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Abstract. The efficiency of neural information retrieval methods is pri-
marily evaluated by measuring query latency. In practice, measuring
latency is highly tied to hardware configurations and requires extensive
computational resources. Given the rapid introduction of retrieval mod-
els, achieving an overall comparison of their efficiency is challenging. In
this paper, we introduce PEIR, a framework for hardware-independent
efficiency measurements in Learned Sparse Retrieval (LSR). By employ-
ing performance modeling approaches from high-performance comput-
ing, we derive performance models for query evaluation approaches such
as BlockMax-MaxScore (BMM) and propose to measure memory and/or
floating-point operations while performing retrieval on input queries. We
demonstrate that by using PEIR, similar conclusions on comparing the
latency of retrieval models are obtained.

Keywords: Efficiency · Latency · Learned Sparse Retrieval ·
Performance Modelling

1 Introduction

Efficiency of methods in neural information retrieval (IR) has been chiefly inves-
tigated through measuring query latency [10,16] since previous studies show that
slow search engines are detrimental to the user experience [27]. In contrast to
effectiveness, due to high variety of possible configurations in models, software
libraries and hardware, measuring efficiency in neural search is highly challeng-
ing [2]. The primary focus in the literature is to build a platform that allows for
benchmarking of methods in a unified approach [7,15]. The main disadvantage
of this approach is the need for extensive computational resources [2]. Yet, an
important cause of challenges in efficiency evaluations is a high degree of hard-
ware involvement and since there are many possible hardware configurations,
efficiency comparisons between various methods are non-trivial.

In this paper, we introduce PEIR, a framework based on performance mod-
eling to address the main challenges in measuring efficiency of LSR approaches.
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PEIR enables the construction of performance models that can act as proxy
for hardware-agnostic efficiency analysis of retrieval methods. Employing PEIR
is particularly beneficial since it allows for: (i) standardized efficiency compar-
isons of retrieval methods, (ii) reducing efficiency measurement dependency on
hardware configurations, (iii) reducing the required computational resources for
evaluating efficiency by integration of PEIR in existing IR benchmarking frame-
works such as TIREX [7], and (iv) accelerating further research and development
of new models as it removes the need to evaluate all previous models in terms
of efficiency.

The more work an algorithm has to do to be completed, the more time taken
and energy is consumed, though this relation is not necessarily linear. Regardless
of what an algorithm does in practice, its work can be seen as a combination
of memory and floating-point operations at its essence. This principle is the
chief idea behind PEIR. We model the performance of the retrieval stage given
a processed query and a pre-built index, i.e., to count how many operations
are executed when relevant documents are retrieved given an input query. The
number of operations in an algorithm does not vary by changes in hardware
configurations, so making a single time measurement is sufficient. They can be
an alternative to current efficiency evaluation metrics, in particular latency.

Performance models help with understanding the cost of all operations for
different segments, factors, of an algorithm, and how frequent each segment is
repeated, we denote them as coefficients. Performance models allow us to dis-
tinguish between three fundamental levels in efficiency analysis: (L1) algorithm
definition; this levels associates with how theoretically efficient an algorithm is.
(L2) algorithm implementation; at this level the efficiency is affected by the pro-
gramming language and how well the algorithm is programmed. (L3) algorithm
execution; this level concerns the hardware configuration such as processor choice
(CPU or GPU) or use of parallelism. PEIR is built upon efficiency analysis in
the second level (L2). We illustrate how applying PEIR allows for constructing
performance models to compare the retrieval methods efficiency and detail the
process to perform efficiency analysis in the final level (L3) for latency evaluation.

As a case-study, we focus on efficiency evaluation of learned sparse
retrieval methods using the PISA [18] library. We take the BlockMax-MaxScore
(BMM) [3] algorithm and derive performance models for it to calculate the num-
ber of memory and floating-point operations using MS MARCO v1 [1] evaluation
queries. Further, we develop latency models and validate that efficiency evalua-
tion by calculating the number of operations through the proposed performance
models is robust and aligns closely with the findings from measuring the latency.
In addition, we empirically show that latency models built based on the proposed
performance models can be used to predict query latency based on the experi-
mental results obtained from two different clusters with AMD and Intel CPUs.
The contributions of our work are as follows:

(C1) We introduce PEIR, a framework that allows for building performance
models for hardware-agnostic efficiency evaluation of retrieval methods. To
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the best of our knowledge, we are the first to apply performance models
in neural IR to address challenges in efficiency evaluation.

(C2) We validate the applicability of our proposed framework by deriving per-
formance models for the BMM algorithm with the PISA library for learned
sparse retrieval methods. We empirically demonstrate that comparing effi-
ciency of retrieval methods with our proposed approach highly correlates
with measuring latency across two different hardware platforms.

(C3) The repository including our instrumented PISA library and empirical
analysis is publicly available at: https://github.com/po-oya/peir.

2 Background – Learned Sparse Retrieval (LSR)

In this section, we explain the operation of a Learned Sparse Retrieval (LSR)
pipeline consisting of training and retrieval stages. LSR models may have differ-
ent training recipes, as they may use, for example, different expansion schemes
or optimizations, but they eventually encode queries and documents in sparse
vectors of vocabulary size [21]. At the end of training stage, an inverted index
of documents is created that is used in the retrieval stage. In the retrieval stage,
we employ a query evaluation algorithm that, given an encoded input query and
an inverted index, retrieves the most relevant documents from the collection as
fast as possible. This query evaluation algorithm performs several optimizations,
including early-exiting strategies, to decrease the retrieval latency with minor
degradation in performance. These optimizations eventually make the retrieval
latency variable per query.

Efficient LSR implies low-latency queries. The total query latency is the sum
of query encoding latency and retrieval latency. Determining query encoding
(processing) latency is less of a problem because the time to process a query
mainly depends on the model size. In contrast, retrieval latency is highly affected
by term weight distributions [16]. In this work, we focus on retrieval latency
estimation, as the most expensive and least predictable of the pair.

3 Related Work

We identify three types of related work: efficiency metrics definition and assess-
ment, efficiency measurements, and performance modeling.

Efficiency Metrics. Since users experience with search systems is affected by
retrieval speed, i.e. how fast retrieved documents are presented, [27], latency is
the most widely used efficiency metric in IR [2,25]. Achieving low latency is
especially challenging given the large collections of documents and big retrieval
models. Other work (particularly in the context of SPLADE models [6]) proposes
to assess efficiency based on FLOPS, defined as the average number of floating-
point operations between a query and a document [4]. However, these estimates
are not good efficiency indicators because they consider the worst-case scenario
where all query-document pairs are scored [4–6,10] - the very behaviour that LSR

https://github.com/po-oya/peir
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pipelines optimize with techniques like early exit. Other metrics that have been
proposed include the index size [10,16], and, more recently, measuring energy
consumption [26], CO2 footprint [28]. In this work, we consider low-latency as
the key indicator of efficiency for a LSR method.

Efficiency Benchmarking. There exist diverse benchmarking attempts for effi-
ciency in the context of IR. For example, Hofstatter and Hanbury [9] measure
and report throughput and latency, in addition to comparing models accuracy.
Based on the Dynaboard [15] method, Santhanam et al. [25] combine several effi-
ciency metrics to compare models together. Fröbe et al. [7] introduce TIREX, a
standardized environment to run and evaluate models effectiveness and efficiency
on a diversity of platforms. Our work is complementary to these approaches,
because we estimate efficiency in a hardware-agnostic, model-based manner.

Modeling. Performance models are employed to understand and analyze the per-
formance of various applications [20], typically expressed in terms of latency or
throughput. Moreover, they help with exploring the applications performance
bottlenecks [22,29] through profiling hardware performance counters. Particu-
larly, Li et al. [11] and Lym et al. [14] successfully apply performance models to
detect bottlenecks and predict latency of Convolutional Neural Networks (CNN).
However, to the best of our knowledge, we propose the first performance mod-
eling approach for the retrieval stage of LSR pipeline and we demonstrate how
the model can be used successfully as proxy for latency comparison for different
LSR methods.

4 Performance Modeling Principles

We detail our approach to performance modeling for latency estimation.

4.1 Performance Model P
Consider the retrieval stage explained in Sect. 2. Although different query evalu-
ation methods R have different complexity, evaluating a query ultimately trans-
lates into performing memory operations (Mop) and/or floating-point operations
(Flop) to produce the list of retrieved documents L. Memory operations are
reading and writing (R/W) data from/to the memory hierarchy; addition and
multiplication are examples of floating-point operations. The overall execution
time depends on the number of memory and floating point operations, which in
turn depend on the implementation of R, and the latency of these operations,
which in turn depends on the hardware specifications.

We define analytical performance models to estimate the number of differ-
ent operations of a given implementation, which ultimately correlates to the
expected execution time. Assuming fi is the number of times an operation
repeats in an algorithm, PR(fiMopi, fiFlopi),∀i is the performance model for
R. Given the input for the retrieval task, i.e., a query and an index, the output
of this PR would be a number of operations; however, the model can be further
adjusted to estimate latency or energy consumption.
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To construct a performance model for retrieval in the context of learned-
sparse methods, we make the following simplifications: (i) We assume no paral-
lelism is used for the implementation of R; we observe all efficiency evaluations
are conducted in a single-core setting. Therefore, we can safely assume oper-
ations are executed sequentially. This will simplify the model and increase its
interpretability, although it may be a source of error in model accuracy due to
optimizations within the CPU. (ii) We do not distinguish between R/W opera-
tions within memory and cache(s). This is also an assumption in favor of inter-
pretability, but it may also be a source of inaccuracy, especially for algorithms
optimized for cache usage. The assumption can be removed for relevant cases,
meaning additional parameters are needed for the performance model. (iii) We
do not differentiate, in terms of latency, between different types of floating point
operations (i.e., a sum and a multiplication are both one operation).

4.2 Constructing P
Assuming an algorithm with i phases (i.e., code blocks or segments), we define
our generic performance model, P, as a symbolic work model where the contri-
butions of both memory and floating-point operations are combined (hence the
⊕ operator). Such a generic model is presented in Eq. (1):

P =
∑

i fi · (Mopi ⊕ Flopi) . (1)

In an ideal setting, when the computation is independent of the input data, the
operation mix (i.e., the number of memory and floating point operations) can be
determined by static analysis tools. However, when data-dependent code blocks
exist, we need additional steps to collect such data.

We explain these concrete steps to construct such a performance model PE
through an example algorithm E , provided in pseudo-code in Algorithm 1. To
define PE for algorithm E , we rely on static analysis and instrumentation at
source-code level (e.g., Algorithm 1). In the manual process, this entails collecting
the relevant data directly from the code, line by line. For example, initialization
of variables and arrays, i.e., lines 1–4. The cost of this initialization is negligible
compared to the bulk of processing, and is therefore ignored. Lines 5–10 form the
costly part of Algorithm 1. In this region we monitor the frequency of operations
by adding the explicit counters for cnt and if cnt to count how many times the
for loop and the branch, respectively, are executed. Expanding the model to use
the additional data from for cnt and if cnt, Eq. (1) can be rewritten as:

PE = for cnt · ((Mopline 6 + Mopline 7) ⊕ (Flopline 7 + Flopline 7))
+ if cnt · (Mopline 8 ⊕ Flopline 8) .

(2)

In line 6, the application performs one memory read and one floating-point
operation; the cost for Func is one memory read. Finally, the cost of line 8 is
one read from memory and one floating point operation. Thus, simplifying the
terms in Eq. (2) results in:

PE = 2 · for cnt + 1 · if cnt
︸ ︷︷ ︸

Mop cost

⊕ 1 · for cnt + 1 · if cnt
︸ ︷︷ ︸

Flop cost

. (3)
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Algorithm 1. Implementation of an example algorithm E
Input: A dummy array A of size N randomly initialized with integers from 0 to
N − 1; A binary randomly initialized array S of size N .

1: Initialize an output vector V of size N .
2: for i = 0, 1, . . . , N do
3: V [i] = 0.
4: end for
5: for i = 0, 1, . . . , N do � Instrumentation: update coefficient for1 + +
6: Temp = i ∗ A[i]. � Contributes to Mop and Flop
7: if Func(A[i], S) then � Instrumentation: update coefficient if1 + +
8: Temp = A[i] ∗ A[i] � Contributes to Mop and Flop)
9: end if

10: end for
11: procedure Func(loc, S)
12: if S[loc] == 1 then
13: return True
14: end if
15: return False
16: end procedure

In our performance model PE , we correlate/refer to counters (such as for cnt and
if cnt) that indicate the frequency of operations to coefficients, and to the values
multiplied with them as factors. The factors depend on the implementation (i.e.,
they (only) change with variations in implementation), while the coefficients are
likely to vary based on the input data. E.g., in Algorithm 1, the main loop at
line 5 occurs N times, meaning the coefficients for1 = N and if 1 ≤ N depend
on the size and initialization of array S, while the factors depend on the actual
operations in the implementation.

To determine unknown coefficients, we require a dedicated data collection
step. First, we execute the algorithm with sufficient samples of input data, and
measure coefficients per sample. Then, we estimate an average for each coefficient
from the collected data if the variance is low. In more complex cases, where
the relation between input characteristics and coefficient distribution is more
complex, more analysis/modeling is needed - for example using regression or
more advanced machine learning approaches - to create a representative function
that estimates the coefficient sufficiently well.

5 PEIR: Performance Models for Neural IR

Our main goal is to propose a framework for estimating the efficiency of retrieval
pipelines based on analytical performance models. This section focuses on the
design and implementation of the framework, and its applicability for a given
case-study: comparing the efficiency of LSR models with the BMM [3] algorithm.
We show how to build a dedicated, hardware-agnostic performance model, PR,
for our use-case. We validate the model and framework further in Sect. 6.
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5.1 The PEIR Framework

PEIR focuses on modeling performance of a query evaluation algorithm R in the
retrieval stage that takes a processed query and an inverted index as inputs and
produces the list of retrieved documents. Let PR be the analytical performance
model for R that determines the total number of operations while executing R.
The processed queries and term weight distributions in the index vary across
retrieval methods [16]; therefore, various retrieval methods will have a different
PR w.r.t. coefficients.

Comparing the number of operations with PR across retrieval methods is a
proxy for comparing their latency in a hardware-agnostic manner.

5.2 PR for the BlockMax-MaxScore (BMM) Algorithm in PISA

To demonstrate the feasibility of our modeling approach, we show how the per-
formance model PR is constructed in practice for the BMM algorithm based
on the C++ implementation from the PISA [18] library. To derive the coefficients
and factors for PR, the code needs to be inspected. Due to space limitations,
we show a simplified snippet of the code in Sect. 5.2.1 This snippet is from the
block max maxscore query.hpp2 file in the PISA library; this code executes the
BMM algorithm on an input query.

1 void operator ()(CursorRange && cursors , uint64_t max_docid) {
2 // This part of the code is mainly initialization
3 while ( /* Main loop of the algorithm , the most costly part */) {
4 // w_cnt
5 // f1_cnt , f2_cnt , f3_cnt
6 // p1_cnt , ..., p6_cnt
7 // brz1_cnt , brz2_cnt
8 }
9 }

The first part of the implementation only includes variable initialization. Our
analysis indicates that this initialization is negligible, time-wise, when compared
to the main loop. Thus, PR only captures the main loop. To determine the
coefficients in PR, we define counters: w cnt monitors how many times the while
loop occurs; fi cnt, i ∈ {1, . . . , 3} monitor the occurrence of three for loops;
pi cnt, i ∈ {1, . . . , 6} monitor the if statements’ branching; and, finally, brz i cnt
monitor the two break statements in the implementation; no extra operation is
executed when break occurs and they do not affect PR. Each counter x cnt
eventually corresponds to coefficient x in PR.

To derive the factors, we inspected the code and extracted the number of
Mop and Flop operations for any extra method called within this main loop.
Table 1 presents the results of this inspection.

The symbolic model for PR is presented in Eq. (4) (for memory operations)
and (5) (for floating-point operations). Note that MopMi

and FlopMi
denote the

1 The complete instrumented code available at https://github.com/po-oya/peir.
2 Look at pisa/include/pisa/query/algorithm/block max maxscore query.hpp.

https://github.com/po-oya/peir
https://github.com/pisa-engine/pisa/blob/64320ef3720f778f92036c579940c32805df562c/include/pisa/query/algorithm/block_max_maxscore_query.hpp#L16
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factors from Table 1.

Mop(PR) = f1 · Mop(M2) + p1 · (
Mop(M3) + Mop(M8)

)

+ f2 · (
Mop(M5) + Mop(M1) + Mop(M4) + Mop(M7)

)

+ f3 · (
Mop(M6) + Mop(M2) + Mop(M4) + Mop(M7)

)

+ p3 · Mop(M9) + p5 · Mop(M3) + w · (
Mop(M7)

)

(4)

Code analysis further reveals that p2 cnt is already considered within the f2

factors, and adds no additional costs. Moreover, p6 cnt (in the last if statement
of the main loop) is negligible, given its very small value relative to the rest of
the coefficients. In addition, the constant factors in (5) are due to single floating-
point operations in the main loop.

Flop(PR) =f2·
(
Flop(M1) + Flop(M4) + 3

)
+ f3·

(
Flop(M4) + 2

)
+ p4 + p5 +w. (5)

Inserting the values from Table 1 into Eq. (4) and (5) determines the final value
for PR as follows:

PR =f1 + 3·p1 + 6·f2 + 2·p3 + w + 6·f3 + p5︸ ︷︷ ︸
Mop cost

⊕ 5·f2 + w + 3·f3 + p5 + p4︸ ︷︷ ︸
Flop cost

. (6)

Table 1. The Mop and Flop cost (in number of operations) of the functions employed
in the implementation of BMM algorithm in PISA library

FunctionM1: max score M2: doc id M3: score M4: block max score M5: block max doc id

Mop 1 1 1 2 2

Flop 1 – – 1 –

M6: next geq M7: would enter M8: next M9: block max next geq

Mop 2 2 2 1

Flop – – – –

5.3 Latency Model Based on PR
Our current PR model enables us to determine the number of operations,
but does not translate to latency directly. We thus formulate a latency model
based on PR with coefficients as input and latency as output. We expect the
latency model based on PR to combine the effects of both memory and floating
point operations. However, depending on whether the application is compute- or
memory-bound, the impact of one of the two components might become negli-
gible. Thus, we investigate three possible variants to convert our symbolic work
model into a latency model: (i) considering only Mop operations; (ii) considering
only Flop operations; and (iii) considering both Mop and Flop operations.

We also consider an additional scheme (iv) where we only consider the coef-
ficients, and ignore the factors in PR.
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We simplify the latency model by assuming the latency of all operations is
approximately the same: TM for memory operations and TF for floating-point
operations. Hence, our latency model is formulated as:

LPR = (f1 + 3 · p1 + 6 · f2 + 2 · p3 + w + 6 · f3 + p5) · TM
︸ ︷︷ ︸

Mop latency

+ (5 · f2 + w + 3 · f3 + p5 + p4) · TF
︸ ︷︷ ︸

Flop latency

.
(7)

We randomly select a small percentage of the queries and collected their coef-
ficients in PR as the training set for estimating TM and TF . With the single-
latency schemes ((i) and (ii)), only one of them needs to be estimated. By consid-
ering either of Mop latency or Flop latency with the training set, we obtain the
per-query estimates of TM and TF . Then, we set the final values of T in either
case as the mean over all per-query estimates. For the third scheme, where we
combine both latencies, we apply the least square regression method to solve
TM and TF with the training set. Finally, we apply the linear regression method
for the last latency model with the collected per-query coefficients as the model
input and latency as its output.

Our latency models require the execution of the evaluation algorithm for all
queries to collect the coefficients. However, in practice it is feasible to obtain
accurate estimates of coefficients with a small subset of the data, as we demon-
strate empirically in Sect. 6.4.

6 Evaluation

The evaluation of PEIR focuses on (1) validating the correctness of PR; (2)
evaluating the correlation between Mop and latency; and (3) assessing the data
collection requirements and feasibility.

6.1 Experimental Setup

We use the MS-MARCO v1 development set for evaluating the efficiency of
retrieval methods. The dataset contains 9.9M passages and 6,980 queries [1]. As
we focus on retrieval efficiency, we follow the exact same experimental setup as
in [16] and consider the following methods: (i) BM25: using the BM25 scoring
function [24]. (ii) BM25-T5: documents are expanded with query predictions
from T5 [23]. (iii) DeepImpact: based on [17]. (iv) uniCOIL-T5: based on
COIL [8] model and with T5 expansions [12]. (v) uniCOIL-TILDE: based
on [32], using COIL [8] but with TILDE [33] expansion. (vi) SPLADEV2 [4]:
adds additional optimization on SPLADEV1 [6].

Our experiments are performed using the PISA library [18], which provides
efficient C++ implementations of several query evaluation algorithms; PISA
outperforms other options such as Anserini [31] and JASS [13,30] w.r.t. query
latency [16]. We focus on retrieval latency with pre-processed queries and a
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pre-built index, and select the BMM [3] algorithm for query evaluation, given its
superiority over BlockMaxWand [19]. However, PEIR is not limited to these par-
ticular choices of library or query evaluation algorithm. While executing BMM,
we use k = 1000 and quantization (except for BM25 methods). We measure
latency in milliseconds, run each experiment five times for every combination of
settings, and report the mean value.

To evaluate the correctness of the latency models proposed in Sect. 5.3, we
measure the R2 score, where values closer to 1 indicate that the model fits the
data well, and negative values indicate a failure in the regression.

To confirm the portability of PEIR, we perform experiments on two machines
with different CPUs: an AMD EPYC 7402P 24-core processor, and a 12-core
Intel(R) Xeon(R) Gold 5118 CPU (Skylake). We run all experiments on a single
core. We compile the PISA library in two different versions from scratch: an
instrumented version (see Sect. 5.1) with performance counters to collect data
for coefficient estimation, and a timed version, where we only add a few timers
to collect the processing time of different code blocks of the BMM algorithm.
This setup ensures that the data collection overhead does not affect the latency
data.

Table 2. R2 scores for different performance models and retrieval methods.

Retrieval Intel AMD

method Mop Flop MFlop LR PL Mop Flop MFlop LR PL

BM25 0.801 −0.259 0.969 0.990 0.589 0.463 −1.076 0.820 0.884 0.537

BM25-T5 0.968 0.367 0.989 0.997 −0.000 0.742 0.308 0.950 0.964 0.001

uniCOIL-TILDE 0.986 0.930 0.985 0.984 0.300 0.979 0.930 0.977 0.977 0.302

DeepImpact 0.969 0.469 0.987 0.993 0.444 0.957 0.485 0.970 0.977 0.429

uniCOIL-T5 0.971 0.939 0.985 0.977 0.261 0.966 0.941 0.981 0.973 0.255

SPLADEV2 0.988 0.859 0.990 0.997 0.617 0.983 0.856 0.986 0.994 0.605

6.2 Validating the Correctness of PR

As explained in Sect. 5.3, we first create a training set by randomly selecting 1%
of the collected data and estimate TM and/or TF in the latency models.

The first four columns in Table 2, with both CPUs (Intel and AMD), show
the R2 scores for all the retrieval methods all using the latency models based
on PR (For brevity, we represent Mop+Flop as MFlop). To provide more
elaborate comparisons, we also present the results for a simple baseline PL in
the fifth column. PL is a linear regression model to predict retrieval latency
based on the sum of posting-lists size per query.

We note that as expected, predicting latency through features such as
posting-list size (PL column in Table 2) is not effective and reliable. Even after
increasing the training data size, improvements were minor and we achieved
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Fig. 1. Measured vs. predicted latency based on LR model.

similar observations. This is primarily due to algorithmic optimizations during
retrieval, such as the ordering and skipping of documents.

The majority of other latency models achieve high R2 scores (more than
0.95 in many cases), validating the correctness of PR. The notable exception
are the Flop-based latency models, which perform poorly because, with the pre-
built indexes and processed queries, most floating-point operations are completed
before the retrieval stage, and the query evaluation algorithm is heavily memory-
bound. Combining floating-point operations together with memory operations
results in mild improvements in R2 scores. The latency models that only use
coefficients as input (LR column in Table 2), achieve the best overall result since
they benefit from ground-truth latency measurements, but they lack the inter-
pretability of Mop-based models.

In Fig. 1, we illustrate the measured vs. predicted latency with a LR latency
model for SPLADEV2 and BM25 and an AMD CPU. The straight lines in these
graphs indicate the target predictions, the shaded areas represent 10% error
region, and the dots represent the different queries. These figures illustrate that
the majority of errors for the proposed performance models are due to queries
with a lower latency. The lower the latency, the harder it is to make simplifying
assumptions in the performance models: even a few milliseconds of difference in
predictions translates to higher error rate. Moreover, by observing Table 2, we
notice that the error rate for BM25 is more pronounced in Mop-based models
than in LR models which is due to Mop-based models considering the factors in
latency prediction.

In summary, our validation experiments demonstrate that the Mop-based
latency model LR offers a very good trade-off between interpretability and accu-
racy. The remainder of our evaluation focuses on this model. Additionally, for
brevity, and given that we observe the same behaviour on both Intel and AMD,
we present results only from the Intel system for the rest of evaluation.



290 P. Khandel et al.

Fig. 2. Comparison between distributions
of latency and number of memory opera-
tions for all retrieval methods.

Fig. 3. Comparison between distributions
of coefficients for all queries and a ran-
domly sampled subset of them.

6.3 Correlation Between Mop and Latency

The aim of PEIR is to provide an evaluation framework in which the efficiency
(in terms of latency) of retrieval methods is compared in a hardware-agnostic
manner. To this end, we constructed symbolic performance models PR and
Mop−based latency models for six retrieval methods. We use these models to
compare the methods using both the measured latency and the predicted indica-
tors (i.e., Mops and predicted latency). We aim to answer two questions: (i) How
does the distribution of predicted Mops correlate to the distribution of measured
latency per method, across all the evaluation queries? (ii) How accurate is the
relative efficiency comparison based on predicted Mops in comparison to the
actual comparison based on measured latency?

Figure 2 illustrates the memory operations distribution for all six retrieval
methods. We observe that the two distributions closely match each other. Addi-
tionally, the data for each method, for total and average Mop, measured latency,
and their relative ratio to BM25 are presented in Table 3. As expected, the mea-
sured latency is different across different CPUs. Mop is independent of what
CPU is used. We also note that the relative comparisons between any pair of
retrieval methods yields similar conclusions for the predicted Mop and the mea-
sured latency. As shown in Fig. 2, this statement holds not only for the mean,
but for all distribution quantiles. These observations confirm that using PEIR
to define performance models, and using Mop as efficiency indicator successfully
allows for hardware-agnostic efficiency comparison of retrieval methods.

6.4 Data Collection Requirements and Feasibility

We have successfully demonstrated that comparing retrieval models using pre-
dicted Mop instead of measured latency is feasible (Sect. 6.3). However, to calcu-
late Mop or latency, model coefficients are determined by collecting data from the
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Table 3. Comparison of retrieval methods: Average Latency (L) vs. Average Mops

R. method LAMD LIntel Mop [×106] LBM25
AMD LBM25

Intel MopBM25

BM25 13.90 12.26 5.4116 1.00 1.00 1.00

BM25-T5 17.15 18.32 7.3242 1.23 1.49 1.35

DeepImpact 24.50 26.37 17.9721 2.49 2.60 2.70

SPLADEV2 277.97 290.97 161.8180 28.24 28.66 24.28

uniCOIL-T5 48.92 50.69 32.4773 4.97 4.99 4.87

uniCOIL-TILDE 40.88 41.32 26.5466 4.15 4.07 3.98

evaluation algorithm executed for all queries (Sect. 5.3). This can be a lengthy,
possibly inefficient process.

To improve data collection efficiency, we propose sampling: we randomly
select 5% of the queries and compare the distribution of three high-impact coef-
ficients in the Mop part of Eq. (4). The results, shown in Fig. 3 for SPLADEV2
method, indicate very similar distributions.3 Thus, by collecting only coefficients
for a small set of queries, we can more efficiently derive the needed model coef-
ficients, with a minimal reduction in accuracy.

7 Conclusion

We have proposed PEIR, a framework that enables deriving performance mod-
els for query evaluation methods in the context of LSR. The models estimate
the performance of the retrieval stage w.r.t. the number of operations in a LSR
pipeline. Considering several LSR methods, the BlockMax-MaxScore (BMM)
algorithm in PISA, the MS MARCO dataset, and two hardware configurations,
we demonstrated that we can successfully use the number of memory opera-
tions in a query evaluation method as a reliable proxy to estimate latency. The
limitation of PEIR is the possible overhead of instrumenting query evaluation
libraries.

Employing our proposed performance models in practice could be highly
beneficial, as it provides standardization of efficiency analysis within LSR and
facilitates reproducible and comparable efficiency measurements across various
settings. Integrating PEIR in existing IR benchmarking frameworks such as
TIREX [7] would considerably reduce the required computational resources.

For future research in this direction, we focus on (i) improving further the
instrumentation and calibration of the models, (ii) improving the accuracy of the
performance models further, (iii) integrating query encoding latency into PEIR,
to consider the influence of model complexity on query latency analysis, and (iv)
extending the models to other metrics, like energy consumption, thus enabling
more thorough evaluation of LSR methods.

3 We observe the same behaviour with other retrieval methods.
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