
Evaluation of LH*LH for a Multicomputer Architecture

Andy D. Pimentel and Louis O. Hertzberger

Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Appeared in Proc. of the EuroPar 99 Conference, Toulouse, France, September 1999.

Abstract. Scalable, distributed data structures can provide fast access to large vol-
umes of data. In this paper, we present a simulation study in which the performance
behaviour of one of these data structures, called LH*LH, is evaluated for a mul-
ticomputer architecture. Our experimental results demonstrate that the access-time
to LH*LH can be very small and does not deteriorate for increasing data structure
sizes. Furthermore, we also show that parallel access to the LH*LH data struc-
ture may speed up client applications. This speed-up is, however, shown to be con-
strained by a number of effects.

1 Introduction

Modern database applications require fast access to large volumes of data. Sometimes
the amount of data is so large than it cannot be efficiently stored or processed by a uni-
processor system. Therefore, a distributed data structure can be used that distributes the
data over a number of processors within a parallel or distributed system. This is an at-
tractive possibility because the achievements in the field of communication networks for
parallel and distributed systems have made remote memory accesses faster than accesses
to the local disk [3]. So, even when disregarding the additional processing power of par-
allel platforms, it has become more efficient to use the main memory of other processors
than to use the local disk.

It is highly desirable for a distributed data structure to be scalable. The data structure
should not have a theoretical upper limit after which performance degrades (i.e. the time
to access data is independent of the number of stored data elements) and it should grow
and shrink incrementally rather than reorganising itself totally on a regular basis (e.g.
rehashing of all distributed records). For distributed memory multicomputers, a number of
Scalable Distributed Data Structures (SDDSs) have been proposed [7]. In these distributed
storage methods, the processors are divided into clients and servers. A client manipulates
the data by inserting data elements, searching for them or removing them. A server stores a
part of the data, called a bucket, and receives data-access requests from clients. Generally,
there are three ground rules for the implementation of an SDDS in order to realize a high
degree of scalability [4]:

– The SDDS should not be addressed using a central directory which forms a bottle-
neck.

– Each client should have an image of how data is distributed which is as accurate as
possible. This image should be improved each time a client makes an “addressing
error”, i.e. contacts a server which does not contain the required data. The client’s
state (its current image) is only needed for efficiently locating the remote data; it is
not required for the correctness of the SDDS’s functionality.

– If a client has made an addressing error, then the SDDS is responsible for forwarding
the client’s request to the correct server and for updating the client’s image.

For an efficient SDDS, it is essential that the communication needed for data operations
(retrieval, insertion, etc.) is minimised while the amount of data residing at the server
nodes (i.e. the load factor) is well balanced. In [7], Litwin et al. propose an SDDS, called
LH*, which addresses the issue of low communication overhead and balanced server util-
isation. This SDDS is a generalisation of Linear Hashing (LH) [6], which will be elab-
orated upon in the next section. For LH*, insertions usually require one message (from
client to server) and three messages in the worst case. Data retrieval requires one extra
message as the requested data has to be returned.

In this paper, we evaluate the performance of a variant of the LH* SDDS, called
LH*LH, which was proposed by Karlsson [4, 5]. For this purpose, we use a simulation
model which is based on the architecture of a Parsytec CC multicomputer. With this
model, we investigate how scalable the LH*LH SDDS actually is and which factors affect
its performance. The reason for our interest in the LH*LH SDDS (and the Parsytec CC) is
that LH*LH is considered for using in a parallel version of the Monet database [1] which
will initially be targeted towards the Parsytec CC multicomputer.

The next section explains the concept of Linear Hashing. In Section 3, we discuss
the distributed data structure LH*LH. Section 4 describes the simulation model we have
used in this study. In Section 5, our experimental results are presented. Finally, Section 6
concludes the paper.

2 Linear hashing

Linear Hashing (LH) [6] is a method to dynamically manage a table of data. More specif-
ically, it allows the table to grow or shrink in time without suffering from a penalty with
respect to the space utilisation or the access time. The LH table is formed by � � � � � �

buckets, where � is the number of starting buckets (� � � and � � � �). The meaning
of � and � is explained later on. The buckets in the table are addressed by means of a pair
of hashing functions �� and ����, with � � �� �� ���� Each bucket can contain a predefined
number of data elements. The function � � hashes data keys to one of the first � � ��

buckets in the table. The function ���� is used to hash data keys to the remaining buckets.
In this paper, we assume that the hash functions are of the form

���key� � key mod �� � ��� (1)

The LH data structure grows by splitting a bucket into two buckets whenever there is
a collision in one of the buckets, which means that a certain load threshold is exceeded.
Which bucket has to be split is determined by a special pointer, referred to as �. The actual
splitting involves three steps: creating a new bucket, dividing the data elements over the
old and the newly created bucket and updating the pointer �. Dividing the data elements
over the two buckets is done by applying the function � ��� to each element in the splitting
bucket. The � pointer is updated by applying � � ����� ��	 � � � �. Indexing the LH
data structure is performed using both � � and ����. Or, formally:

index������ � ���key� (2)

if (index������ � �� then index������ � �����key�

As the buckets below the � pointer have been split, these buckets should be indexed using
���� rather than with ��. When the � pointer wraps around (because of the modulo), �
should be incremented.

The process of shrinking is similar to the growing of the LH data structure. Instead of
splitting buckets, two buckets are merged whenever the load factor drops below a certain
threshold. In this study, we limit our discussion to the splitting within SDDSs.

3 The LH*LH SDDS

The LH* SDDS is a generalisation of Linear Hashing (LH) to a distributed memory par-
allel system [7]. In this study, we focus on one particular implementation variant of LH*,
called LH*LH [4, 5]. The LH*LH data is stored over a number of server processes and
can be accessed through dedicated client processes. These clients form the interface be-
tween the application and LH*LH. We assume that each server stores one LH*LH bucket
of data, which implies that a split always requires the addition of an extra server pro-
cess. Globally, the servers apply the LH* scheme to manage their data, while the servers
use traditional LH for their local bucket management. Thus, a server’s LH*LH bucket is
implemented as a collection of LH buckets. Hence, the name LH*LH. In Figure 1, the
concept of LH*LH is illustrated.

As was explained in the previous section, addressing a bucket in LH is done using a
key and the two variables � and � (see Equation 2). In LH*LH, the clients address the
servers in the same manner. To do so, each client has its own image of the values � and
�: �� and �� respectively. Because the images �� and �� may not be up to date, clients can
address the wrong server. Therefore, the servers need to verify whether or not incoming
client requests are correctly addressed, i.e. can be handled by the receiving server. If an
incoming client request is incorrectly addressed, then the server forwards the request to
the server that is believed to be correct. For this purpose, the server uses a forwarding
algorithm [7] for which it is proven that a request is forwarded at most twice before the
correct server is found. Each time a request is forwarded, the forwarding server sends a

Server 0 Server S

Network

Client 0

Requests

Client C

Local LH Local LH

Requests

Global LH*

Fig. 1. The LH*LH SDDS.

so-called Image Adjustment Message (IAM) to the requesting client. This IAM contains
the server’s local notion of � and � and is used to adjust the client’s � � and �� in order to
get them closer to the global � and � values. As a consequence, future requests will have
a higher probability of being addressed correctly.

The splitting of an LH*LH bucket is similar to the splitting of LH buckets. The pointer
� is implemented by a special token which is passed from server to server in the same
manner as � is updated in LH: it is forwarded in a ring of the servers 0 to � � � �, where
� is the number of starting servers. When a server holds the � token and its load factor
is larger than a particular threshold, the server splits its LH*LH bucket and forwards the
� token. Splitting the LH*LH bucket is done by initialising a new server (by sending it
a special message) and shipping half of its LH buckets to the new server (remember that
the LH*LH bucket is implemented as a collection of LH buckets).

It has been shown in [7] that a splitting threshold which can be dynamically adjusted
performs better than a static one. Therefore, LH*LH applies a dynamic threshold
 which
is based on an estimation of the global load factor [5]:

 �� � � �
�� � �

��

where � is a sensitivity parameter and � is the capacity of an LH*LH bucket in number
of data elements. Typically,� is set to a value between 0.7 and 0.9. If the number of data
elements residing at the server with the � token is larger than the threshold
 , then the
server splits its data.

4 The simulation model

The parallel architecture we focus on in this study is based on that of a Parsytec CC
multicomputer. The configuration we have used for our initial experiments consists of
16 PowerPC 604 processors connected in a multistage network with an application-level
throughput of 27 MByte/s for point-to-point communication. To model this multicom-
puter architecture, we have used the Mermaid simulation environment which provides a
framework for the performance evaluation of multicomputer architectures [10, 11, 9].

In our model, a multicomputer node can contain either one server or client process.
The clients provide the network part of the model with communication requests, which
are messages to server processes containing commands that operate on the LH*LH SDDS
(e.g. insert, lookup, etc.). In addition, the server processes can also issue communication
requests, like when a client request has to be forwarded to another server.

The network model simulates a wormhole-routed network [2] at the flit-level and is
configured to model a Mesh of Clos topology [10]. This is the generic topology from
which the Parsytec CC’s topology has been derived. The Mesh of Clos topology is a
mesh network containing clusters of Clos multistage sub-networks. In the case of the
Parsytec CC, a Mesh of Clos topology with a ���mesh network is used, i.e. it contains a
pure multistage network. For routing, the model uses deterministic XY-routing [8] for the
mesh network and a deterministic scheme based on the source node’s identity [10] for the
multistage subnetworks. Furthermore, messages larger than 4Kb are split up in separate
packets of 4Kb each.

We have validated our Parsytec CC network model against the real machine with a
suite of small communication benchmarks and found that the error in predicted execu-
tion times for these programs is on the average less than 4% [9]. For some experiments,
we were also able to compare our simulation results with the results from a real LH*LH

implementation [4, 5]. Although the measurements for the real implementation were ob-
tained using a multicomputer which is different from the one we have modelled, the com-
parison between our simulation results and the actual execution results can still give us
some insight into the validity of our simulation model. We found that the simulation re-
sults correspond closely to the behaviour measured for the real implementation.

5 Experiments

We performed experiments with an application which builds the LH*LH SDDS using
a Dutch dictionary of roughly 180,000 words as the data keys. The data elements that
are being inserted consist of a key only (they do not have “a data body”) unless stated
otherwise. Throughout this paper, we use the term blobsize when referring to the size
of the body of data elements. By default, our architecture model only accounts for the
delays that are associated with communication. Computation performed by the clients
and servers is not modelled. In other words, the clients and servers are infinitely fast. This
should give us an upper bound of the performance of LH*LH when using the modelled
network technology. However, we will also show several results of experiments in which
we introduce and vary a computational server latency.

The first experiments concern LH*LH’s performance on the 16-node Parsytec CC
platform. Because the number of available nodes in this platform is rather limited, we
needed to calibrate the split-threshold such that the LH*LH SDDS does not grow larger
than the available number of nodes. Another result of the limited number of nodes is
that the model only simulates up to 5 clients in order to reserve enough nodes for the
server part of LH*LH. To overcome these problems, we have also simulated a larger
multicomputer platform, of which the results are discussed later in this study. Throughout
this paper, we assume that the number of starting servers is one, i.e. � � �.

Figure 2a shows the predicted time it takes to build the LH*LH SDDS on the Parsytec
CC when using
 clients, where
 � �� �� ���� �. In the case multiple clients are used,
they concurrently insert a different part of the dictionary. The data points in Figure 2a
correspond to the points in time where LH*LH splits take place. The results show that
the build-time scales linearly with the number of insertions. Thus, the insertion latency
does not deteriorate for large data structure sizes (it is dominated entirely by the message
round trip time). In this respect, Figure 2a clearly indicates that LH*LH is scalable.

The results of Figure 2a also show that the build-time decreases when more clients are
used. This is due to the increased parallelism as each client concurrently operates on the
LH*LH SDDS. In Figure 2b, the relative effect (i.e. the speedup) of the number of clients
is shown. When increasing the number of clients, the obtained speedup scales quite well
for the range of clients used.

Another observation that can be made is that the occurrence of splits (the data points in
Figure 2a) is not uniformly distributed with respect to the insertions. Most of the splits are
clustered in the first 20,000 insertions and near the 180,000 insertions. This phenomenon

0

20

40

60

80

100

120

20 60 100 140 180

T
im

e
(s

ec
.)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0

1

2

3

4

5

0 1 2 3 4 5

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Perfect scalability
Actual performance

(a) (b)

Fig. 2. Building the LH*LH SDDS: absolute performance (a) and scalability (b). In graph (a), the
data points correspond to the moments in time where splits take place.

is referred to as cascading splits [7]. It is caused by the fact that when the load factor on
server � (the token-holder) is high enough to trigger a split, the servers that follow server
� are often also ready to split. This means that after server � has split and forwarded
the � token to the next server, the new token-holder immediately splits as well. As a
result, a cascade of splitting servers is formed which terminates whenever a server is
encountered with a load factor that is lower than the threshold. Essentially, cascading
splits are undesirable as they harm the incremental fashion with which the distributed
data structure is reorganised. Litwin et al. [7] have proposed several adjustments to the
split threshold function to achieve a more uniform distribution of the splits.

Figure 3a plots the curves of the average time needed for a single insertion, as experi-
enced by the application. The data points again refer to the moments in time where splits
occur. Because the data points for the first 20,000 insertions are relatively hard to distin-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 60 100 140 180

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 8 12 16 20

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

(a) (b)

Fig. 3. Average time per insertion in milliseconds.

Clients # IAMs Msg./insertion Average message overhead

1 14 2.0008 0.04%
2 24 2.0011 0.06%
3 43 2.0012 0.06%
4 48 2.0014 0.07%
5 55 2.0014 0.07%

Table 1. Number of messages required to build the LH*LH SDDS.

guish, Figure 3b zooms in on this particular range. Figure 3a shows that the worst average
insertion time (for 1 client) does not exceed 0.65ms. This is about one order of magni-
tude faster than the typical time to access a disk. However, we should remind the reader
that these insertion latencies reflect a lower bound (for the investigated multicomputer
architecture) since no computation is modelled at the clients and servers.

As can be expected from Figure 2a, Figure 3 shows that the average insertion time
decreases when increasing the number of clients. Additionally, the average insertion time
also decreases for an increasing number of insertions. This is especially true during the
first few thousands of insertions and for the experiments using 3 or more clients. The
reason for this is that a larger number of clients requires the creation of enough servers
before the clients are able to effectively exploit parallelism, i.e. allowing the clients to
concurrently access the LH*LH SDDS with low server contention. As can be seen in
Figure 3b, after about 8,000 insertions, enough server processes have been created to
support 5 clients.

In Table 1, the message statistics are shown for building the LH*LH SDDS. For about
180,000 insertions, the maximum number of IAMs (Image Adjustment Messages) that
were sent is 55 (for 5 clients). This is only 0.003% with respect to the total number of in-
sertions. The average number of messages per insertion is near the optimum of 2 (needed
for the request itself and the acknowledgement). The last column shows the average pro-
portional message overhead (due to IAMs and the forwarding of messages) for a single
insertion. These results confirm the statement from Litwin et al. [7] in which they claim
that it usually takes one message only to address the correct server.

In Figure 4, the results are shown when experimenting with the blobsize of data el-
ements. Figure 4a plots the curves for the build-time when using a blobsize of 2Kb (the
data points again correspond with the server splits). The results show that the build-times
are still linear to the number of insertions and that the performance scales properly when
adding more clients. In fact, the build-times are not much higher than the ones obtained in
the experiment with empty data elements (see Figure 2a). The reason for this is twofold.
First, since computational latencies like memory references are not simulated, our sim-
ulation model is especially optimistic for data elements with a large blobsize. Second,
the modelled communication overhead of the AIX kernel, which is running on the real
machine’s nodes, is rather high (at least 325�s per message) and dominates the com-
munication latency. This reduces the effect of the message size on the communication
performance.

Figure 4b depicts the average time per insertion as experienced by the application
when varying the blobsize from 64 bytes to 8Kb (the latter is building a data structure of
1.4 Gbytes). Note that both axes have a logarithmic scale. Two observations can be made

0

20

40

60

80

100

120

20 60 100 140 180

T
im

e
(s

ec
.)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0.1

0.2

0.4

0.8

1.6

64 128 256 512 1K 2K 4K 8K

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Blobsize (bytes)

1 client
2 clients
3 clients
4 clients
5 clients

(a) (b)

Fig. 4. Effect of the blobsize on the performance: the build-time when using a blobsize of 2Kb (a)
and the effect of the blobsize on the average time per insertion (b).

from this figure. First, the average insertion time suddenly increases after a blobsize of
128 bytes. This effect is somewhat diminished when using more clients. The reason for
the performance anomaly is a peculiarity in the implementation of synchronous commu-
nication for the Parsytec CC machine. Messages smaller than 248 bytes can piggy-back
on a fast initialisation packet, which sets up the communication between the source and
destination nodes. Beyond these 248 bytes, normal data packets have to be created and
transmitted, which slow down the communication (e.g. the software overhead is higher).
By increasing the number of clients, the effect of the higher communication overhead of
big messages (� 248 bytes) is reduced due the parallelisation of the overhead.

A second observation that can be made from Figure 4b is that the curves are relatively
flat for blobsizes below the 1Kb. Again, this can be explained by the fact that the large
OS overhead dominates the insertion performance for small blobsizes. For insertions with
large blobsizes (� 1Kb), the network bandwidth and possibly the network contention
become more dominant. To investigate whether or not the network contention plays an
important role in the insertion performance, Figure 5 shows the average time that packets
were stalled within the network. We should note that the variation of these averages is
rather large, which implies that they should be interpreted with care. Nevertheless, the
graph gives a good indication of the intensity of the network contention. From Figure 5
can be seen that the contention increases more or less linearly when increasing the blob-
size in the case of 1 client. However, when using more clients, the contention starts to
scale exponentially. The highest measured average block time equals to 31�s (8Kb blob-
size with 5 clients), which is still 1/10�� of the 325�s software communication overhead
for a single message. So, in our experiments, the contention is not high enough to dom-
inate the insertion performance. This suggests that the insertion performance for large
blobsizes (see Figure 4b) is dominated by the network bandwidth.

So far, we have assumed that the server (and client) processes are infinitely fast, i.e.
computation is not modelled. To investigate the effect of server overhead on the overall
performance, we modelled a delay for every incoming insertion on a server (the clients

0

2

4

6

8

10

12

14

0 1K 2K 4K 8K

T
im

e
(u

se
c.

)
Blobsize (bytes)

1 client
3 clients
5 clients

Fig. 5. The average time that packets blocked within the network.

continue to be infinitely fast). During the delay, which takes place after acknowledging
the client’s request, the server is inactive. Since the server overhead can overlap with
the transmission of new client requests, this scheme exploits parallelism for all client
configurations (even when 1 client is used). We varied the server overhead from 0 (no
overhead) to 50ms per insertion.

Figure 6 depicts the results of the server overhead experiment. In Figure 6a, the effect
on the average insertion time is shown. Note that both axes have a logarithmic scale. Fig-
ure 6a shows that the insertion latency starts to be seriously affected by the server overhead
after a delay of approximately 0.1ms. Beyond a server overhead of 1ms, the insertion la-
tency increases linearly with the server overhead which indicates that the insertion latency
is entirely dominated by the server overhead. After this point, the differences between the
various client configurations have more or less been disappeared as well, i.e. the curves
converge. This implies that the large server overheads reduce the potential parallelism.
An important reason for this is that when the server overhead approaches or exceeds the
minimum time between two consecutive insertion requests from a single client (which is
in our case simply the 325�s software communication overhead as the clients do not per-

0.1

0.25

0.5

1

2

4

8

16

32

0 10us 0.1ms 1ms 10ms 100ms

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Server overhead per insert

1 client
2 clients
3 clients
4 clients
5 clients

0

1

2

3

4

5

0 1 2 3 4 5

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Perfect
No overhead

10us overhead
0.1ms overhead

1ms overhead
10ms overhead

(a) (b)

Fig. 6. Effect of the server overhead on the performance: the average time per insertion (a) and the
scalability (b).

0

20

40

60

80

100

120

20 60 100 140 180

T
im

e
(s

ec
.)

Number of insertions (x 1000)

Blobsize = 0Kb

1 client
2 clients
4 clients
8 clients

16 clients
32 clients

0

20

40

60

80

100

120

140

160

20 60 100 140 180

T
im

e
(s

ec
.)

Number of insertions (x 1000)

Blobsize = 2Kb

1 client
2 clients
4 clients
8 clients

16 clients
32 clients

(a) (b)

Fig. 7. Build-times for the 64-node Mesh of Clos network using blobsizes of 0 (a) and 2Kb (b).

form any computation), the rate at which a server can process insertion requests becomes
lower than the rate at which a single client can produce requests. This means that a server
can easily become a bottleneck when adding clients.

The reduction of parallelism caused by large server overheads is best illustrated in
Figure 6b. This figure shows the speedup for multiple clients when varying the server
overhead. It is obvious that while the client-scalability is good for server overheads of
0.1ms and less, the scalability for larger overheads has collapsed completely.

Until now, the experiments have been performed using the simulation model of a 16-
node Parsytec CC architecture. This has limited our simulations to allocating a maximum
of 5 clients and 11 servers. To investigate how LH*LH behaves for a larger number of
clients and servers, we have also simulated a 64-node Mesh of Clos network [10], which
connects four multistage clusters of 16 nodes in a �� � mesh.

Figure 7 shows the build-times for this Mesh of Clos when using blobsizes of 0 (Fig-
ure 7a) and 2Kb (Figure 7b). Again, the data points refer to the moments in time where
a split occurs. In these experiments, we have simulated the LH*LH for up to 32 clients.
The curves in Figure 7 show the same behaviour as was observed in the experiments with
the 16-node Parsytec CC model: the build-time is linear to the number of insertions and
decreases with an increasing number of clients. The occurrence of cascading splits is also
illustrated by the clusters of points in Figure 7.

In Figure 8, the scalability for several blobsizes is plotted by the curves which are la-
belled with normal. Additionally, the curves labelled with ”1/3” and ”1/9” show the scala-
bility when the 325�s communication overhead is reduced by a factor 3 and 9 respectively.
A number of observations can be made from Figure 8. First, the normal curves indicate
that the configurations with blobsizes up to 2Kb scale to roughly 8 clients, whereas the
configuration with a blobsize of 8Kb only scales up to about 4 clients. The deterioration
of scalability for large blobsizes is due to the increased network contention.

Another, quite interesting, result is that the scalability for the large blobsizes is re-
duced even more when decreasing the software communication overhead. This effect is
also caused by the increase of network contention: the smaller the overhead, the higher

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Blobsize = 0Kb

Perfect
Normal

1/3 overhead
1/9 overhead

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Blobsize = 0.5Kb

Perfect
Normal

1/3 overhead
1/9 overhead

(a) (b)

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Blobsize = 2Kb

Perfect
Normal

1/3 overhead
1/9 overhead

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rf
or

m
an

ce

Number of clients

Blobsize = 8Kb

Perfect
Normal

1/3 overhead
1/9 overhead

(c) (d)

Fig. 8. The scalability for blobsizes of 0 bytes (a), 512 bytes (b), 2Kb (c) and 8Kb (d). The curve
labelled with normal refers to the results of the original model. The other two curves (1/3 and 1/9)
present the results for a modified model in which the software communication overhead is reduced
by a factor of 3 and 9 respectively.

the frequency at which the clients inject insertion messages into the network. Clearly, the
higher frequency of insertions with large blobsizes results in more network traffic and
thus more contention. So, one can conclude that a part of the measured client-scalability
for large blobsizes is due to the high communication overhead of the modelled platform.
Apparently, the increase of network traffic in the case of a blobsize of 512 bytes (see
Figure 8b) is not severe enough to cause a lot of extra contention.

6 Conclusions

In this study, we evaluated the LH*LH distributed data structure for a multicomputer ar-
chitecture. Our simulation results show that LH*LH is indeed scalable: the time to insert
a data element is independent on the size of the data structure. For the studied multicom-
puter, the insertion time as experienced by a single client can be an order of magnitude

faster than a typical disk access. The insertion time can even be reduced by using multi-
ple clients which concurrently insert data into the distributed data structure. The results
indicate that the speedup of insertions scales reasonably well up to about 8 clients for the
investigated network architecture and workload.

We have also shown that the scalability of the insertion performance can be affected in
more than one way. For instance, the larger the data elements that are inserted, the poorer
is the scalability when increasing the number of clients. We found that the performance
of insertions with data elements of 512 bytes scales up to 8 clients, whereas the perfor-
mance of insertions with 8Kb data elements only scales up to 4 clients. Moreover, a large
server overhead can seriously hamper the client-scalability of the LH*LH data structure.
Our results indicate that it is important to keep the server overhead below the minimum
time between two consecutive requests from a single client. This increases the potential
parallelism as it ensures that the rate at which a server can process requests is higher than
the rate at which a single client can produce requests. Finally, we found that a part of
the speedup for multiple clients is due to the parallelisation of software communication
overhead (which is quite large for the studied architecture). When the communication is
optimised (i.e. the overhead is reduced), lower speedups are achieved.

Acknowledgements

We would like to thank Jonas Karlsson for his feedback regarding our LH*LH model.

References

1. P. A. Boncz and M. L. Kersten. Monet: An impressionist sketch of an advanced database
system. In Proc. of IEEE BIWIT workshop, July 1995.

2. W. J. Dally and C. L. Seitz. The torus routing chip. Journal of Distributed Computing,
1(3):187–196, 1986.

3. J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1990.

4. J. S. Karlsson. A scalable data structure for a parallel data server. Master’s thesis, Dept. of
Comp. and Inf. Science, Linköping University, Feb. 1997.

5. J. S. Karlsson, W. Litwin, and T. Risch. LH*lh: A scalable high performance data structure for
switched m ulticomputers. In Advances in Database Technology, pages 573–591, March 1996.

6. W. Litwin. Linear hashing: A new tool for file and table addressing. In Proc. of VLDB, 1980.
7. W. Litwin, M-A. Neimat, and D. Schneider. LH*: A scalable, distributed data structure. ACM

Transactions on Database Systems, 21(4):480–526, Dec. 1996.
8. L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct networks.

IEEE Computer, 26:62–76, Feb. 1993.
9. A. D. Pimentel. A Computer Architecture Workbench. PhD thesis, Dept. of Computer Science,

University of Amsterdam, Dec. 1998.
10. A. D. Pimentel and L. O. Hertzberger. Evaluation of a Mesh of Clos wormhole network.

In Proc. of the 3rd Int. Conference on High Performance Computing, pages 158–164. IEEE
Computer Society Press, Dec. 1996.

11. A. D. Pimentel and L. O. Hertzberger. An architecture workbench for multicomputers. In Proc.
of the 11th Int. Parallel Processing Symposium, pages 94–99. IEEE Computer Society Press,
April 1997.

