An IDF-based Trace Transformation Method for

Communication Refinement

Andy D. Pimentel Cagkan Erbas

Department of Computer Science, University of Amsterdam

Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
{andy,cagkan}@science.uva.nl

ABSTRACT

In the Artemis project [13], design space exploration of embedded
systems is provided by modeling application behavior and archi-
tectural performance constraints separately. Mapping an applica-
tion model onto an architecture model is performed using trace-
driven co-simulation, where event traces generated by an appli-
cation model drive the underlying architecture model. The ab-
stract communication events from the application model may, how-
ever, not match the architecture-level communication primitives.
This paper presents a trace transformation method, which is based
on integer-controlled data-flow models, to perform communication
refinement of application-level events. We discuss the proposed
method in the context of our prototype modeling and simulation
environment. Moreover, using several examples and a case study,
we demonstrate that our method allows for efficient exploration of
different communication behaviors at architecture level without af-
fecting the application model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, design

Keywords

Design space exploration, communication refinement

1. INTRODUCTION

Modern embedded systems, like those for media and signal pro-
cessing, increasingly have a heterogeneous system architecture con-
sisting of components in the range from fully programmable pro-
cessor cores to dedicated hardware components. These systems of-
ten provide a high degree of programmability as they need to target
a range of applications with varying demands. Such characteristics
greatly complicate the system design, making it more and more im-
portant to have good tools available for exploring different design
choices at an early stage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2003, June 2-6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

In the context of the Artemis project [13], we are developing
an architecture workbench which provides modeling and simula-
tion methods and tools for the efficient design space exploration
of heterogeneous embedded multimedia systems. This workbench
should allow for rapid performance evaluation of different archi-
tecture designs, application to architecture mappings, and hard-
ware/software partitionings. In addition, it should do so at multiple
levels of abstraction and for a wide range of multimedia applica-
tions. Key to this flexibility is that separate application and archi-
tecture models are used together with an explicit mapping step to
map an application model onto an architecture model. This map-
ping is realized by means of trace-driven co-simulation of the ap-
plication and architecture models, where the execution of an appli-
cation model generates application events that represent the appli-
cation workload imposed on the architecture.

Refinement of architecture models in Artemis requires that the
application events driving the architectural simulator should also be
refined in order to match the architectural detail. Such refinement
should be supported in a way that allows for a smooth transition
between abstraction levels, without the need for re-implementing
(parts of) the application model. In this paper, we propose a novel
method for refining the modeling of communication behavior. This
method, which partly builds upon the work of [10], is based on
Integer-controlled Data-Flow (IDF) models [5]. Using examples,
we show that our method allows for effectively refining synchro-
nization points as well as the granularity of data transfers.

The proposed refinement method currently is prototyped in our
Sesame modeling and simulation framework [14, 6], which is be-
ing developed in the scope of the Artemis project. Therefore, the
next section will first give an introduction to Sesame before starting
the discussion on communication refinement. The latter is done in
Section 3. We present our IDF-based communication refinement
method in Section 4 and its application to a small case study in
Section 5. Section 6 describes related work. Section 7 concludes
the paper with a discussion on open issues and research challenges.

2. THE SESAME ENVIRONMENT

The Sesame modeling and simulation environment [14, 6] fa-
cilitates the performance analysis of embedded systems architec-
tures according to the Y-chart design approach [9, 2]. This means
that Sesame recognizes separate application and architecture mod-
els within a system simulation. An application model describes
the functional behavior of an application, including both computa-
tion and communication behavior. The architecture model defines
architecture resources and captures their performance constraints.
After explicitly mapping an application model onto an architecture
model, they are co-simulated via trace-driven simulation. This al-
lows for evaluation of the system performance of a particular appli-

Kahn channel

T

process C

Application
model
Virtual Virtual Virtual L
processor processor processor| Synchronization
X Y z layer
\ \
\ \ |
Nl
\ \ |
Y ‘ X ' v Architecture
A ' model

Processor 2 Processor 3

FIFO

Processor 1

| Bus

Shared N
Memory| - - - - =mapping

Figure 1: Sesame’s application model layer, architecture model
layer, and synchronization layer which interfaces between ap-
plication and architecture models.

cation, mapping, and underlying architecture. The layered infras-
tructure of Sesame is shown in Figure 1.

For application modeling, Sesame uses the Kahn Process Net-
work (KPN) model of computation [8] in which parallel processes
— implemented in a high level language — communicate with each
other via unbounded FIFO channels. In the Kahn paradigm, read-
ing from channels is done in a blocking manner, while writing is
non-blocking. The computational behavior of an application is cap-
tured by instrumenting the code of each Kahn process with annota-
tions which describe the application’s computational actions. The
reading from or writing to Kahn channels represents the commu-
nication behavior of a process within the application model. By
executing the Kahn model, each process records its actions in or-
der to generate its own trace of application events, which is nec-
essary for driving an architecture model. These application events
typically are coarse grained, such as execute(DCT) or read(pixel-
block,channel_id).

An architecture model simulates the performance consequences
of the computation and communication events generated by an ap-
plication model. It solely accounts for architectural (performance)
constraints and does not need to model functional behavior. This is
possible because the functional behavior is already captured in the
application model, which subsequently drives the architecture sim-
ulation. An architecture model is constructed from generic building
blocks provided by a library, which contains template performance
models for processing cores, communication media (like busses)
and various types of memory. Architecture models in Sesame are
implemented using a small but powerful discrete-event simulation
language, called Pearl, which provides easy construction of the
models and fast simulation [14].

To map Kahn processes (i.e., their event traces) from an appli-
cation model onto architecture model components and to support
the scheduling of application events from different event traces
when multiple Kahn processes are mapped onto a single architec-
ture component (e.g., a programmable processor), Sesame provides
an intermediate synchronization layer. This layer consists of vir-
tual processor components and FIFO buffers for communication
between the virtual processors. There is a one-to-one relationship
between the Kahn processes in the application model and the vir-
tual processors in the synchronization layer. This is also true for the
Kahn channels and the FIFO channels in the synchronization layer,

except for the fact that the buffers of the latter channels are limited
in size. Their size is parameterized and dependent on the modeled
architecture. A virtual processor reads in an application trace from
a Kahn process via a trace event queue and dispatches the events
to a processing component in the architecture model. The mapping
of a virtual processor onto a processing component in the architec-
ture model is freely adjustable. In addition, the buffers from the
synchronization layer are also mapped onto the architecture model.
In Figure 1, for example, one buffer is placed in shared memory?!
while the other buffer is mapped onto a point-to-point FIFO chan-
nel between processors 1 and 2.

The mechanism with which application events are dispatched
from a virtual processor to an architecture model component guar-
antees deadlock-free scheduling of the application events from dif-
ferent event traces [14]. In this mechanism, computation events
are directly dispatched by a virtual processor to the architecture
component onto which it is mapped. The latter schedules incom-
ing events that originate from different event queues according to
a given policy (FCFS by default) and subsequently models their
timing consequences. For communication events, however, a vir-
tual processor first consults the appropriate buffer at the synchro-
nization layer to check whether or not a communication is safe to
take place so that no deadlock can occur. Only if it is found to
be safe (i.e., for read events the data should be available and for
write events there should be room in the target buffer), then com-
munication events may be dispatched to the processor component
in the architecture model. As long as a communication event can-
not be dispatched, the virtual processor blocks. This is possible
because the synchronization layer is, like the architecture model,
implemented in the Pearl simulation language and executes in the
same simulation-time domain as the architecture model. As a con-
sequence, the synchronization layer accounts for synchronization
delays of communicating application processes mapped onto the
underlying architecture, while the architecture model accounts for
the computational latencies and the pure communication latencies
(e.g., bus arbitration and transfer latencies). Each time a virtual pro-
cessor dispatches an application event (either computation or com-
munication) to a component in the architecture model, it is blocked
in simulated time until the event’s simulation at the architecture
level has finished.

3. COMMUNICATION REFINEMENT

The traces of application events from our Kahn processes usu-
ally consist of R(ead), W(rite) and E(execute) events. Consider,
for example, Figure 2 which shows the application model of Fig-
ure 1 in more detail. The three application processes A, B and C
form a pipeline through which data blocks are sent. Let us con-

Process Process
C 11

while (1) { while (1) { while (1) {
compute(); read(block) read(block);
write(block); compute(); compute();
} write(block); }

}

Figure 2: Three application processes in a pipeline.

centrate on Kahn process B of the application model. This process
generates an event trace with recurring R—E—W event sequences,
where ‘—’ denotes “followed by’ and the E event represents the

1The architecture model accounts for the modeling of bus activity
(arbitration, transfers, etc.) when accessing this buffer.

conput e in Figure 2. The synchronization layer and architec-
ture model simulate these events atomically (i.e., the simulation of
an application event cannot be interrupted by another application
event from the same trace) and in strict trace-order. According to
Figure 1, Kahn process B is mapped onto processor 2 at the archi-
tecture level. Now, suppose that this processor has no local memory
and directly operates on its input and output buffers. This means,
for example, that processor 2 may only perform an R event when
the room in its output buffer in shared memory is sufficient to store
the results of the computation (as it cannot temporarily store the
results locally). Using coarse-grained R and W events that are sim-
ulated atomically such a requirement cannot be modeled.

To allow for modeling communication behavior such as sketched
above, the underlying architecture model needs to have more re-
fined communication events. Also, there should be a transforma-
tion mechanism that translates the R and W events from the appli-
cation model into the finer grained architecture-level events. Such
transformations should be possible without affecting the applica-
tion model, allowing for flexible exploration of different communi-
cation behaviors at architecture level. Hence, a natural solution is
to place the transformation mechanism in between the application
and architecture models, that is, in Sesame’s synchronization layer.

For the architecture-level events, we use the events that were pro-
posed for the Spade framework [10]: CD (Check Data*), Ld (Load
datat), SR (Signal Room*), E, CR (Check Room*), St (Store datat)
and SD (Signal Data*). Here, the events marked with * refer to
synchronizations while those marked with 1 refer to data transmis-
sions. A direct translation of R and W events into the architecture-
level events is easily made. When using the notation style of [10]

where :e> denotes an event transformation, then:

R=> CD - Ld— SR o)

So, an R event is functionally equivalent with a CD followed by an
Ld and then an SR. Similarly, for W events:

W =2 CR - St— SD @
The E application events remain E events at the architecture level:

E2E ®)

Implicitly, the separation between synchronizations and data trans-
fers is already realized in Sesame because of the recognition of
a synchronization layer and an architecture model layer (see Sec-
tion 2). However, now we make this separation explicit in order
to enable further transformations on the refined events, namely the
transformation of synchronization points and the refinement of the
granularity of data transfers. For example, the Ld and St events
may be transformed into new Ld/St events that operate on finer data
granularities?. Or the relative position of synchronization events in
the trace may be changed in order to change the points of synchro-
nization. In addition, multiple synchronization events for the same
buffer may be combined into a single one to reduce the number of
synchronizations. Conforming Sesame’s layered infrastructure, the
synchronization events are simulated in the synchronization layer,
while the timing consequences of the data-transferring events (Ld
and St) are simulated by the architecture model.

Returning to Kahn process B in Figure 2, its trace with the recur-
ring R—E—W event sequence can directly be refined using trans-
formations (1), (2) and (3):

c)
R—SE—S>W==CD—Ld—>SR—-E—CR—St—>SD (4)

2As we will see later on, such a transformation may also require
coarse-grained E events to be partitioned into smaller E tasks to
better match the refined data transfers.

However, if we again assume that processor 2 — onto which pro-
cess B is mapped (see Figure 1) — lacks a local memory, then the
availability of its output buffer must be checked first before fetch-
ing the data from the input FIFO. To this end, a CR event for the
output buffer in shared memory needs to be scheduled in front of
the Ld event. In addition, the FIFO buffer from which processor
2 reads, must be available until the processor has finished operat-
ing on it (i.e., after writing the results to the output buffer). The
following transformation models the above behavior:

c)
R—-E—SW=—=CD—-CR—LI>E—>St—SD—>SR (5)

4. IDF-BASED TRACE TRANSFORMATION

To realize the communication refinements such as discussed in
the previous section, we propose a method that is based on Integer-
controlled Data-Flow (IDF) models [5]. Refining the communi-
cations in the incoming event traces is done by refining the virtual
processor components in Sesame’s synchronization layer themselves.
To this end, an IDF model describes the internal behavior of a vir-
tual processor. In this approach, the incoming event traces from
the application model specify when and with whom a virtual pro-
cessor communicates, while the internal IDF model within a vir-
tual processor specifies how the communication takes place. The
IDF models are implemented in the Pearl simulation language and
are, like the original synchronization layer, executed in the same
simulation-time domain as the architecture model.

In the remainder of this section, we will use two example refine-
ments to describe our IDF-based refinement method. The first ex-
ample illustrates the basic concepts, whereas the second one shows
a more complex refinement in which all our IDF-model building
blocks are used.

Let us reconsider the example presented in the previous section,
in which Kahn process B (see Figure 2) is mapped onto processor 2
(see Figure 1) that lacks a local memory. Because of this mapping,
the R—E—W event sequences generated by process B should be
refined according to transformation (5). Figure 3 shows the IDF
model that realizes this refinement3. The names of the actors in
the IDF model represent their functionality. Some actors are repre-
sented by boxes rather than circles because they are building blocks
which are, as will be explained, composed of multiple sub-actors.
If no explicit number is specified at a channel of an actor, then it
is assumed that a single token on that particular channel is con-
sumed/produced. For the sake of discussion, we differentiate be-
tween three types of token channels, although all of these channels
are functionally equivalent. The intra-event dependency channels
are the token channels within a single branch of the root switch.
They specify the dependencies within the refinement of an appli-
cation event. For example, in Figure 3, the intra-event dependency
channels specify that a CD is followed by an Ld which again is fol-
lowed by an SR. Opposed to intra-event dependency channels are
inter-event dependency channels which are token channels between
different intra-event branches. They specify the dependencies be-
tween refinements of different application events, such as that an
E must be preceded by an Ld. The third channel type (the dashed
arrows in Figure 3) will be discussed later on.

At the top of Figure 3, the application trace comes into the IDF
model. These trace events are handled as typed (i.e., integer-valued)
tokens by the root switch. Dependent on the event type (R, W or E),
a token is transmitted along one of the three branches. Assuming
the first event is an R, then the CD-actor receives a token. To fire,

3In Figure 3, only the relevant IDF parts of virtual processors X
and Z are shown.

Virtual
processor Y

Virtual
processor X

Virtual
processor Z

,,,,,

|
|

! ’
| /
'

'

i

\ \ ’
\ \ .
\ \ / / ,
<« «v v v >

Processor 1 ’—Um—‘ Processor 2
FIFO

Architecture model

N
X

Processor 3

Memory
Figure 3: Refining events for processor 2 without local memory.

the actor needs an additional token from an SD-actor of the IDF
model of virtual processor X. Likewise, CR-actors require a token
from an SR-actor of a remote IDF model. Initially, they can have b
tokens on this inter-event dependency channel — called a delay and
denoted by a < —to model a FIFO buffer with a size of b elements.

Let us return to the CD-actor in Figure 3. The firing of this ac-
tor simply entails the generation of a token on its output channel.
The destination of this token is the Ld-actor, which also needs a to-
ken on its inter-event dependency channel from the CR-actor. This
CR-actor fires when a W trace event was encountered and there is
room in the output buffer (i.e., a token from an SR-actor of virtual
processor Z is available). The firing of the Ld-actor (when enabled
by the CR-actor) is special as it actually involves two stages of sub-
actors. The same is true for St and E actors. The decomposition of
these actors is depicted in Figure 4, where the X refers to the actor
name (either Ld, St or E).

In the first stage of an Ld-actor, embodied by the Ld-init sub-
actor, a token is sent to the architecture model (see also the dashed
arrow in Figure 3). This token is typed as being an Ld-token. The
performance consequences of this Ld event are simulated within the
architecture model, after which the architecture simulator sends an
acknowledgment token back to the IDF model. The Ld-exit stage of
the Ld-actor, which in the case of Figure 3 produces an intra-event
token for the SR-actor and an inter-event token for the E-actor, only
fires when the acknowledgment token from the architecture model
is received. Because our IDF models and the underlying architec-
ture model are executed within the same Pearl simulation (and thus
are sharing the virtual clock), the token transmissions to/from the

ing in,

decomposes
—_—
into

out; outy,

out; outy,

X ={Ld,St,E} from/to

architecture model

Figure 4: Decomposing Ld, St and E actors.

architecture model yield a timed IDF model. For example, the time
delay of the Ld actor within the IDF model is dependent on the Ld-
event’s simulation in the underlying architecture model. The St and
E actors in the IDF model operate in an identical fashion.

We note that in Figure 3 the SR and SD event actors are fired in
parallel. It depends on the scheduler which of these two actions is
performed first. If no timing is involved in these actions (which we
assume in this paper), then the order of execution is of no impor-
tance. If, however, the order is essential, then the designer can force
a scheduling by adding an inter-event dependency channel between
the SR and SD actors. Moreover, if the execution of synchroniza-
tion events involves a latency, then these events can be modeled
using the actor type of Figure 4 where there is a token exchange
with the architecture model. The remainder of the actor firings in
Figure 3 should be self explanatory.

To further demonstrate the capabilities of our refinement method,
we present a slightly more complicated example. Suppose that pro-
cessor 2 (onto which application process B is mapped, see Figures 1
and 2) is an architecture block that operates at the granularity of
lines rather than blocks and that it can only locally store a sin-
gle line. This means that the processor repetitively reads a line
of data, computes on it and outputs a line again. Assume that three
lines equal to two blocks and that processor 2 synchronizes its ac-
cesses to input and output buffers at this granularity of three lines
(= 2 blocks). Processors 1 and 3 still operate on blocks and also
synchronize at the granularity of a single block. This means, for
example, that after processor 2 has processed and outputted three
lines, processor 3 can subsequently read and process two blocks.
We note that for such inter-processor communication with mixed
grain-sizes, the point-to-point FIFO channel between processors 1
and 2 has been removed and replaced by a buffer in shared memory.

Given the above, processor 2 yields the following behavior for
application process B. When three lines of data are available in the
input buffer in shared memory and there is room for three lines
in the output buffer, then processor 2 starts processing the three
lines one after each other. This behavior can be described by the
following trace transformation:

R—)E—)W—)R—)E—)W:@>

CD — CR — Ld(line) — E(line) — St(line) — Ld(line) —
E(line) — St(line) — Ld(line) — E(line) — St(line) — SR — SD (6)

So, two subsequent R—E—W event sequences from application
process B (operating at block granularity and processing two blocks)
are needed for the transformation into architecture-level events (pro-
cessing three lines). Note that the two E events from the application
model are transformed into three architectural E events that oper-
ate on lines rather than blocks. In other words, this example also
involves refining the grain-size of computational events.

Figure 5 shows an IDF model for the required refinement. The
intra-event refinement paths of the R and W events each contain a
switch and select actor. These actors operate in a cyclo-static fash-
ion, i.e., they alternately read from (select) and write to (switch)
input/output channels 0 and 1. By doing so, the CD and CR actors
only fire on the occurrence of even R/W events. The IDF model also
features up/down samplers (n to m-actors) that increase/reduce the
number of tokens. In Figure 5, the connection to the IDF model
of virtual processor Z is also depicted to illustrate the synchroniza-
tions between virtual processor Y (operating on lines) and virtual
processor Z (operating on blocks). Firing the SR-actor in virtual
processor Z twice (after reading two blocks), generates one token
on the input channel of the CR-actor in virtual processor Y, imply-
ing that the next three lines can be processed.

Virtual Event
processor Y trace

Switch
R E W

to virtual
processor X

|
/
YV oy

Processor

S
select
St(line)
2

‘ Architecture model

Bus

Figure 5: Rescheduling/reducing the points of synchronization
and refining the data granularity.

After firing the CD and CR actors and assuming that two R events
were encountered, the Ld(line)-actor has three tokens on its intra-
event dependency channel and can — due to the single-token delay
on the intra-event dependency channel from the St(line)-actor — be
fired for the first time. This firing subsequently enables the E(line)-
actor to fire once, which in its turn enables the St(line)-actor to fire.
The latter produces a token for the Ld(line)-actor, allowing it to fire
for the second time. This circular actor chain is fired three times in
a row, after which the SR and SD actors are fired.

As a final remark, we would like to note that using one or two
compound building blocks, the complexity of our IDF models (e.g.,
the number of up/down samplers) can be reduced significantly.

5. CASE STUDY

To demonstrate the effective usage of the trace transformation
method defined in the previous section, we performed a simple case
study in Sesame. We have taken the application model given in Fig-
ure 2 and evaluated two candidate architectures which are based
on the architecture shown in Figure 1. The two architectures are
identical except that processor 2 has no local memory in the first
architecture, whereas it does have a local memory in the second
one. The refinement IDF for the first candidate architecture is al-
ready given in Figure 3, while the IDF for the second architecture
is shown in Figure 6.

We implemented the Kahn process network of Figure 2 using
Sesame’s application modeling framework [6]. To this end, we de-
scribed the topology of the application model in the Y-Chart Mod-
eling Language (YML) which is an XML based model description
language specifically developed for describing simulation models
in Sesame. The topology of the architecture models, implemented
in Pearl, is also described using YML. The reader is referred to [6]
for a complete discussion of Sesame’s software framework.

The IDF models (see Figures 3 and 6) of the refined virtual pro-
cessor mapped onto processor 2 have different dependency chan-

Switch

Processor 3

Processor 1 ’—mﬂ—‘ Processor 2
FIFO

Architecture model

Memory
Figure 6: Refining events for processor 2 with local memory.

nels resulting in different refined architecture traces. To give an
example, the CR in Figure 3 is scheduled before Ld and E, while
in Figure 6 it is scheduled after both Ld and E events. This is the
result of the fact that processor 2 in the architecture of Figure 3
cannot store data locally.

Figure 7 shows the performance estimation results for both archi-
tectures. We have performed 10 simulation runs each with different
computational workloads associated with E, (mapped onto proces-
sor 2) and E3 (mapped onto processor 3) events. As expected, using
a processor with a local memory improves total performance, de-
pending on the workload imposed by E, and E3 events. All laten-
cies and processing times in this sample simulation are in abstract
time-units. This is because we are illustrating the concept of our
trace refinement methodology rather than evaluating a real-life ar-
chitecture. In Figure 7, we also observe that, when processor 2 has
a local memory, the performance is almost only dependent on E3
if E, is less than or equal to E3. Without a local memory, the per-
formance also depends on E,. The reason for this behavior follows
from the fact that the processor with local memory is less depen-
dent on the execution of the other processors in the pipeline, so the
total execution time is dominated by the slowest processor, in this
case processor 3. Without local memory, processors in the pipeline
are more tightly coupled. We notice this as an increase in total ex-
ecution time, even when the faster processor, in this case processor
2, is slowed down by increasing E.

250000 T T T T T T

mmmm Processor 2 with local memory
C— Processor 2 without local memory
200000 7

150000 7

100000 [~ b

Processing Time

50000 — b

0 L]
(25,25) (25,50) (50,50) (25,75) (50,75) (75,75) (25,100) (50,100) (75,100)(100,100)

Computational Workload (E,E 3)

Figure 7: Simulation results for two candidate architectures.

6. RELATED WORK

There are a number of exploration environments, such as VCC
[1] and Polis [2], that facilitate flexible system-level design space
exploration by providing support for mapping a behavioral applica-
tion specification to an architecture specification. Within Sesame,
which builds upon the ground-laying work of Spade [11], we try to
push the separation of modeling application behavior and modeling
architectural constraints at the system level to even greater extents.
To this end, we apply trace-driven co-simulation of application and
architecture models. Like was shown in [14], this leads to efficient
exploration of different alternatives.

A fair amount of research has been performed in the field of com-
munication refinement. In [10], a refinement method is proposed
in which an application trace is dynamically rewritten into an in-
termediate partially-ordered trace of architecture-level events. To
this end, a number of architecture-independent rewrite rules need
to be applied. Then, in a second stage, this intermediate trace is
linearized using knowledge on the underlying architecture. How-
ever, this work lacks a mechanism — like our IDF models — that
actually realizes the refinements. [3] also defines a refinement of
the application-level communication primitives into more detailed
implementation primitives. However, this refinement does not al-
low for reordering of operations. A similar approach is taken by
VCC[1]. In the framework of [12], low-level communication prim-
itives — similar to our architecture-level primitives — are provided
to the application (model) programmer. The drawback of such an
approach is that it makes application models architecture depen-
dent. This complicates the reuse of application models and puts
extra burden on the application programmer.

7. DISCUSSION

We presented a trace transformation technique that is based on
integer-controlled data-flow models. It allows for refining abstract
communication events generated by an application model into archi-
tecture-level communication primitives. Using examples and a case
study, we illustrated that the refinement method enables the per-
formance evaluation of different communication behaviors at the
architecture level while the application model remains unaffected.

The refinement examples we have shown are still relatively sim-
ple. In reality, the IDF models may become more complex. For
example, distinct refinements may be needed for communications
on different channels. Or communication patterns for a fixed set of
channels may change during application execution. Such behavior
calls for combining multiple IDF sub-models (one for each required
refinement) in a hierarchy of switches that selects the appropriate
refinement. Further study is needed to investigate how this affects
our refinement method.

Another important issue is the analyzability of our IDF models.
In [4], it is shown that dynamic data-flow models, such as boolean
and integer-controlled data-flow models, are hard to analyze stat-
ically since many of their analysis problems are undecidable. In
our IDF models, the incoming event trace at a root switch acts as a
control token stream of which the contents are, in general, hard to
predict. However, in many of our target applications, the Kahn pro-
cesses communicate via fixed, typically recurring, communication
patterns. The refinement schemes for each of these communication
patterns — when considered in isolation — can be regarded as cyclo-
static data-flow models [7] rather than IDF models. In that case
(like in the examples presented in this paper) we can reason about
our models since the pattern of application events entering the IDF
model is known a priori, making it possible to switch tokens in
a cyclo-static manner. Currently, we are exploring the theoretical

aspects of our class of IDF models and experimenting with more
realistic case studies.

8. ACKNOWLEDGMENTS

This research is supported by PROGRESS, the embedded sys-
tems research program of the Dutch organization for Scientific Re-
search NWO, the Dutch Ministry of Economic Affairs and the Tech-
nology Foundation STW. We thank Joseph Coffland, Simon Polstra
and Ed Deprettere for their valuable feedback on this work.

9. REFERENCES

[1] Cadence Design Systems, Inc., http://www.cadence.com/.

[2] F. Balarin et al. Hardware-Software Co-design of Embedded
Systems — The POLIS approach. Kluwer Academic, 1997.

[3] J.-Y. Brunel, E. de Kock, W. Kruijtzer, H. Kenter, and
W. Smits. Communication refinement in video systems on
chip. In Proc. 7th Int. Workshop on Hardware/Software
Codesign, pages 142-146, May 1999.

[4] J. T. Buck. Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model. PhD thesis,
Dept. of Electrical Engineering and Computer Sciences,
University of California, Berkeley, 1993.

[5] J. T. Buck. Static scheduling and code generation from
dynamic dataflow graphs with integer valued control
streams. In Proc. of the 28th Asilomar conference on Signals,
Systems, and Computers, Oct. 1994,

[6] J. E. Coffland and A. D. Pimentel. A software framework for
efficient system-level performance evaluation of embedded
systems. In Proc. of the ACM SAC, March 2003.

[7] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete.
Cyclo-static data flow: Model and implementation. In Proc.
28th Asilomar Conf. on Signals, Systems, and Computers,
pages 503-507, 1994.

[8] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74, 1974.

[9] B. Kienhuis, E. F. Deprettere, K. A. Vissers, and P. van der
Wolf. An approach for quantitative analysis of
application-specific dataflow architectures. In Proc. of the
Int. Conf. on Application-specific Systems, Architectures and
Processors, July 1997.

[10] P. Lieverse, P. van der Wolf, and E. F. Deprettere. A trace
transformation technique for communication refinement. In
Proc. of the 9th Int. Symposium on Hardware/Software
Codesign, pages 134-139, Apr. 2001.

[11] P. Lieverse, P. van der Wolf, E. F. Deprettere, and K. A.
Vissers. A methodology for architecture exploration of
heterogeneous signal processing systems. Journal of VLSI
Signal Processing for Signal, Image and Video Technology,
29(3):197-207, Nov. 2001. Special issue on SiPS’99.

[12] A. Nieuwland and P. Lippens. A heterogeneous HW-SW
architecture for hand-held multi-media terminals. In Proc.
IEEE Workshop on Signal Processing Systems, pages
113-122, Oct. 1998.

[13] A.D. Pimentel, P. Lieverse, P. van der Wolf, L. O.
Hertzberger, and E. F. Deprettere. Exploring
embedded-systems architectures with Artemis. IEEE
Computer, 34(11):57-63, Nov. 2001.

[14] A.D. Pimentel et al. Towards efficient design space
exploration of heterogeneous embedded media systems. In
Embedded Processor Design Challenges: Systems,
Architectures, Modeling, and Simulation, pages 57-73.
Springer tutorial series, LNCS 2268, 2002.

