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Abstract. We compare the pros and cons of two Artificial Intelligence
(AI) solutions, addressing the anomaly detection and identification chal-
lenge in industrial Cyber-Physical Systems (CPS). We demonstrate how
our current approach, Advanced DL, based on Convolutional Neural Net-
works (CNN) differs from a previous one, Classic ML. Though both work-
flows prove to result in highly accurate classification of anomalies, Classic
ML is superior in this regard with 99.23% accuracy against 94.85%. This
comes at a cost, as Classic ML requires total insight and expertise regard-
ing the system under scrutiny and heavy amounts of feature engineering,
while Advanced DL treats the data as a black box, minimising the ef-
fort. At the same time, we show that finding the best performing CNN
model design is not trivial. We present a quantitative comparison of both
workflows in terms of elapsed times for training, validation and prepro-
cessing, alongside discussions on qualitative aspects. Such a comparison,
involving analysis of workflows for the given use-case, is of independent
interest. We find the choice of Al solution to be use-case dependent.

Keywords: Machine learning - Convolutional neural network - Behavioural
passports - Anomaly identification - Industrial cyber-physical systems.

1 Introduction

We have witnessed the emergence of solutions based on classic Machine Learning
(ML) and more advanced models, i.e., Deep Learning (DL) with Convolutional
Neural Networks (CNN), for a plethora of problems for quite some time now.
These techniques have become an integral part of any method of choice. The
industry in particular, reaps the benefits of such solutions in production systems.
As ML and DL provide more than just one way to solve a given problem, it is of
utmost importance to pick the right solution and to employ the right workflow.
For industrial systems, the extent of resource consumption and timely operation
could very well mean the difference between success and failure, depending on
the relevant requirements. In other words, it is not just about the accuracy of
answers to problems, but also how fast and how efficiently they can be found.
We explore the balance between these factors for a given problem, which is
a simplified version of an industrial use-case. We deal with an industrial Cyber-
Physical System (CPS) with embedded computing nodes, for which we actively
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detect and identify anomalies. Anomalies can manifest themselves as diminished
performance or other harmful behaviour. Anomaly detection and identification
are open challenges for industrial CPS. As such systems evolve and become
more complex, mainly as a result of software complexity, not every operational
corner case can be covered at design time. Considering deployment in critical
applications, anomalies are often very costly to rectify and leave costly effects
behind when they occur. We aim to solve this challenge in a ML-based workflow,
monitoring the system behaviour and identifying anomalies online.

We will be comparing two of these ML-based solutions, namely, Classic ML
workflow developed earlier and Advanced DL, developed as an alternative in this
paper. The Classic ML. workflow incorporates regression modelling and classic
algorithms, i.e., decision tree and random forest. Our Advanced DL workflow
incorporates limited data preprocessing steps and takes advantage of CNNs.
The main aspect driving us towards the Advanced DL workflow is the amount
of domain specific knowledge, expertise and understanding of the system that is
necessary for the Classic ML workflow. Our Advanced DL approach is a truly
black box one, requiring no insight into the data or the internals of the system,
but at the same time, has its own shortcomings.

Contribution We have developed an alternative approach based on advanced
DL to detect and identify anomalies in industrial CPS. We perform quantitative
and qualitative comparisons between this approach and a previous one, utilising
classic ML. Though we are dealing with a specific use-case, our comparison ad-
dresses the characteristics of the general methodology (depicted in Figure|l)) and
the use-case is a demonstrator to generate data for it. We argue that there is no
absolute winner and the choice of the workflow depends on the expected clas-
sification accuracy, the ability to explain the outcome based on the input data,
the amount of internal knowledge, workflow development time and preference of
a white box versus a black box approach towards data.

This introduction is followed by core concepts of our workflows for industrial
CPS. Section [3|details our overall methodology, including the two approaches for
its realisation, while Section [4] elaborates the implementation of the second ap-
proach, based on CNNs. Results and comparisons are given in Section [f] followed
by the related work and concluding remarks in Sections [6] and [7] respectively.

2 Machine learning for industrial CPS

When it comes to the industrial applications of CPS, there are high-value use-
cases for the deployment of ML algorithms. One such use-case is the detec-
tion and classification of anomalies. Figure [I] showcases the high-level view of
a methodology to address such a challenge. Different flavours of ML, whether
classic ML or DL algorithms, are good fits when dealing with large amounts of
data. Given that modern industrial CPS provide this large amount of monitoring
data generation capability through software and hardware probes, the use of ML
is not a preference, but a necessity. As such, the analytics-based pipeline shown
in Figure [1]is designed with data-centricity in mind [9].
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Fig. 1. Our reference analytics-based pipeline, provisioning the presence of feature
engineering and anomaly identification steps, alongside anomaly detection and an op-
tional analysis step, upon discovery of unseen anomalies.

Depending on the type of ML algorithm, certain amount of preprocessing is
needed to transform the data into consumable forms. As it will be shown in Sec-
tion [3| major parts of this preprocessing will be implemented rather differently,
resulting in alternative characteristics and performance. Our anomaly detection
is based on monitoring the system’s Extra-Functional Behaviour (EFB), repre-
senting the behavioural traits of a system beyond its functional definitions and
semantics. EFB is generated from different performance and operational metrics,
e.g., execution time, latencies, power and energy consumption. EFB representa-
tions composed from such metrics can uniquely identify a specific system, under
specific operational conditions [9].

3 One challenge, two approaches

We have chosen the high-level methodology given in [9IT], aiming at detection
and classification of anomalies in industrial CPS, as our reference. Since its
implementation is based on classical ML algorithms [I1], requiring much feature
engineering effort, intimate knowledge of system internals and the data itself, we
have devised a competing workflow, based on deep learning with CNNs.

3.1 Classic ML workflow

Figures [2a] and [2B] visualise data set generation and anomaly classification flows
for the Classic ML workflow, respectively. Here, we interpret and realise our
reference workflow with classic ML classifiers, e.g., decision tree.

The Classic ML workflow involves the concept of execution phases, i.e., repet-
itive units of execution during the operational timeline of a system. Industrial
CPS in particular, reveal the presence of such repetitions, as they are purpose-
built systems with limited operational variety [I0]. In other words, these are
repeated smaller tasks, making up the complete execution.

During data set generation, EFB metric logs, e.g., electrical current, are
collected and parsed. What follows involves cutting of parsed traces into parts
corresponding to desired executional phases, i.e., tasks from the actual operation



4 U. Odyurt et al.

Classic ML: Data set generation (reference) iy,...,... = bsa® + b + bUE

Regression Regression
Electrical Parsing | Parsed Cutting [ Cuttraces | Modeling | power | imputation | pean
metric logs - traces "| perphase "| passports | passport

i
2
{ Ymean = Max? +mix +mg

Classic ML: Data set generation (anomalous) y.,.....c = bs2? + b1z + baé

Regression
Electrical Parsing Parsed Cutting | cuyt traces | modelling Power
metric logs v traces "| perphase "| signatures

:> Labelled
Comparison to data set

mean passport | Goodness-of-
fit values

(a) Data set generation (preprocessing)

Classic ML: Classification flow iy, ... = byo? + b1z + bo; VI
Regression
Electrical Parsing Parsed modelling Power »| Batch data
metric batch o batch "1 signatures o
Comparison to
mean passport | Goodness-of- Classification
| fitvalues

(b) Anomaly classification

Fig. 2. The two flows involved with the Classic ML approach, (a) data set generation
flow from large amounts of trace data, leading to a training data set and (b) an anomaly
identification flow, using much smaller trace batches with a previously trained classifier.

of the CPS, reflecting its behaviour. For instance, a CPS collecting imagery and
processing them could perform load_image and process_image tasks, leaving
us with three possible execution phases. These are image load atomic phase,
image processing atomic phase and the combination, image combo phase. It is
yet unknown to a designer which phase is the best to choose from and cut the
traces based on, at solution design time.

For a collection of recorded readings over time for any EFB, it is possible to
generate a regression function, which will serve as a unified representation of the
readings. We call this a behavioural signature and when generated for a refer-
ence execution, we call it a behavioural passport [10]. Accordingly, data points
from the log, including timestamps and metric readings, are used to generate a
regression function as a representation. Passports are generated per metric and
per phase. Numerous inputs to the CPS under reference circumstances result in
numerous passports. To simplify future comparisons, we generate mean passports
out of many passports, again per metric and per phase. By collecting anomalous
traces and generating signatures in the same manner, we are able to calculate
the amount of deviation between corresponding signatures and mean passports.
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The final outcome is a labelled data set, which in turn can train a classifier in a
supervised fashion.

3.2 Advanced DL workflow

Our Advanced DL flows for data set generation and anomaly classification are
depicted in Figures|3aland respectively. For both flows, whether the learning
leading to the labelled data set, or the classification, the amount of data prepara-
tion is minimal. This preparation includes parsing of the raw metric logs, cutting
of the parsed traces per image and running a sliding window algorithm to gen-
erate two-channel slices of fixed size. These two channels include the time data
(timestamps) and the metric data (metric readings). It is necessary to consider
the time data as a separate channel since the metric data collection happens at
high frequency, with non-determinism for system behaviour present, resulting
in timestamps that do not exactly match for different experiments. This is an
expected effect as industrial CPS are inherently non-deterministic. We have only
considered the metric resulting in the highest accuracy for the Classic ML flow
as it was seen in [I1], i.e., electrical current. Note that in this approach, there
is no need for an intimate understanding of the data to reveal atomic phases
within the processing of an image and the trace data related to each image is
considered as a whole.

Advanced DL: Data set generation flow

Sliding
window slicer
Electrical Parsing Parsed Cutting | Cut traces o| 2-channel Labelled
metric logs - traces | perimage o slices data set

(a) Data set generation (preprocessing)
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Fig. 3. The two flows involved with the Advanced DL approach, (a) data set generation
flow from large amounts of trace data, leading to a training data set (note the reduction
in number of steps and their complexity) and (b) an anomaly identification flow, using
much smaller trace batches with a previously trained classifier.

The Classic ML flow already has a rather high accuracy [11]. To push the clas-
sification accuracy of our Advanced DL flow to similar levels, we have performed
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a grid search for hyperparameter optimisation. The three groups of considered
hyperparameters are data preparation, learning and CNN model parameters,
further elaborated in Section .2

4 Implementation

Regarding notable details of the Classic ML flow, in our experiments, polyno-
mial regression functions of degree two provide sufficient interpolation accuracy.
We transform the time-series data from traces into cumulative data for the met-
ric part to make the regression function a monotonically increasing one. For
goodness-of-fit tests, we use both coefficient of determination (R?) and Root-
Mean-Square-Deviation (RMSD) to compare a sample signature to a reference
passport. The identification step uses Decision Tree (DT) [I3] and Random For-
est (RF) [2] classifiers. Considering the Classic ML implementation from [I1],
we focus on the Advanced DL elements, as it involves the bulk of this work.

4.1 Data set

Our data sets are generated from the same raw electrical metric readings, col-
lected via an external power data logger unit, Otii Arc [12], connected to an
ODROID-XU4 computing device. These traces are in the form of time-series
and every data point has a timestamp and a metric value. The data set for the
Classic ML, flow has many columns, such as execution time, regression func-
tion coefficients and intercept, goodness-of-fit test values and labels [II]. The
Advanced DL data set on the other hand is rather simple, only including two
separate time and metric data channels and corresponding labels.

For both workflows, we are considering three labels, i.e., Normal, NoFan and
UnderVolt. The methodology can be implemented with any number of labels.
Our demonstrator involves these labels corresponding to, normal circumstances
for reference executions, faulty cooling fan for the system-on-chip, and unstable
power supply, respectively. Both data sets are balanced as we have performed
equal number of experiments for all scenarios (labels). For Advanced DL, the
data is normalised at preprocessing. Training set and test set ratios to the whole
data set are 80% and 20% for the Advanced DL trainings, respectively and 70%
and 30% for the Classic ML trainings, respectively.

4.2 CNN structure and search space

To arrive at an acceptable CNN design, we have performed a grid search for the
hyperparameter variations listed in Table [I]

The most optimised model we arrived at consists of six convolutional layers
with sizes 64, 64, 128, 128, 256, 256, a Fully Connected (FC) layer of size 4096, all
kernel sizes 5x1, ReLLU activation for each convolutional layer and the FC layer,
and MaxPool layers after even convolutional layers. Our data analysis pipelines
have been written in Python 3.8 and we use the Scikit-learn 0.23.2 package for
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Table 1. Hyperparameters considered during the grid search and their variations

Parameter type Parameter

Variations

Slice sizes

Data preparation Slice shifts

50, 100
10, 20

LR at start
Epochs
Learning Batch sizes
LR decay
Decay periods

0.01, 0.001, 0.0001, 0.00005

10, 20, 30, 40, 45, 50, 60

10, 20, 50, 100

present (mul. factor 0.1), absent
8, 10, 20

Conv. layers
Conv. layer size
Kernel size

FC layer size

CNN model

2,4,6

8, 16, 32, 64, 128
3,5

512, 1024, 2048, 4096

regression and classical ML classification, as well as the PyTorch 1.6.0 package
for CNN implementations. The hardware infrastructure for our experiments is a
machine with a 2.20 GHz Intel® Xeon® E5-2650 v4 CPU, 64 GB of RAM and
a GeForce RTX 2080 Ti graphics card, with CUDA release 10.0, v10.0.130.

5 Results: Classic ML vs Advanced DL

Considering the hyperparameters listed in Table[I] Figure [ddisplays an overview
of our grid search for paths achieving higher accuracies.

Slice size  Slice shift Conv count Max conv  FC layer

/
256~

16+

LR Decay step Acc.

96

94

92

90

88

86

Fig. 4. The set of higher accuracies from our grid search, visualised in a parallel coor-

dinates plot (decay step 0 denotes absence of decay)
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To be able to quantitatively compare the two workflows, we consider elapsed
time for different operations, collected with the time.perf_counter() call, pro-
viding a high-accuracy monotonic clock. Timing results are given in Table
Note that the Classic ML preprocessing is highly parallelised. Model training
has to be considered for our industrial use-cases, since upon the introduction of
a new anomaly, i.e., a new label, retraining will be necessary.

Table 2. Elapsed times in seconds during different stages of the two approaches

Workflow Preprocessing Training Validation
Classic ML - DT (CPU) 204648 (~57h) 0.02 0.001
Classic ML - RF (CPU) 204 648 (~57h) 0.32 0.021
Advanced DL (CPU) 2576 239976 (~67h) 125
Advanced DL (GPU) 2576 18535 (~5h) 25.5

It is evident from our observations during the CNN training that there is a
limit to the Advanced DL workflow’s achievable accuracy. This is considering the
fact that minimal amount of preprocessing has been applied for this particular
workflow on purpose. We also see that this achievable accuracy is an effective
one, up to 94.85%, depending on hyperparameters. The accuracies for our Classic
ML workflow using DT and RF classifiers are 99.15% and 99.23%, respectively.
However, the high accuracy provided by the Classic ML, workflow comes at a
cost and arguably, a high one. The amount of analysis, design effort, experimen-
tation and in short, feature engineering required for the Classic ML workflow
is rather vast. Accordingly, there is much need for domain specific knowledge
and understanding of the internals of the system under scrutiny. The workflow
designer has to know beforehand, or explore, to understand which phases best
reflect the overall behaviour of the system for the specific set of anomalies.

One of the capabilities missing in our Advanced DL workflow is the possibility
to detect unknown behaviour, i.e., unseen anomalies. Though the CNN model
itself can be retrained upon the addition of a new anomaly, the workflow does not
include steps facilitating new anomaly discoveries. The reference methodology
from Figure [I] provisions this possibility, for we can use goodness-of-fit tests
and detect unseen levels of deviation from a passport. Following this detection,
further analysis will result in a new class of anomaly, which can be added and
considered for feature engineering in future data sets. This addition of unknown
anomalies is achievable in the Classic ML workflow. However, it does require the
designer to go through the whole process again, as the new anomaly may or may
not be easily detectable using the same phase data.

We would like to emphasise the fact that our Advanced DL workflow is
a truly black box approach, requiring no insight into the data or the system
internals. In this fashion, the Advanced DL flow cuts through the data processing
complexities of the Classical ML flow. Though optimising hyperparameters is
a time-consuming process, it does not depend on the internals of the system
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and is reusable in the future for more anomalies. We just have to retrain the
network. On top of that, neural network frameworks are highly optimised for
GPU acceleration, requiring minimal changes to the implementation code.

Stability and maturity of frameworks, in the sense that how much code trans-
formation is enforced from one version to the next is another aspect. In our ex-
perience, the change is rapid and substantial with deep learning frameworks, as
the field is constantly changing and evolving. This could very well be a factor in
a business environment striving for long-term deployment.

Last but not least, with Classic ML workflow, we are able to explain why the
classification has resulted in a certain label. Models such as decision trees can be
traversed and every processing block in the Classic ML flow can be backtracked
to initial trace values, directly connecting the outcome to the input.

6 Related work

Anomaly detection for industrial CPS and relevant methodologies work upon
various input sources, e.g., power signals, sensor data, network traffic data and
system calls. Kim et al. [7] were among the first to highlight that power con-
sumption can be used for anomaly detection. Caviglione et al. [4] detected at-
tacks related to covert channels using the power consumption of the running
processes. Covert channels occur when malicious applications exploit different
assigned permissions and are able to exchange information. Liu et al. [8] devel-
oped a strategy using power side-channel data to detect anomalous behaviour in
control flow execution applied to IoT microcontrollers. Similarly, Xu et al. [14]
used power channels to detect attacks on the Distribution Terminal Unit.

In the last few years, the complexity of CPS has led to elusive and indis-
cernible faults. Conventional anomaly detection methods are increasingly sub-
stituted with state of the art deep learning techniques [5]. Moreover, CNNs have
proven to be well suited for analysis of power signals and other similar time-
series data for fault detection and classification [6]. Albasir et al. [I] proposed a
CNN-based approach to detect malware activity, utilising the power consump-
tion behaviour of smartphones. Canizo et al. [3] deployed CNNs together with
recurrent cells to detect anomalies in time-series data from multiple sensors.

7 Conclusion and future work

We have developed an alternative Al workflow to a previously devised one, to
detect and classify anomalies in industrial CPS. Both workflows, the earlier Clas-
sic ML and the new Advanced DL, show high classification accuracies, 99.23%
and 94.85%, respectively. While achieving the high accuracy of the Classic ML
required extensive design, feature engineering effort and costly computations,
the Advanced DL also required extensive optimisation effort. We have discussed
different qualitative aspects of both workflows, such as dependence on the inti-
mate knowledge of the system and the data, stability Al frameworks, efficient
GPU implementation and root-cause analysis.
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In our opinion, there is no clear winner between these workflows. Critical
applications and use-cases can benefit from highest accuracies and analytical
capabilities provided by the Classic ML workflow, allowing the study of root-
causes behind anomalies, while ease of extension with different anomalies is best
served by the Advanced DL workflow. It is totally use-case dependent.
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