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In this article, we present a flexible and extensible system-level MP-SoC design space exploration (DSE)
infrastructure, called NASA. This highly modular framework uses well-defined interfaces to easily integrate
different system-level simulation tools as well as different combinations of search strategies in a simple
plug-and-play fashion. Moreover, NASA deploys a so-called dimension-oriented DSE approach, allowing
designers to configure the appropriate number of, well-tuned and possibly different, search algorithms to
simultaneously co-explore the various design space dimensions. As a result, NASA provides a flexible and re-
usable framework for the systematic exploration of the multidimensional MP-SoC design space, starting from
a set of relatively simple user specifications. To demonstrate the capabilities of the NASA framework and to
illustrate its distinct aspects, we also present several DSE experiments in which, for example, we compare
NASA configurations using a single search algorithm for all design space dimensions to configurations
using a separate search algorithm per dimension. These proof-of-concept experiments indicate that the
latter multidimensional co-exploration can find better design points and evaluates a higher diversity of
design alternatives as compared to the more traditional approach of using a single search algorithm for all
dimensions.
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1. INTRODUCTION
Today’s embedded systems are increasingly based on multiprocessors systems-on-chip
(MP-SoC). These MP-SoCs typically contain multiple storage elements (SEs), networks
(NEs), I/O components, and a number of heterogeneous programmable processors for
flexible application support as well as dedicated processing elements (PEs) for achiev-
ing high performance and power goals [Martin 2006]. In order to cope with the design
complexity of such systems in a time-efficient way, the abstraction level of the design
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process has in recent years been raised towards the system level. Design Space Explo-
ration (DSE) is a key ingredient of such system-level design, during which a wide range
of design choices are explored, especially during the early design stages. Therefore,
such early design choices heavily influence the success or failure of the final product,
and can avoid wasting time and effort in further design steps without the possibility of
meeting design requirements because of an inappropriate system architecture design.

The process of system-level DSE logically consists of two interdependent components
[Gries 2004]: (i) evaluation of a design point in the design space using, for example,
analytical models or (system-level) simulation, and (ii) the search mechanism to sys-
tematically travel through the design space. Both DSE components have received sig-
nificant research attention during the last decades [Reyes et al. 2004; Erbas 2007;
Lee et al. 2010; Teich et al. 1997; Palesi and Givargis 2002; Jia et al. 2008]. For in-
stance, system-level simulation is a popular method for evaluating single design points
[Gries 2004]. These simulation tools usually operate at a high level of abstraction and
are often based on the Y-Chart principle [Keutzer et al. 2000; Kienhuis et al. 1997].
According to this principle, any system can be specified by the combination of three
models: an application model, an architecture model and a mapping model. An ap-
plication model—derived from a target application domain—describes the functional
behaviour of the application (using, e.g., Kahn Process Networks or tasks-graphs) in
an architecture-independent manner. Simultaneously, an architecture model—defined
with the application in mind—defines the architecture resources and captures their per-
formance constraints. Finally, an explicit step (or model) maps the application model
onto an architecture model for co-simulation, after which distinct system metrics can
be quantitatively evaluated.

However, the simulation tools only provide a partial solution since an overall frame-
work is needed to systematically explore the design space. Such a system-level DSE
framework should allow for exploring a wide variety of system parameters and design
choices, including the number and type of processing elements in the MP-SoC platform,
the type of on-chip network, the memory organization, the mapping of application tasks
and communication channels onto architecture resources, scheduling policies, and so
on. Evidently, the more details (or dimensions) are taken into account, the larger the
design space that needs to be searched, and therefore the more costly the analysis.
Although many DSE approaches based on a large variety of search techniques have
been proposed, the following three common factors can be identified in all of them.

(1) DSE efforts are usually targeted to a specific system-level simulation tool (or an-
alytical method), where each effort typically uses a different kind of simulator.
Consequently, it is hard to re-use these DSE frameworks and elements in them.

(2) Setting up the DSE experiments can be very labour intensive. It is often the case
that for every experiment, control scripts need to be (re-)written to manipulate
the simulation parameters and configuration files (specifying the design instance
to evaluate) according to the algorithm that searches through the design space.
These scripts are often inflexible and hard to re-use for different types of DSE
experiments, that is, assessing different parameters or parameter ranges.

(3) In spite of the wide variety of eligible architectures for implementing embedded
systems applications, many DSE experiments are focused on a particular class of
MP-SoC architectures only. Moreover, designers have to implement their models
manually. This latter is an error-prone task and one of the bottlenecks in improving
the designer’s productivity, and severely limits the amount of the design space that
can be explored in a reasonable time.

In summary, to the best of our knowledge, there does not exist a generic infrastruc-
ture to facilitate and support system-level MP-SoC DSE experiments, and to foster the
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Fig. 1. Integration of an external system-level simulator with searching mechanism and a system generator
in a single DSE infrastructure.

re-use of software in the context of system-level MP-SoC DSE. This calls for a unified
framework integrating and coupling both simulation and search mechanisms to effi-
ciently and systematically explore design spaces, as well as a fast tool to automatically
generate a wide range of architecture models, so that a large variety of architectures
can be easily explored and evaluated. The resulting relationship between these three
components is shown in Figure 1.

To address these challenges, this article presents a system-level DSE infrastructure
implemented in C++, called NASA (Non Ad-hoc Search Algorithm). Its main goal is to
provide a single, common, and modular framework for system-level DSE experiments.
It allows for incorporating different (existing) system-level simulation tools as well as
different combinations of search strategies by means of a simple plug-in mechanism.
An architectural platform generator has also been integrated in NASA to free design-
ers from the efforts to manually create architecture models. Thus, this automation
improves the design productivity and enables the designer to focus on the more valu-
able issue of making design decisions. As a consequence, the NASA framework provides
a flexible and re-usable environment to systematically explore the multidimensional
MP-SoC design space at system level, as well as allows designers to evaluate the DSE
results in a time-efficient way. NASA’s output includes information about all explored
design points as well as a set of optimal design points within the explored design space,
which best meet the user constraints such as real-time application constraints, number
and types of available components in the platform architecture, costs/area, etc.

The remainder of the article is organized as follows. In the next section, related work
and our contributions are presented. In Section 3, we describe various implementation
aspects of the NASA framework. In Section 4, we present a range of experimental
results, demonstrating NASA’s capabilities. Finally, Section 5 concludes the article.

2. RELATED WORK AND CONTRIBUTIONS
Performing DSE in a time-efficient and accurate way is not a new problem and there
exists a large body of related work in this area. Most of the approaches in the embedded
systems domain are targeted to the system-level exploration of heterogeneous MP-
SoCs [Thiele et al. 2007; Erbas 2007; Jia et al. 2008; Madsen et al. 2006]. Although
these efforts are fairly efficient to explore various alternatives for mapping a specific
application onto a target MP-SoC architecture, they typically still require significant
effort to (re-)write scripts that control the evaluation mechanism (analytical model or
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simulator) during the search through the design space. In fact, this often means that
there exists a repetitive effort to build customized scripts and/or architecture models
for every different kind of DSE experiment. Thus, automating such a process becomes
a key element in terms of reusability and flexibility for larger design space explorations
in the design of a heterogeneous multiprocessor architecture.

Several proposals to integrate external evaluation tools in a DSE environment can
also be found in literature. In Mohanty et al. [2002], a hierarchical and three-phase
DSE methodology is presented. It facilitates the integration of simulators by using a set
of tool-dependent interpreters or adapters. Angiolini et al. [2006] present a framework
that integrates an ASIP tool-chain within a virtual platform to explore a number of
axes of the MP-SoC configuration space. Unlike our work, this framework does not
allow the integration of external search methods. Moreover, it still requires human
intervention in the feedback loop of the searching and optimization process.

Lee et al. [2010] present a framework that determines the MP-SoCs for the optimal
mapping of a real-time application. This two-phase approach selects first an optimal
set of PEs for the mapping of the target application. Then, by means of a static esti-
mation method based on the queuing model, they explore and prune the design space
of communication architectures. Their framework also provides a set of interfaces that
facilitate the integration of different simulation tools. Unlike our approach, they ex-
plore different design space axes in a sequential way, while our proposed approach
co-explores simultaneously multiple design space dimensions. Moreover, their queuing
model seems to be limited to bus-based topology, while our framework is flexible enough
to analyze different kind of communication architectures.

The MultiCube project [MultiCube] has similar objectives as the work presented
in this paper, but it mostly targets micro-architectural exploration of multiprocessors
rather than system-level architectural exploration. This implies that it has limited or
no capabilities to explore different application to architecture mappings, heterogeneous
processing elements, different interconnections, and so on.

Other works have also developed a modular interface-based system-level MP-SoC
DSE framework [Thiele et al. 2007; Palermo et al. 2003]. In these cases, different search
algorithms can be plugged in, but the resulting DSE is limited in terms of the target
MP-SoC platforms that can be explored. This last aspect has been addressed in Künzli
et al. [2005], proposing a generic and modular framework based on PISA [Bleuler
et al. 2003] for DSE of embedded systems. The PISA interface separates the problem-
dependent variation and estimation part from the generic search and selection. The
resulting two parts are implemented as independent processes that are communicating
via text files. But, unlike our work and to the best of our knowledge, they have only
coupled analytical models to evaluate design points. This means that, for example, the
problem of incorporating a system model generator and external simulation tools has
not been addressed.

Using precompiled and ready-to-use search algorithms available at the PISA frame-
work [PISA], Madsen et al. [2006] have created a multi-objective DSE framework.
Different mapping alternatives can be evaluated (by means of analytical models) for
a fixed or flexible platform during the exploration process. However, the chosen rep-
resentation formats for internal interfaces in their work are problem specific, which
means that they should be modified for each particular problem. In our case, these are
dynamically and automatically updated according to an input constraints file.

To conclude this section, we summarize our contributions as follows. First, we pro-
pose a flexible and modular infrastructure for system-level MP-SoC design space explo-
ration, which is capable of supporting different search strategies and existing system-
level simulation tools in a single environment. As a result, the potentials for reuse of the
framework are significantly increased since each DSE experiment can be performed
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Fig. 2. The NASA framework.

without the need of preparing experiment-customized scripts, but it only requires a
simple change of the user’s input constraint values. Second, we have implemented and
integrated a new approach in NASA to gradually and automatically generate “simu-
latable” system models that are used for obtaining system metrics to evaluate design
decisions. Thus, the entire DSE process (composed of searching, system models genera-
tion and design point evaluation) is performed in an automatic and systematic fashion,
thereby improving design productivity and decreasing the designer’s efforts. Third,
NASA deploys a novel dimension-oriented DSE approach in which the design space is
explicitly separated into dimensions, which could represent design decisions that are
orthogonal to each other such as mapping, architectural components, and platform.
Thus, the designer can choose to simultaneously explore all dimensions, or to fix one
or more of these dimensions (e.g., a fixed platform) and to focus the exploration within
one or two dimensions (e.g., mapping exploration only). To this end, designers are al-
lowed to configure the appropriate number of, well-tuned and possibly different, search
algorithms to simultaneously co-explore the various design space dimensions.

A high-level overview of the NASA framework and the concept of dimension-oriented
DSE have been introduced in Jia et al. [2010]. In this article, we provide more detailed
explanations about the internal implementation of the NASA framework and, in par-
ticular, of its system-model generator. Moreover, we also present a significant number
of proof-of-concept DSE experiments to demonstrate the different capabilities and ben-
efits of the NASA framework, as will be illustrated in the next sections.

3. THE NASA FRAMEWORK
The infrastructure of NASA is shown in Figure 2. Essentially, six main modules can be
distinguished in the framework: the Search module, Feasibility Checker, Architectural
Platform Generator, Translator, Simulator, and Evaluator. Subsequently, the different
interfaces used by NASA as well as the functionality and implementation of each of
these modules are discussed.
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Fig. 3. Interfaces and strings for Search module with (a) three SAs and (b) single SA.

3.1. Interfaces
The NASA interfaces allow each module to act like an independent black box inside the
framework. As a result, different modules handling new functionalities or additional
dimensions can be easily integrated in a plug-and-play fashion without needing to
modify other modules. Three kinds of interfaces are used in NASA: the architectural
intermediate file is used for communication between the Architectural Platform
Generator and Translator, the fitness file links the Evaluator with the Search module,
and the design-options file is used in all submodules of both the Search module and
the Feasibility Checker. Note that all these files are dynamically and automatically
created (and updated) by NASA, designers therefore do not need to implement any
script.

In our approach, both the design-options and fitness files share the same XML-based
format, in which design decisions are encoded in strings. Moreover, three dimensions
are currently distinguished in NASA (platform, architectural component, and mapping
exploration), and each explored dimension uses a separate design-options and fitness
file. For example, in the 3-level DSE shown in Figure 3, the platform dimension uses
a design-options file to describe design decisions about the topology, network type(s)
and the connectivity properties for the architectural elements of a design point; the ar-
chitectural components dimension uses its corresponding design-options file to specify
the type information of different components, while the decisions about the mapping of
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an application onto the different PEs and SEs are described in a third design-options
file. If the designer decides to use less than one search algorithm per dimension, then
adapter modules will automatically translate the input and output of the Search mod-
ule to match the one design-option file per dimension interface. Note that the number
of strings contained in any design-options file is equal to the number of design points
explored by the Search module in each iteration, as will also be explained in Section 3.2.
Examples of design-decision strings are shown in Figure 3, for three (Figure 3(a)) and
one (Figure 3(b)) search algorithms (SA) in the Search module.

The length of a string for each dimension may also vary. Using the example shown
in Figure 3, it is evident that the length of the string describing the mapping depends
on the number of tasks and communication channels in the application. Similarly, the
length of the string describing the architecture instance is dependent on the number
of PEs and SEs in the platform.

Finally, the values inside the design-decision strings do not hard-code absolute values
but are indirections to table entries (also illustrated in Figure 3(a)). This means that,
for example, in the case of the mapping dimension, the string elements do not directly
hard-code the PEs (including their exact type) onto which application tasks are mapped.
Instead, the string elements point to entries in a PEs table. Hence, this allows the
designer to, for example, change the type of PE or add a new type without the need to
adapt any module implementation. Note that the choice of the representation scheme
has a strong impact on the flexibility and scalability of the framework. And in this case,
our representation scheme enables to symbolically represent a large design space, as
well as guarantees that each potential solution of the design space receives a unique
encoding value.

The last important interface in NASA is the architectural intermediate file. It de-
scribes the architectural platform design of each design point in a single file and, as will
be explained in more detail later, it is gradually constructed using the platform and
architectural components strings. The architectural intermediate file is used by the
Translator module to generate an architecture model of the design point in question.
Moreover, it is also used to check the mapping feasibility. Note that platforms are not
fixed entities in NASA but are often also part of the exploration. Therefore, the Feasi-
bility Checker module requires, for example, connectivity information specifying which
and how PEs are connected, and which SEs are shared by which PEs. This information
is needed to detect and repair infeasible mappings, as will be explained in Section 3.3.

3.2. Search Module
This module performs the actual search through the design space, iteratively pin-
pointing (a set of ) design points that need to be evaluated by means of system-level
simulation. As introduced in our previous work [Jia et al. 2010], NASA applies a
dimension-oriented design space co-exploration approach. That is, all dimensions can
be explored simultaneously using a single search algorithm, or co-explored using multi-
ple and possibly different search algorithms for the various dimensions. In this context,
co-exploration means that, in spite of using one search algorithm per dimension, we do
not perform the design space exploration as multiple independent explorations, but in-
stead, there exists a tight connection or communication between the search algorithms
as well as the results from all dimensions are simultaneously taken into account. That
is, a design point dp can be expressed by linking k available design decision values
{d1, d2, . . . , dk} corresponding to each of k design space dimensions.

If multiple search algorithms are used to explore the design space, then there are
many ways of linking the design decisions of each dimension to form a design point
specification. Two examples of the linking technique are depicted in Figure 4. For exam-
ple, using a pyramidal technique (as shown in Figure 4(a)), all design decisions in the
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Fig. 4. Techniques of linking design decision strings: (a) Pyramidal and (b) one-to-one technique.

mapping dimension are linked with each of the decisions in the architectural compo-
nents dimension, while the latter are again all linked with each of the design decisions
in the platform dimension. However, this means that the number of design points to be
evaluated in each search iteration grows exponentially with the number of design deci-
sions of each dimension. On the other hand, using a pure one-to-one linking technique,
as shown in Figure 4(b), each design decision in each dimension is linked to only one
design decision in the other dimensions. Thus, the number of design points explored per
iteration by the Search module is equal to the number of design decisions (or strings)
contained in any of the design-options files, assuming that all design-options files have
the same number of strings. This clearly reduces the number of evaluations because of
the linear relationship between the number of design decisions and design points.

However, this approach may suffer from a possible convergence problem due to
“under-exploration”, that is, discarding a design decision (e.g., a specific platform in-
stance) too soon based on the results of a premature evaluation. For example, let
A = {dA

pla, dA
arc, dA

map} and B = {dB
pla, dB

arc, dB
map} be two different design points. If it turns

out after a single simulation that the fitness value of A is better than that of B, then
this does not mean that platform dA

pla or architectural components dA
arc are always a

better choice than dB
pla or dB

arc, but we can affirm that the combination of design options
A = {dA

pla, dA
arc, dA

map} is better than B = {dB
pla, dB

arc, dB
map}. For instance, this latter does not

guarantee that {dA
pla, dA

arc, dA
map} can provide a better fitness value than {dB

pla, dB
arc, dC

map},
where dC

map is another feasible mapping for B.
To address this under-exploration problem, we use a variant of one-to-one linking

of design decisions. In this technique, unlike the pure one-to-one technique, only de-
sign decisions from the dimension of the lowest abstraction level (i.e., the mapping
dimension in our case) are evaluated and updated during each search iteration. The
search algorithms for the higher-level dimensions (i.e., the platform and architectural
components dimensions) keep collecting the fitness values (for different mappings)
without actually changing their design decisions during a specified number of itera-
tions, referred to as the collecting iterations (δ). Only when the search has reached δ
iterations, design decisions are updated, after which the process starts again. Obvi-
ously, the higher the abstraction level, the more design alternatives can be derived
for a single design option (e.g., a multitude of architecture instances can be obtained
from a single platform) and, consequently, the higher the value of δ should be. Note
that there is not a single set of the collecting iteration values in the practice, but these
values are set by the designer in each experiment taking into account the number of
explored dimensions, the size of the design space, and the search algorithms used in
the DSE experiment.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 27, Publication date: November 2013.



Infrastructure for MP-SoC Design Space Co-Exploration 27:9

3.3. Feasibility Checker
Because the search algorithms may try to assess infeasible design points during the
DSE process, the main task of the Feasibility Checker is to detect infeasible design
points and repair those design points if possible. In our current implementation, the
checking process consists of two stages: the architecture checking and the mapping
checking.

During the architecture checking process, the platform string is first checked to
determine whether or not the specified platform template (to be discussed in more detail
in Section 3.4) contains a valid topology. Next, the architectural components string is
checked to determine whether or not the number and types of selected architectural
components in the platform template comply with the constraints provided by the
user. But before the architecture checking is done, a database containing all feasible
architectures of the explored design space is generated first. The description of the
feasible architecture (in the database) is a concatenation of the platform string and
architectural component string, where both strings use the same string format as
explained in Section 3.1. Note that the database is ordered for the purpose of speeding
up the checking process. This way, a design point with an infeasible architecture can be
identified by simply comparing its platform and architectural components string with
the descriptive strings stored in the database. Finally, if an infeasible architecture is
detected, a descriptive string in the database with the highest number of string values
in common is chosen to replace the infeasible design point.

The mapping checking is carried out on design points with a feasible architecture. In
our current implementation, we use a heuristic minimum-distance repair algorithm,
which introduces a minimum number of modifications to an infeasible mapping in
order to obtain a feasible one [Erbas 2007]. This heuristic algorithm first considers
whether each application task is mapped onto a PE that has been allocated in the
platform (i.e., a feasible set of PEs), and if not, it repairs by randomly mapping the task
to a feasible PE. Subsequently, the repair algorithm checks for each communication
channel connecting two tasks whether these tasks are mapped onto different PEs (e.g.,
PE1 and PE2). If a channel is assigned to a SE that is not reachable from both PE1 and
PE2, then the heuristic algorithm selects randomly a SE from the set of reachable SEs
and relocates the communication channel into that SE. Note that if there is not such
a set of reachable SEs, no more repair is applied and the design point is considered as
infeasible. Although it is also possible to repair by mapping one of those two application
tasks onto another available PE (or even both application tasks onto the same PE), this
would require the resulting mapping to re-enter for a new mapping feasibility check as
it may cause additional infeasibilities for other communication channels. In the worst
case, this may even cause an infinite loop.

The set of repair algorithms presented in this section has been widely tested and
has demonstrated good efficiency and effectiveness in the practice [Erbas 2007]. More
specifically, these repair algorithms not only have a minimal effect on the run-time
of the framework, but also can warrant the repair of a high percentage of infeasible
design points in our DSE experiments (as will be illustrated in Section 4.2). Finally,
we would like to stress here that other repair mechanisms can be also used in NASA
framework, if they satisfy the interface requirement of our framework.

3.4. Architectural Platform Generator
The main mission of this module is to generate the architectural intermediate file,
which combines both feasible platform and architectural components information con-
taining in the strings of their respective design-option files. The resulting architectural
intermediate file is used later for (i) feasibility checking of mapping strings, and (ii) as
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Fig. 5. Generation of topological templates and architecture instances.

input to the Translator to generate the architectural model. Thus, the Architectural
Platform Generator can be considered as the first stage of the system model generation
process.

An architectural description in the architectural intermediate file is created in two
steps: platform or topological template generation and architecture instance genera-
tion. The basic building block of these descriptions is the so-called Basic Topology Unit
(BTU). As shown in Figure 5, the BTU is a logical pattern consisting of a network con-
tainer (the gray component) and a variable number of element containers (the white
blocks). These element containers are labelled inside each BTU and can, in a later
stage, be instantiated as architectural components such as PEs and SEs. The number
of element containers in a BTU depends on the user specifications, which specify the
maximum number of PEs, SEs, and NEs in a platform, the available types for each
kind of architectural components, the connectivity property between different BTUs,
and so on. Note that network containers cannot directly connect to each other, while
element containers can connect to both element and network containers.

The BTU is labelled and replicated a number of times to form a meta-platform, which
is used later in topological template generation. In principle, the meta-platform is used
as a basis from which all feasible platform instance descriptions can be (gradually)
derived and generated. The number of BTU replications in the meta-platform depends
on the maximum number of NE and connections allowed among element containers,
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as specified by the user. The latter is referred to as connectivity, which defines for each
element container both the available links and the directions (represented with num-
bered arrows in the top-left corner of Figure 5). Thus, a BTU can be replicated through
two or three directions and, as consequence, different kinds of meta-platforms can be
generated according to the user specifications (e.g., architectures based on buses, cross-
bar, grid architectures composed of several dozens of PEs, etc.). A 2D meta-platform
generation process is shown in Figure 5, although a 3D meta-platform can also be
generated if the gray links of an element container (top-left corner of Figure 5) are also
used during this process. It should be noted that the generation of the BTUs as well
as the meta-platform is performed statically (but automatically) before the actual DSE
process.

Driven by the exploration at platform level (by the Search module), the meta-platform
is used to generate topological template instances. To this end, the set of strings of
feasible platforms is used to instantiate the topological templates from such a meta-
platform: each string sets (for one design point) the type(s) and number of networks
in the platform. Moreover, the number of element containers in the platform as well
as their connectivity properties are also determined. Finally, a type classification of
the element containers is made. This latter means that for each allocated element
container in the BTUs, it is indicated whether it contains a PE or a SE. Note that, as
explained in Sections 3.2 and 3.3, these platforms have been selected by the Search
module and checked by Feasibility Checker. The latter repairs strings describing any
infeasible topological templates such as, for example, isolated BTUs that do not connect
to any other BTU, architectural elements with incorrect connectivity links, and other
inconsistencies.

Finally, in order to obtain the complete specification of the architecture platform for
each design point, the topological templates are further refined. In this process, which
is driven by the exploration at architecture component level, the same topological
template can be reused to derive different architecture templates. For this purpose,
the actual component types of the element containers in a template are added. In
the example of Figure 5, this means that, for example, a PE allocated in an element
container either becomes an ARM or MIPS processor, and the SEs either SDRAM
or DDRAM. Evidently, all this information is also provided by the strings of feasible
architectural components.

3.5. Translator
In order to integrate a system-level simulator in NASA, it is required that the simulator
allows for explicitly describing the design points that need to be simulated using some
kind of file format. Thus, a system model for each design point should be generated first.
Such a system model, composed of an architecture model, an application model and a
mapping model, can be provided by the Translator module in an automatic way. To this
end, it uses as input the architectural intermediate file, the application specification(s)
and the strings that describe feasible mappings. Thus, the Translator can be considered
as the second (and last) stage in the generation process of the simulatable system model.

The implementation of a Translator for a target simulator is a process that requires
some effort from the designer, since a design point is usually described in each sim-
ulator using a particular language. Evidently, the designer must (know and) adhere
to the syntax and semantics of the target simulator descriptions to avoid inconsistent
translations. That is, the Translator acts as a synthesis step, that is, converts NASA’s
internal format of a design point (the architectural intermediate file) to a file-based
format that is specific for the target simulator plugged into NASA in each DSE exper-
iment. Moreover, the complexity of this conversion process also varies from simulator
to simulator, that is, it depends on the quantity of the implementation details that

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 27, Publication date: November 2013.



27:12 Z. J. Jia et al.

Fig. 6. Plug-in examples for generating architectural model in Sesame and CASSE.

should be included in the resulting system model. For example, Figure 6 illustrates an
example of the conversion to different architectural models (from a single design point
specification) for two system-level simulators, Sesame [Erbas 2007] and CASSE [Reyes
et al. 2004]. While the CASSE translator, containing 1100 lines of codes, generates
system models based on command-line expressions, the Sesame translator requires
the implementation of 880 lines of code and produces descriptive models based on the
Y-Chart Modelling Language (YML). Experience shows that these translation efforts
typically take one or a few weeks.

However, we would like to point out that the implementation of a tailored Translator
is a one-time effort. This means that such a Translator can be reused in the future
for different kinds of DSE experiments, allowing designers to save a lot of time and
effort in manually implementing different architectural models and/or experiment-
customized scripts. As a consequence, the integration of a new system-level simulator
in NASA only requires the adaptation of the Translator module, while all other modules
remain unaffected. This is why two kinds of module colors can be identified in Figure 2,
simulators-dependent (black) and simulators-independent (grey) modules.

3.6. Simulator
At this moment, we have successfully integrated in NASA two system-level simulation
tools: CASSE and Sesame. Both tools follow a Y-Chart methodology, covering appli-
cation and architecture modelling, as well as mapping and analysis within a unified
simulation environment.

For these simulators, the application model is described as a process network (Kahn
Process Network) or as a Tasks-graph, where parallel tasks communicate with each
other by means of unidirectional channels. Here, tasks (containing the application
functionality) are often written in C/C++. On the other hand, the architectural model is
specified as a modular composition of highly configurable predefined elements (provided
by the tool libraries), including processing elements, storage elements and network
elements. The number of elements of each type and their configuration (e.g., number
and width of ports, clock, memory size, network arbitration scheme, task scheduling
policy, etc.) can also be properly configured in this architectural model. Finally, another
description file is used by CASSE and Sesame to control the mapping of the application
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onto the architecture. Obviously, all the required models and descriptions can directly
be generated by a customized Translator module, as it was explained in Section 3.5.

At this point, it is important to highlight a key property for the mentioned simulation
tools. The system model file is read and parsed by CASSE and Sesame during elabora-
tion time in order to properly configure the desired design point. Thus, changes in the
files describing a design point do not require any recompilation effort. Evidently, this
allows for evaluating design alternatives during the exploration process in a completely
automated way, without any human intervention. To give an example, the simulators
are highly parameterized in terms of performance values for the different architectural
processing and communication elements. These parameter values are explicitly stored
in the system model file. This allows for, for example, quickly evaluating different
hardware/software partitionings by simple manipulation of the performance values for
selected processing elements.

Since the implementation of the simulation tools is beyond the scope of this article,
the interested reader is referred to Gries [2004] for an overview of existing system-
level simulators, and to Reyes et al. [2004] and Erbas [2007] for more information
about the implementation details, speed-accuracy tradeoff, the specification method of
the application and architecture models in CASSE and Sesame.

3.7. Evaluator
The simulation of design points can typically generate a variety of quantitative infor-
mation about the evaluated systems, such as data about performance, cost/area, and
power consumption. All these metrics can be used in system-level DSE to find a set of
Pareto optimal design points, which then yields a multi-objective optimization problem.

The essence of the Evaluator module is to provide feedback about the quality of a
set of evaluated design points to the Search module, influencing the search decisions
taken in the exploration process. Separating the Evaluator from the Search module
again provides flexibility and enhanced reusability of the components in NASA. It
allows for easily changing the optimization objectives or the function that quantifies
the quality of a design point without affecting the other components. Such a function is
typically referred to as the fitness function. The Evaluator also provides the flexibility,
for example, to use a single fitness function for all search algorithms in the Search
Module, or to deploy a different, and possibly tailored, fitness function per search
algorithm.

However, when multiple search algorithms and fitness functions are used together,
these should be defined in a coherent way with respect to each other in order to avoid
conflicting fitness functions and safeguard convergence. This is because there exists a
tight connection between the different search algorithms and their respective fitness
functions, as explained in Section 3.2. This connection should be made explicit. In our
current implementation, these relations can be defined by a set of hierarchical fitness
functions, which can be used with a variant of the one-to-one linking technique (already
explained in Section 3.2) to address the under-exploration problem in hierarchical
design space explorations with multiple search algorithms. Formally, these hierarchical
fitness functions are formulated as follows:

yLi = fL(x1, x2, . . . , xk); ∀i = 1..I⎧
⎪⎨

⎪⎩
yji = f j(x1, x2, . . . , xk) =

δ j∑
q=1

yLq ; ∀i = 1, δ j, 2δ j ..I and ∀ j ̸= L

δz > δw; ∀z, w = 1..β and z ⊃ w

where yLi is the fitness value of a design point of the lowest level dimension (the
mapping dimension in our case) in the search iteration i, I is the total number of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 27, Publication date: November 2013.



27:14 Z. J. Jia et al.

Table I. Parameter Settings in Our Experiments

Parameter Nr. Types Values
PE ≤ 6 3 ARM, PPC, MIPS
SE ≤ 3 2 DDR, SDR
NE ≤ 4 3 Bus, Fully-connected, Customized-network
App. Tasks 7 - -
App. Channels 12 - -
Dimensions (β) 3 - Platform, architectural components and mapping
Search algs. (SA) 1 or 3 1 Genetic algorithms
GA Selection (S) 1 1 Proportional with elitism
GA Crossover (C) 1 2 1-point and 2-point
C probability (pc) 5 - [0.1,0.3,0.5,0.8,1.0]
GA Mutation (M) 1 2 Simultaneous (M = 1) and Independent (M = 6)
M probability (pm) 5 - [0.1,0.3,0.5,0.8,1.0]
Collecting iterations (δarc) 1 - 2, architectural components dimension
Collecting iterations (δpla) 1 - 4, platform dimension
Search iterations (I) 41 - -
Population size (N) 10 - No. of individuals per iteration
Simulation tool 1 - CASSE

search iterations, xk represents the value of the metric k used in the fitness function f,
yji is the fitness value of a design point in any dimension other than the lowest one, and
δ j represents the collecting iterations for the individuals of dimension j. Moreover, for a
given range of dimensions β, the number of the search iterations needed for collecting
fitness information for dimension z (e.g., platform) should be bigger than the number
of iterations needed for dimension w (e.g., architecture) if z has a higher abstraction
level than w (denoted by the ⊃ operator).

4. EXPERIMENTAL RESULTS
4.1. NASA Configurations for Experiments and Parameter Settings
The first set of experiments aims at comparing the more traditional approach (using
a single search algorithm for all design space dimensions) to our dimension-oriented
approach (using a separate search algorithm per dimension, that is, three search algo-
rithms (SAs) in total). To properly evaluate and compare the quality of the DSE results
of the different approaches, many indicators can be used [Basseur et al. 2002; Erbas
2007; Gries 2004]. In this article, we use the following three criteria.

(1) Diversity. A large number of different design points should be explored in each DSE
experiment to cover a wide range of design decisions for each dimension.

(2) Convergence. The strategies should provide approximations to global (or near-to)
optimal solutions without being trapped in local optima.

(3) Coverage. The explored points should be well distributed for achieving a complete
view of the landscape of the design space as well as for catching boundary values.

Assessing the quality of the exploration is not equal to assessing the quality of the
obtained design points. However, an exploration meeting all three criteria should lead
to good design points in terms of fitness values (such as good performance). Different
parameter settings for the experiments, that is, different NASA configurations, lead to
different results in DSE quality and in the fitness values obtained. Next, we introduce
several different NASA configurations together with the results obtained.

In Table I, the most important user specifications and parameters for the first set of
experiments are listed. Note that after specifying such user specifications, the NASA
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framework automates the further DSE process. The studied MP-SoCs consist of up to 6
PEs of the types ARM, PowerPC (PPC), or MIPS, up to 3 SEs of either single (SDR) or
double data-rate (DDR) type, and up to 4 NEs of three types (bus, fully connected, or a
customized network consisting of a bus and point-to-point links). Although not studied
in this set of experiments, NASA and the incorporated simulators (i.e., CASSE and
Sesame) also allow designers to explore different configurations in the architectural
components, such as the bandwidth of a NE, the size of a SE, the scheduling policy of a
PE, etc. The latter can be done by introducing and configuring an additional dimension
in NASA, as already explained in Section 3.

A real-life multimedia application is used to be mapped onto the target MP-SoC plat-
forms in our DSE experiments. This application is an optimized version of the computer
vision algorithm presented in Jia et al. [2008]. Basically, this visual tracking algorithm
has a real-time requirement (25 frames/s), and applies a correlation or block matching
technique to continuously track a specific target in the incoming image frames. The
block or pattern size and frames size used in our experiments are 24×24 and 320×240,
respectively.

4.1.1. Search Algorithms Settings (SA). With respect to the search algorithm(s) we use for
exploration, a multitude of them can be used (via a simple plug-in mechanism): from
exhaustive search or random search, to heuristic search methods. In this article, we
focus on implementations based on genetic algorithms (GAs) since GA-based DSE has
been widely studied in the domain of system-level design [Teich et al. 1997; Palesi and
Givargis 2002; Erbas et al. 2006; Künzli et al. 2005; Madsen et al. 2006], and it has been
demonstrated to yield good results. In this case, we use a proprietary implementation
of the GAs, but any existing GA such as SPEA2 or NSGA-II [Erbas et al. 2006] could
also have been used. However, it should be mentioned that our interest is not focused
on the type of GA used in each experiment. Instead, we aim to analyze the behaviour
of the design space co-exploration process when multiple search algorithms are used.

4.1.2. Crossover and Mutation Type Settings. The crossover and mutation operators in
our GAs are performed at the granularity of entire sub-strings (see Figure 3) in a
string that describes the topological platform, architectural components or mapping.
These operators are applied according to their associated probabilities (pc: probability
of crossover, and pm: probability of mutation). Further, the GA can perform either a
1-point or a 2-point crossover, and supports two types of mutation. In “simultaneous”
mutation (M = 1), a single random position is simultaneously changed in every
substring. In “independent” mutation (M = 6), the mutation probability is used for
each of the six substrings to determine whether it is mutated or not. In the case
that three GAs are used for exploration, different and customized values for the
probabilities pc and pm can be used within each GA.

If all the GA parameters in Table I are taken into account, a large number of exper-
imental combinations can be performed. From this set of experiments, we present a
selection of four NASA configurations. The nomenclature used to denote these config-
urations is “SAgaCxM”, where the meaning of each capital letter is defined in Table I.
For example, “3ga1 × 6” refers to the configuration with 3 GAs that simultaneously
explore the platform, architectural components and mapping dimensions, a 1-point
crossover, and “independent” mutation (M = 6).

4.1.3. Group of Experiments and Run-Time per Simulation. Each experiment consists of a
maximum of 410 simulations (41 iterations × 10 individuals per iteration). Note that
the GA is extremely sensitive to its parameters such as the initial population, the prob-
ability associated to crossover (pc) and mutation (pm) operators. That is, the variation
of the results achieved in DSE experiments with different GA parameter settings can
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be significant. Therefore, in order to achieve a fair comparison between the traditional
approach and our dimension-oriented approach, many experiments with different com-
binations of GA parameters settings must be done to find out the well-tuned GA (with
the best parameters settings) for each studied case. To this end, all possible combina-
tions of the pc and pm values (as listed in Table I) have been evaluated. This results in
20 groups (i.e., 20 different initial populations) of 25 experiments (5 pc probabilities ×
5 pm probabilities) for each of the four mentioned NASA configurations.

We have plugged the CASSE simulator into NASA for the evaluation of the de-
sign points in our DSE experiments. The total run time of the NASA framework is
defined as the sum of the times spent in the searching, feasibility checking, system
model generation and simulation. The simulation—which dominates the run-time in
our DSE experiments—represents 99 percent of the total run time. More specifically,
CASSE requires on average 40 seconds to simulate a single design point on a PC
with a Pentium IV processor at 1.6-GHz and 2-GB main memory, running Linux. It
should be noted that although the evaluation of the design points in our experiments
can be carried out by means of simulators and/or analytical methods, the analysis of
speed-accuracy tradeoff between different evaluation techniques is not discussed in
this article.

4.1.4. Fitness Functions for Evaluation and Optimization. In order to simplify the graphic
representation of the results and the explanation of the examples in this section,
without loss of generality, the fitness value in our experiments only takes a single
system metric into account, namely performance. We would like to stress, however,
that multi-objective optimization can also be perfectly addressed with NASA.

4.2. DSE Behaviour and Sensitivity to Various Parameter Settings
4.2.1. Impact of Number of Search Algorithms on DSE Quality. The results of those experi-

ments are shown in the four scatter-plots of Figure 7, which compare the behaviour
of DSE experiments based on a single and multiple GA approach after 10, 20, 30, and
40 iterations, respectively. Each scatter-plot shows the average total of different ex-
plored design points (i.e., accumulated diversity) on the x-axis and the average of the
best fitness values, in terms of processed data packets/s, on the y-axis for each of the
experiments.

If the input arrival frame rate is 1450 packets/s and a minimum of 1250 packets/s
has to be processed to satisfy the minimum real-time requirements of the studied
application (which is equivalent to processing 25 frames/s), then using a 3 GA-based
search approach in NASA not only provides the design alternatives with the best
fitness values (in the upper right corner for each scatter-plot of Figure 7) but the
accumulated diversity of the explored design points is also largest. Notice that exploring
the same design space with a traditional, single GA approach, optimal and near-to-
optimal architectures are less often found. This is mainly due to a smaller accumulated
diversity of explored design points. Moreover, it can also be seen that the larger the
number of iterations, the larger the gap between traditional single GA-based DSE and
our 3GA-based DSE in terms of accumulated diversity and best design points reached.

From this, it appears that the multiple GA search has a positive impact on the DSE
quality. In other words, while all parameter settings affect the quality criteria of the
exploration performed, and consequently the best design points obtained, the multiple
GA-based searching seems to be an important factor for achieving quality.

For a detailed comparison between both approaches (single GA and multiple GA
search), the three proposed criteria—diversity, convergence and coverage—are sepa-
rately analyzed in Figure 9, Figure 10, and Figure 11. To this end, we have selected one
group of experiments for each of the four mentioned NASA configurations, where each
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Fig. 7. DSE results for four NASA configurations.
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Fig. 8. Average percentage of feasible, repaired and infeasible design points per iteration in our DSE
experiments.

configuration uses its respective best GA parameters setting, that is, the parameters
setting with which each configuration achieved its best results of the DSE.

4.2.2. Impact of Repair Mechanisms on the Efficiency of DSE Process. In our experiments,
due to the repair techniques applied in the Feasibility Checker module, the feasible
alternatives actually evaluated represent an important percentage of the total number
of explored design points. This can be illustrated in Figure 8(a) and Figure 8(b), which
depict the average percentage of feasible, repaired and infeasible design points per
iteration for the DSE experiments based on both approaches. Note that the grey part
of each bar (in Figure 8) represents feasible design points without any repair, the
dark part refers to repaired design points (i.e., infeasible design points repaired by
the Feasibility Checker module and converted to feasible ones), and the white part
indicates the infeasible design points that cannot be repaired by our heuristic repair
techniques. In this latter case, no system models are generated for these infeasible
design points, and therefore, they are not evaluated by the simulation tool.

From these data, it can be seen that our repair techniques can repair more than the
84 percent of detected infeasible design points in each iteration, and as a result, more
than the 91 percent of explored design points can actually be evaluated by the CASSE
tool. Thus, it seems that the repair mechanisms significantly affect and improve the
efficiency of the DSE experiments.

4.2.3. Convergence Rate and Number of Iterations. The convergence is shown in Figure 9,
where the horizontal axis indicates the number of explored design points (and itera-
tions) and the vertical axis represents the fitness values in terms of processed data
packets/s. Investigating these data, it can be seen that 1 GA-based experiments have
a higher convergence rate (i.e., a steeper slope) than 3 GA-based experiments in the
first iterations. This phenomenon is the implicit effect of using the hierarchical fitness
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Fig. 9. Average fitness values per iterations.

Fig. 10. Incremental diversity per iterations.

functions and the variant of the one-to-one individual linking technique (presented in
Section 3.2) in 3 GA-based experiments.

However, when the number of iterations increases, 3 GA-based experiments do not
only progressively reach higher fitness values than 1 GA-based experiments, but they
can also ensure that most of the individuals in each iteration satisfy the real-time
restriction (1250 packets/s). In the 1 GA-based experiments, on the other hand, mostly
design solutions with fitness values lower than the real-time restriction are reached.
Moreover, the 1 GA-based experiment hardly improves or provides better design alter-
natives with the evolution of iterations. The latter may indicate that the GA is trapped
in a local optimum, which occurs when design points explored in each experiment are
not sufficiently different or well distributed (i.e., partial coverage) to properly capture
the design space in its entirety (e.g., covering only partially or some regions of the
design space), caused by an insufficient variety of new individuals introduced in each
iteration (i.e., a low incremental diversity) that prevents the populations to escape from
such local optima. These aspects can be demonstrated in both Figure 10 and Figure 11.

4.2.4. Diversity and the Search Approach. Each curve in Figure 10 represents the per-
centage of new and different design points introduced in each iteration that have not
been explored in any of the previous iterations, that is, the incremental diversity per
iteration. These results highlight that 3 GA-based experiments clearly yield a higher
incremental diversity per iteration than 1 GA-based experiments, and especially in
the case of 1 GA with “simultaneous” mutation (M = 1). A direct consequence of the
latter result thus explains the resulting gap of the accumulated diversity between both
approaches, as already shown in Figure 7.
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Fig. 11. Explored design points by each selected NASA configuration.
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Fig. 12. Examples of design points found by 3GA2×6 DSE after 40 iterations.

4.2.5. Convergence, Design Points Concentrations and Local Optima. All design points ex-
plored by each of the selected group of experiments (corresponding to the four
mentioned NASA configurations) are separately shown in Figure 11, where each axis
represents one design space dimension in our 3D design space. Moreover, for a fair
comparison, each axis in Figure 11 contains all ordered design-decision instance num-
bers (i.e., the canonical representations of the strings for the platform, architectural
components and mappings dimensions) explored together by these four groups of ex-
periments. It can also be seen in Figure 11 that the design points explored in the 3
GA-based experiments are scattered over almost the whole design space (high cov-
erage) and are characterized by a high accumulated diversity. The design solutions
reached by the 1 GA-based experiments, on the other hand, have a lower accumulated
diversity and are often concentrated in a single region of the explored design space
(lower coverage). This indicates that the searching process is converging toward an
optimum, and in this last case, toward a local optimum as already shown in Figure 9.

It should be noted that design points concentration—a visual indicator of the con-
vergence process—can also be observed in the 3 GA-based experiments. But, unlike
the 1 GA-based experiments, the convergence is toward a global optimum or toward a
few optimal points. The existence of several “optimal points” can be illustrated for two
NASA configurations based on multiple GAs shown in Figure 11, where multiple areas
of design points concentration (or convergence) can be identified. This is correct since
different alternatives can often satisfy a given set of user restrictions. To illustrate
the above, two design points (A and B) have been marked in Figure 11(d), and their
respective architectures and mappings are shown in Figure 12. Note that designers
can select from NASA’s output any design point explored in the DSE experiment, and
examine information about that design point such as the architectural characteristics,
the description of the mapping, etc.

In this case, although both design points (corresponding to each of the convergence
regions) have similar performance (A achieves 1371 packets/s and B 1355 packets/s),
their underlying platform architectures are however quite different. Moreover, they
are also over-dimensioned in the sense that not all resources are actually used by the
application. Therefore, in this case, designers can perform new DSE experiments with
a larger number of iterations (e.g., 60 iterations) and/or introduce additional objectives
in the fitness functions (such as the cost of designs) for achieving a better convergence
toward the optimal points. Alternatively, since NASA’s output (Figure 11) can provide
a good insight of where the sweet spots in the design space are located, designers can
also perform more detailed explorations focusing on a particular convergence area, for
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Fig. 13. Target platform template for the second set of experiments.

Table II. Search Module and Target Architecture Parameter Settings

Selection (S) Proportional with elitism
GA Crossover (C) 1-point, pc = 0,5

Mutation (M) Independent (M = 6), pm = 0,5
Selection (S) Tournament without elitism

ga Crossover (C) 2-point, pc = 0,8
Mutation (M) Simultaneous (M = 1), pm = 0,3

Collecting iterations (δarc) 2 Architectural components dimension
Search iterations (I) 21 -
Population size (N) 10 Number of individuals per iteration
PE ≤ 6 ARM and hardware dedicated block
SE ≤ 3 DDR and SDR

example, the platform is fixed and only the architectural components and mapping
dimensions are explored more rigorously. In the next section, we will present another
set of experiments to demonstrate NASA’s flexibility and capacity to carry out this kind
of DSE process.

4.3. Hierarchical Refinement and Analysis of 2D-DSE with NASA
This set of experiments is focused on 2D design space explorations, where design
decisions about mapping and architectural components are explored for a particular
platform template, that is, the platform dimension is fixed and no search algorithm
is used in this dimension. Obviously, in order to model a specific platform template,
designers should properly configure the platform string values for the number and
types of element containers in each instantiated BTU as well as their connections with
each other.

4.3.1. Fixed Platform, Variable Architectural Components and Mappings. The selected target
platform template and available type values for PE and SE are depicted in Figure 13
and Table II. This platform template can provide architecture models based on two
AMBA buses connecting up to six PEs and three SEs. The execution time of the vi-
sual tracking application’s tasks has been estimated using an instruction set simu-
lator [ARM] for the ARM processor, while we assume that the hardware dedicated
block (which executes block matching operations of the target application) has a ×10
speedup factor with respect to the SW implementation. Note that in this case study,
plenty of platforms could have been analyzed in our refinement experiment. However,
for the sake of illustration we have selected a realistic MP-SoC platform template,
consisting of several homogeneous processors completed with a few coprocessors or
hardware dedicated blocks in a bus-based architecture, rather than an MP-SoC based
on various processing and network element types having different computational and
communication characteristics.

4.3.2. NASA Configuration for 2D-DSE. Four NASA configurations have been selected in
this second set of experiments: 1GA+1Random, 1GA+1ga, 1GA+1GA and a heuristic
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algorithm from Jia et al. [2009]. The used parameter settings of the genetic algorithms
are illustrated in Table II. For example, 1GA+1GA (or 1GA+1ga) refers to two identical
(or different) genetic algorithms are used in the architectural components and mapping
dimensions, respectively. On the other hand, in the cases of 1GA+1Random, a GA
explores different architecture instances by varying the type of SEs as well as the
location of the hardware dedicated block in different PE containers of the platform
template (since the rest of PE share the same processor type), while a random search
algorithm explores different functionality distributions onto system resources. It should
be noted that although not included in this set of experiments, an extensive number of
combinations of different search algorithms as well as GA parameters could have been
used (as already shown in Figure 7 for our first set of experiments). Therefore, the four
selected configurations only represent a few samples of NASA’s capacity and flexibility.

4.3.3. Heuristic-Based Mapping Algorithm. For convenience, a brief overview of the heuris-
tic algorithm is introduced before presenting our results and performing comparisons.
This heuristic algorithm [Jia et al. 2009] uses as input a real-time application, the
equivalent deadline (in number of cycles) of the real-time constraint, a MP-SoC tem-
plate and a list of available PEs and SEs for such template, and estimates analytically
the best MP-SoC instance (varying the location and combination of PEs and SEs) for
the target real-time application, that is, achieving real-time requirements as well as
optimizing processor utilization, inter-processors traffic load, and processor load bal-
ancing. The heuristic approach consists of three phases. First, a real-time application
is modelled as a task-graph, after which the algorithm schedules the tasks on a set
of virtual processors (VPs) or logical clusters taking into account the real-time dead-
line and assuming that: (i) each physical PE can only hold a single VP in the further
steps, and (ii) the set of PEs works in a pipeline fashion. Second, all possible MP-SoC
instances are exhaustively generated, that is, all combinations of type and locations
of PEs and SEs in the target template. In the last step, the algorithm uses a set of
analytical expressions (which take into account variables such as resource connec-
tivity, remaining processing and storage capacities, latency parameters associated to
communication protocols of each component, etc.) to evaluate different alternatives.
Subsequently, it outputs the best logical clusters mapping onto the MP-SoC instance
that satisfies the real-time constraint. Interested readers are referred to Jia et al.
[2009] for more detailed information.

It should be noted that although this heuristic algorithm can quickly and simul-
taneously explore both architecture candidates and feasible mappings by means of
a static performance estimation technique, the output (or the selected design point)
still needs to be carefully examined in a system-level simulator. This is because of
nondeterministic or nonlinear system functions (e.g., the bus arbitration delay due to
simultaneous access requests by multiple PEs) are not taken into account during its es-
timation process, thereby making an accurate performance evaluation difficult without
a simulation. To this end, the output of this algorithm is adapted to the string format
required by NASA’s Translator, which then produces the corresponding architectural
and mapping model to be simulated in the CASSE tool.

4.3.4. Results and Discussions. The results of these four configurations are shown in
Figure 14. The dark bar represents the fitness value obtained in simulation with the
design point selected by the aforementioned heuristic algorithm. The curves show for
the rest of the configurations (i.e., 1GA+1GA, 1GA+1ga, and 1GA+1Random) the av-
erage fitness values reached by all individuals in each of the twenty iterations. From
these results, it can be seen that 1GA+1Random can only sporadically reach a few
design points that satisfy the real-time constraints. Moreover, it clearly cannot ensure
convergence toward a global optimum. On the other hand, both the heuristic algorithm
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Fig. 14. Comparative results obtained in the second set of DSE experiments.

Fig. 15. Example of NASA output.

and the experiments based on two genetic algorithms can provide solutions that satisfy
the input constraints. To this end, the heuristic algorithm only requires to simulate
a single system model (or individual), while 1GA+1ga and 1GA+1GA need to simu-
late an average number of 40 and 60 individuals respectively (since 1GA+1ga has a
higher convergence rate than 1GA+1GA in the first four iterations) before reaching
the first individual that satisfies the real-time constraint. This might suggest that
the multiple GAs strategies are not as efficient as this heuristic algorithm in terms
of simulation time dedicated to DSE. However, our multiple GAs-based co-exploration
approach presents two important benefits with respect to the heuristic algorithm:
(i) both 1GA+1GA and 1GA+1ga can converge toward design points with higher fit-
ness values, and (ii) our co-exploration approach provides not only information about
the best solutions but also about all other explored design points in each experiment
(rather than a single design point outputted by the heuristic algorithm). This is a key
element for better understanding the studied design space, that is, the more design
points are provided to the designer, the more information can be extracted from the
explored design space, and therefore, it will allow designers to more easily compare the
architectural characteristics of the evaluated design points. That is, it can be very use-
ful for a designer to distinguish the architectural similarities of the design alternatives
featuring good fitness values.

This last aspect can be illustrated in Figure 15, which shows an example of typical
NASA output after each DSE experiment. The set of simulated design points, corre-
sponding to a 1GA+1ga experiment in this case, can form a surface that approximates
the landscape of the explored design space. A 2D view of the resulting surface is shown
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for this experiment since it is based on 2D exploration, that is, the x axes and y axes of
the 2D view contain the explored instance numbers of the mapping and architectural
components dimensions. So, for example, 120 different mappings have been explored
in this example. Note that the fitness value associated to each design point is colour
coded, ranging from red (high fitness value) to blue (low fitness value). Therefore, the
distribution of design points in the surface can clearly indicate the location of conver-
gence region(s). Finally, it should be stressed that all these experiments presented in
this article have been performed in a fully automatic fashion, only providing parameter
settings and constraints such as those shown in Table I and Table II.

5. CONCLUSIONS
In this article, we addressed the lack of a generic, flexible, and re-usable infrastruc-
ture to facilitate and support system-level MP-SoC DSE experiments. To this end, we
have presented a system-level MP-SoC DSE support infrastructure, called NASA. This
highly modular framework uses well-defined interfaces to integrate different system-
level simulation tools as well as different combinations of search strategies in a simple
plug-and-play fashion. Moreover, we described NASA’s dimension-oriented DSE ap-
proach, allowing designers to configure the appropriate number of, possibly different
and well-tuned, search algorithms to simultaneously co-explore the various design
space dimensions. The result is a flexible and re-usable framework for the systematic
exploration of the multidimensional MP-SoC design space.

Our experimental results indicate that, compared to the more traditional approach of
using a single search algorithm for all dimensions, the multidimensional co-exploration
seems to be able to find better design points and ensure the convergence toward global
optima. Furthermore, the multidimensional co-exploration has a higher diversity and
coverage of design alternatives, producing higher quality DSE results. More experi-
ments are needed, however, to demonstrate that multidimensional DSE consistently
outperforms traditional DSE. Finally, we have also illustrated NASA’s capability and
flexibility to integrate different kinds of search algorithms in DSE experiments.

As future work, we plan to integrate a more extensive set of search algorithms
into NASA, for example, through the integration of the PISA optimization framework
[Bleuler et al. 2003; PISA], as well as to perform additional deployment case studies
of NASA such as multi-objective optimization problems introducing other fitness and
cost functions. Moreover, we intend to integrate NASA with the Daedalus system-level
MP-SoC synthesis framework [Thompson et al. 2007] to validate NASA’s DSE results
against actual FPGA-based prototype MP-SoC implementations.
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