
Hardware versus Hybrid Data Prefetching
in Multimedia Processors: A Case Study

Andy D. Pimentel Louis O. Hertzberger

Dept. of Computer Science
University of Amsterdam, The Netherlands

Pieter Struik Pieter van der Wolf

Philips Research Laboratories
The Netherlands

In Proc, of the IEEE Int. Performance, Computing and Communications Conference, Phoenix, USA, Feb. 2000,
c�2000 IEEE, reprinted with permission of the IEEE

Abstract

Data prefetching is a promising technique for hiding the
penalties due to compulsory cache misses. In this paper,
we present a case study on two types of data prefetch-
ing in the context of multimedia processing: a purely
hardware-based technique and a more low-cost hybrid hard-
ware/software technique. Moreover, we also propose a
technique for increasing the so-called prefetch distance in
hardware prefetching and a scheme to reduce trashing in
the data cache. Our results demonstrate that the low-cost
hybrid prefetching scheme slightly outperforms hardware-
based prefetching for the code segments for which both so-
lutions have been applied, while hardware prefetching po-
tentially allows more code to benefit from the prefetching.

1 Introduction

The memory design community has not been able to keep
up with the rapid advances in microprocessor technology of
the last two decades. As a consequence, a large gap between
the performance of microprocessors and main memory devel-
oped. To a certain extent, caches are capable of reducing this
performance gap. However, in some application domains,
such as the increasingly popular class of multimedia applica-
tions, the benefits of caches are limited. In multimedia ap-
plications, calculations are often applied to streams of data
(e.g. video streams). This means that the data is accessed
in a regular fashion, i.e. using a fixed distance between two
accesses. This distance is called the stride. Because stream
processing usually exhibits no to little re-use of data, it suf-
fers from a large number of compulsory data cache misses
(caused by references that have not been referenced before).

Data prefetching is a technique that can be used to hide the
latencies due to compulsory cache misses. By giving a hint
to the memory system to try to bring data into the data cache
before it is actually referenced, later binding memory refer-
ences may complete much faster. Ideally, all these prefetched

memory references will hit in the data cache, implying that
prefetching should always retrieve the correct data and that
this data is always available in time. But, even in the case
the data is still being prefetched at the time it is referenced,
there usually still is a performance gain with respect to a plain
cache miss (the prefetched data is already on its way from
main memory). However, the danger of prefetching is trash-
ing: prefetched data may either be fetched too soon or it is not
going to be used in the future. In both cases, the prefetched
data may trash the data cache by replacing valuable data.

This paper presents a case study in which we evaluate two
techniques for prefetching data streams: a technique which
uses a pure hardware solution and a recently proposed hy-
brid technique which applies both hardware and software
for prefetching. We have centered the case study around a
typical and well-understood video-processing application on
which a range of experiments are performed. The motiva-
tion for this work is to find cost-effective methods for reduc-
ing the average memory latency in multimedia processors,
and in particular those focusing on the embedded market.
The next section presents an overview of several popular data
stream prefetching techniques. Section 3 describes the sim-
ulation model we have used in this study. This section also
proposes two new features: an optimisation for hardware-
based prefetching to increase the so-called prefetch distance
and a technique to reduce cache trashing. In Section 4, we
present experimental results of both hardware-based and hy-
brid prefetching when applied to our video-processing appli-
cation. Section 5 concludes the paper.

2 Data stream prefetching

In this study, we focus on techniques that exploit the regu-
larity of accesses in stream processing to prefetch the streams
into the data cache. Because a wide variety of these so-called
stream prefetching methods exists, we briefly discuss the dif-
ferent efforts that have been made in this field. To classify
these efforts, we first identify the two actions of which stream
prefetching is composed:



� Stream detection:
Detect when an application is performing operations on
data streams.

� Synchronisation:
While a data stream is processed, prefetch requests for
stream elements should be issued at proper moments in
time. These prefetch requests should be controlled so
that no or little trashing occurs.

Both detection and synchronisation can either be performed
statically (by the compiler or programmer) or dynamically
(in hardware), resulting in four combinations of which three
are realizable (dynamic detection, static synchronisation is
not possible). For the sake of convenience, we only refer to
the compiler when describing static techniques.

Static detection, static synchronisation.

A straightforward way to prefetch data is to add a scalar
prefetch instruction to the processor’s instruction set [6]. This
instruction, which is inserted in the code at strategic places
by the compiler, instructs the data cache to prefetch a certain
cache block. So, the compiler must detect where prefetch in-
structions have to be inserted such that the prefetched data
arrives in time and, additionally, it should insert enough
prefetch instructions to prefetch the entire data stream.

The major disadvantage of this software prefetching is the
increase of the number of instructions. For each cache block
that has to be prefetched, at least one prefetch instruction
has to be executed. Moreover, the prefetch instructions may
also affect compiler optimisations, such as loop unrolling [4].
Figure 1(a) shows an example of software prefetching. In this
paper, we will not consider this type of prefetching.

Dynamic detection, dynamic synchronisation.

In pure hardware prefetching, both the detection of the
streams and the synchronisation of the prefetch requests are
performed at run-time. A well-known hardware prefetching
method, proposed by Fu and Patel [3], introduces a hard-
ware table which records the history of memory references
to identify streams and to predict future references. This ta-
ble, called the Stride Prediction Table (SPT), stores the in-
struction address (i.e. the program counter value) of memory
references together with the data address that is referenced.
At a new memory reference, the actual value of the program
counter (PC) is searched for in the SPT. If it is found, then
the stride can be calculated by subtracting the data address
stored in the SPT-entry from the data address of the current
reference. Subsequently, a request is issued to prefetch data
from the location which is anticipated to be accessed next,
being the current data address plus the stride. So, this method
synchronises the issuing of the prefetches using the PC.

Chen and Baer proposed several optimisations to this
scheme [2]. In order to reduce the number of erroneous

prefetch(&a[0]); streamprefetch(&a[0], N, 4, 1);
for (i=0; i�N-1; i++) for (i=0; i�N; i++)
� sum = a[i] + sum;

prefetch(&a[i+1]);
sum = a[i] + sum;

�
sum = a[i] + sum;

(a) (b)

Figure 1. Software prefetching (a) and hybrid hard-
ware/software prefetching (b). The parameters of
the hybrid stream prefetch instruction are respec-
tively: the start address, the number of elements to
prefetch, the stride and the preferred runahead.

prefetches, they added state information to each SPT entry.
This state indicates whether or not a prefetch request should
be issued at an SPT hit. For example, the state of an SPT-
entry is valid (implying it can issue prefetch requests) only
when a constant stride is measured within the stream. By
doing so, irregular access patterns do not cause erroneous
prefetches as the SPT just ignores these accesses. Chen and
Baer also describe a technique to use a so-called lookahead
program counter (LA-PC) instead of the normal PC to search
the SPT. With the help of the processor’s branch prediction
table, the LA-PC runs ahead with respect to the PC and there-
fore increases the prefetch distance. The prefetch distance,
or runahead, is the distance the prefetches run ahead with
respect to the actual references within the stream. A larger
runahead gives the memory system more time to prefetch the
data. In this paper, we use the term runahead to indicate how
many stream references the prefetching runs ahead.

There are several consequences of the fact that SPT-based
prefetching relies on the PC for the identification of streams
and the synchronisation of prefetches. First, the SPT should
be reasonably large as every memory operation may indicate
the start of a stream. Second, the PC needs to be routed to the
SPT logic in the data cache, thereby affecting the processor’s
logic. Third, compiler optimisations like loop unrolling may
affect the performance of SPT-based prefetching. Loop un-
rolling splits one stream into a number of sub-streams which
all have to fit in the SPT. In addition, SPT-based prefetch-
ing suffers from two more drawbacks: there is a delay before
a stream is actually detected (it takes at least two memory
references to determine the stride) and the SPT may issue er-
roneous prefetch requests (e.g. it can issue a request for the
cache block beyond the end of a stream).

Static detection, dynamic synchronisation.

Prefetching can also be done using a hybrid hardware and
software solution such that the best of both worlds are com-
bined. For example, the problem of the large number of
extra instructions as experienced in pure software prefetch-
ing is solved by synchronising the prefetch requests dynami-
cally rather than statically. Moreover, by statically detecting



streams, there is more control over the prefetching than in
case of dynamic detection. As a consequence, the number of
erroneously prefetched cache blocks can be reduced to zero.
Additionally, the amount of required hardware resources for
hybrid prefetching is smaller than for SPT-based prefetching.
This is because the latter form of prefetching also records
information on memory references that do not behave as a
stream. Thus, hybrid prefetching generally is more low-cost
than SPT-based prefetching, which is important when target-
ing, for example, the embedded market.

In hybrid prefetching, the compiler detects streams within
a program and inserts special stream prefetch instructions at
the appropriate places. The stream prefetch instructions trig-
ger a special piece of hardware to issue a prefetch request
from time to time. Like in SPT-based prefetching, the syn-
chronisation of prefetch requests (i.e. determining when a re-
quest needs to be issued) is usually performed using the pro-
gram counter [1]. In this PC-synchronised hybrid prefetch-
ing, the stream prefetch instruction initialises an entry in a
special hardware table, called the Prefetch Information Table
(PIT). The instruction provides the PIT with the synchronis-
ing instruction address which should trigger a prefetch re-
quest, the data address at which the prefetching should start,
the stride with which should be prefetched and a count spec-
ifying the number of prefetches that should be performed. In
addition, the preferred runahead can also be specified. At
each memory access, it is checked if the program counter
(PC) is present in the PIT. If the PC is found in the PIT, then
a prefetch request is issued and the relevant information (e.g.
the prefetch address and count) in the PIT entry is updated.
Figure 1(b) shows an example of hybrid prefetching.

This prefetch technique still shares several drawbacks
with pure hardware prefetching. First, the PC must still be
routed to the PIT logic. Second, PC-synchronised hybrid
prefetching is also affected by loop unrolling, creating a num-
ber of smaller sub-streams which all should fit in the PIT. To
overcome these drawbacks, we have proposed a new hybrid
prefetching scheme which is based on data address synchro-
nisation rather than on PC-based synchronisation [8]. Data-
synchronised prefetching uses a PIT which is almost iden-
tical to that from PC-synchronised prefetching. But rather
than specifying an instruction address that synchronises the
prefetches, the starting data address of the stream is specified
for the synchronisation. Thus, instead of matching the PC,
the data address of memory references is used to determine
if there is a PIT hit. At each hit, a prefetch request is issued
after which the synchronisation and prefetch addresses of the
PIT entry are updated using the stride.

Compared to PC-synchronised prefetching, our data ad-
dress synchronisation scheme has three important advan-
tages. First, the PC does not need to be forwarded to the PIT.
Second, data address synchronisation may lead to a signifi-
cantly smaller PIT because this technique is not affected by

compiler optimisations. Unrolling a loop with a stream, for
instance, does not result in a number of smaller sub-streams
in the PIT; there is still one PIT entry for the unrolled stream.
Finally, data-synchronised prefetching is more robust than
its PC-synchronised counterpart. More specifically, data ad-
dress synchronisation determines where the processor is ac-
cessing a stream, rather than determining that the processor is
accessing a stream like PC-based synchronisation does. This
allows, for example, prefetching with a stride that is differ-
ent from the one used for the actual referencing of the stream
[5]. However, there is one drawback of data-synchronised
prefetching. The synchronisation data addresses which are
searched for in the PIT change dynamically over time. This
implies that the PIT must be implemented using a fully as-
sociative memory. By contrast, a PIT in PC-synchronised
prefetching can be implemented as a set-associative table.
But, since the PIT can be kept small with data-synchronised
prefetching, its fully associative implementation should not
be a problem.

3 The simulation model

In this study, we used a trace-driven simulation model of
the TriMedia VLIW multimedia processor architecture [7, 9].
The VLIW instructions contain five slots in which RISC-like
operations can be scheduled. At most two of the operation
slots can be used for memory accesses (load or store opera-
tions). In our simulator, instructions take by default 1 cycle
to execute (the hitratio of the instruction cache is assumed to
be perfect). Memory references are, however, explicitly sim-
ulated by a data cache and bus model which account for the
latencies in a cycle-accurate way.

The data cache model models a non-blocking 16 Kbyte
8-way set-associative cache with 64-byte cache blocks and a
Hierarchical-LRU (HLRU) replacement strategy. By default,
the cache applies the write-back and fetch-on-write policies
for write operations. But it also provides a write-validate pol-
icy, which allocates a cache block on a write-miss but does
not fetch the data. For this purpose, a valid bit is kept for
each separate byte within a cache block. We have included
the write-validate policy because stream-processing applica-
tions often write their results in the form of an output stream.
In that case, it is unnecessary to fetch a write-missed cache
block as it will be overwritten anyway.

To allow prefetching, the data cache model uses a Prefetch
Queue (PQ) in which issued prefetch requests wait to be han-
dled. The PQ is a FIFO buffer which ignores new prefetch
requests when it is full. The data cache model includes a
4-way set-associative SPT for hardware prefetching and an
8-way fully associative PIT for hybrid prefetching. Both ta-
bles apply LRU replacement. The SPT uses state bits, similar
to those from Chen and Baer [2], to guarantee that prefetch
requests are issued only if a stream exhibits a constant stride.



Cache-blocks

Prefetch Prefetch

Block i Block i + 1

block i
(normal)

Prefetch
block i + 1
(early pf)

block i + 1
(normal)

Prefetch
block i + 2
(early pf)

Prefetch
block i + 2
(normal)

Prefetch

(early pf)
block i + 3

Figure 2. The difference between normal SPT-
based prefetching and prefetching using the early-
prefetch mode.

3.1 Two new techniques

In our model, we have also applied two new techniques
[5]. The first technique addresses the potential weakness
of the traditional SPT-based prefetching method associated
with the timing of prefetches, that is, the prefetch requests
are issued only one iteration before the data is really needed.
If the loop body is too small, the prefetched data may ar-
rive too late for the next access. Unlike Chen and Baer,
who introduce a lookahead-PC [2] to solve this problem, we
have chosen for a simpler approach. Our technique, which
is called early-prefetch [5], exploits the situations in which
the stride is smaller than the cache block size. Whereas nor-
mal SPT-based prefetching ignores a prefetch request that
still refers to the same cache block as the previous request,
early-prefetch simply issues a prefetch request for the suc-
ceeding cache block in that case. In Figure 2, the early-
prefetch concept is illustrated. The arrows indicate the stream
memory-references made by the program. The figure shows
that normal SPT-based prefetching issues the prefetch re-
quests one iteration before a next cache block is accessed
(indicated by the arrows tagged with “normal”) while the
early-prefetch scheme issues a prefetch request for the suc-
ceeding block when the first element in a block is accessed.
For small strides, the early-prefetch technique may increase
the prefetch distance (i.e. runahead) significantly. On the
other hand, early-prefetching will often erroneously prefetch
one extra cache block behind the end of the stream. More-
over, early-prefetching is only beneficial when the streams
are contiguously laid out over the cache blocks. If the stride
within a stream is equal to or larger than the cache block size,
then early-prefetching has no effect.

The other new technique we included in our model tries to
reduce the effect of trashing (as the prefetched data may re-
move valuable, persistent data from the cache). To this end,
the cache model allows to specify a sub-set of cache blocks
which may be the target for prefetched data. One could, for
instance, configure only two of the 8 blocks in a cache set
for prefetching. In that case, the remaining six blocks within
the set are strictly used for normal data references and can-
not be trashed by prefetches. Normal data references can,
however, use the prefetch blocks as well. For the prefetch

blocks, an additional replacement strategy is used, which is
LRU. Prefetches update both the global strategy (i.e. HLRU)
and their “local” prefetch strategy. As a consequence, normal
data references will try to avoid prefetch blocks when a lot of
prefetching is done, thereby almost guaranteeing exclusive
access to the prefetch blocks by prefetches only. On the other
hand, if there is not much prefetch activity, the cache is free
to use all the blocks within a set for normal data references.

4 Experiments

To evaluate hardware-based and hybrid prefetching, we
have performed a simulation study using a typical and
well-understood video-processing application, called Me-
dian. The kernel of this program processes the odd and even
frames of an interlaced video stream in order to produce non-
interlaced frames. For all our experiments, we applied Me-
dian to a 200�140 image. Because we focus on a single
benchmark, the purpose of this study is to gain insight into
the relative behaviour of the two prefetching methods. By no
means, we try to predict absolute performance improvements
by extrapolating the results from the Median benchmark.

Table 1 shows the data cache missratio and the Data Cache
Penalty (DCP) for Median without prefetching. The DCP
value refers to the average number of cycles per memory ref-
erence the processor stalls for the data cache. The table gives
the results for both the fetch-on-write and write-validate poli-
cies. The results from Table 1 indicate that Median benefits
from a write-validate data cache. As the missratios obtained
by the fetch-on-write policy are only marginally lower than
the write-validate missratios, this suggests that there rarely
are read accesses to cache blocks into which some other item
has been written. So, by not fetching cache blocks at write
misses (i.e. write-validate) valuable memory bandwidth is
saved. Consequently, the DCP for the write-validate policy is
roughly 15% lower than that for a fetch-on-write cache. Our
goal is to reduce the DCP even further using prefetching.

For hybrid prefetching, we instrumented the kernel of Me-
dian with stream prefetch instructions. Hence, prefetching
only occurs during the execution of this kernel. By contrast,
with hardware prefetching, prefetch requests can be issued
during the execution of the whole program. As the Median
benchmark also includes several input and output routines
for the video streams, these code segments may benefit from
hardware prefetching as well. On the other hand, prefetching

Write-validate Fetch-on-write
Dcache��������� DCP Dcache��������� DCP

1.68% 0.157 1.66% 0.185

Table 1. Missratio and DCP for a non-prefetching
data cache with fetch-on-write and write-validate.



0

5

10

15

20

8 16 32 64 128 256
0

0.05

0.1

0.15

0.2

S
P

T
 m

is
sr

at
io

 (
%

)

D
C

P

Number of SPT entries

11
.9

4%
19

.0
1%

11
.5

9%
10

.7
3%

5.
59

% 8.
26

%

1.
74

% 4.
16

%

1.
07

% 2.
57

%

0.
77

%
1.

02
%

0.
12

4
0.

15
6

0.
12

4
0.

15
6

0.
12

4
0.

15
6

0.
12

4
0.

15
6

0.
12

4
0.

15
6

0.
12

4
0.

15
6

Missratio Write-validate
Missratio Fetch-on-write

DCP Write-validate
DCP Fetch-on-write

Figure 3. SPT missratio and DCP for a fetch-on-write
and write-validate cache.

during the whole program may also increase the amount of
trashing within the data cache. Which of these two effects
prevails, is entirely dependent on the type of application.

4.1 Hardware prefetching

For hardware prefetching, a 4-way set-associative SPT is
used which may range in size from 8 to 256 entries. As
the simulated VLIW instructions can hold two memory ref-
erences, which may interfere with each other in the SPT,
we have experimented with several implementations of the
SPT [5]. We found that a single-banked SPT, which is in-
dexed by the formula SPT[(PC + instr slot) mod SPTSIZE],
yields the highest SPT hitrates. Here, the instr slot refers to
the memory-operation slot within the VLIW instruction and
equals to 0 or 1. The addition of instr slot prevents aliasing
between two memory operations within one VLIW instruc-
tion. Throughout the remainder of this paper, we assume that
this particular SPT implementation is used. By default, it op-
erates without early-prefetch. Furthermore, unless stated oth-
erwise, the data cache features a single-entry Prefetch Queue
(PQ) and contains two prefetch blocks per cache set in order
to reduce trashing (see Section 3.1).

In Figure 3, the SPT missratios are shown for both the
fetch-on-write and write-validate policies. The SPT miss-
ratio is the percentage of “prefetchable” memory references
that miss in the SPT. In fetch-on-write, both loads and stores
are prefetchable whereas in write-validate only loads are
prefetchable. As the SPT missratio is no indicator of real
performance, the figure also shows the obtained DCP val-
ues for the same experiment. The results clearly illustrate
that prefetching has significantly decreased the DCP values
as compared to the values listed in Table 1. Not surprisingly,
the best improvements are for the write-validate policy. In the
fetch-on-write policy, a lot of prefetches are, when compared

0

0.25

0.5

0.75

1

1.25

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
ca

ch
e 

m
is

sr
at

io
 (

%
)

D
C

P

Number of prefetch blocks

0.
93

%

0.
92

%

0.
95

%

0.
99

%

1.
02

%

1.
04

%

1.
07

%

1.
09

%1.
22

%

0.
60

%

0.
60

%

0.
61

%

0.
61

%

0.
62

%

0.
63

%

0.
66

%

0.
12

6

0.
12

4

0.
12

5

0.
12

2

0.
12

0

0.
11

9

0.
12

1

0.
12

2

0.
32

4

0.
15

5

0.
15

5

0.
15

5

0.
15

5

0.
15

5

0.
15

5

0.
15

5

Missratio Write-validate
Missratio Fetch-on-write

DCP Write-validate
DCP Fetch-on-write

Figure 4. The performance when varying the num-
ber of prefetch cache blocks for fetch-on-write and
write-validate.

to the write-validate policy, not effective as they are used
for write operations only and not for read accesses. These
prefetches did, however, prevent other (effective) prefetches
from being executed, thereby limiting the DCP reduction.

Furthermore, Figure 3 also indicates that the SPT miss-
ratios of write-validate generally are somewhat lower than
the ones of fetch-on-write. This is probably due to sev-
eral write operations which are not part of a stream but still
trash the SPT. Another observation is that reducing the SPT
missratio (by enlarging the SPT) does not result in a lower
DCP. This can be explained by the fact that, for Median, the
number of prefetches issued by both small and large SPTs
is almost identical (these numbers are not shown). So, the
lower missratio of large SPTs does not result in extra effec-
tive prefetches.

Figure 4 shows the cache missratio and the DCP when
the number of prefetch blocks per set in the cache are var-
ied. Limiting the number of prefetch blocks can reduce the
amount of cache trashing due to prefetching. In this exper-
iment, a 128-entry SPT is used. The results show that one
prefetch block is not sufficient when applying the fetch-on-
write policy. For the other configurations, the performance
differences are marginal and there cannot be detected a clear
trend. This suggests that Median does not use a lot of other,
more persistent, data besides its video streams. So, to evalu-
ate our proposed trashing reduction feature, a more quantita-
tive study with other benchmarks is needed.

For a write-validate cache and a 128-entry SPT, Table 2
shows the results when varying the Prefetch Queue (PQ) size.
It shows both the number of cancelled prefetch requests due
to a full PQ and the performance impact. Table 2 suggests
that increasing the PQ size, which results in less cancella-
tions, only marginally improves the performance. This is
caused by the small runahead with which the SPT operates:



PQ size # Cancellations Dcache��������� DCP

1 4044 0.92% 0.124
2 3140 0.92% 0.123
4 1143 0.91% 0.123
8 8 0.87% 0.121

Table 2. Performance impact of a larger PQ when
using write-validate and a 128-entry SPT.

although the larger PQ size avoids a large number of the can-
cellations, most of the “saved” prefetch requests are handled
too late. This means that the required cache blocks have al-
ready been referenced at the time the prefetch requests are
handled, after which the requests are discarded after all.

So far, the prefetch results are obtained by a model in
which prefetching is turned on during the execution of the
whole program. To allow a comparison with hybrid prefetch-
ing, which only prefetches during the execution of Me-
dian’s kernel, we also measured the impact when hardware
prefetching is enabled only in the kernel. Figure 5 shows
the results of this experiment for a 128-entry SPT, a write-
validate cache with 2 prefetch blocks per set and an 8-
entry PQ. The leftmost set of bars gives the results with-
out prefetching, whereas the middle set of bars shows the
results for both prefetching during the whole program and
kernel-only prefetching. Note that the missratio and DCP
are overall values, i.e. measured for the whole program.
With kernel-only prefetching, the missratio and DCP slightly
improve (compared to no-prefetching) but not to the level
when prefetching is enabled during the whole program. More
precisely, we measured a DCP improvement of 23% when
prefetching during the whole program (0.157 to 0.121), while
the DCP only improves with 9% when strictly prefetching in
the kernel (0.157 to 0.143). So, most of the performance
gain due to SPT-based prefetching is obtained during the ex-
ecution of auxiliary functions rather than in the kernel.

Figure 5 also shows the results for the early-prefetch opti-
misation (rightmost set of bars), indicating that this optimisa-
tion is highly effective for Median. It decreases the DCP for
kernel prefetching with 27% compared to normal prefetch-
ing. Comparing this to execution without prefetching, this
resolves into a DCP reduction of 34%. If prefetching is al-
lowed during the whole program, then the improvements are
even more substantial. In that case, the DCP has decreased
with 65% compared to normal prefetching and 73% com-
pared to the no-prefetch results. These large improvements
indicate that with normal prefetching a lot of prefetches are
started (or finished) too late due to a poor runahead. This
corresponds to our findings from Table 2.

4.2 Hybrid prefetching

For the hybrid prefetching experiments, we again use a
write-validate cache model with two prefetch blocks per set.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

No Pref. Normal Early Pref.
0

0.05

0.1

0.15

0.2

D
ca

ch
e 

m
is

sr
at

io
 (

%
)

D
C

P

Prefetch mode

1.
68

%

0.
87

%

0.
71

%

1.
68

%

1.
51

%

1.
35

%0.
15

7

0.
12

1

0.
04

2

0.
15

7

0.
14

3

0.
10

4

Missratio, whole program
Missratio, kernel

DCP, whole program
DCP, kernel

Figure 5. Performance of overall prefetching and
kernel-only prefetching for write-validate, a 128-
entry SPT and an 8-entry PQ. The results of the
early-prefetch optimisation are also shown.

By default, we have parameterised the stream prefetch in-
structions with an arbitrary runahead of 3, being the number
of stream references the prefetching is ahead of the actual
stream processing. In this paper, we only present the data-
synchronised hybrid prefetching results. In [5], we demon-
strated that the performance potential of PC-synchronised
and data-synchronised prefetching is identical while the latter
offers more advantages implementation-wise. Note that the
following experiments should be compared with the kernel-
only hardware prefetching results from the previous section.

Figure 6 shows the results of (data-synchronised) hybrid
prefetching. The leftmost set of bars gives the performance
of a non-prefetching data cache, while the remaining bars
present the results for a prefetching cache with different PQ
sizes. The “Stream missratio” gives the missratio measured
for the data stream elements only. From Figure 6 can be seen
that the PQ size only marginally affects the performance.
Only a single-entry PQ seems to be too small.

When comparing these results to the ones in Figure 5, one
can conclude that hybrid prefetching with a runahead of 3
yields lower DCP values than normal, kernel-only hardware
prefetching. More specifically, hybrid prefetching improves
the DCP with about 16% compared to (normal) kernel-only
hardware prefetching. However, hardware prefetching us-
ing the early-prefetch optimisation still outperforms hybrid
prefetching with a runahead of 3.

In Figure 7, the effect of varying the runahead is shown.
Again, the leftmost bars give the results for a non-prefetching
cache. The results indicate that the performance steadily
improves when increasing the runahead until a runahead of
12 is reached. The DCP obtained with a runahead of 12 is
just slightly lower than the one obtained by early-prefetch
hardware prefetching (see Figure 5). Also, the Stream mis-



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No Pref. 1 2 4 16
0

0.05

0.1

0.15

0.2

D
ca

ch
e 

m
is

sr
at

io
 (

%
)

D
C

P

Number of PQ entries

1.
68

%

1.
53

%

1.
43

%

1.
43

%

1.
43

%

4.
20

%

2.
30

%

1.
10

%

1.
10

%

1.
10

%

0.
15

7

0.
13

2

0.
12

0

0.
12

0

0.
12

0

Overall missratio
Stream missratio

DCP

Figure 6. Performance of data-synchronised hy-
brid prefetching using a runahead of 3 and write-
validate.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No Pref. 1 2 4 8 12 16
0

0.05

0.1

0.15

0.2

D
ca

ch
e 

m
is

sr
at

io
 (

%
)

D
C

P

Runahead (nr. of stream references)

1.
68

%

1.
50

%

1.
45

%

1.
40

%

1.
35

%

1.
34

%

1.
34

%

4.
20

%

2.
01

%

1.
32

%

0.
73

%

0.
08

%

0.
01

%

0.
01

%

0.
15

7

0.
14

2

0.
13

1

0.
11

4

0.
10

4

0.
10

2

0.
10

2

Overall missratio
Stream missratio

DCP

Figure 7. Performance of data-synchronised hybrid
prefetching using a 16-entry PQ and write-validate.

sratio indicates that for large runaheads, there is almost no
cache miss on the stream elements. It is not surprising that
both hybrid prefetching with a runahead of 12 and early-
prefetch hardware prefetching perform similarly: both meth-
ods more or less guarantee that the succeeding cache block
is prefetched as soon as its predecessor is referenced. For ex-
ample, a runahead of 12 means a prefetch distance of ���� �
�� bytes (the stride in Median equals to 8 bytes), which is
larger than the 64-byte blocksize of the cache. So, from Fig-
ure 7 can be concluded that a reasonably large runahead is
essential for effective prefetching in the Median benchmark.

So far, we did not mention the effect of prefetching on
the bus utilisation. For Median, the investigated prefetch-
ing techniques are nearly perfect, implying that they issue a
small number of erroneous prefetch requests. As a result,
we measured only tiny differences (� 1%) between the bus
utilisation of non-prefetching and prefetching data caches.

5 Conclusions

In this paper, we studied pure hardware-based and hybrid
hardware/software stream prefetching for a video process-
ing application. The results indicate that prefetching is an
effective latency hiding technique for the studied workload.
We measured reductions of the average data cache penalty
per memory reference of up to 73%. A second observation
is that pure hardware prefetching, with our proposed “early-
prefetch” optimisation, obtains the largest improvements for
the applied workload. This is because hardware prefetch-
ing allows for prefetching during the execution of the whole
application. By contrast, hybrid prefetching only allows for
prefetching during code segments which were explicitly in-
strumented to do so.

When focusing on the code segments in which prefetch-
ing is enabled for both prefetch techniques, we found the hy-
brid prefetching technique to be slightly more effective than
hardware prefetching (although the differences are minimal).
This is despite the fact that hybrid prefetching requires less
and simpler hardware than pure hardware prefetching and is
therefore cheaper to implement.

Future work should extend this study with a representative
set of multimedia benchmarks in order to perform a more
quantitative analysis of the absolute prefetch performance.

References

[1] T.-F. Chen. An effective programmable prefetch engine for on-
chip caches. In Proc. of the 28th Int. Symposium on Microar-
chitecture, pages 237–242, Nov. 1995.

[2] T.-F. Chen and J.-L. Baer. Effective hardware-based data
prefetching for high-performance processors. IEEE Transac-
tions on Computers, 44(5):609–623, May 1995.

[3] J. W. C. Fu and J. H. Patel. Stride directed prefetching in scalar
processors. In Proc. of the 25th Int. Symposium on Microarchi-
tecture, pages 102–110, 1992.

[4] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evalua-
tion of a compiler algorithm for prefetching. In Fifth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 62–73, Oct. 1992.

[5] A. D. Pimentel. A Computer Architecture Workbench. PhD the-
sis, Dept. of Comp. Science, Univ. of Amsterdam, Dec. 1998.

[6] V. Santhanam, E. H. Gornish, and W. Hsu. Data prefetching on
the HP PA-8000. In 24th Int. Symposium on Computer Archi-
tecture, pages 264–273, June 1997.

[7] G. A. Slavenburg, S. Rathnam, and H. Dijkstra. The TriMedia
TM-1 PCI VLIW media processor. In Proc. of Hot Chips 8,
pages 171–177, Aug. 1996.

[8] P. Struik, P. van der Wolf, and A. D. Pimentel. A combined
hardware/software solution for stream prefetching in multime-
dia applications. In Proc. of SPIE Multimedia Hardware Archi-
tectures, pages 120–130, Jan. 1998.

[9] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers,
E. J. D. Pol, M. J. A. Tromp, P. Struik, R. H. J. Bloks, P. van der
Wolf, A. D. Pimentel, and H. P. E. Vranken. TriMedia CPU64
architecture. In Proc. of the IEEE ICCD ’99, Oct. 1999.


