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Abstract—We present how electrical Extra-Functional Be-
havioural (EFB) metrics can be used in generating accurate
representations of executional units for industrial Cyber-Physical
Systems (CPS). We achieve this by employing our concept of power
passports (the representation), created per metric and per execu-
tion phase (executional unit). We employ these representations
alongside supervised classification algorithms, i.e., Decision Tree
and Random Forest, in an effective data analytical pipeline. Our
approach is capable of detecting anomalous operational conditions
and predicting the type of anomaly, out of different known types,
with significant overall accuracies, as high as 99% in certain
set-ups. We consider anomalous operational conditions as non-
reference conditions, resulting in loss of performance or unreliable
operation of a system.

Our experiments are designed to reflect real-world conditions
as much as possible and all of our collected raw data comes
from real executions, normal and anomalous, with no synthetic
manipulation. Our results show that a black box approach towards
systems under scrutiny for anomaly detection and classification,
given its accuracy and considering the limitations applicable to
low-power industrial CPS, can be the preferred one.

Index Terms—Automated performance anomaly detection, In-
dustrial cyber-physical systems, Fault tolerance, Classification

I. INTRODUCTION

The expanding complexity of modern Cyber-Physical System
(CPS) platforms forces us to think about and develop solu-
tions for the challenges resulting from this complexity. CPS
platforms, whether having a distributed or a centralised archi-
tecture, are becoming more and more software-heavy, i.e., the
software running the platform is playing a more prominent role
in its operational specifics. As the software grows in size and
complexity, also considering the interactive relation between
different software components on both internode (amongst
multiple platforms) and intranode (within a single platform)
scales, the potential for unforeseen anomalies increases. An-
other source is the complexity factor imposed upon CPS by
means of environmental uncertainties, making it exceptionally
challenging and expensive to account for all possibilities at
design time [1]. Thus, online measures of keeping the system
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in check to allow detection and prediction of anomalies is not
a luxury, but a necessity.

The economic impact of the challenge is especially preva-
lent in industrial CPS platforms [2]. Industrial CPS come in
different flavours, depending on the industrial use-case they
are intended to serve. These systems have a broad spectrum
in terms of size, performance, hardware architecture, inter-
connectivity, and other defining descriptions. When it comes
to less capable industrial CPS in terms of performance, the
computational burden of monitoring tools and their noise-like
effect on the device develops into a limitation. We would
like to avoid these noises, for they do not belong to the
original behaviour and they contaminate collected data. As
such, amongst different approaches, the reduction of the need
to study the system under scrutiny in great detail, would be a
promising approach. In this fashion, the goal is to treat such
devices not as white boxes, but as black/grey boxes. The term
grey box here denotes the fact that although we would like to
avoid as much detail regarding the internal mechanisms of the
device as possible, we still do need an overview. A black/grey
box approach is also beneficial for highly capable industrial
CPS, e.g., semiconductor photolithography machines, since it
is extremely challenging to capture their vast complexity.

The use of external metrics are especially advantageous for
less capable systems, for the monitoring and tooling involved
with the collection of internal system metrics dictates the
performance penalty of its own. In this context, external met-
rics, e.g., electrical, are the ones collected without interfering
with the operation of the platform. Other systems that would
benefit from an external approach are the ones being closed to
inspection and probing, necessitating a black box approach.

The foundation for the following discourse in this paper
is the fact that industrial CPS are inherently repetitive. As
such, whichever perspective they are looked at from, their
operation and the information related to their operation can
be compartmentalised. This will pave the way to the notion of
execution phases, explained in Section II.

Contribution: In this paper, we will show how Extra-
Functional Behavioural (EFB) metrics external to the system,
e.g., electrical metrics such as current and power, can be used
to distinguish between normal and anomalous behaviour, with
the ability to detect the type of anomaly. We will demonstrate
our findings in the form of supervised anomaly classification



results with exceptional overall accuracy, as high as 99% in
certain cases. As far as we are aware, external electrical metrics
have not been studied for anomaly detection/classification of a
CPS, in a black box approach.

II. BACKGROUND

A. Extra-functional behaviour

EFB include a computing system’s behaviour and as the
name suggests, it is not directly derived from functional aspects
of the system. Examples are, execution time, different latencies,
throughput, power and energy consumption, amongst others.
Metrics reflecting EFB are not only dependent on functional
behaviour, but also on environmental circumstances, such as the
platform itself, the input to the system and operational condi-
tions. These being important variables for CPS, necessitate the
role of EFB metrics in their monitoring and analysis.

B. Execution phases

Execution phases are basically repeated units of execution,
which are especially noticeable in industrial CPS operations.
Repeated tasks can be broken down to their subtasks and
higher granularity can be achieved to describe repeated units
of execution. We call the smallest of these units an atomic
execution phase. There may be combined atomic phases that
are also repetitive. Such repetitions involving multiple atomic
phases are called combo execution phases in [3].

C. Signatures and passports

We have adopted and extended the concept of software
passports from [3], which were built based on internal system
metrics, requiring probing from within the software, e.g., CPU
time. A signature is the representation of an execution phase,
modelling the trend of EFB metrics collected during that phase.
Our technique of choice for this modelling is regression. A
passport is a reference signature, collected under normal and
reference execution conditions, which is used in comparisons.
Note that signatures are calculated per metric.

III. METHODOLOGY

We strive to detect and classify performance anomalies in
an online fashion. As shown in Fig. 1, the high-level steps
of online monitoring, detection and identification are covered
by our analytics pipeline. Data collection is followed by its
compartmentalisation and application of regression modelling
next, resulting in power signatures/passports. The goodness-of-
fit values are acquired by comparing a signature to a passport.

During the online monitoring and relevant data manipula-
tions, we compartmentalise (cut) monitoring data based on
execution phases, as this will result in comparable pockets of
information. These pockets correspond to platform repetitions.
Since the amount of monitoring data can be rather large, we use
the concept of signatures in general and passports in particular
to represent pockets of unknown and reference information,
respectively. As passports are essentially regression functions
generated over cumulative EFB metric values, they can be
conveniently stored and utilised for comparison purposes. We
consider goodness-of-fit tests, coefficient of determination (R2)
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Fig. 1: Our experimental platform, electrical EFB metric collection set-up and
the data processing pipeline (note the independent power supply to the fan)

and Root-Mean-Square-Deviation (RMSD), when comparing
a sample signature to a reference passport. Goodness-of-fit test
results are the basis for detection, quantifying the deviation
between normal and anomalous conditions. The role of iden-
tification is to pinpoint the actual anomaly, with the ability to
separate between many, even unknown ones.

The identification step involves the use of classification
algorithms such as Decision Tree and Random Forest. The
accuracy of these classifiers is affected based on the choice
of feature set and input data set. Accordingly, there may be
a need for intermediate analysis to adjust and further tailor
classification parameters. For instance, upon recognition of an
unknown anomaly, or low accuracy for a certain known one,
the feature set considered can be adjusted. Depending on the
actual use-case, this analysis could be an automated one.

IV. IMPLEMENTATION

We have chosen an image processing application, running
on an embedded board, as our proof-of-concept. Such systems
are deployed in the industry, from assembly lines to unmanned
vehicles. Such a system also fits our goal for the lower end
of industrial CPS performance spectrum, since these are low-
power systems with limited computational capabilities. Further-
more, a platform running an image processing application is
highly repetitive, thus mimicking an industrial CPS fairly well.

A. Proof-of-concept platform

Our proof-of-concept set-up is depicted in Fig. 1 and consists
of an ODROID-XU4 computing device, implementing the
ARM big.LITTLE computing architecture. We are running a
stripped-down Linux distribution and the main running ap-
plication is a neural network-based image analysis software,
detecting if cars are present in images. The platform is capable
of receiving images from either a camera, or a storage device
and in our case, images are provided via a storage device.

For our electrical EFB data collection, we rely on the
Otii Arc power data logger unit [4]. The data logger collects



electric potential in Volts and electric current in Amps with the
sampling rates of 1 kHz and 4 kHz, respectively. Timestamps
for each data collection is also recorded alongside these metrics.

B. Data collection and preparation pipeline

Our experiments do not include any synthesised data and
all the data collection was performed during real executions
for both regular and anomalous scenarios. Given that we have
electrical potential, electrical current and time readings, we
consider the three metrics, current in Amps, power in Watts
and energy in Milliwatt-hours, for generation of signatures.

The image analysis running on the target platform has
two main operations, i.e., reading images from a storage and
applying a neural network detection algorithm on them. Thus,
we have considered the following atomic and combo phases
for current, power and energy readings, as depicted in Fig. 2:

• Image op.: An atomic phase for image loading,
• Neural op.: An atomic phase for neural network,
• Cycle op.: A combo phase for a full image cycle, including

image loading and neural network operations.
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Fig. 2: Different execution phases for an image processing task, i.e., atomic
image operation, atomic neural operation and combo cycle operation, combin-
ing the first two

C. Implementing power passports

Our tools of choice to represent unique execution phases,
as given in Section II, are signatures and passports, with the
latter being the signature for a reference phase. Based on the
nature of the utilised EFB metrics, the resulting execution
representations are what we call power signatures and power
passports. Having three considered metrics means that we
will generate three passports per operation. We also transform
metric readings and create cumulative values, since creating
a regression model over cumulative values results in a more
accurate fit and a monotonically increasing regression function.
We have experimented with regression functions of different

orders and have reached a satisfactory fit with second degree
polynomial regressions.

In addition to individual power passports, we are also gen-
erating mean power passports as a unified representation for
many executions with different input data. Mean passports are
generated per metric and per phase type. When it comes to
mean power passports, their generation is not a straightforward
task, as there needs to be matching timestamps. Basically, we
are calculating the mean of many regression functions, which
can be written as,

ymean(x) =
f(x) + g(x) + h(x) + ...

n
,

with x being the independent variable, time, and n the number
of functions.

Either we have to do listwise deletion and remove inde-
pendent variable readings which do not exist in all phases, or
we have to perform data imputation. The latter is much more
preferable, for there are executions that take slightly longer and
we do not wish to disregard valid data collection points residing
at the end of longer executions. In principle, this applies to
other unmatched points as well, regardless of their location
within the execution time frame. We have already generated
regression models for data collections as their representations
and as such, we can perform regression-based imputation by
predicting the dependent variable values (metric) for missing
independent variable values. This arrangement is especially
convenient, since we already have generated and we use these
very same regression models in comparisons and goodness-of-
fit tests. There will be no extra bias other than what already
exists as part of regression models. Fig. 3 depicts this process.
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Fig. 3: Mean passport generation flow using the full set of x values (indepen-
dent variable) from all available passports for the same metric and generating
equal size sets of y values (dependent variable) by means of regression-based
imputation

D. Comparisons

Having regression functions as representations of reference
units of execution (phases) allows us to compare new sets of



sample data against these functions using goodness-of-fit tests.
In our case, coefficient of determination (R2) and Root-Mean-
Square-Deviation (RMSD) are taken to quantify and compare
the amount of deviation. These are standard statistical tests to
determine how close a regression function is interpolating data
points. Although we have individual and mean passports as
potential reference points in comparisons, the only meaningful
comparison to perform is a one-to-mean comparison..

One-to-mean comparison: This considers the collected
sample related to a specific input against the universal mean
passport. The metric and the phase should be the same. There-
fore, there is no need for special considerations on the mean
passport leg of the comparison, as there is only one per metric
and per phase, i.e., we do not need to match input images.

Two other comparisons, one-to-one and mean-to-mean, are
biased and not realistic for a production environment. Note
that for normal conditions, we also perform one-to-mean com-
parisons, which essentially compares a normal phase signature
(passport) to a normal mean passport and will result in minute
deviations. This will indicate a normal case for classification.

E. Classification

Out of different employed classification algorithms, best
results are coming from Decision Tree (DT) and Random Forest
(RF) classifiers1. Here, we list the feature set involved in the
classification and their brief descriptions.

• Metric: Considered metric out of current, power and
energy consumption

• Execution time: Execution time for the phase (this is the
one piece of information, turning the view into grey box,
instead of a black box one, since we have the boundaries
of phases in time)

• Coefficient 2: Coefficient for the second degree term, x2,
of the regression function

• Coefficient 1: Coefficient for the first degree term, x, of
the regression function

• Intercept: Intercept value of the regression function
• One-to-mean R2: Goodness-of-fit value for sample points

from one image against the reference mean passport
• One-to-mean Di(R

2): Absolute difference between the
one-to-mean R2 value and the R2 value of the reference
mean passport

• One-to-mean RMSD: Goodness-of-fit value for sample
points from one image against the reference mean passport

• One-to-mean Di(RMSD): Absolute difference between
the one-to-mean RMSD value and the RMSD value of
the reference mean passport

• Label: Normal, Anomaly 1, Anomaly 2, etc. (NoFan and
UnderVolt in this paper)

We split the data into 70% training and 30% test data. Our
data analysis pipeline has been written in Python 3.7 and for
our regression and classification needs, we rely on Scikit-learn
0.23.1 machine learning library [5].

1The hyperparameters used with Scikit-learn library for each classifier
besides the default values are as follows: criterion = entropy for DT;
n estimators = 100 for RF.

V. EXPERIMENTAL SET-UP

The input data for the image analysis application are pro-
vided on a storage device. We have considered two different
sets of images, first one being proper images with meaningful
scenery. This batch includes images with and without a car
depicted in them. The second batch includes images that do
not depict any particular shape and have purely randomised
pixels, introducing variation in the input. In this fashion, we
could evaluate if the composition of an image is a factor for
our workflow. Each batch is used in two different executions,
one involving a single round of image analysis and the second,
involving ten rounds of image analysis, meaning the same
batch is processed ten times, sequentially. We have chosen
the number of rounds arbitrarily and with the aim to have a
long enough execution, reflecting the effects of anomalies. Each
batch includes 30 images, making the workload for ten rounds
of processing as 300 images. We have also executed every
combination of conditions twice, by assigning the application
to either a big, or a little core on the platform. The list of
performed data collections are as follows:

• Case 1: 1 execution round, regular images, little core
• Case 2: 10 execution rounds, regular images, little core
• Case 3: 1 execution round, regular images, big core
• Case 4: 10 execution rounds, regular images, big core
• Case 5: 1 execution round, randomised images, little core
• Case 6: 10 execution rounds, randomised images, little

core
• Case 7: 1 execution round, randomised images, big core
• Case 8: 10 execution rounds, randomised images, big core
The structuring of our workloads for the aforementioned data

collection cases, fits the principle of repetitive task execution
for industrial CPS rather well. Keep in mind that although these
tasks are repetitive, but the underlying non-determinism is still
present, as the behaviour of the system has subtle variations per
execution, even with the same exact input. Now that different
cases are defined, we have considered two different anomalies,
affecting the performance and the reliability of the system.

a) Malfunction of the cooling system: For this anomaly,
henceforth called NoFan, we have disabled the cooling fan of
the platform’s CPU block. Keep in mind that in our set-up, the
fan has a separate supply of power (PSU) to begin with and
will not directly affect electrical EFB metric readings of the
platform, as depicted in Fig. 1.

b) Unstable power delivery: For this scenario, henceforth
called UnderVolt, we have reduced the voltage supply to a level
below the required amount for the platform, but still keeping
the device functional. This was a reduction from 5.0 Volts to
4.7 Volts. We have also made sure that the voltage supply is at
a sufficient level and it will not result in glitches.

We have considered the exact same cases as the normal cir-
cumstances, with different batches of images, different numbers
of processing rounds and different cores. Accordingly, our ex-
periments resulted in eight cases for each scenario, representing
Normal, NoFan and UnderVolt situations. It must be mentioned
that having equal number of cases and basically equal number
of data fields for all scenarios is advantageous as it will result in



a balanced data set for classifier algorithms. Having a balanced
data set will eliminate the need for imbalance countering
techniques, e.g., undersampling and oversampling.

VI. RESULTS

Our results mostly focus on the prediction accuracy of
classification algorithms as it is our ultimate goal to be able
to detect and classify anomalies. We have tried Decision Tree
(DT) and Random Forest (RF) classifiers with different subsets
of our data set and we observe that the choice of phase
and metric as sources of data has a considerable effect on
the prediction accuracy of the classification. We have tried
classifications using data from all three metrics at the same
time, as well as every metric individually. For all of these
classification trials, we have considered either atomic image
op., atomic neural op., combo cycle op., or the combination of
the data from both atomic image and atomic neural operations.
Table I presents these choices alongside their resulting overall
prediction accuracies.

TABLE I: Overall prediction accuracy of Decision Tree (DT) and Random
Forest (RF) classifiers based on data sets generated from different combinations
of metrics and phases

Metric Phase DT acc. (%) RF acc. (%)

current image op. 89.83 92.80
current neural op. 98.89 98.81
current cycle op. 99.15 99.23
current image op. + neural op. 94.23 96.06

power image op. 81.79 83.23
power neural op. 96.86 96.61
power cycle op. 97.03 97.54
power image op. + neural op. 89.70 91.48

energy image op. 74.25 77.13
energy neural op. 96.69 97.37
energy cycle op. 97.29 97.71
energy image op. + neural op. 86.99 88.47

all three image op. 83.05 84.89
all three neural op. 97.85 98.22
all three cycle op. 97.96 98.50
all three image op. + neural op. 89.86 91.52

The overall prediction accuracy of DT and RF classifiers,
while using the data generated from combo cycle op. phases
together with the electrical current metric, are 99.15% and
99.23% respectively, which are the highest accuracies out of all
combinations. The confusion matrices are depicted in Fig. 4.
High prediction accuracy is observable across the board as a
result of having a balanced data set.

A. Analysis and discussion

Contrary to the common intuition, combining different
phases and passports generated from these phases in the data set
does not improve the accuracy beyond what we have achieved
with data sets based on a single phase. The same also applies
to combinations of metric data. It is possible to investigate
the suitability of phase data for these classifiers by looking
at the DT graph visualisation. The more contained the graph,
the easier it is for the classification algorithm to distinguish
between labels. In this case, the DT graph visualisation for the
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Fig. 4: Normalised confusion matrices for (a) Decision Tree (DT) classifier and
(b) Random Forest (RF) classifier, considering the anomaly categories, Normal,
NoFan and UnderVolt as labels, with the data set put together for the electrical
current metric and for the combo cycle op. phase

combo cycle operation with electric current as the metric of
choice, has a rather contained complexity.

Looking back at the definition of our phases, this is an
expected effect. Considered anomalies in this paper are of
the type affecting the computational capability of the system,
whereas an atomic image operation mostly reflects the I/O
activity while loading an image. However, we must take into
account that for other types of anomalies, it might be the case
that the atomic image op. is a more definitive source of data,
so we cannot flat out disregard such sources of data.

One might argue that anomaly specific monitoring is also
capable of detection, e.g., monitoring voltage supply can reveal
instabilities. Such an approach is just that, single anomaly
specific. Such detection assumes prior knowledge of possible
anomaly types and every anomaly will require its own detec-
tion. However, our methodology can detect and differentiate
between multiple anomalies by virtue of looking into the
system behaviour, making it capable of handling anomalies
with unknown causes as well.



B. Explainable output

One of the characteristics of our methodology is the fact that
it provides analytically comprehensible output. Accordingly, we
can backtrack our steps leading to a specific result and check
the data relevant to each step. The advantages are twofold here.
While such a capability can help with optimising the workflow
itself, e.g., by choosing better metrics and phases as the sources
of data, it could also provide information for better future
designs. For instance, if a specific batch of inputs to the system
results in unexpected classification results, individual passports
can reveal which atomic phase of the execution is misbehaving.

VII. RELATED WORK

The research community has been aware of the importance
of anomaly detection and classification, with efforts in this
regard being well-documented in surveys by Chandola et al. [6]
and Ibidunmoye et al. [7]. The challenging nature of decision
support, leading to actuations and better designs for industrial
systems, is also attested by the grand challenges presented
by Fowler [8]. Most of the body of work given in [7] focus
on performance anomalies in distributed systems [9], cloud
environments [10] and web applications [11], whereas our
methodology is specifically tailored towards industrial CPS. We
are of the opinion that our approach helps in simplifying the
task for repetitive systems by considering execution phases,
regression-based representations and more importantly, black
box views of industrial CPS.

Electrical metrics, especially electrical power analysis, have
a profound role in cybersecurity research. The famous and now
classic paper by Kocher et al. [12] is a great example. While
such publications consider electrical metrics as a source of side-
channel information and an offensive, secret-revealing metric,
we consider them as reflections of functional behaviour.

To the best of our knowledge, the use of electrical metrics for
anomaly detection/classification of CPS, while adopting a black
box approach, has not been studied. The only aspect distancing
us from a purely black box approach is the knowledge of phase
durations. Change Point Detection (CPD) [13] can automate
phase detection using the collected external metric data.

The survey by Chandola et al. [6] includes classification
algorithms from other works. These algorithms are applicable
to repetitive data such as ours. We specifically have focused
on DT [14] and RF [15] algorithms, as these were the most
promising in terms of prediction accuracy. As provided in
Table I, we have improved the initially observed accuracy by
choosing the right sources of data.

VIII. CONCLUSION AND FUTURE WORK

We have shown that the concept of software passports based
on system-level EFB metrics, along with the accompanying
tooling, can be successfully extended to EFB metrics external to
the system, e.g., voltage, current, power and energy consump-
tion metrics. We have specifically considered electrical metrics,
current, power and energy consumption in our experiments,
data collections and power passport calculations. Power sig-
natures/passports can be successfully used to detect anomalies
and contribute to fault tolerance.

Given this methodology’s previous application with a large-
scale and arguably much more complex industrial CPS plat-
form, a semiconductor photolithography machine, both ends of
the industrial CPS spectrum have been covered, from large plat-
forms to small ones. The approach has been valid across-the-
board and passports are shown to be rather flexible constructs.
We have shown that a detailed white box view of industrial
CPS is not a necessity and one can still generate definitive
signatures/passports based on a grey/black box view. What we
needed was just the start and end timestamps for different
operations, denoting the boundaries of execution phases.

Our classification pipeline is capable of labelling cases with
gradually changing feature values, as the move from the normal
condition to anomalous, e.g., NoFan, is a gradual process.

Future work: There are quite a few interesting extensions
conceivable for this paper. Considering that our methodology
is an explainable one, using supervised and rather comprehen-
sible machine learning algorithms at its final step, it would
be interesting to explore the application of more advanced
algorithms, such as Convolutional Neural Networks. Speaking
of automation, CPD as a method of automatic phase detection is
a natural extension to this work. We would like to examine the
performance and the accuracy of neural networks by applying
them directly to the collected and parsed data at different steps.
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