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Abstract

The large design space of modern computer architectures
calls for performance modelling tools to facilitate the eval-
uation of different alternatives. In this paper, we give an
overview of the Mermaid multicomputer simulation envi-
ronment. This environment allows for the evaluation of a
wide range of architectural design tradeoffs while delivering
good simulation performance. To achieve this, simulation
takes place at a level of abstract machine instructions rather
than at the level of real instructions. Moreover, a less de-
tailed mode of simulation is also provided. So when accu-
racy is not the primary objective, this simulation mode can
yield high simulation efficiency. As a consequence, Mermaid
makes both fast prototyping and accurate evaluation of mul-
ticomputer architectures feasible.

1 Introduction

Simulation is a widely-used technique for evaluating the
performance of computer architectures. It facilitates the sce-
nario analysis necessary for gaining insight into the conse-
quences of design decisions. In this paper, we describe the
Mermaid1 simulation environment [11, 10]. Primarily, the
simulation environment is intended for studying the design
tradeoffs of MIMD distributed memory architectures. Its fo-
cus is however not restricted to this type of platform. Addi-
tional support for the evaluation of shared memory multipro-
cessors, or even hybrid architectures featuring both shared
and distributed memory, is also provided.

Mermaid effectively offers a workbench for computer ar-
chitects designing multicomputer systems, supporting the
performance evaluation of a wide range of architectural de-
sign options by means of parameterization. As accurate
simulation of parallel computer systems, while supporting

1Mermaid stands for Modelling and Evaluation Research in MIMD Ar-
chItecture Design.

a high degree of parameterization, can be extremely com-
putationally intensive, Mermaid addresses the tradeoff be-
tween simulation accuracy and computational intensity in
two ways. First, the simulation environment features two ab-
straction levels at which simulation can take place. In some
cases, the research objective is fast prototyping only, which
does not require maximum accuracy. Therefore, simulation
can be performed at a high level of abstraction, yielding high
simulation efficiency. In the situations where accuracy is
required, however, the simulation is performed at a lower
and thus more computationally intensive level of abstrac-
tion. Second, unlike many other simulation systems, we do
not apply instruction-level simulation at the lowest level of
abstraction. Instead, simulation takes place at a level of ab-
stract machine instructions. This typically results in a higher
simulation performance at the cost of a small loss of accu-
racy.

The next section discusses the simulation methodology of
Mermaid. Section 3 gives an overview of the simulation en-
vironment. In Section 4, the architecture simulation models
are described. The application modelling within the simula-
tion framework is discussed in Section 5. In Section 6, the
simulation performance of Mermaid is discussed. Finally, in
Section 7, the summary is presented.

2 Simulation methodology

In the last few years, many multiprocessor simulation
systems have been proposed and implemented [1, 12, 3, 4,
2, 5]. Many of these systems use execution-driven simula-
tion and apply a technique called direct execution. In this
technique, two types of instructions are distinguished: lo-
cal and non-local instructions. An instruction is local if its
execution affects only the local processor (e.g. register-to-
register instructions). Non-local instructions, such as shared
memory accesses and network communication, may influ-
ence the execution behaviour of more than one processor.
The concept of direct execution is to execute the local in-
structions directly on the host computer (on which the sim-



ulation is running) and to augment the code with cycle-
counting instructions estimating the execution time of the
code. Subsequently, any encountered non-local instruction
is trapped and explicitly simulated according the specifica-
tion of the target architecture. Hence, simulation is only
used where required, reducing the simulation overhead con-
siderably. Therefore, high simulation efficiency is obtained
at the cost of a small decrease in accuracy due to the static
estimation of the execution time of local instructions.

Although direct execution is fast, it is less suitable for an
unrestrictive evaluation of parallel architectures. The study
of architecture performance facilitated by direct execution
is mostly restricted to the parts of the system that are be-
ing simulated. As the performance of the local instructions
is statically estimated at compile time, the evaluation of ar-
chitectural design options which affect these instructions is
limited. For example, the performance evaluation of in-
struction or private data caches can only be marginally per-
formed by means of direct execution. Because we do not
want to be restricted by the limitations of direct execution,
we decided to avoid this simulation technique. Instead, we
use an execution-driven simulation technique that is more
biased towards traditional trace-driven simulation. Trace-
driven simulation, however, which is commonly applied in
uniprocessor studies, must be used with extreme care when
modelling parallel platforms. The control flow in parallel
applications may be affected by non-local instructions, from
now on referred to as global events, which on their turn
depend on the latencies of the underlying hardware. This
means that global events, such as memory accesses in shared
memory machines, can cause non-deterministic execution
behaviour which might change the multiprocessor traces for
different architectures [7, 8].To overcome this problem, we
establish a type of execution-driven simulation by applying
physical-time interleaving [6]. In this technique, the trace
generation is interleaved with the simulation of the target ar-
chitecture. This allows the architecture simulator to control
the executing application by giving it feedback with respect
to the scheduling of global events. As a consequence, the
multiprocessor trace is generated on-the-fly and is exactly
the one that would be observed if the application was actu-
ally executed on the target machine.

To model synchronization behaviour and load-balancing
correctly, multiple traces are simulated. Each trace accounts
for the execution behaviour of a single processor (or node)
within the multicomputer architecture. This simulation ap-
proach will be further elaborated on in the next section.

3 Mermaid simulation environment

The simulation environment of Mermaid, which is de-
picted in Figure 1, is layered rather intuitively. The top
layer, referred to as the application level, contains high-
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Figure 1. Simulation environment.

level descriptions of the behaviour of application workloads.
These descriptions are either stochastic representations of
application behaviour, or they consist of the sources of real
programs that have been instrumented with annotations de-
scribing the exact execution behaviour. Application descrip-
tions may range from full-blown parallel programs to small
benchmarks used to tune and validate the machine parame-
ters of the simulation models. Note that we explicitly use the
term description since the workloads do not require to be ex-
ecutable at this level. Furthermore, the application descrip-
tions are independent of the underlying architecture. This
means that they only have to be made once, after which they
can be used to evaluate a wide range of architectures.

To drive the architecture simulation models, traces of
events, called operations, are generated from the workload
descriptions at the application level. An operation represents
either processor activity, memory I/O, or message-passing.
The generation of the operation traces is performed by one
of two tools, called the stochastic generator and the annota-
tion translator. These trace generators realize the interface
between the application and architecture levels.

The stochastic generator uses a probabilistic application
description to produce “realistic” synthetic traces of oper-
ations. This technique represents the behaviour of (a class
of) applications with modest accuracy, which can be useful
when fast-prototyping new architectures. Moreover, it offers
the flexibility to adjust the application loads easily.

The annotation translator is a library that is linked to-
gether with the instrumented applications, while the annota-
tions simply are calls to the library. By executing the instru-
mented program, the annotations are dynamically translated
into the appropriate trace of operations. Evidently, this tool
can model application behaviour significantly more accu-
rately than the stochastic generator at the cost of decreased
flexibility.

The architecture level consists of the architecture simula-
tion models. Every model has a set of machine parameters
that is calibrated with published information or by bench-
marking. Furthermore, a suite of tools is provided in order
to visualize and analyze the simulation output. Visualiza-



tion of simulation data can be performed both at run-time
and post-mortem.

3.1 Multiprocessor traces

To produce the multiple operation traces that are needed
for simulation, both trace generators model concurrent exe-
cution by means of threads. This implies that, for example,
an instrumented application (using the annotation transla-
tor) is a threaded program. Each thread accounts for the
behaviour of one processor (or node) within the parallel
machine. Whenever a thread encounters a global event, it
is suspended until explicitly resumed by the simulator (de-
picted by the broken arrows in Figure 1). Subsequently, the
simulation does not resume a thread until all other threads
have reached the same point in simulated time as the sus-
pended thread. When this has happened, no other events
can affect the global event within the suspended thread any-
more. Therefore, the suspended thread can be safely re-
sumed again. This thread-scheduling scheme, under the
control of the simulator, guarantees the validity of the mul-
tiprocessor traces at all times.

3.2 Computation versus communication

Many applications, and especially scientific applica-
tions, running on distributed memory MIMD platforms con-
tain coarse-grained computations alternated with periods of
communication. Because these computation and communi-
cation phases typically are distinct, we decided to split the
simulation of application behaviour into two different mod-
els: a computational model and a communication model.
This is depicted in Figure 2. Each model operates at a differ-
ent level of detail, and thus defines its own set of operations.
The computational model simulates the application’s com-
putational behaviour. It models the incoming computational
operations at a level of abstract machine instructions. Com-
munication operations are not simulated by this model, but
are directly forwarded to the communication model. Sub-
sequently, the communication model accounts for the appli-
cation’s communication behaviour. To address the issues of
synchronization and load-balancing properly, it models the
computational delays found in between communication re-
quests at the task level. A parallel workload for this model
therefore resembles a graph containing computational tasks
and global events (communication operations). The com-
putational tasks are derived from the computational model,
which constructs them by measuring the simulated time be-
tween two consecutive communication operations.

This approach results in a hybrid model, which allows
for simulation at different abstraction levels. If accuracy is
required, then the complete hybrid model can be used. How-
ever, if there is only the need for fast prototyping, then just
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using the communication model might be sufficient. In that
case, the task-level operation traces must be directly pro-
duced by the trace generator.

3.3 Operations

Both the computational and the communication opera-
tions are listed in Table 1. The computational operations,
being abstract machine instructions, are based on a load-
store architecture. The current set of computational opera-
tions can, however, easily be extended or used as a building
block for more powerful operations in order to support the
modelling of alternative types of architectures.

The computational operations are divided into three cat-
egories of which the first category consists of operations
for transferring data between registers and the memory hier-
archy. The second category consists of arithmetic functions
that solely operate on registers. Finally, the third category of
operations is associated with instruction fetching. As mem-
ory values are not considered by the operations, the sim-
ulator is not aware of loops and branches. Therefore, the
trace generator evaluates loop and branch-conditions, and
produces the operation trace for the invocated control flow.
This implies that every invocation of a loop body is individ-
ually traced and leads to recurring addresses of instruction
fetches.

Using this kind of abstract machine instructions has sev-
eral consequences. As the operations abstract from the pro-
cessors’ instruction sets, the simulators do not have to be
adapted each time a processor with a different instruction
set is simulated. Moreover, simulation at the level of oper-
ations rather than interpreting real instructions yields higher
simulation performance at the cost of a small loss of accu-
racy. On the other hand, the loss of information, such as
the lack of register specifications in the operations, prohibits



Computational operations Description
load(mem-type, address)
store(mem-type, address) Accessing memory
load([f]constant)
add(type) sub(type)
mul(type) div(type) Performing arithmetic
...
ifetch(address)
branch(address) Instruction fetching
call(address) ret(address)

Communication operations Description
send(message-size, destination) Synchronous
recv(source) communication
asend(message-size, destination) Asynchronous
arecv(source) communication
compute(duration) Computation

Table 1. Trace events or operations.

a cycle-accurate simulation of, for example, the processor
pipelines. This means that Mermaid is only of limited use
for purposes like application debugging or compiler testing.

The operations that act as input for the communication
model are based on straightforward message passing. Both
synchronous (blocking) and asynchronous (non-blocking)
communication are supported. Computation performed
within the communication model is simulated at task level
by means of the compute operation.

4 Architecture modelling

The architecture model accounting for computational
behaviour involves a single node of the multicomputer,
whereas communication behaviour is modelled by a multi-
node model. Both models are implemented in the object-
oriented simulation language Pearl [9]. This language was
especially designed for easily and flexibly implementing
simulation models of computer architectures.

4.1 Single-node computational model

The single-node computational template model allows
for simulating the processors and memory hierarchy of a
MIMD node. It can be parameterized to represent a wide
range of node architectures. Figure 3(a) depicts the compu-
tational template model.

The CPU component simulates a microprocessor within
the node architecture. It supports the operation set described
in section 3.3. The cache hierarchy component models the
first level cache and, if available, the higher level caches
of the memory hierarchy. It supports a setup of multiple
processors using a common cache hierarchy. To guarantee
cache coherency in such a configuration, the caches provide
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a snoopy bus protocol. However, other strategies, like direc-
tory schemes, can be added with relative ease.

To connect the processors and the cache hierarchy to the
memory, the template model defines a bus component. It
is a simple forwarding mechanism, carrying out arbitration
upon multiple accesses. Changing the bus to a more com-
plex structure, such as a multistage network, can be done
without too much remodelling effort. In that case, only a
new Pearl module needs to be written, replacing the bus
component within the template model. Finally, the memory
component simulates a simple DRAM memory.

4.2 Multi-node communication model

The communication template model has multiple nodes
of which a node is constructed from an abstract processor, a
router and multiple communication links. This is shown in
Figure 3(b). The nodes are connected in a topology reflect-
ing the physical interconnect of the multicomputer.

Each abstract processor component within the multi-node
model reads an incoming operation trace, processes the com-
pute operations and dispatches the communication requests
to a router component. After this point, the router is re-
sponsible for further handling the transmission. This may
include splitting up messages into multiple packets. Fur-
thermore, the router component routes the resulting and all
other incoming messages (packets) through the communica-
tion network. For this purpose, it uses a configurable routing
and switching strategy.

Detailed simulation of a distributed memory multicom-
puter requires that the single-node computational model is
replicated for each of the MIMD nodes taking part in the
simulation. Each instance of the single-node model is then
assigned to a node within the communication model in order
to feed it with the computational tasks and communication
operations.

4.3 Shared memory or hybrid architectures

The multi-node communication model, with its message
passing, intrinsically suggests that the system under inves-
tigation should belong to the class of distributed memory



architectures. But, by only using the computational model
and configuring it with multiple processors, a shared mem-
ory multiprocessor can be simulated. A disadvantage of this
approach however, is that simulation can only be performed
at the level of computational operations, being the highest
level of detail.

Subsequently, hybrid architectures can be modelled by
both defining multiple processors on a node and using the
communication model to interconnect the clusters of shared
memory multiprocessors in a message-passing network.

5 Application modelling

Simulation of a computer architecture and its consequent
evaluation cannot be performed without a realistic applica-
tion load driving the simulation. As it is the case in archi-
tecture modelling, modelling an application load can also
be done at various abstraction levels and with different de-
grees of accuracy. Figure 4 illustrates the workload mod-
elling framework of Mermaid. A workload is either based
on a real application, like instrumented programs, or it is
synthetic and produced by some stochastic process. Further-
more, both real and synthetic workloads can model compu-
tation either at the level of abstract machine instructions or
at the level of tasks. Computation at the instruction level
is simulated by the single-node architecture model, whereas
task level operations are simulated by the multi-node model.

Currently, only the generation of reality-based, abstract
instruction-level operations is operational, as depicted by the
shaded area in Figure 4. We will therefore only focus on
application modelling through program instrumentation.

5.1 Program annotations

At the application level, the applications are instrumented
with annotations that follow the control flow of the program
and represent the program’s memory and computational be-
haviour. Because the description of application behaviour
should be architecture independent, the instrumentation of
programs takes place at the (user) source level.

The annotations are translated into a representation of op-
erations by the annotation translator library. Every variable
used in the application has an entry in the so-called vari-
able descriptor table. This table determines whether a vari-
able is global, local, or a function argument. It further con-
tains information on the addresses of variables, whether they
are placed in a register or not and the types of the vari-
ables. When, for example, an annotation indicates that a
variable should be loaded, the generator uses this informa-
tion to translate the annotation into the appropriate instruc-
tion fetch and memory operations. The annotation translator
can thus be regarded as a kind of generic compiler. It per-
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forms the translation of annotations according to the runtime
model and addressing capabilities of the target processor.

Annotations describing communication behaviour at the
application level directly map onto the operations listed in
Table 1. As the associated source and destination parame-
ters of these operations are based on the platform’s physical
topology, the modelling of communication still reflects the
underlying hardware characteristics. Ideally, such architec-
tural details are not visible at the application level. For this
reason, we will use a virtual shared memory model in the
future to hide all explicit communication [10].

The instrumentation of applications and the creation of
the variable descriptor table are performed automatically
for C source programs. The tool which is taking care of
these tasks also provides some support for converting single-
threaded programs into multi-threaded programs necessary
for the trace generation. For SPMD-like applications, this
conversion is fully automated. For other classes of applica-
tions, manual tuning of the obtained threaded code is still
necessary.

6 Simulation performance

To give an indication of the simulation performance of
Mermaid, we measured the slowdown for several simula-
tions. The slowdown is defined by the number of cycles it
takes for the host computer to simulate one cycle of the tar-
get architecture. An exact value for the slowdown cannot be
given since it depends on the type of application and archi-
tecture that are being modelled. Therefore, a typical value
will be used. To determine the slowdown per simulated pro-
cessor, we examined a simulation model of a multicomputer
consisting of T805 transputers and a single-node model of a
Motorola PowerPC 604 using two levels of cache.



For a mix of application loads, we measured a typical
slowdown of about 60 to 750 per processor. So a 143 Mhz
Ultra Sparc processor roughly simulates between 200,000
and 2,400,000 cycles per second. This performance makes
Mermaid quite competitive with many direct execution sim-
ulators [2, 3]. We believe, however, that the simulation ef-
ficiency can still be enhanced, making Mermaid even more
competitive performance-wise. For instance, the Pearl sim-
ulation language, in which the architecture models are writ-
ten, emphasizes the modularity and easy implementation
of architecture models. It generates only moderately effi-
cient code. The choice of another modelling language might
therefore improve the simulation performance.

If fast prototyping of a multicomputer is the primary goal,
then the communication model can be used directly. The
slowdown of this type of simulation depends heavily on the
amount of computation and communication present within
the application. Computation can be simulated extremely
fast since it is modelled at the level of tasks, whereas com-
munication is simulated in more detail and is thus less ef-
ficient. Our measurements indicate that simulation at this
level of abstraction results in a typical slowdown of between
0.5 and 4 per processor. This means that an entire multicom-
puter can be simulated with only a minor slowdown.

Another important aspect of multicomputer simulation is
the memory usage. Simulators that consume a lot of mem-
ory may encounter problems when scaling the simulation to
a large number of nodes. Since Mermaid does not inter-
pret machine instructions, it is not necessary to store large
quantities of state information during simulation runs. For
example, the contents of the memory does not have to be
modelled and simulated caches only need to hold addresses
(tags), not data. As a consequence, the simulation of parallel
platforms is only constrained by the memory consumption
of the (threaded) trace-generating applications.

7 Summary

In this paper, we presented the Mermaid framework for
the performance evaluation of MIMD multicomputer archi-
tectures. The simulation environment allows for study of
the interaction between software and hardware at different
levels, ranging from the application level to the runtime sys-
tem level. Moreover, architecture simulation is supported
at various abstraction levels. If, for example, only fast pro-
totyping is required, then simulation can be performed at a
high level of abstraction. If accuracy is required, however,
then the simulation environment is capable of simulating at
a lower, but less efficient, level of abstraction.

Mermaid strives to support the evaluation of a wide range
of architectural design options. To allow a high degree of
parameterization while warranting a reasonable simulation
performance, detailed simulation is performed at the level

of abstract machine instructions, rather than at the level of
real instructions. For this purpose, we use a simulation tech-
nique that is a combination of execution-driven and trace-
driven simulation. The traces driving the simulators con-
sist of events, called operations, which represent processor
activity, memory I/O or message-passing communication.
To guarantee the validity of these multiprocessor traces, the
trace generator is interleaved with the architecture simulator.

Because of space limitations, we did not discuss the val-
idation of the simulation models in this paper. Validation
results for Mermaid’s accurate mode of simulation can how-
ever be found in [10]. The task-level mode of simulation has
not yet been validated as it is not yet fully operational.
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