital

less-vital

Allgather

K V

Fig. 3: Transformer Partitioning

objective is to find an optimal set of parameter values Ropt

which maximizes the model accuracy or performance score
in case of failing devices with possible minimum memory
usage (m1,m2, . . . ,m|D|). Given the typically large value of
N for prevalent transformer models and the continuous range
of r ∈ [0..1], a vast and complex design space needs to be
explored in order to find an optimal solution.

V. THE EASTER METHODOLOGY

In this section, we present our novel methodology designed
to learn robust distribution strategies for transformer models
against device failures that consider the trade-off between
robustness (i.e., maintaining model functionality against fail-
ures) and resource utilization (including memory usage and
computations). First, we provide more details about our robust
partial split method introduced in Section III. Next, we present
our design space exploration (DSE) approach to solve the op-
timization problem, formulated in Section IV, that is required
to achieve an efficient and robust partial split and distribution
of transformer models on multiple edge devices. Finally, we
introduce the end-to-end tool we have developed to automate
our robust partial split method and distributed deployment of
transformer models.

A. Partial Split Method for Transformers

In this section, we explain how the transformer model is
split according to a parameter set R. Consider the example
shown in Fig. 3 where Block N in a transformer model is
distributed across two devices and the obtained fraction rN ∈
R for this example is 0.25. The vital part of connections in
the attention and feed-forward blocks is represented by the two
yellow boxes that are both replicated across the two devices.
The remaining, less-vital part of connections for each block
is split in two (the green boxes) and distributed evenly across
the two devices.

To determine the vital part of connections, we calculate and
use an importance score for each connection. For example, tak-
ing a general linear transformation in the feed-forward block,
we first calculate the importance of connections corresponding
to this linear transformation using the Taylor score [30] as
follows:

IWk = |∆L| = |LWk − LWk=0| ≈
∣∣∣∣ ∂L
∂W k

W k

∣∣∣∣ (1)

where IWk represents the importance score of the kth con-
nection/weights associated with the linear transformation, and
|∆L| represents the loss changes when we remove this con-
nection from the layer. After we calculate the importance
score of every connection in a layer, we sort the connections
based on the importance score in descending order, thereby
creating a separate sorted list for every layer. If the target
fraction of replicated connections for a layer is r then we
start from the beginning of the sorted list and take the first
r% of the connections, thereby classifying them as vital. The
rest are classified as less vital. Furthermore, it is crucial to
understand that when we find that nearly all connections in
a layer have similarly high importance scores (i.e., nearly all
are vital), the DSE process (see Section V-B) is designed to
adjust the fraction value r of this layer close to 1.0, instead
of maintaining the initial value. This adjustment is crucial to
preserve and replicate the layer as much as possible to avoid
significant performance degradation. During the (design-time)
DSE process, the sets of small r values for important layers or
blocks, leading to a considerable drop in model performance,
are automatically categorized into less promising sub-spaces.
This mechanism ensures that our DSE process systematically
avoids configurations that would negatively impact the model’s
effectiveness significantly. This adaptive approach ensures that
our method retains crucial connectivity to effectively retain
model performance. Below, we provide details on how our
partial split method is further tailored for the attention and
feed-forward blocks within the transformer architecture to
efficiently reduce computational workload and memory usage
when the transformer is distributed across different edge
devices.

1) Attention Block: As depicted in Fig. 3, the hidden
states Hi−1 coming from the previous transformer block are
transformed into queries (Q), keys (K), and values (V) using
the weight matrices Wq , Wk, and Wv . Our method splits these
matrices along their column dimensions (denoted by W c

q , W c
k ,

and W c
v ) and distributes them across devices. Consequently,

each device generates the corresponding segments of Q, K,
and V (denoted by the yellow and green boxes), necessitating
an all-gather communication operation to concatenate the
corresponding segments into complete Q, K, and V tensors.
Taking the linear transformation with Wq weights (Figure 3)
in the attention block as an example, the query matrix Q is
generated by Wq . If the embedded dimension of the input
tensor Hi is D, we compute the D importance scores for
query Q using the equation 1. Once the replication factor ri
is determined, we rank and split the Wq weights along its
column dimensions based on the rank indices derived from
the D scores. We choose to replicate the top r% of weight
Wq and allocate the remaining (1− r)% to multiple devices.
For the small portion of Wq on each device, we replace the
original matrix multiplication (matmul) operation with a small
matmul operation containing its corresponding different part
of weight Wq . To maintain output accuracy, a communication
operation for gathering the partial Q output is added after
the small matmul. After the attention block multiplies the
attention scores with values (V ), the linear transformation with
weight matrix Wo maps the multiplication result to match the
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dimension size of the intermediate output. In our method, we
also split Wo into segments along the column dimension. Each
segment of W c

o produces a partial part of the intermediate
output. Similarly, an extra all-gather communication operation
is added to collect the segments and ensure the correctness.

Apart from these layers, the embedding layer follows a
similar strategy for its matmul operation. However, we abstain
from applying our partial split method to layernorm layers due
to their relatively minimal weight and computational demand.
Importantly, the full replication of layernorm weights on each
device is prioritized to ensure model stability, given their
significant role [31].

2) Feed-Forward Block: This block within a transformer
block involves two linear transformations with weight matrices
W1 and W2 to process the intermediate output and generate the
hidden states Hi going to the subsequent transformer block.
The first weight matrix is split along the column dimension
(denoted as W c

1 in Fig. 3). The second weight matrix is
split along the row dimension (denoted as W r

2 ). The partial
output tensors (the yellow and green boxes) produced by W c

1

can directly go through the non-linear activation and serve
as the input for the second linear transformation which is
also split and denoted as W r

2 . This design eliminates the
need for an all-gather operation to concatenate the partial
outputs produced by the first linear transformation, thereby
reducing both the computational workload per device and the
inter-device communication overhead. Finally, a collective all-
reduce operation is applied to sum the partial output from all
devices to form the correct hidden states output Hi.

B. Design Space Exploration

To solve the optimization problem formulated in Section IV,
we have devised a DSE approach that effectively navigates in
the vast and complex design space mentioned in Section IV.
Our DSE approach leverages supervised learning techniques
to progressively concentrate the search for an optimal solu-
tion within increasingly smaller and more promising spaces,
thereby enhancing search efficiency. As depicted in Fig. 4,
the approach starts by randomly generating several design
points R = {R1, R2, · · · , Rp} (yellow points), and evaluate
the objectives F(R) using the fitness function F for each
design point Ri ∈ R to form an initial learnable space
D = (R,F(R)). Here, Ri = {ri1, ri2, . . . , riN} is a set of
fractions corresponding to a specific partial split strategy for
all N blocks in a transformer model. The fitness function
F concerns the evaluation of various conflicting objectives
such as memory usage, energy consumption, performance,
etc. It can be implemented using analytical models, real
measurements, etc. In this paper, our fitness function is based

on real measurements to ensure an accurate and practical
evaluation of the objective values. Taking the ViT-16 model as
an example, we directly measure the peak memory usage on
real devices during run-time, and we take the Top-1 accuracy
of the ImageNet-1K validation dataset as the performance
metric. Then, our DSE approach recursively splits the design
space D and obtains a set of split boundaries. Subsequently, we
apply these learned boundaries to generate new design points
within specific promising design spaces to improve the search
efficiency. We apply the calculation equation in line 24 of
Algorithm 1 to identify which area within R is most likely to
contain optimal design points and then concentrate our search
on this smaller, promising area, denoted as D∗

P and shown
in the middle of Fig. 4. However, an early decision about
the promising area might inadvertently overlook other areas
that could contain optimal points as well. To mitigate this,
while the majority of our design points are generated within
the currently perceived promising area D∗

P , we also allocate a
smaller portion of design points to generate from other spaces,
represented by D∗

S . This approach iteratively learns the entire
space R and allows us to more accurately identify the most
promising regions for optimal points.

Algorithm 1 describes, in more detail, the aforementioned
DSE approach illustrated in Fig. 4. The algorithm consists of
two main steps and takes as an input the maximum search
trials T , the number of new random design points np for
updating the search space D, a lower bound (lb) to determine
the maximum number of design points in an unsplittable
area, and the exploration factor α which determines the
degree of exploration. A higher value for α encourages more
exploration in the search space. The output of Algorithm 1 is
space DP = {(R1, FR1

), ..., (R|P |, FR|P |)} of Pareto-optimal
solutions where every solution Ri = {ri1, ri2, . . . , riN} is a
set of fractions corresponding to a Pareto-optimal partial split
strategy for all N blocks in a transformer model. In line 1,
we first randomly initialize a number of design points and
evaluate their objectives using the fitness function, yielding an
initial learnable search space D.

In Step 1 (lines 3-8), the algorithm narrows down the space
via Support Vector Machine (SVM) classifiers and generates
a series of SVM boundaries. In lines 3-6, we select the non-
dominated points from D to create a new primary space
marked as DP , and the rest of the points are put into a new
secondary space marked as DS . In lines 7-8, the NarrowDown
function is applied to recursively split DP and DS into smaller
spaces D∗

P and D∗
S . Concurrently, all involved splitting SVM

boundaries are aggregated into the boundary sets CLP and
CLS .

In Step 2 (lines 9-12), we generate new design points and
evaluate these new design points using the fitness function FIT-
NESS. To balance the exploration-exploitation trade-off, 80%
of these new points (RP ) are derived from D∗

P in line 9,
while the remaining 20% (i.e., for α = 0.2) of the new
design points (RS) are derived from D∗

S in line 10. This
ratio, while adjustable, typically requires experimental trials
for better search efficiency. Then, we apply the fitness function
to evaluate the objective values for these new points and add
them to the search space D in line 12. This iterative process is
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repeated until the maximum number of trials T is reached (see
line 2). Ultimately, the Pareto-optimal points comprising space
DP found by this DSE process represent the optimal solutions
that balance the memory usage and the model functionality.

In lines 15-27, the NarrowDown function recursively splits
the search space D and obtains a series of learned split bound-
aries CL. In line 18, we initially employ the K-means cluster-
ing method to categorize/divide the design points within RD

into two distinct clusters RD1 ,RD2 . Following this clustering,
we calculate the average objective values for each cluster. The
cluster with the higher average objective values is considered
to be situated in a more favorable space. Consequently, in line
19, we assign a label of 1 to the design points in this more
promising cluster, while design points in the less favorable
cluster are labeled as -1, and we put all labeled points in a
new set DL. In line 20, we train the SVM classifier CL with
the new set of labeled points DL and split DL into two spaces
D1 and D2. In lines 21-22, if the number of design points in
D is below the lower bound lb or if the SVM classifier CL
predicts only a single category, both indicating that space D is
non-divisible, the recursive function NarrowDown terminates
and returns the set of classifiers CL. Otherwise, in lines 24-26,
we mark the space with the larger UCB value [13], calculated
in line 24, as the more promising design space D∗, and add
the SVM classifier CL into the recursive splitting set CL.

In lines 28-37, the NewPoints function randomly generates
N new design points using the input set of SVM classifiers
CL. In lines 31-32, a random design point R is generated and
added to the set of new points R. Then, point R is classified
using the set of trained SVM classifiers CL in lines 33-36.
That is, if all SVMs in CL classify point R to belong to the
class with label 1 then point R remains in the set, otherwise it
is removed (line 35). Finally, in line 37 the new set of random
points R is returned.

C. Multi-node Intermediate Representation

We have developed an end-to-end tool that facilitates au-
tomated model partitioning and its distributed deployment,
in line with one of the Pareto-optimal partial split strategies
Ri ∈ DP found by our DSE Algorithm 1 presented in Sec-
tionV-B. In general, traditional frameworks for deep learning
(DL) model deployment on edge devices, such as TVM [32],
IREE [33], and others, do not sufficiently support distributed
inference. Therefore, our end-to-end tool is implemented to
transform CNNs or transformer models from Huggingface [34]
into optimized multi-node computation graphs, thereby mak-
ing them suitable for efficient deployment across multiple
devices. Our tool is versatile enough to support both CNNs
and transformer models but in this paper we focus on its
application to transformer models.

As illustrated in Fig. 5, our tool begins by utilizing the
existing ‘torch.compile‘ [35] method to convert an initial
PyTorch transformer model into the low-level ATen Inter-
mediate Representation (IR) for a single node. Subsequently,
an automated conversion process is employed to replace the
single-node ATen IR into a multi-node variant. For instance, in
handling linear transformations, the tool splits the associated

Algorithm 1: Design Space Exploration
Input : Maximum trials T ; Population size np; lower

bound lb, exploration factor α;
Output: Space DP with Pareto points;

1 Initialize randomly D with points (R,FR): D ←
{(R1, FITNESS(R1)), · · · , (Rnp

, FITNESS(Rnp
))}

2 while |D| ≤ T do
// Step 1: Narrow Down Search Space

3 foreach (Ri, FRi) ∈ D do
4 if FRi is nondominated then
5 DP ← DP ∪ (Ri, FRi

)

6 DS ← D \DP ; CLP ← ∅; CLS ← ∅
7 D∗

P , CLP = NarrowDown(DP ,CLP)
8 D∗

S , CLS = NarrowDown(DS ,CLS)
// Step 2: Add New Random Points,
// Evaluate and Update D

9 RP = NewPoints((1− α) ∗ np,CLP)
10 RS = NewPoints(α ∗ np,CLS)
11 foreach Ri ∈ (RP ∪ RS) do
12 D ← D ∪ (Ri, FITNESS(Ri))

13 return DP

14

15 Function NarrowDown(D,CL):
16 foreach (Ri, FRi

) ∈ D do
17 RD ← RD ∪Ri

18 (RD1 ,RD2) = KMeansTwoClustersOn(RD)
19 DL = (RD1 , 1) ∪ (RD2 ,−1)
20 CL, D1, D2 = SVMTrainedOn(DL)
21 if (|D| < lb) ∨ (CL(D1) = CL(D2) then
22 return D, CL
23 else
24 UCB(RDi) = F(RDi) + α

√
log |RD|
|RDi

| : i = 1, 2

25 RD∗ = argmax
RDi

UCB(RDi
); D∗ =

(RD∗ ,F(RD∗))
26 CL← CL ∪ CL
27 return NarrowDown(D∗, CL)

28 Function NewPoints(N,CL):
29 R← ∅
30 while |R| < N do
31 R = RandomPoint;
32 R← R ∪R
33 foreach CLi ∈ CL do
34 if CLi(R) = −1 then
35 R← R \R
36 break

37 return R

coefficients and redefines new Linear transformations that
are adapted to the altered shapes of coefficients or inputs
as illustrated by the red boxes in Fig. 5. Modifications to
these operations are facilitated using ‘torch.fx‘ [36], accom-
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Fig. 5: Multi-node IR conversion tool

modating the new coefficient dimensions. Our own customized
multi-node communication operations such as GatherByIndex,
AllReduceByIndex, AllConcatByIndex, etc., are integrated af-
ter the modified operation (see red box ”Linear” in the Fig 5)
to ensure the calculation correctness. To enhance the tool’s ver-
satility, we implement these communication operations in C++
such that they can be integrated into other inference engines.
We have also developed a compatible interface that enables
the conversion of this multi-node IR into formats supported by
various other inference engines (e.g., NCNN [37], IREE, etc.).
Its compatibility and ease of integration with these existing
edge frameworks enhances both usability and scalability. Addi-
tionally, a robust fault handler is incorporated to ensure reliable
execution during distributed inference, providing resilience
against potential device failures or network disruptions. An
inner timeout mechanism governed by periodic heartbeats [38]
can prevent the distributed system from deadlocks that might
arise due to device failures or other operational anomalies.

VI. EVALUATION OF OUR EASTER METHODOLOGY

In this section, we evaluate our EASTER methodology to
demonstrate its efficacy on typical transformer models and
showcase resilient models’ performance. We describe our
experimental setup followed by presenting and discussing
some experimental results obtained during automated DSE
experiments, we have performed using Algorithm 1 and the
end-to-end tool introduced in Section V-C.

A. Experimental Setup

To evaluate EASTER, we perform experiments with three
typical transformer models, namely ViT-16 [12], GPT2-
Large [14], and Vicuna-7B [4] representing three different
kinds of transformer architectures, taken from the Huggingface
open-source community [34]. Given their widespread use in
image and text tasks, and their diversity in transformer blocks,
operation counts, and memory requirements, we consider
these transformers to be representative targets to demonstrate
the merits of our methodology. We compare the searching
efficiency of our Algorithm 1 on these models with two state-
of-the-art multi-objective optimization algorithms, namely the
NSGA-II Genetic Algorithm [29] and MOTPE [28]. The task
of our DSE experiments is to simultaneously minimize the
maximum memory usage per device and the model perfor-
mance score (loss) under severe device failures. To ensure
a fair comparison with NSGA-II and MOTPE, we set the
maximum number of search iterations to 2500 for each DSE
experiment. The searching time for the three methods are

quite similar, with the majority of time being consumed by
the objective evaluations. For the first objective (maximum
memory usage per device), we normalize its value range to
[0, 1] by dividing the memory usage mj(Ri) by the total
memory usage on a single device Dj . Lower values indicate
reduced replication and more balanced model distribution. To
evaluate the second objective (performance score S) of the
models, we employ distinct techniques tailored to each model’s
specific domain. For the ViT-16 model, we measure the Top-
1 error score on the ImageNet-1k dataset for image tasks. A
lower error represents higher image classification capabilities,
and the lower the error the better. For the two LLMs (GPT2-
Large and Vicuna-7B), we utilize zero-shot perplexity (PPL)
analysis on the WikiText2 and PTB datasets to assess the mod-
els’ language understanding and generalization capabilities. A
lower PPL score, especially in a zero-shot context, means a
better ability to handle unseen data.

To validate the performance of Pareto-optimal points from
the DSE process using Algorithm 1, we apply the split
fractions Ri, found by the algorithm, to the two LLMs by
distributing each LLM across four devices, i.e., four GPU
units in our experiments. We disable three GPU units to
simulate severe device failure scenarios in order to assess the
models’ robustness. We apply a separate and more diverse
collection of reasoning and generative datasets [39] to test the
models’ performance (robustness) against severe failures in
practical reasoning tasks, namely ARC-easy, ARC-challenge,
WinoGrande, HellaSwag, BoolQ, PIQA, and OpenbookQA.
These diverse datasets provide a comprehensive platform for
testing the models’ reasoning and generative capabilities.

To evaluate the resilience of our methods under varying
failure conditions, we deployed three models across four edge
devices and examined model performance in scenarios where
1 (1D-Fail), 2 (2D-Fail), or 3 devices (3D-Fail) experience
failures. We take the state-of-art layer partitioning method
(LP) [7] from the domain of distributed CNN inference as
inspiration to implement a similar method for linear operations
within encoder/decoder blocks of transformer models. Subse-
quently, we benchmark this LP-inspired partitioning method,
which does not utilize the notion of neuron importance, against
our approach in terms of robustness. For the three transformer
models, we assess the robustness of our method using different
sets of R values for the partial split strategy, allowing for a
comprehensive comparison of how well each method retains
model performance against device failures.

To actually test distributed inference for transformers across
multiple edge devices, our experimental edge test-bed consists
of 8 NVIDIA Jetson Xavier NX devices connected over a 1000
Mbps network router. Each device has an embedded MPSoC
featuring a 6-core Carmel ARMv8.2 CPU, an NVIDIA Volta
GPU with 384 CUDA cores, 48 Tensor cores, and 8 GB of
LPDDR4x memory. We demonstrate the functionality of our
multi-node implementation, generated by our end-to-end tool
introduced in Section V-C, and the advantages of distributing
large transformer models over multiple edge devices/boards
by conducting a series of benchmarks on the aforementioned
edge test-bed using the three representative transformer models
ViT-16, GPT2-Large, and Vicuna-7B under four different
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Fig. 6: Comparison of DSE results delivered by EASTER, NSGA-II, and MOTPE for ViT-16, GPT2-Large, and Vicuna-7B

TABLE I: Execution Time of Main Steps in EASTER

Importance Calculation Evaluation Time Per DSE Trial

CPU (s) GPU (s) CPU (s) GPU (s)

ViT-16 200.90 4.15 2480.30 156.73

GPT2-Large 43.35 4.70 35.48 4.65

Vicuna-7B 430.42 8.44 48.742 7.82

distributed system configurations: single device, two devices,
four devices, and eight devices. In all experiments, transformer
blocks were evenly distributed across the devices. We mainly
evaluate two metrics: overall end-to-end inference latency and
memory reduction with different distribution configurations.

The end-to-end latency (T ) of a model is measured from the
time a user input is received until the time the complete output
is generated. For the ViT-16 model, user inputs are images
with dimensions (3x224x224), whereas for the two LLMs
(GPT2-Large and Vicuna-7B), user inputs are sequences of
128 tokens. The reported latency is computed by averaging
time T for 100 user inputs. To measure T and break it down to
computation time (Tcal) and communication/synchronization
overhead (Tcomm) in our distributed inference execution, we
employ a specific adjustment of the timeout parameter values
in our multi-node communication operations introduced in
Section V-C. More specifically, setting the timeout values
to zero permits each device to function independently, i.e.,
without inter-device data communication and synchronization
delays, thereby enabling the measurement of the pure com-
putation time Tcal. Altering the timeout values to one second
activates inter-device communication and synchronization ac-
tions besides the pure computations, thereby facilitating the
measurement of the total end-to-end inference latency T . We
then determine the communication/synchronizaton overhead
Tcomm by calculating the difference T − Tcal, thereby effec-
tively quantifying the additional time needed for inter-device
data communication and synchronization.

To determine the aforementioned memory reduction, we
continuously monitor the peak memory usage of each device in
our edge test-bed during runtime for every distributed system
configuration.

B. Execution Time Evaluation of the EASTER Method

We evaluate the execution time of the main steps of our
EASTER method on two different hardware platforms, namely

a platform based on an Intel(R) Core(TM) i9-13900K CPU and
a platform based on an NVIDIA H100 SXM5 GPU. For each
transformer model, we measure the time required to calculate
the importance scores of connections within the model as well
as the time to evaluate a single design point during the DSE
process.

The importance score calculation is performed only once.
Illustrating this calculation for the ViT-16 model, we randomly
take 50 samples from the ImageNet-1K training dataset where
each sample is a batch of 128 random images. Using each
sample and the ViT-16 model, we apply Equation 1 to calculate
an importance value for every connection within the model,
i.e., we calculate 50 values per connection in total. Then, we
compute the average of these 50 values for each connection
and use this average value as the importance score of the
connection in our DSE process. For the GPT2-Large and
Vicuna-7B transformer models, the importance scores are
calculated similarly through 50 random samples from the
language datasets. The time required to execute the importance
score calculation for the three transformer models is shown
in Columns 2 and 3 of Table I. For example, on the GPU-
based platform, the complete set of importance scores of all
connections in the ViT-16 model is computed in just 4.15
seconds. Computing the same set of scores on the CPU-
based platform takes 200.9 seconds. In Columns 4 and 5 of
Table I, we provide the evaluation time for a single design
point in our DSE process. For example, on the CPU-based
platform, evaluating the Top-1 accuracy of the ViT-16 model
takes approximately one hour to complete. Conversely, the
powerful GPU platform validates the Top-1 accuracy for a
specific design point in under 3 minutes.

C. DSE Results and Comparison

We have performed three distinct DSE experiments for the
ViT-16, GPT2-Large, and Vicuna-7B models by employing
our EASTER methodology and Algorithm 1 along with the
NSGA-II and MOTPE algorithms for comparison purposes.
The Pareto-optimal points found by each of these three algo-
rithms are separately plotted in Fig. 6. The yellow triangles
represent the points found by MOTPE, the blue crosses
represent NSGA-II points, and the red dots correspond to
points found by our Algorithm 1 within EASTER. The x-axis
in Fig. 6(a), (b), and (c) represents the normalized maximum
memory usage per device explained in Section VI-A. The y-
axis represents the Top-1 error for ViT-16 and the PPL for



10

TABLE II: Zero-shot performance (max. per-device memory usage and accuracy-%) with three out of four edge devices failing

Models Memory (reduction ratio) ARC-c ARC-e WinoGrande HellaSwag OBQA PIQA BoolQ

Vicuna-7B (A) 9.24 GB(-65.80%) 21.93 33.71 52.25 29.36 17.00 57.73 62.14
Vicuna-7B (B) 13.06 GB(-51.60%) 27.13 44.49 57.14 34.39 20.60 64.58 62.17
Vicuna-7B (C) 20.65 GB(-23.50%) 38.31 67.97 67.56 50.40 28.20 72.96 79.05

Vicuna-7B (R=1) 27.00 GB(baseline) 43.17 75.63 69.46 56.48 33.00 77.31 80.98
GPT2-Large (A) 1.08 GB/(-66.20%) 19.54 29.88 50.12 26.41 12.60 55.28 54.22
GPT2-Large (B) 1.72 GB/(-46.10%) 19.54 33.96 49.49 28.39 11.60 59.85 60.92
GPT2-Large (C) 2.42 GB/(-24.50%) 18.86 44.61 53.35 31.89 18.00 65.45 62.05

GPT2-Large (R=1) 3.20 GB/(baseline) 21.67 53.16 55.33 36.40 19.40 70.35 60.49

GPT2-Large and Vicuna-7B. The rationale behind using the
Top-1 error and PPL is explained in Section VI-A.

To quantitatively assess the effectiveness of EASTER,
NSGA-II, and MOTPE, as well as to compare them, we
calculate the well-known and widely-used hypervolume metric
(hv), based on the Pareto-optimal points plotted in Fig. 6, that
serves as an indicator of the search space coverage in DSE.
As shown in Fig. 6, our EASTER methodology and algorithm
demonstrate superior performance because of the higher hy-
pervolume value hv, indicating more effective search space
coverage of EASTER compared to NSGA-II and MOTPE.
For example, the Pareto-optimal points found by EASTER
for Vicuna-7B and shown in Fig. 6(c) dominate those found
by NSGA-II and MOTPE, resulting in higher hypervolume
value of 3.24 and highlighting the EASTER effectiveness in
identifying optimal solutions.

As explained in Section VI-A, we apply the split fractions
Ri, found by Algorithm 1, to the models by distributing each
model across four devices. Moreover, we disable three of
the four devices in order to simulate severe device failure
scenarios to assess the models’ robustness. The results for the
LLMs (GPT2-Large and Vicuna-7B) are shown in Table II.

The first column specifies three different Ri settings for each
of the two LLMs together with the baseline setting, named
R=1. The baseline setting R=1 for each LLM is the original
model fully replicated over the four devices with no loss
of model weights/connections due to failures. Note that the
evaluation metrics associated with settings A, B, and C are also
shown in Fig. 6(b) and (c) - see the red dots marked with A,
B and C. The second column in Table II shows the maximum
memory usage per device under the aforementioned settings.
The remaining columns show the evaluation accuracy (in %)
of the operational part of the model, i.e. the part still running
on the non-failing device, across several zero-shot open-ended
tasks on widely recognized common sense reasoning datasets
[39]: ARC-e(asy), ARC-c(hallenge), WinoGrande, HellaSwag,
BoolQ, PIQA, and OpenBookQA.

Analyzing the results in the second column of Table II, we
observe that the memory reduction for setting C with R ≈ 0.75
compared to the baseline clearly shows that the accuracy loss
is relatively small. The memory reduction for settings A and B
in this worst-case scenario (3D-Fail) confirms the efficacy of
our EASTER methodology. For example, the Vicuna-7B model
experiences a significant memory reduction of up to 65.80%
(from 27.00 GB to 9.24 GB), but still retains competitive
accuracy compared to the original GPT2-Large model across
several evaluated tasks like WinoGrande and BoolQ. Although

the memory reduction comes with a certain accuracy trade-
off, especially for tasks like ARC-c, ARC-e, etc., this remains
within an acceptable range given the significant benefits of
reduced memory demands and improved computational effi-
ciency across multiple constrained devices. The GPT2-Large
model in setting B with a memory reduction of 66.20% shows
a relatively minor performance decline in terms of accuracy
for datasets like ARC-c, WinoGrande and BoolQ. Here, ARC-
e task shows the highest accuracy sensitivity to memory
reduction, i.e., a decrease of 23.28% in accuracy. However, it
is important to note that our DSE methodology and algorithm
prioritize the optimization for general PPL scores, rather than
tailoring the search to enhance specific task scores. To further
improve the accuracy of different datasets, our DSE method
can be applied to search for optimal design points targeting
the accuracy separately for each dataset. This approach allows
for maintaining robust performance while ensuring minimal
accuracy drop for individual datasets. However, it is important
to recognize that this will result in different optimal design
points (different sets of R values) for each dataset.

Overall, both models demonstrate a notable degree of per-
formance resilience under extreme failure scenarios, indicating
their potential for effective deployment in environments with
memory constraints, such as edge devices.

D. Robustness Verification Against Varying Failures

To deepen our understanding of EASTER’s robustness, we
compare our robustness-aware method against the LP-inspired
method which does not utilize the notion of the importance of
neurons. To maintain a fair comparison, we select the settings
marked as A, B, and C in Fig. 6 to split the transformer models
across four devices according to the R values associated with
the three marked settings by utilizing the two methods.

As depicted in Fig. 7, the x-axis categorizes the failure
scenarios (1D-Fail, 2D-Fail, or 3D-Fail), whereas the y-axis
quantifies model performance, measured by the Top-1 ac-
curacy on the ImageNet-1k validation dataset or perplexity
(PPL) value. Please note the logarithmic scale for the PPL
scores. The graphical representation uses blue bars to indicate
the performance of the traditional layer-wise partitioning (LP-
inspired) method in the face of device failures, while orange
bars illustrate the performance of our EASTER method.

Consider Fig. 7(a) and the 2D-Fail scenario. When the
ViT-16 model is split with R = 0.33, the Top-1 error of
the LP-inspired method is as high as 94.742%, in contrast
to our method, which significantly lowers the Top-1 error to
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Fig. 7: Robustness comparison of EASTER with Layer-wise Partitioning [7] across four devices
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Fig. 8: Inference Latency, Communication Time and Memory Usage for Different Models Across Device Configurations

54.626%. By increasing the R value from 0.33 to 0.53, we
observe a further reduction of the Top-1 error to 31.238%.
Increasing the R value further to 0.77 results in the Top-
1 error dropping to 20.614%, which is very close to the
baseline Top-1 error of 18.572%. Note that our method can
achieve this baseline error if we set R to 1.0 (as shown in
Fig. 7) because this setting ”forces” our method to perform
full replication of neurons, i.e., no accuracy loss is encountered
due to device failures. Similarly, with the Vicuna7B model, the
logarithmic value of perplexity (PPL) observed using the LP-
inspired method under a 2D-Fail condition is 8.29. In contrast,
our method achieves a log(PPL) of 5.50 with an R value of
0.34. Further increasing the R value to 0.76 results in an even
lower log(PPL) which is very close to the baseline (R = 1.0).

These results clearly demonstrate that our EASTER method
significantly outperforms the LP-inspired method in main-
taining model performance against device failures. Moreover,
increasing the R value, which dictates the degree of neuron
replication, can further improve model robustness.

E. Distributed Inference

In this section, we evaluate our end-to-end tool that fa-
cilitates automated model partitioning and its deployment on
distributed edge devices. Our tool is specifically implemented
to convert standard PyTorch transformer models into optimized
multi-node implementations following our EASTER method-
ology, making the models suitable for efficient distributed
deployment on edge devices. We present empirical results,
obtained by using our edge test-bed described in Section VI-A,
to demonstrate the advantages of EASTER in terms of overall
end-to-end inference latency and maximum memory usage

per device in a distributed system running transformer mod-
els. Here, in all experiments, transformer blocks are evenly
distributed across the devices. In Fig. 8, the light blue bars
represent the computation time Tcal of the distributed infer-
ence process, the grey-blue bars indicate the communication
overhead Tcomm, whereas the orange bars in Fig. 8 denote
the maximum memory usage per device. The data is presented
for different numbers of collaborating edge devices across the
three models.

As shown in Fig. 8, in most cases, the overall end-to-
end inference latency improves when increasing the number
of edge devices. As the number of devices increases, in
all cases, computation time Tcal (light blue bars) reduces
correspondingly. Only in the case of ViT-16 (Fig. 8 (a)), this
advantage is counterbalanced by a rise in the communica-
tion overhead (gray bars), which, in an eight-device setup,
surpasses the computational savings, leading to an overall
increase in the inference latency. Conversely, for GPT2-Large,
the communication overhead, while increasing with more
devices, still remains a smaller fraction compared to the
computation time. This results in a near-linear acceleration,
with an overall inference latency decrease from 58.00 seconds
using one device to 7.62 seconds using eight devices. The
increase in communication overhead therefore seems more
pronounced in smaller transformer models like ViT-16, that
represents a fundamental trade-off between computation and
communication.

The results shown in Fig. 8 clearly indicate that with an
increasing number of devices (from 1 to 8 devices), there
also is a noticeable decrease in memory usage per device.
For instance, the maximum on-device memory usage for ViT-
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16 decreases from 193.8 MB in a single-device configuration
to 48.1 MB in an eight-device configuration. Similarly, GPT2-
Large exhibits a significant memory reduction from 3.6 GB on
a single device to 556.3 MB across eight devices. A significant
reduction in memory usage per device from 27.6 GB on
a single-device configuration to 4.6 GB on an eight-device
configuration is observed for Vicuna-7B as shown in Fig. 8(c).
Such reduction enables the models to run the complete float32
version at the edge without the need for extra swap space
or model quantization, highlighting EASTER’s effectiveness in
memory savings. Finally, if the reduction in computation time
due to distributed inference is outweighed by the increase in
communication time, the overall end-to-end latency increases.
We adjust timeout thresholds in the system to manage the
trade-off between computation and communication time. Our
timeout mechanism can ensure that if synchronization among
distributed devices does not conclude within the set period,
the system proceeds without further delay, thus maintaining
timely execution. This approach not only mitigates potential
increases in communication time but also safeguards against
the detrimental effects of prolonged synchronization wait time.

The above findings validate the efficiency of EASTER in
optimizing memory usage per device in distributed transformer
inference, particularly in edge computing environments where
resource constraints are a critical factor.

VII. CONCLUSIONS

This paper introduces EASTER, a novel method designed
to robustly partition transformer models across edge devices,
effectively addressing the challenge of potential device failures
at the Edge. The EASTER method navigates the vast design
space of splitting strategies by learning the expectation of dif-
ferent design sub-spaces. It also outperforms traditional state-
of-the-art DSE methods in searching efficiency for our distri-
bution problem. Through extensive experimentation, EASTER
has been proven to identify Pareto solutions within a limited
number of experimental trials efficiently. Utilizing our devel-
oped end-to-end tool, we have the capability to evaluate the
distributed implementation on actual hardware boards, which
allows us to confirm the advantages in memory usage and
inference latency that distributed inference brings. Moreover,
our findings prove that partial splitting effectively enhances
model robustness in the face of device failures. This approach
not only minimizes memory consumption on each device but
also has the potential to reduce overall end-to-end latency,
presenting a valuable opportunity for deploying large-scale
transformer models within edge computing environments.
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