
Abstract Workload Modelling in Computer Architecture Simulation

A.D. Pimentel L.O. Hertzberger

Dept. of Computer Science
University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam
The Netherlands

fandy,bobg@wins.uva.nl

Abstract

The Mermaid simulation environment facilitates the per-
formance evaluation of a wide range of design options in
MIMD multicomputer architectures. Because the Mermaid
architectural simulators are driven by events that are more
abstract than real machine instructions, workloads must ex-
plicitly be modelled. In this paper, we provide an overview
of the workload modelling techniques used within Mermaid.
This includes the tracing of real programs and the stochastic
modelling of application behaviour. Moreover, we present
several validation and performance results indicating that
our simulation methodology obtains good accuracy while
being fairly efficient.

1 Introduction

Simulation is a widely-used technique for evaluating the
performanceof computer architectures. It facilitates the sce-
nario analysis necessary for gaining insight into the con-
sequences of design decisions. The alternatives to simula-
tion, namely analytical modelling and real hardware proto-
typing, are often less than adequate for this purpose. When
modelling sophisticated architectures the analytical models
may quickly become too complex, whereas hardware proto-
typing is too costly and time-consuming when evaluating a
wide range of design options.

In order to provide a workbench for evaluating the per-
formance of MIMD multicomputer architectures, we are de-
veloping the Mermaid simulation environment [15]. Orig-
inally, Mermaid was targeted for studying future series of
Parsytec multicomputers (like the study performed in [14]).
However, recent developments are increasingly geared to-
wards generic support for architecture simulation.

Mermaid strives to support the performance evaluation
of a wide range of architectural design options. For this
purpose, it allows parameterization and configuration of the

simulation models at different levels: from processor pa-
rameters, such as the instruction set and cache specifics,
to switching and routing techniques in a message-passing
communication network. Moreover, to make both accu-
rate simulation and fast prototyping of multicomputers fea-
sible, Mermaid features the ability to simulate at different
abstractions levels. If the research objective is fast proto-
typing only, maximum accuracy is not required and there-
fore simulation can be performed at a high level of abstrac-
tion, yielding high simulation efficiency. In the situations
where accuracy is required, however, the simulation is per-
formed at a lower and thus more computationally intensive
level of abstraction. Unlike many other simulation systems,
we do not apply instruction-level simulation [6, 1, 18] at the
lowest level of abstraction nor do we use direct execution
[17, 3, 8, 9, 7, 18, 2] in which parts of the simulated code
are directly executed on the host computer. Instead, sim-
ulation takes place at a level of abstract machine instruc-
tions. Compared to traditional instruction-level simulation,
this approach typically results in a higher simulation perfor-
mance at the cost of a small loss of accuracy.

A consequence of simulating at the level of abstract ma-
chine instructions is that the behaviour of applications must
explicitly be modelled rather than simply interpreting the
machine instructions from the programs. In this paper, we
therefore focus on the workload modelling techniques used
within Mermaid. Furthermore, we present validation and
performance results suggesting that our simulation method-
ology provides both accuracy and good performance.

The next section gives a brief overview of the Mermaid
simulation environment. Section 3 describes the modelling
of application behaviour in order to drive the architectural
simulators. In Section 4, some validation results are pre-
sented. These results were obtained by comparing the per-
formance behaviour of an existing multicomputer to the
simulation estimates of our models. Section 5 discusses
the simulation performance of Mermaid. Finally, Section 6
presents the summary and mentions possible future work.

1



2 The Mermaid simulation environment

The multi-layered simulation environment of Mermaid
is illustrated in Figure 1. The lowest level, referred to as
the architecture level, contains the architecture simulation
models. These models are implemented in a highly mod-
ular fashion using the object-oriented simulation language
Pearl [13], which allows flexible evaluation by means of pa-
rameterization. The simulators are driven by abstract in-
structions, called operations, representing processor activ-
ity, memory I/O and message-passing communication. Sev-
eral examples of operations are shown in Table 1.

Simulating at the level of operations has several conse-
quences. As the operations abstract from the processor’s
instruction sets, the simulators do not have to be adapted
each time a processor with a different instruction set is
simulated. We simulated, for example, both multicomput-
ers based on Transputers and on PowerPC processors with
only little remodelling effort. Furthermore, simulating op-
erations rather than interpreting real machine instructions
yields higher simulation performance at the cost of a small
loss of accuracy. On the other hand, low-level simulation
of, for instance, the processor pipelines is not possible due
to the lack of register specifications in the operations.

To correctly model issues like synchronization and load-
balancing, each processor within the multicomputer model
receives its own trace of operations. In this scheme, the va-
lidity of the multiprocessor operation-traces is guaranteed
by the fact that the simulator controls the trace generation in
an execution-driven manner [15]. In other words, the trace
generator is interleaved with the simulator and the traces are
generated on-the-fly.

As shown in Figure 1, the simulation environment also
provides a suite of tools in order to visualize and analyze the
simulation output. Visualization of data can be performed at
runtime [10] or post-mortem. Moreover, a tool called RAPID

[16] facilitates the statistical analysis of the simulation out-
put. It contains a simple specification language in which
the user specifies what statistical methods should be used on
which parts of the simulation data. According to this specifi-
cation, RAPID generates an executable performing the spec-
ified types of analysis.

Architecture level

Application level

Machine parameters

Architecture X

Architecture Y

Visualization and
analysis tools

Abstract
application model

generator

Architecture
independent

simulation models
Architecture

Operation-trace

Figure 1. Simulation environment.

Operation Meaning

ifetch(a) Instruction fetch from address a
add(int) Add two integers residing in registers
ld(w,a) Load a word from address a

send(n,d) Send a n-byte message to node d

Table 1. Examples of operations.

To provide the architectural simulators with operation-
traces representing actual application behaviour, an abstract
application model and a trace generator reside on top of the
architecture level (see Figure 1). A more comprehensive de-
scription of these parts of the simulation environment is pre-
sented further on in this paper.

2.1 A hybrid architecture model

Many applications, and especially scientific applications,
running on multicomputer platforms contain coarse-grained
computations alternated with periods of communication.
Because these computation and communication phases typ-
ically are distinct, we decided to split the simulation of mul-
ticomputers into two different models: a single-node� com-
putational model and a multi-node communication model.
Each model operates at a different level of detail, and thus
defines its own set of operations. The computational model
simulates the application’s computational behaviour. It
models the incoming computational operations at a level
of abstract machine instructions, as was previously dis-
cussed. Communication operations are not simulated by
this model, but are directly forwarded to the communica-
tion model. Subsequently, the communication model ac-
counts for the application’s message-passing communica-
tion behaviour. To address the issues of synchronization and
load-balancing properly, it models the computational delays
found in between communication requests at the task level.
A parallel workload for this model therefore resembles a
graph containing computational tasks and communication
operations. The computational tasks are derived from the
computational model, which constructs them by measuring
the simulated time between two consecutive communication
operations.

This approach results in a hybrid model, which allows for
simulation at different abstraction levels. If accuracy is re-
quired, then the complete hybrid model can be used. In this
case, the single-node computational model is replicated for
each MIMD node taking part in the simulation. Each instance
of the single-node model is then assigned to a node within
the communication model in order to feed it with the com-
putational tasks and the communication operations. This is
illustrated in Figure 2.

�It may contain multiple processors sharing a single memory, though.

2



Communication

model
Communication

operations &

CPU

Bus

Mem

computational model

Caches

Node Node

Node Node

Instance of the

F
ee

db
ac

k

computational
tasks

Computational & communication operations

Figure 2. Detailed s imulation of a multicomputer
us ing both the computational and the communi-
cation models .

However, if there is only the need for fast prototyping,
then just using the communication model might be suffi-
cient. In that case, the task-level operation-traces must be
directly produced by the trace generator. To some extent,
this is similar to what happens in the commonly applied
direct execution simulation technique: the performance of
the code segments in between two communication events
(forming the computational tasks) has to be estimated at
compile time.

2.2 Shared memory or hybrid architectures

The multi-node communication model, with its message
passing, intrinsically suggests that the system under investi-
gation should be a distributed memory architecture. But, by
only using the computational model and configuring it with
multiple processors, a shared memory multiprocessor can be
simulated. A disadvantage of this approach however, is that
simulation can only be performed at the level of computa-
tional operations: the highest level of detail.

Hybrid architectures, such as the one proposed in the
MIT START-NG project [4], can be modelled by both defin-
ing multiple processors on a node and using the communi-
cation model to interconnect the clusters of shared memory
multiprocessors in a message-passing network.

3 Workload modelling

Because the Mermaid architecture models simulate at the
level of operations and do not interpret real machine instruc-
tions, application behaviourmust explicitly be modelled. As
application behaviour is best described in terms unrelated

model

level

Reality based Stochastic

operations
Task level
operations

Multi-node
model

Single-node

Instruction level

Architecture

Application model

Figure 3. Application modelling within Mermaid.
The large s haded area indicates the modelling path
currently s upported.

to any architecture specifics, we strive to model application
workloads in a manner which is independent of both the host
computer (on which the simulation runs) and the target ar-
chitecture (which is being evaluated). As a consequence,
Figure 1 shows a clear separation between the application
level, at which the application model and part of the trace
generator reside, and the architecture level.

Like it is the case in architecture modelling, modelling a
workload can also be done at various abstraction levels and
with different degrees of accuracy. Figure 3 illustrates the
workload modelling framework of Mermaid. A workload is
either based on a real application or it is synthetic and pro-
duced by some stochastic process. Furthermore, both real
and synthetic workloads can model computation either at
the level of abstract machine instructions or at the level of
tasks. Computation at the instruction level is typically sim-
ulated by the single-node (computational) model, whereas
task level operations are simulated by the multi-node (com-
munication) model.

Currently, Mermaid supports only the generation of ab-
stract instruction-level operations, as depicted by the large
shaded area in Figure 3. We will therefore limit our discus-
sion to this area of workload modelling.

3.1 Reality based workload modelling

To capture a realistic view of application behaviour, it is
required to trace a real program. Traditionally, the tracing of
applications is mainly performed by augmenting either the
assembler code [11, 19] or the executable itself [12]. How-
ever, these tracing techniques may introduce dependencies
on either the host or the target architectures. To guarantee
architecture independence at the application level, we de-
cided to directly augment C source code. So, in this case, the

3



C source

TableFile

Executable

C compiler

Annotation

Descriptor Descriptor

Library

Annotation
Translation

tool

& linker

Machine Variable Annotated
C source

A
rc

hi
te

ct
ur

al
 fe

ed
ba

ck
fr

om
 s

im
ul

at
or

Multiple operation
traces to simulator

Figure 4. Generation of operations by augmenting
real applications .

abstract application model consists of programs that have
been instrumented with annotations following the program’s
memory, computational and communication behaviour. As
the augmented source code is architecture independent, in-
strumentation has to take place only once, after which the
application model can be used to evaluate any architecture.

Figure 4 gives an overview of how Mermaid generates
operations by augmenting real applications. A special tool
instruments the C source code and constructs a so-called
variable descriptor table. This table determines whether a
variable is global, local, or a function argument. It also con-
tains informationon the addresses of variables, whether they
are placed in a register or not and the types of the variables.

The Annotation Translation Library (ATL) is the trace
generating core, which is linked to the annotated applica-
tion. As the annotations are simply calls to the ATL, the
annotations are dynamically translated into the appropriate
trace of operations when the obtained executable is exe-
cuted. For this purpose, the ATL uses the variable descrip-
tor table and a machine descriptor table. The latter contains
architecture dependent information necessary for the trace
generation (e.g. instruction size, number of registers, etc.).
When, for example, an annotation indicates that a variable
should be loaded, the generator uses the information from
both tables to translate the annotation into the appropriate
instruction fetch and memory operations. The ATL can thus
be regarded as a kind of generic compiler. It performs the
translation of annotations according to the runtime model

double a, x[N], y[N];

void foo(...) {

int i;

[...]

for (i = 0; i < N; i++) {
a += x[i] * y[i];

}

[...]
}

Figure 5. A double precis ion inner-product (ddot).

double a, x[N], y[N];

void foo(...) {

int i;

set_function(foo, (void *)foo);

[...]

for (assignIc(local(i), 0), i = 0;
setPC(c1),
arithIc(REG, N, local(i), CMP), i < N;
arithIc(local(i), 1, local(i), ADD), i++) {

a += x[i] * y[i];

arithDF(REG, array(&x, local(i), &x[i]),
array(&y, local(i), &y[i]), MUL);

arithDF(&a, REG, &a, ADD);

setPC(l1);
}
setPC(l1);

[...]

ret_function();
}

Figure 6. The annotated vers ion of ddot.

and addressing capabilities of the target processor. In this
approach, only the ATL is architecture dependent. There-
fore, only the ATL may need to be updated in order to gen-
erate operation-traces for a new (possibly non-existing) ar-
chitecture.

To illustrate the process of instrumentation, consider Fig-
ures 5 and 6. The first figure shows a code fragment calcu-
lating a double precision inner-product (ddot), whereas the
latter one shows the annotated version of the same code frag-
ment. The annotations set function, ret function and setPC
describe the control flow behaviour of the program. For
example, the setPC(label) annotation is some sort of basic
block indicator: the first time a setPC is triggered, it saves
the current (pseudo) program counter together with its label.
Succeeding calls to a setPC with an identical label will reset

4



the program counter to the saved value. Subsequently, the
assigntype and arithtype annotations describe the computa-
tional behaviour of the application. In these annotations, the
type must be specified on which is operated. For instance,
Ic means “Integer constant” and DF means “Double Float”.
Handling the references to variables is done by annotations
such as local and array. If required, these annotations in-
struct the ATL to model the fetching of variables according
to the variable descriptor table.

To generate the multiprocessor traces, the ATL models
concurrent execution by means of threads. For this pur-
pose, the tool which performs the instrumentation of pro-
grams also provides some support for converting (single-
threaded) target applications into multi-threaded programs.
For SPMD-like applications, this conversion is fully auto-
mated. For other classes of applications, manual tuning of
the obtained threaded code is still necessary.

3.1.1 Modelling communication

The annotations describing communication behaviour di-
rectly map onto operations, such as the send listed in Table 1.
As the associated parameters of these operations are based
on the platform’s physical topology, the modelling of com-
munication still reflects some of the underlying hardware
characteristics. Ideally, such architectural details are not vis-
ible at the application level. One way to achieve this, is by
defining the communication annotations such that they are
based on a virtual shared memory model. Consequently, all
explicit communication at the application level is removed
and substituted by memory references. This implies that
the simulation environment issues the communication re-
quests rather than the applications. Naturally, the generation
of these communication requests is dependent on the distri-
bution of data over the different processors. By specifying
how data is distributed within the simulation environment,
different data distributions can easily be evaluated without
the need to change the applications. Although this virtual
shared memory model has not yet been implemented, it is
considered as future work.

3.2 Stochastic workload modelling

Besides the tracing of real applications, we are currently
also investigating techniques to generate operation-traces
from stochastic application descriptions. In such a scheme,
the abstract application model consists of descriptions de-
scribing the application behaviour using probabilities. Ev-
idently, this technique represents the behaviour of (a class
of) applications only with modest accuracy. It allows, how-
ever, for more flexibility than the tracing of real programs.
For example, rapidly adjusting the application behaviour is
fairly easy using this technique, which can be useful when
fast-prototyping new architectures.

Application description

Kernel desc.Kernel desc.

Data desc. General desc.

Kernel description Kernel description

Operation desc.

(a)

Arithmetic Forward Backward

Integer Double

Branch CallComputation

Float

Operation Desc.

Mem.

New kernel desc.

(b)

Figure 7. Structure of a SEA des cription.

The probabilistic descriptions are written in the language
SEA (Stochastically Expressing Applications), which was
especially designed for this purpose. A tool, called the
Stochastic Trace Generator (STG), interprets the SEA de-
scriptions and subsequently generates operation-traces from
them. Figure 7a shows the general structure of a SEA de-
scription. From a high-level point of view, an application
description is constructed of a sequence of one or more ker-
nel descriptions. These kernel descriptions consist of three
parts: a data part, an operation part and a general part. The
data section describes what kind of variables can be manip-
ulated within a kernel. The operation section specifies the
types of operations taking place within a kernel. Since this
section may also contain sub-kernel descriptions, the com-
plete application model is represented by a tree of kernel de-
scriptions. Finally, the general section describes issues like
the number of operations to be generated within a kernel, ad-
dresses of segments, etc.

Figure 7b shows (a part of) the operation description hi-
erarchy. Each arc within the hierarchy is weighted with a
certain probability. When an operation is generated, the hi-
erarchy is traversed top-down according to the probabilities
of the arcs until a leaf containing a certain operation has been
reached. In order to specify the type of data on which the op-
eration is performed (e.g. array, local variable, global vari-
able, etc.), the data section of the kernel description is tra-
versed in a similar manner.

Using kernel descriptions as a building block allows the
modelling of an application at different abstraction levels.
Basically, the behaviour of a whole program can be de-
scribed with one kernel description only. In this case, the

5



kdescription[1024, 0x100] {
general {

instructions = 8;
}
data {

dfp_data {
variable[50%] {

number = 1;
global = 100%;
auto = 0%;

}
array[50%] {

number = 2;
av_size = 1024;
global = 100%;

}
}
non_fp_data {

variable[100%] {
number = 1;
global = 0%;
auto = 100%;

}
array[0%] { }

}
}
computation[100%] {

mem_expr[25%] {
sfl_point = 0%;
dfl_point = 50%;
integer = 50%;
constant = 0%;

}
arith_expr[75%] {

sfl_point = 0%;
dfl_point = 33%;
integer = 67%;
constant = 33%;

}
fp_expr {

plain_fp[100%] {
fadd = 50%; fmul = 50%;
fdiv = 0%; fsub = 0%;

}
intrinsic_fp[0%] { }

}
integer_expr {

non_bit_op[100%] {
add = 75%; sub = 25%;
mul = 0%; div = 0%;

}
bit_op[0%] { }

}
}
calls[0%] { }
branches[0%] { }
sub_kdesc[0%] { }
communication[0%] { }

}

Figure 8. SEA des cription of ddot.

application is described at a high abstraction level, which is
flexible but might not be very accurate. Alternatively, multi-
ple kernel descriptions can be used to describe the behaviour
of certain parts of a program. This approach may require
somewhat more modelling effort but it represents the appli-
cation behaviour with higher accuracy.

To illustrate the stochastic modelling, consider Figure 8.
It shows a SEA description for the ddot code fragment of
the previous section with N=1024. For the sake of clarity,
we omitted a few lines of SEA code which were not relevant

to this example. The (single) kernel is iterated 1024 times,
generating 8 operations per iteration starting at instruction
address 0x100. Of course, SEA would also allow the non-
probabilistic values, such as the number of instructions, to
be random and to behave according to some distribution.

Currently, the SEA descriptions are produced by hand.
Naturally, this will eventually be automated by a framework
in which real programs are profiled in order to generate the
descriptions. Moreover, stochastic trace generation for mul-
tiprocessors is not yet supported. We are still investigat-
ing how, for instance, communication can be modelled best
within the SEA paradigm. A promising approach, however,
is proposed in [5]. As the stochastic modelling of applica-
tions is still subject to many (fundamental) changes, we did
not yet perform validation experiments. For this reason, the
next section will purely focus on the validation of simula-
tions driven by traces from real applications.

4 Validation

To validate our simulation methodology, we instru-
mented several applications and simulated them for an ex-
isting distributed memory multicomputer. This machine,
a Parsytec GCel, consists of Inmos T805 transputers con-
nected in a 2D grid network. Validation is performed by
comparing the simulation results of several benchmarks
with the results of real execution. Initially, the computa-
tional and communicationmodels were validated separately.
Table 2 shows the overall results of these experiments. It
gives the average error, the standard deviation � of the aver-
age error and the worst case error of simulation compared to
execution. The workloads for the computational model con-
sisted of a set of well-known numerical kernel functions, in-
cluding ddot (double precision inner-product), daxpy (dou-
ble precision vector update) and some of the Lawrence Liv-
ermore kernels.

The communication workloads, which only model mes-
sage passing and its consequent (computational) delays, can
be divided into three categories. The first category, that

Average � Worst Workload
error (%) case (%)

1.5 1.3 3.8 Computational loads
1.5 1.3 5.0 Light communication

loads
2.9 3.3 10.9 Uniform congesting

communication loads
4.8 9.5 29.7 Non-uniform congesting

communication loads

Table 2. Validation of the s eparate computational
and communication models .

6



0

2

4

6

8

10

12

14

16

18

20

22

1 2 4 8 16 32 64

T
i
m
e
 
(
s
e
c
.
)

Processors

real 120x120
simulated 120x120

real 90x90
simulated 90x90

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

T
i
m
e
 
(
s
e
c
.
)

Processors

real 60x60
simulated 60x60

real 30x30
simulated 30x30

Figure 9. A paralle l matrix multiplication.

of light communication loads, uses benchmarks performing
message roundtrips. The two remaining types of communi-
cation workloads are for so-called “stress-testing” purposes,
as they heavily congest the network. They can again be sub-
divided into uniform and non-uniform loads. The first type
of load uniformly distributes communication over the net-
work, while the latter type only stresses some small regions
within the network, causing hot-spots to appear.

For computation and light communication loads, the av-
erage error does not exceed 1.5%. More importantly, the
standard deviation and the worst case error indicate that
the performance estimates for these loads are quite accurate
in general. The errors of the stress-testing communication
benchmarks are higher, especially in the case of the non-
uniform loads. This can be explained by the fact that these
benchmarks produce workloads exhibiting high contention
for network resources, which tends to amplify any existing
modelling errors. While a worst case error of nearly 30%
was measured for these extreme loads, the standard devia-
tions suggest that the accuracy in general is tolerable.

Validation of the integral system, consisting of both the
computational and communication models, has been per-

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64

T
i
m
e
 
(
s
e
c
.
)

Processors

real 160x160
simulated 160x160

real 120x120
simulated 120x120

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1 2 4 8 16 32 64

T
i
m
e
 
(
s
e
c
.
)

Processors

real 100x100
simulated 100x100

real 80x80
simulated 80x80

real 50x50
simulated 50x50

Figure 10. A paralle l Gaus s ian s olver.

formed by two parallel benchmarks. The first is a paral-
lel matrix multiplication and the second one concurrently
solves a system of linear equations by Gaussian elimination.

Figures 9 and 10 depict the execution times and estimated
(simulation) times of both benchmarks for a range of differ-
ent matrix sizes. With a calculated average error of 1.8% and
a standard deviation of 2.6 for the Gaussian solver, high ac-
curacy is obtained. For the simulation of the matrix multi-
plication, we measured a somewhat larger average error of
3.9% and a standard deviation of 3.2. The worst case errors
equal to 15% and 10% for the matrix multiplication and the
Gaussian solver respectively.

An important observation is that simulation closely fol-
lows the execution trend. This is even the case for the small
irregularity in the graph of the Gaussian solver at a problem
size of 100�100 using 32 processors. Closer examination
showed that this irregularity is caused by a load imbalance.

5 Simulation performance

To give an indication of the simulation performance of
Mermaid, we measured the slowdown for several simula-

7



tions. The slowdown is defined by the number of cycles
it takes for the host computer to simulate one cycle of the
target architecture. An exact value for the slowdown can-
not be given since it depends on the type of application and
architecture that are being modelled. Therefore, a typical
value will be used. To determine the slowdown per simu-
lated processor, we examined both the transputer simulator
of the previous section and a simulation model of a Motorola
PowerPC 604 using two levels of cache.

For a mix of application loads, we measured a typical
slowdown of about 60 to 750 per processor. So an Ultra
Sparc processor running at 143Mhz roughly simulates be-
tween 200,000 and 2,400,000 cycles per second. This per-
formance makes Mermaid fairly competitive with, for in-
stance, many direct execution simulators, which typically
obtain a slowdown of between 2 and a few hundred [2, 9, 3].

We believe, however, that the simulation efficiency can
still be enhanced, making Mermaid even more competitive
performance-wise. For instance, the Pearl simulation lan-
guage, in which the architecture models are written, empha-
sizes the modularity and easy implementation of architec-
ture models. It generates only moderately efficient code.
The choice of another modelling language might therefore
improve the simulation performance.

The slowdown of the simulation of an entire multicom-
puter is a function of the slowdown of a single processor and
the overhead caused by simulating the interconnection net-
work. Typically, this slowdown is calculated by multiplying
the per-processor slowdown with the number of simulated
processors. Thus, a simulated multicomputer containing 64
nodes would then have a slowdown of somewhere between
4,000 and 50,000.

If fast prototypingof a multicomputer is the primary goal,
then the communication model can be used directly. The
slowdown of this type of simulation depends on the amount
of computation and communicationpresent within the appli-
cation. Computation can be simulated extremely fast since it
is modelled at the level of tasks, whereas communication is
simulated in more detail and is thus less efficient. Our mea-
surements indicate that simulation at this level of abstrac-
tion results in a typical slowdown of between 0.5 and 4 per
processor. This means that an entire multicomputer can be
simulated with only a minor slowdown.

Figure 11 shows the slowdown per processor as a func-
tion of the number of simulated processors for the matrix
multiplication and the Gaussian solver simulations of the
previous section. Both graphs more or less suggest that
the slowdown decreases when simulating more processors.
This is caused by the fact that simulation of communication
is quite efficient in Mermaid, whereas computation is simu-
lated more low-level and therefore more expensive. In these
particular experiments, the simulation of communication is
even faster than the communication within the real machine.
Therefore, the slowdown decreases as the number of nodes
increases.

50

100

150

200

250

300

350

400

450

1 2 4 8 16

S
l
o
w
d
o
w
n
 
p
e
r
 
p
r
o
c
e
s
s
o
r

Number of simulated processors

Pmatmul 30x30
Pmatmul 60x60
Pmatmul 90x90

Pmatmul 120x120

50

100

150

200

250

300

350

400

450

1 2 4 8 16

S
l
o
w
d
o
w
n
 
p
e
r
 
p
r
o
c
e
s
s
o
r

Number of simulated processors

Gauss 50x50
Gauss 80x80

Gauss 100x100
Gauss 120x120

Figure 11. Slowdown of the paralle l matrix mul-
tiplication (top) and the paralle l Gaus s ian s olver
(bottom).

Another important aspect of multicomputer simulation is
the memory usage. Simulators that consume a lot of mem-
ory may encounter problems when scaling the simulation to
a large number of nodes. Since instructions are not inter-
preted in Mermaid, it is not necessary to store large quanti-
ties of state information during simulation runs. For exam-
ple, the contents of the memorydoes not have to be modelled
and simulated caches only need to hold addresses (tags),
not data. As a consequence, the simulation of parallel plat-
forms is only constrained by the memory consumption of the
(threaded) trace-generating applications.

6 Summary

In this paper, we provided an overview of the Mermaid
multicomputer simulation environment, which allows the
performance evaluation of a wide range of architectural de-
sign options. Mermaid features the ability to simulate at var-
ious abstraction levels, each with its own accuracy and per-

8



formance. It therefore makes both accurate evaluation and
fast prototyping of multicomputers feasible. At the lowest
level of abstraction, simulation takes place at the level of ab-
stract machine instructions rather than interpreting real ma-
chine instructions. As a consequence, the workloads that are
driving the architectural simulators should be modelled ex-
plicitly.

The workload modelling within Mermaid can be divided
into two approaches. The first approach is reality based and
applies the tracing of real applications. In this technique,
the augmentation of the programs takes place directly at the
high-level language level. This guarantees the architecture
independence of the application model we strive for. In the
second approach, application behaviour is modelled using
probabilistic descriptions. Such a scheme allows for more
flexibility than the tracing of real programs but its accuracy
is only modest. When fast-prototyping new architectures,
however, this may be a useful technique.

The Mermaid simulation methodology has been vali-
dated by comparing simulation estimates with the perfor-
mance results of an actual machine. These experiments
demonstrate that, despite of the reasonably high abstraction
level at which is modelled, good accuracy can be obtained.
Typically, errors were measured that do not exceed 10%.

Besides Mermaid’s good accuracy, its simulators are
fairly efficient as well. For the experiments we performed,
we measured a typical slowdown of about 60 to 750 per sim-
ulated processor. This performance makes Mermaid quite
competitive with many other efficient architecture simula-
tors.

This paper has described ongoing research. Clearly,
much work still has to be done in order to provide a broader
support for trace generation. This includes techniques
for producing realistic, synthetic multiprocessor traces and
methods for validating these traces. Moreover, future ap-
plication modelling will eventually be based on a (virtu-
ally) shared memory model. This allows for a more flexi-
ble evaluation of architecture and application performance
under different data distributions.

Acknowledgements

We would like to thank Hugh McEvoy and Marcel
Beemster for their comments on an earlier version of this pa-
per.

References

[1] R. C. Bedichek. Talisman: Fast and accurate multicomputer
simulation. In Proceedings of the 1995 ACM SIGMETRICS
Conference, pages 14–24, May 1995.

[2] B. Boothe. Fast accurate simulation of large shared memory
multiprocessors. Tech. Rep. CSD 92/682, Comp. Science
Div. (EECS), Univ. of California at Berkeley, June 1993.

[3] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E.
Weihl. PROTEUS: A high-performance parallel-architecture
simulator. Tech. Rep. MIT/LCS/TR-516, MIT Laboratory
for Computer Science, Sept. 1991.

[4] D. Chiou, B. S. Ang, R. Greiner, Arvind, J. C. Hoe, M. J.
Beckerle, J. E. Hicks, and A. Boughton. StarT-NG: Deliver-
ing seamless parallel computing. In Proceedings of the First
International EURO-PAR Conference, pages 101–116, Aug.
1995.

[5] S. Chodnekar, V. Srinivasan, A. Vaidya, A. Sivasubrama-
niam, and C. Das. Towards a communication characteriza-
tion methodology for parallel applications. In Proc. of the
3rd International Symposium on High Performance Com-
puter Architecture (HPCA), pages 310–319, Feb. 1997.

[6] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In Proc. of the 1994 ACM
SIGMETRICS Conference on Measurement and Modelling
of Computer Systems, pages 128–137, May 1994.

[7] R. G. Covington, S. Dwarkadas, J. R. Jump, J. B. Sinclair,
and S. Madala. The efficient simulation of parallel computer
systems. Int. Journal in Comp. Simulation, 1:31–58, 1991.

[8] H. Davis, S. R. Goldschmidt, and J. Hennessy. Multiproces-
sor simulation and tracing using Tango. In Proc. of the 1993
Int. Conf. in Parallel Processing, pages 99–107, Aug. 1991.

[9] A. G. P. Joubert. SPAM: A multiprocessor execution driven
simulation kernel. Tech. Rep. 708, IRISA research labora-
tory, Mar. 1993.

[10] H. C. Kok, A. D. Pimentel, and L. O. Hertzberger. Runtime
visualization of computer architecture simulations. To ap-
pear in Proc. of the Workshop on Performance Analysis and
its Impact on Design (in conjunction with the 24th Int. Symp.
on Computer Architecture), June 1997.

[11] J. R. Larus. Abstract execution: A technique for effi-
ciently tracing programs. Software Practice & Experience,
20(12):1241–1258, Dec. 1990.

[12] J. R. Larus and T. Ball. Rewriting executable files to mea-
sure program behaviour. Software Practice & Experience,
24(2):197–218, Feb. 1994.

[13] H. L. Muller. Simulating computer architectures. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, Feb. 1993.

[14] A. D. Pimentel and L. O. Hertzberger. Evaluation of a mesh
of clos wormhole network. In Proc. of the 3rd International
Conference on High Performance Computing, pages 158–
164. IEEE Computer Society Press, Dec. 1996.

[15] A. D. Pimentel and L. O. Hertzberger. An architecture work-
bench for multicomputers. In Proc. of the 11th International
Parallel Processing Symposium, pages 94–99. IEEE Com-
puter Society Press, April 1997.

[16] A. D. Pimentel and L. O. Hertzberger. RAPID: RAPid In-
terpretation of Data. Tech. Rep. CS-97-01, Dept. of Comp.
Sys, Univ. of Amsterdam, Jan. 1997.

[17] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Lewis, and D. A. Wood. The Wisconsin Wind Tunnel: Vir-
tual prototyping of parallel computers. In Proc. of the 1993
ACM SIGMETRICS Conference, pages 48–60, May 1993.

[18] M. Rosenblum, A. S. Herrod, and A. Gupta. Complete com-
puter system simulation: The simOS approach. IEEE Paral-
lel & Distributed Technology, 03(04):34, 1995.

[19] C. B. Stunkel, B. Janssens, and W. K. Fuchs. Address trac-
ing for parallel machines. IEEE Computer, 24(1):31–38, Jan.
1991.

9


