
A Mixed-level Co-simulation Method for System-level Design Space Exploration

Mark Thompson Andy D. Pimentel Simon Polstra Cagkan Erbas

Informatics Institute, University of Amsterdam

Email: {mthompsn,andy,spolstra,cagkan}@science.uva.nl

Abstract

The Sesame modeling and simulation framework aims at

efficient system-level design space exploration of embedded

multimedia systems. A primary objective of Sesame is the

exploration at multiple levels of abstraction. As such, it

targets gradual refinement of its (initially abstract) archi-

tecture performance models while maintaining architecture-

independent application specifications. In this paper, we

present a mixed-level co-simulation method, called trace cal-

ibration, for incorporating external simulators into Sesame’s

abstract system-level performance models. We show that

trace calibration only requires minor modification of the in-

corporated simulators and that performance overheads due

to co-simulation are minimal. Also, we show that trace cali-

bration transparantly supports distributed co-simulation, al-

lowing for effectively reducing the system-level simulation

slowdown due to the incorporation of lower-level simulators.

1 Introduction

Early design space exploration is becoming a crucial

ingredient of system-level design of advanced embedded

systems. In recent years, a fair number of system-level

simulation-based exploration environments have been pro-

posed, like MetroPolis [6], MESH [5], various SystemC-

based environments (e.g., [14]), and our own Sesame [13]

framework. The Sesame modeling and simulation frame-

work aims at efficient system-level design space exploration

of embedded multimedia systems, allowing rapid perfor-

mance evaluation of different architecture designs, applica-

tion to architecture mappings, and hardware/software parti-

tionings. Moreover, it does so at multiple levels of abstrac-

tion and for a wide range of multimedia applications. Key to

this flexibility is the separation of application and architec-

ture models, together with an explicit mapping step to map

an application model onto an architecture model.

A primary objective of Sesame is the support for archi-

tectural exploration at multiple levels of abstraction. To this

end, Sesame targets gradual refinement of its architecture

performance models while maintaining high-level and ar-

chitecture independent application models. This allows for

re-using application models in the exploration cycle. Af-

ter architectural exploration with Sesame’s abstract architec-

ture performance models and the design decisions that re-

sult from this, the next step would be to gradually incorpo-

rate more detailed simulators for specific architecture com-

ponents into the system-level model. This means that some

parts of the system-level architecture model remain operat-

ing at Sesame’s high level of abstraction while other parts

are simulated by (external) lower-level simulators, thereby

yielding a mixed-level co-simulation.

In this paper, we present an efficient co-simulation tech-

nique, called trace calibration, for incorporating external

simulators into Sesame’s abstract system-level performance

models. We will show that trace calibration only requires

minor modification of the incorporated simulators and that

performance overheads due to mixed-level co-simulation

are minimal. Also, we will demonstrate that distributed

co-simulation – which is straightforward and transparent

in trace calibration – can effectively reduce the simulation

slowdown due to the incorporated lower-level simulators.

In the next section, we briefly describe the Sesame mod-

eling and simulation framework. Section 3 provides some

background on the field of mixed-level co-simulation and

explains our contribution to this field in the context of the

Sesame framework. In Section 4, we describe the trace cal-

ibration technique. Section 5 presents a number of experi-

ments in which co-simulation efficiency is measured when

incorporating the SimpleScalar instruction-set simulator [4]

into Sesame. Finally, Section 6 concludes the paper.

2 The Sesame environment

To facilitate flexible performance analysis of embedded

(media) systems architectures, the Sesame modeling and

simulation environment [13] uses separate application and

architecture models. An application model describes the

functional behavior of an application while the architecture

model defines architecture resources and captures their per-

formance constraints. After explicitly mapping an applica-

tion model onto an architecture model, they are co-simulated

via trace-driven simulation. This allows for evaluation of

VLE

DCT

RGB

Quant

YUV
to

P1

MEM

BUS

P4P0 P3

DMUX

Quality
Control

Kahn Application
model

Mapping
layer

Architecture
model

OP cycles

X

Y 150

1500Z

750

trace
Event

= Mapping

Video−in

P2

Video−
out

Figure 1. Modeling an Motion-JPEG application on

an MP-SoC architecture.

the system performance of a particular application, mapping,

and underlying architecture. Essential in this methodology

is that an application model is independent from architec-

tural specifics and assumptions on hardware/software parti-

tioning. As a result, a single application model can be used

to exercise different hardware/software partitionings and can

be mapped onto a range of architecture models, possibly rep-

resenting different architecture designs or modeling the same

architecture design at various levels of abstraction. The lay-

ered infrastructure of Sesame is illustrated in Figure 1.

For application modeling, Sesame uses the Kahn Process

Network (KPN) model of computation [9], which fits well

to the multimedia application domain. In a KPN, paral-

lel processes communicate with each other via unbounded

FIFO channels, where reading from these channels is block-

ing and writing is non-blocking. The computational behav-

ior of an application is captured by instrumenting the code of

each Kahn process with annotations that describe the appli-

cation’s computational actions. The reading from and writ-

ing to Kahn channels represent the communication behav-

ior of a process within the application model. By executing

the Kahn model, each process records its actions in order to

generate its own trace of application events, which is nec-

essary for driving an architecture model. These application

events typically are coarse grained, such as Execute(DCT) or

Read(channel id,pixel-block).

An architecture model simulates the performance conse-

quences of the computation and communication events gen-

erated by an application model. To model the timing conse-

quences of application events, each architecture model com-

ponent is parameterized with a table of operation latencies

(illustrated for Processor 1 in Figure 1). The table entries

could, for example, specify the latency of an Execute(DCT)

event, or the latency of a memory access in the case of a

memory component. The latency values are usually initial-

ized using performance numbers from literature, and can be

calibrated using measurements on available hardware or via

lower-level simulations of architecture components.

To bind application tasks to resources in the architec-

ture model, Sesame provides an intermediate mapping layer.

This layer has three purposes [13]. First, it controls the map-

ping of Kahn processes (i.e. their event traces) onto archi-

tecture model components by dispatching application events

to the correct architecture model component. The mapping

also includes the mapping of Kahn channels onto communi-

cation resources in the architecture model. Second, the event

dispatch mechanism in the mapping layer guarantees that no

communication deadlocks occur in the case multiple applica-

tion tasks are mapped onto a single architecture model com-

ponent. In that case, the dispatch mechanism also provides

various application event scheduling strategies. Finally, the

mapping layer is capable of dynamically transforming appli-

cation events into (lower-level) architecture events in order

to facilitate flexible refinement of architecture models [13].

3 Background and related work

As mentioned before, a primary objective of Sesame is the

support for gradual refinement of architecture performance

models. It should, for example, be possible to refine only

parts of an architecture model while leaving other parts at

the higher abstraction level. The resulting mixed-level sim-

ulations enable more detailed performance evaluation of a

specific architecture component within a system-level con-

text. They therefore avoid the need for building a complete

detailed architecture model during the early design stages.

Moreover, mixed-level simulations do not suffer from deteri-

orated system evaluation efficiency caused by unnecessarily

refined parts of the architecture model.

In prior work, we have studied mechanisms for refining

Sesame’s architecture models by incorporating dataflow ac-

tors in the mapping layer that allow for run-time transforma-

tion of application events into (more detailed) architecture

events [13]. This event transformation technique enables ar-

chitectural exploration at different levels of abstraction while

maintaining high-level and architecture-independent appli-

cation models. In this paper, the next step of model refine-

ment will be addressed: the gradual incorporation of external

lower-level simulation models into the Sesame environment.

This yields mixed-level co-simulations consisting of abstract

model components as well as lower-level simulators.

In the past decade, extensive work has been performed

in the field of mixed-level HW/SW co-simulation, mainly

from the viewpoint of co-verification. This has resulted in a

multitude of academic and commercial co-simulation frame-

works (e.g., [2, 1, 3, 8, 12, 11]). Such frameworks typi-

cally combine behavioral models, Instruction Set Simulators

(ISSs), bus-functional models or HDL models into a single

co-simulation. These mixed-level co-simulations generally

need to solve two important problems: i) making the co-

simulation functionally correct by translating any differences

in data and control granularity between simulation com-

ponents, and ii) keeping the global timing correct by syn-

chronizing the simulator components and overcoming dif-

ferences in timing granularity. The functionality issue is usu-

ally resolved using wrappers, while global timing is typically

controlled using either a parallel discrete-event simulation

method [7] or a centralized simulation backbone. With re-

spect to the latter, SystemC is nowadays a popular backbone

for co-simulations [12, 11]. Synchronization between simu-

lation components usually takes place using the finest timing

granularity (i.e. lowest abstraction level) as the greatest com-

mon denominator between components. E.g., system-level

co-simulations with cycle-accurate components are typically

synchronized at cycle granularity, causing high performance

overheads. Besides the performance overheads caused by

wrappers and time synchronization, the IPC mechanisms of-

ten used for communication between the co-simulation com-

ponents may also severely limit performance [10], especially

when synchronizing at cycle granularity.

The next section presents a co-simulation technique,

called trace calibration, that takes the opposite direction with

respect to maintaining global timing. Instead of synchro-

nizing simulation components at the finest timing granular-

ity, it maintains correct global timing at the highest pos-

sible level of abstraction, being the level of Sesame’s ab-

stract architecture model components. As a result, the per-

formance overhead caused by wrappers and time synchro-

nizations is reduced to a minimum. Trace calibration shows

some similarities with the recently proposed trace-driven co-

simulation technique in [10]. However, the work of [10] op-

erates at a lower abstraction level and is applied in a clas-

sical HW/SW co-simulation context. Consequently, its ap-

plicability to early design space exploration (e.g., rapidly as-

sessing different HW/SW partitionings) is more limited. In

Sesame, external simulators are gradually incorporated into

an abstract application/architecture co-simulation, and this

is done purely from the perspective of achieving effective

system-level design space exploration. Eventually, the in-

corporation of more and more external simulators could lead

to a classical HW/SW co-simulation. Moreover, in contrast

to [10], we address distributed co-simulation to reduce the

slowdowns caused by incorporating external simulators.

4 Trace calibration

As its name already suggests, the trace calibration tech-

nique accomplishes mixed-level co-simulation by means of

dynamic calibration of the event traces that are generated by

an application model. Rather than using fixed values in the

−_−

B’

API

ISS

Calibrated
trace

Mapping layer

Architecture model

Kahn
process C

Kahn Kahn
process A process B

Figure 2. Incorporating an instruction set simula-

tor using trace calibration.

latency tables of processing components in Sesame’s archi-

tecture models (see Section 2), trace calibration dynamically

computes – using lower-level simulators – the latency val-

ues of computational tasks. This is illustrated in Figure 2,

where an instruction set simulator (ISS) is used for calibrat-

ing the trace from application process B. We note that Fig-

ure 2 focuses on the application model level, and only ab-

stractly depicts the mapping and architecture model levels.

Also, throughout the remainder of this paper, we take the ex-

ample of incorporating an ISS into Sesame. However, other

types of simulation models (like RTL models) can also be

used with trace calibration.

In the example of Figure 2, the code from application

process B is executed both in the Kahn application model

and on the ISS (represented as B’ in Figure 2). This al-

lows us to keep the application model to a large extent un-

altered, where B’ runs as a ”shadow process” of B to per-

form code fragment measurements. The two executions of

B are synchronized by means of data exchanges using API

calls, which are implemented with an underlying IPC mech-

anism. These data exchanges, which will be explained fur-

ther on, only occur when the calibrated Kahn process per-

forms communication. The simulator that performs the trace

calibration (the ISS in Figure 2) measures the cycle counts

between these (Kahn) communications. Subsequently, in-

stead of generating fixed computational execution events,

like Execute(DCT), the Kahn application process generates

Execute(∆) events, where ∆ equals to the actual cycle count

taken by, for example, a DCT computation (or any other

computation in between communications). Note that trace

calibration is not restricted to the Kahn model of computa-

tion: it is equally applicable to other models of computation.

Compared to the original static operation-latency table

method (see Section 2), a calibrated trace can more accu-

rately represent the computational behavior of an architec-

ture component. The system-level effects of this improved

accuracy can subsequently be measured within Sesame’s ar-

chitecture performance model which accounts for the global

timing consequences of all (calibrated as well as non-

calibrated) event traces generated by the application model.

Efforts to quantify the improved accuracy, should however

be performed with great care since their outcome heavily de-

pends on the quality (i.e., accuracy) of the initial abstract

performance models. This issue will be addressed briefly in

Section 5. Moreover, trace calibration allows for gather-

ing detailed execution statistics of the calibrated Kahn pro-

cess(es). In the example of Figure 2, statistics on for example

pipeline stalls and cache behavior for process B can be re-

trieved from the ISS. Also, Sesame’s dataflow-based event

refinement methodology [13] can still be applied to cali-

brated traces to, e.g., perform communication refinement,

i.e., refine the Read and Write application events.

The increased accuracy comes however at the cost of

higher execution times due to the inclusion of (slow) lower-

level simulators. But, as will be demonstrated in the next sec-

tion, these performance overheads due to wrappers (i.e., data

and control exchange between simulation components) and

time synchronizations are very small in our trace calibration

technique. This is because time synchronization occurs at the

highest level of abstraction, namely within Sesame’s trace-

driven architecture model, and data and control exchanges

via our API only take place at (Kahn) communication points.

In some occasions, it is even possible to eliminate almost all

overheads related to trace calibration. For example, if no ar-

chitectural exploration is performed on the architecture com-

ponents that are simulated by the lower-level simulators, then

the (calibrated and non-calibrated) traces could be generated

once, storing them on disk, and can be re-used in the explo-

ration process of the remaining parts of the system without

rerunning the lower-level simulators.

To explain the details behind the trace calibration tech-

nique, consider Figure 3. This figure renders the dashed box

from Figure 2 in more detail. The code in the Kahn appli-

cation processes typically consists of alternating periods of

communication and computation, as illustrated by the small

code fragment for process B in Figure 3. In this fragment,

some data is read from Kahn channel c in, followed by

some computational code (which may also be discarded, as

will be explained later), after which the resulting data is writ-

ten to Kahn channel c out. The two boxes on the right of

this code fragment indicate what the run-time system of the

application model executes when it encounters the Kahn read

and write communications. Note that these run-time system

actions are automatic and transparent: the programmer does

not need to add or change code. First, the run-time system

queries the ISS via the API, using API get cycles(), to

retrieve the current cycle count from the ISS. As will also be

described later on, the ISS provides this cycle information by

executing a matching API put cycles() call. The run-

time system then generates an Execute(∆) application event

for the architecture model, where ∆ = ncur−nprev , i.e., ∆

Run−time system

Execute()

Execute()

gen_Execute();

n = API_get_cycles();

gen_Read(c_in,...);

API_write(B’, data, ...);

gen_Execute();

n = API_get_cycles();

gen_Write(c_out,...);

data = API_read(B’, ...);

chan_write(c_out, data, ...);

data = chan_read(c_in,...);

∆

∆

−_−

ε

Read

Write

∆

∆

code |

[...]

API_put_cycles();

API_put_cycles();

code

[...]

write(c_out,...);
[...]

data = read(c_in,...);

data = API_read(B,...);

[...]

API_write(B,...);

B’

ISS Code timed by
instruction set

simulator

API

Calibrated

trace Process B

Figure 3. Interaction between application model

and instruction set simulator.

equals to the time between the previous cycle query and the

current one. Hence, the Execute event models the time that

has past since the previous communication. Subsequently,

a Read application event is generated for the architecture

model. Hereafter, the actual read from Kahn channel c in

is performed. Finally, the data that has been read is copied,

using API write, to process B’ running on the ISS.

Figure 3 also shows how the ISS side (process B’) is han-

dled. First, it sends the current cycle count of the ISS to

the application model (API put cycles) to service the

API get cycles() query from process B. Then, it reads

the data that was sent by process B, i.e., the API read from

process B’ matches up with the API write from process

B. After receiving the data, process B’ executes the compu-

tational code shown in grey in Figure 3. This computational

code is finished by a communication (a write to c out),

which again causes a cycle count query by the run-time sys-

tem of the application model. The generated Execute(∆)

application event that follows, represents a detailed timing

of the computational code on the ISS. Figure 3 also shows

that process B’ on the ISS first writes back the resulting data

to process B in the application model before the latter for-

wards this data to Kahn channel c out. This allows for

discarding the computational code between the communi-

cations in process B in the application model. In that case,

only process B’ simulates computational functionality, while

process B only communicates data with its neighboring ap-

plication tasks. From the above, it should be clear that the

API get cycles and API read calls are blocking.

With trace calibration, it is relatively easy to incor-

porate any external low-level simulator into Sesame’s

system-level architecture models. Only three API func-

tions need to be introduced in the low-level simulator

or in the code that runs on it (in the case of an ISS):

API put cycles(), API read(), and API write().

Here, API put cycles() is the only function that needs

a hook into the simulator to retrieve its cycle count. Most

simulators provide such a hook, otherwise it can be created

by a small modification to the simulator (as will be briefly

explained in the next section). Using the API calls, the code

to run on an ISS simulator (B’) can be trivially derived from

the application code (B). Therefore the total coding effort to

enable trace calibration is small.

Moreover, for trace calibration, the execution of the

lower-level simulators is location independent. That is,

it is straightforward and completely transparent to place

the lower-level simulators on different hosts, yielding dis-

tributed co-simulation. To this end, the implementation of

the API between application process and lower-level simula-

tor simply features different communication adaptors (e.g.,

shared memory or named pipes for local communication,

and sockets for remote communication). As will be shown in

the next section, the distributed co-simulation support con-

siderably improves the scalability of the co-simulations in

the case multiple lower-level simulators are incorporated.

As a side note, we need to mention that a source of in-

accuracy, of which a similar situation is reported in [10],

occurs when mapping multiple application tasks to a single

(programmable) architecture component. In this situation,

the traces from these application tasks would be calibrated

by different instances of an ISS. The scheduling of the (cal-

ibrated) application events from the different traces is sub-

sequently performed at Sesame’s mapping layer. This ap-

proach has two major advantages. First, there is no need for

running an OS-scheduler on an ISS since ISSs always exe-

cute a single task. Second, the ISS instances, representing a

single processor in the architecture, can be executed in par-

allel on different hosts! However, since context-switching is

not modeled by the ISSs, the simulated cache (performance)

behavior in this situation may be inaccurate.

5 Experiments

To demonstrate that the performance overheads of trace

calibration are low, we present a case study with a Motion-

JPEG encoder application and a shared-memory MP-SoC ar-

chitecture consisting of five processing elements. Sesame’s

application model, architecture model and mapping for

this case study are shown in Figure 1. In this experi-

ment, we have incorporated SimpleScalar’s sim-outorder

ISS [4] in Sesame’s high-level model of the MP-SoC ar-

chitecture. This required only one small extension of the

ISS: a system-call that retrieves the cycle count, which is

needed by API put cycles(). Small C macros im-

plement the functions API read(), API write(), and

API put cycles() and are compiled together with the

application code executing on the ISS.

For the experiments, we have used a small cluster of un-

Table 1. Co-simulation performance.
Sesame DCT on DCT+VLE

only ISS on ISSs

Time (secs) 8.1 157.1 279.6

Kcycles/sec 8,000 414 233

loaded Pentium M 1.7GHz (Debian) machines connected by

100 Mbit ethernet. In all simulation runs, we have simu-

lated the encoding of 11 CIF frames with a resolution of

128x128 pixels. Table 1 shows the wall-clock times (aver-

aged over several runs) for three different simulation config-

urations executed on a single host machine: a Sesame-only

system-level simulation (without trace calibration), a trace-

calibrated (mixed-level) co-simulation where the DCT ap-

plication process is executed on the ISS (representing P2 in

Figure 1), and a trace-calibrated co-simulation where both

the DCT and VLE processes are executed on different ISSs

(representing P2 and P3). For each simulation configura-

tion, the number of simulated Kcycles/sec is also given. Ta-

ble 1 clearly shows the performance drop when incorporat-

ing lower-level simulators in Sesame’s architecture models.

The results also show the efficiency of the Sesame-only sim-

ulation (8 Mcycles/sec when simulating a 5 core MP-SoC).

To demonstrate that the performance decrease of our

mixed-level co-simulations is almost entirely due to the

lower-level simulators themselves and not due to co-

simulation overheads, Figure 4 shows the execution time

breakdowns of the two trace-calibrated co-simulation con-

figurations from Table 1. The breakdowns clearly prove that

the total execution times are totally dominated by the ISS

execution times. The measured overheads are respectively

5% (DCT on ISS) and 1% (DCT+VLE on ISSs) of the total

execution time. We suspect that the latter has lower over-

heads because of the scheduling of the two ISSs that allows

for hiding some of the overheads caused by communications

between the DCT/VLE processes and the ISSs.

By means of distributed co-simulation, the system-level

simulation slowdown due to the incorporation of lower-level

simulators can be effectively reduced. To illustrate this, Ta-

ble 2 presents the performance effect of distributing the ISSs

DCT on ISS DCT+VLE on ISSs
0%

25%

50%

75%

100%

Execution time breakdown

Overheads

ISS (VLE)

ISS (DCT)

Architecture
model

Application model

%
 o

f
e

x
e

c
u

ti
o

n
 t

im
e

Figure 4. Overhead for one or two ISSs.

Table 2. Distributed performance.

DCT on DCT on local ISS DCT+VLE on

remote ISS VLE on remote ISS remote ISSs

Time (secs) 144.2 160.6 150.2

Kcycles/sec 452 405 433

over different hosts. Here, we use the terms ‘local’ and ‘re-

mote’ to indicate if an ISS is executed on respectively the

same or a different host as Sesame’s application and archi-

tecture models. The results show that distributing the lower-

level simulators over multiple hosts is certainly beneficial.

For example, by placing the ISSs for the DCT and VLE pro-

cesses on two different hosts (see Table 2), a speedup of 1.86

is achieved in comparison to execution on a single machine

(see Table 1). In this case, only 6.5% of the total execution

time is due to overheads (including network overhead).

We also performed experiments in which less compu-

tational intensive application processes, like RGB-to-YUV

and Quant, are trace-calibrated as well (these results are not

shown in table form). A fully distributed co-simulation with

ISSs for the DCT, VLE and RGB-to-YUV processes takes

158.3 seconds. Adding an ISS for the Quant process to

the previous distributed co-simulation results in a wall-clock

time of 165 seconds. These results indicate that, with dis-

tributed co-simulation, trace calibration scales well.

For comparison, [10] lists the performance of similar

case studies using their own work, Seamless CVE and Syn-

opsys System Studio. With respect to the latter two, our

co-simulations are one to two orders of magnitude faster,

while for our Sesame-only simulations this is even three or-

ders. The reported performance of the state-of-the-art tech-

nique proposed in [10] approximates our co-simulation per-

formance, but they have used the ARMulator ISS which is

significantly faster than the SimpleScalar ISS we have used.

To get some indication of the accuracy gains of trace cal-

ibration, we have also performed several simple experiments

that compare a fully trace-calibrated model to a partially un-

calibrated model. In this case, the uncalibrated model com-

ponents have to use estimated latency values for application

events. Statically estimating the performance of code ex-

ecuted on a particular processor is a well-known problem

as it may be hard to deduce the correct number and types

of executed instructions due to data-dependent behavior and

to determine the CPI for the processor. Our experiments

show, e.g., that if for one processor (onto which the DCT

is mapped) we know the right number and types of executed

instructions but mispredict the CPI by only 0.07 (where the

actual CPI is 0.43) to calculate the latencies for the appli-

cation events, then the estimated performance for the whole

system is off by 13%. If the misprediction is bigger or if more

components are uncalibrated then the system-level accuracy

is reduced even further.

6 Conclusions

In this paper, we have presented an efficient mixed-level

co-simulation technique, called trace calibration. This tech-

nique has been prototyped within our Sesame modeling

and simulation framework, which targets efficient system-

level design space exploration of embedded multimedia sys-

tems. To evaluate trace calibration, we have used a Motion-

JPEG case study in which we incorporated up to four ex-

ternal instruction-set simulators into Sesame’s abstract per-

formance models. These experiments show that trace cal-

ibration only requires minor modification of the incorpo-

rated simulators and that performance overheads due to co-

simulation are very low. It was also demonstrated that dis-

tributed co-simulation – which is easy and transparent in

trace calibration – allows for effectively reducing the slow-

down due to the incorporation of lower-level simulators.

In the future, we intend to quantify the accuracy improve-

ments due to the incorporation of lower-level simulators by

using validation case studies against real system implemen-

tations running a wider range of multi-media applications.

References

[1] ConvergenSC, CoWare, http://www.coware.com/.
[2] Seamless, Mentor Graphics, http://www.mentor.com/.
[3] System Studio, Synopsys, http://www.synsopsys.com/.
[4] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infras-

tructure for computer system modeling. Computer, 35(2):59

– 67, Feb. 2002.
[5] A. Cassidy, J. Paul, and D. Thomas. Layered, multi-threaded,

high-level performance design. In Proc. of the Design, Au-

tomation and Test in Europe, March 2003.
[6] F. Balarin et al. Metropolis: An integrated electronic system

design environment. Computer, 36(4), April 2003.
[7] R. M. Fujimoto. Parallel discrete event simulation. Commu-

nications of the ACM, 33(10):30–53, Oct. 1990.
[8] K. Hines and G. Borriello. Dynamic communication models

in embedded system co-simulation. In Proc. of the Design

Automation Conference, pages 395–400, June 1997.
[9] G. Kahn. The semantics of a simple language for parallel

programming. In Proc. of the IFIP Congress 74, 1974.
[10] D. Kim, Y. Yi, and S. Ha. Trace-driven hw/sw cosimulation

using virtual synchronization technique. In Proc. of the De-

sign Automation Conference, June 2005.
[11] L. Benini et al. SystemC cosimulation and emulation of mul-

tiprocessor SoC designs. Computer, 36(4):53–59, 2003.
[12] P. Gerin et al. Scalable and flexible cosimulation of SoC

designs with heterogeneous multi-processor target architec-

tures. In Proc. of the Int. Conference on Asia South Pacific

Design Automation, pages 63–68, 2001.
[13] A. Pimentel, C. Erbas, and S. Polstra. A systematic approach

to exploring embedded system architectures at multiple ab-

straction levels. IEEE Trans. on Computers, 55(2), 2006.
[14] T. Kogel et al. Virtual architecture mapping: A SystemC

based methodology for architectural exploration of system-

on-chip designs. In Proc. of the workshop on Systems, Archi-

tectures, Modeling and Simulation, pages 138–148, 2003.

