Abstract Workload Modelling in Computer Architecture Simulation

A.D. Pimentel

L.O. Hertzberger

Dept. of Computer Science
University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam
The Netherlands
{andy,bob} @wins.uvanl

Abstract

The Mermaid simulation environment facilitates the per-
formance evaluation of a wide range of design optionsin
MIMD multicomputer architectures. Because the Mermaid
architectural simulators are driven by events that are more
abstract than real machineinstructions, workloads must ex-
plicitly be modelled. In this paper, we provide an overview
of the wor kload model ling techniques used within Mermaid.
Thisincludesthetracing of real programsand the stochastic
modelling of application behaviour. Moreover, we present
several validation and performance results indicating that
our simulation methodology obtains good accuracy while
being fairly efficient.

1 Introduction

Simulation is awidely-used technique for evaluating the
performanceof computer architectures. It facilitatesthe sce-
nario analysis necessary for gaining insight into the con-
sequences of design decisions. The alternatives to ssmula-
tion, namely analytical modelling and real hardware proto-
typing, are often less than adequate for this purpose. When
modelling sophisticated architectures the analytical models
may quickly becometoo complex, whereas hardware proto-
typing istoo costly and time-consuming when evaluating a
wide range of design options.

In order to provide a workbench for evaluating the per-
formance of MmIMD multicomputer architectures, we are de-
veloping the Mermaid simulation environment [15]. Orig-
inally, Mermaid was targeted for studying future series of
Parsytec multicomputers (like the study performedin [14]).
However, recent developments are increasingly geared to-
wards generic support for architecture simulation.

Mermaid strives to support the performance evaluation
of a wide range of architectural design options. For this
purpose, it allows parameterization and configuration of the

simulation models at different levels: from processor pa-
rameters, such as the instruction set and cache specifics,
to switching and routing techniques in a message-passing
communication network. Moreover, to make both accu-
rate simulation and fast prototyping of multicomputers fea-
sible, Mermaid features the ability to simulate at different
abstractions levels. If the research objective is fast proto-
typing only, maximum accuracy is not required and there-
fore simulation can be performed at a high level of abstrac-
tion, yielding high simulation efficiency. In the situations
where accuracy is required, however, the smulation is per-
formed at alower and thus more computationally intensive
level of abstraction. Unlike many other simulation systems,
we do not apply instruction-level simulation [6, 1, 18] at the
lowest level of abstraction nor do we use direct execution
[17,3, 8,9, 7, 18, 2] in which parts of the simulated code
are directly executed on the host computer. Instead, sim-
ulation takes place at a level of abstract machine instruc-
tions. Compared to traditional instruction-level simulation,
this approach typically resultsin ahigher simulation perfor-
mance at the cost of asmall loss of accuracy.

A conseguence of simulating at the level of abstract ma-
chineinstructionsis that the behaviour of applications must
explicitly be modelled rather than simply interpreting the
machine instructions from the programs. In this paper, we
therefore focus on the workload modelling techni ques used
within Mermaid. Furthermore, we present validation and
performance results suggesting that our simulation method-
ology provides both accuracy and good performance.

The next section gives a brief overview of the Mermaid
simulation environment. Section 3 describes the modelling
of application behaviour in order to drive the architectural
simulators. In Section 4, some validation results are pre-
sented. These results were obtained by comparing the per-
formance behaviour of an existing multicomputer to the
simulation estimates of our models. Section 5 discusses
the simulation performance of Mermaid. Finally, Section 6
presents the summary and mentions possibl e future work.

2 TheMermaid simulation environment

The multi-layered simulation environment of Mermaid
isillustrated in Figure 1. The lowest level, referred to as
the architecture level, contains the architecture simulation
models. These models are implemented in a highly mod-
ular fashion using the object-oriented simulation language
Pearl [13], which alowsflexible evaluation by means of pa-
rameterization. The simulators are driven by abstract in-
structions, called operations, representing processor activ-
ity, memory /O and message-passing communication. Sev-
eral examples of operations are shownin Table 1.

Simulating at the level of operations has several conse-
guences. As the operations abstract from the processor’s
instruction sets, the simulators do not have to be adapted
each time a processor with a different instruction set is
simulated. We simulated, for example, both multicomput-
ers based on Transputers and on PowerPC processors with
only little remodelling effort. Furthermore, simulating op-
erations rather than interpreting real machine instructions
yields higher simulation performance at the cost of a small
loss of accuracy. On the other hand, low-level simulation
of, for instance, the processor pipelinesis not possible due
to the lack of register specifications in the operations.

To correctly model issues like synchronization and load-
balancing, each processor within the multicomputer model
receivesits own trace of operations. In this scheme, the va
lidity of the multiprocessor operation-traces is guaranteed
by thefact that the simulator controlsthe trace generationin
an execution-driven manner [15]. In other words, the trace
generator isinterleaved with the simulator and thetraces are
generated on-the-fly.

As shown in Figure 1, the simulation environment also
providesasuite of toolsin order to visualize and analyzethe
simulation output. Visualization of datacan be performed at
runtime[10] or post-mortem. Moreover, atool called RAPID
[16] facilitates the statistical analysis of the simulation out-
put. It contains a simple specification language in which
the user specifieswhat statistical methods should be used on
which partsof thesimulation data. Accordingto this specifi-
cation, RAPID generates an executable performing the spec-
ified types of analysis.

Abstract
application model

N

Operation-trace
generator

Architecture
independent

Application level

Architecture level

Y
Machine parameters .
L - p: Architecture Visualization and
1 __Architecture X ™ simulation models analysis tools

-
' Architecture Y

Figure 1. Simulation environment.

| Operation | Meaning |
ifetch(a) Instruction fetch from address a
add(int) | Addtwo integersresiding in registers
Id(w,a) Load aword from address a
send(n,d) Send a n-byte message to node d

Table 1. Examples of operations.

To provide the architectural simulators with operation-
traces representing actual application behaviour, an abstract
application model and a trace generator reside on top of the
architecturelevel (seeFigurel). A morecomprehensivede-
scription of these parts of the simulation environmentis pre-
sented further on in this paper.

2.1 A hybrid architecture model

Many applications, and especially scientific applications,
running on multicomputer platforms contain coarse-grained
computations aternated with periods of communication.
Because these computation and communication phases typ-
ically are distinct, we decided to split the simulation of mul-
ticomputersinto two different models: a single-node! com-
putational model and a multi-node communication model.
Each model operates at a different level of detail, and thus
definesits own set of operations. The computational model
simulates the application’s computational behaviour. It
models the incoming computational operations at a level
of abstract machine instructions, as was previously dis-
cussed. Communication operations are not simulated by
this model, but are directly forwarded to the communica-
tion model. Subsequently, the communication model ac-
counts for the application’s message-passing communica-
tion behaviour. To addresstheissues of synchronizationand
load-balancing properly, it model s the computational delays
found in between communication requests at the task level.
A pardle workload for this model therefore resembles a
graph containing computational tasks and communication
operations. The computational tasks are derived from the
computational model, which constructs them by measuring
the simulated time between two consecutive communication
operations.

Thisapproach resultsinahybrid model, which allowsfor
simulation at different abstraction levels. If accuracy isre-
quired, then the complete hybrid model can be used. In this
case, the single-node computational model is replicated for
each MIMD nodetaking part inthesimulation. Eachinstance
of the single-node model is then assigned to a node within
the communication model in order to feed it with the com-
putational tasks and the communication operations. Thisis
illustrated in Figure 2.

LIt may contain multiple processors sharing a single memory, though.

[Computational & communication operations J

| \ A
|
|

\ -

CcPU ,,»‘r
o
F o

Instance of the
computational model

Feedback

Communication
operations &
computational
tasks

Communication
model

Figure 2. Detailed simulation of a multicomputer
using both the computational and the communi-
cation models.

However, if there is only the need for fast prototyping,
then just using the communication model might be suffi-
cient. In that case, the task-level operation-traces must be
directly produced by the trace generator. To some extent,
this is similar to what happens in the commonly applied
direct execution simulation technique: the performance of
the code segments in between two communication events
(forming the computational tasks) has to be estimated at
compiletime.

2.2 Shared memory or hybrid architectures

The multi-node communication model, with its message
passing, intrinsically suggeststhat the system under investi-
gation should be a distributed memory architecture. But, by
only using the computational model and configuring it with
multiple processors, ashared memory multiprocessor can be
simulated. A disadvantage of this approach however, isthat
simulation can only be performed at the level of computa-
tional operations: the highest level of detail.

Hybrid architectures, such as the one proposed in the
MIT START-NG project [4], can be modelled by both defin-
ing multiple processors on a node and using the communi-
cation model to interconnect the clusters of shared memory
multiprocessorsin a message-passing network.

3 Workload modelling

Becausethe Mermaid architecture modelssimul ate at the
level of operationsand do not interpret real machineinstruc-
tions, application behaviour must explicitly bemodelled. As
application behaviour is best described in terms unrelated

Application model

Reality based Stochastic

[Y

Task level
operations

Instruction level
operations

Architecture

level

Single-node Multi-node

model

model

Figure 3. Application modelling within Mermaid.
Thelarge shaded areaindicates the modelling path
currently supported.

to any architecture specifics, we strive to model application
workloadsin amanner whichisindependent of both the host
computer (on which the simulation runs) and the target ar-
chitecture (which is being evaluated). As a consequence,
Figure 1 shows a clear separation between the application
level, at which the application model and part of the trace
generator reside, and the architecture level.

Likeit isthe case in architecture modelling, modelling a
workload can also be done at various abstraction levels and
with different degrees of accuracy. Figure 3 illustrates the
workload modelling framework of Mermaid. A workloadis
either based on areal application or it is synthetic and pro-
duced by some stochastic process. Furthermore, both real
and synthetic workloads can model computation either at
the level of abstract machine instructions or at the level of
tasks. Computation at the instruction level istypically sim-
ulated by the single-node (computational) model, whereas
task level operations are simulated by the multi-node (com-
munication) model.

Currently, Mermaid supports only the generation of ab-
stract instruction-level operations, as depicted by the large
shaded areain Figure 3. We will therefore limit our discus-
sion to this area of workload modelling.

3.1 Reality based workload modelling

To capture aredlistic view of application behaviour, it is
requiredtotracearea program. Traditionally, thetracing of
applications is mainly performed by augmenting either the
assembler code [11, 19] or the executableitself [12]. How-
ever, these tracing techniques may introduce dependencies
on either the host or the target architectures. To guarantee
architecture independence at the application level, we de-
cidedtodirectly augment C sourcecode. So, inthiscase, the

C source

,,,,,,,,,,, . Annotation
.. tool

Annotated
C source

,,,,, /" C compiler
& linker «

Machine Variable
Descriptor Descriptor
File Table

NS

Annotation
Translation
Library

-- Executable

Architectural feedback
from simulator

Multiple operation
traces to simulator

Figure 4. Generation of operations by augmenting
real applications.

abstract application model consists of programs that have
beeninstrumented with annotationsfollowing the program’s
memory, computational and communication behaviour. As
the augmented source code is architecture independent, in-
strumentation has to take place only once, after which the
application model can be used to evaluate any architecture.

Figure 4 gives an overview of how Mermaid generates
operations by augmenting real applications. A special tool
instruments the C source code and constructs a so-called
variable descriptor table. This table determines whether a
variableisglobal, local, or afunction argument. It also con-
tainsinformation on the addresses of variables, whether they
are placed in aregister or not and the types of the variables.

The Annotation Trandation Library (ATL) is the trace
generating core, which is linked to the annotated applica-
tion. As the annotations are simply calls to the ATL, the
annotations are dynamically trandated into the appropriate
trace of operations when the obtained executable is exe-
cuted. For this purpose, the ATL uses the variable descrip-
tor table and a machine descriptor table. The latter contains
architecture dependent information necessary for the trace
generation (e.g. instruction size, number of registers, etc.).
When, for example, an annotation indicates that a variable
should be loaded, the generator uses the information from
both tables to tranglate the annotation into the appropriate
instruction fetch and memory operations. The ATL can thus
be regarded as a kind of generic compiler. It performs the
trandation of annotations according to the runtime model

double a, x[N, Yy[N;
void foo(...) {
inti;
(.1
for (i =0; i <N i++) {

a += x[i] * y[i];
}

(-]
}

Figure 5. Adouble precisioninner-product(ddot).

double a, x[N], y[N;
void foo(...) {
int i;
set _function(foo, (void *)foo);
[...1
for (assignlc(local (i), 0), i = 0;
setPC(cl),

arithlc(REG N, local (i), CW), i <N,
arithlc(local (i), 1, local (i), ADD), i++) {

a += x[i] * y[i];

ari thDF(REG, array(é&x, local (i), &[i]),
array(&, local (i), &I[i]),
ari thDF(&a, REG &a, ADD);

ML) ;

set PC(11);

}
set PC(11);

[...]

ret_function();

Figure 6. The annotated version of ddot.

and addressing capabilities of the target processor. In this
approach, only the ATL is architecture dependent. There-
fore, only the ATL may need to be updated in order to gen-
erate operation-traces for a new (possibly non-existing) ar-
chitecture.

Toillustrate the process of instrumentation, consider Fig-
ures 5 and 6. The first figure shows a code fragment cal cu-
lating a double precision inner-product (ddot), whereas the
|atter one showsthe annotated version of the same codefrag-
ment. The annotations set_function, ret_function and setPC
describe the control flow behaviour of the program. For
example, the setPC(label) annotation is some sort of basic
block indicator: the first time a setPC is triggered, it saves
the current (pseudo) program counter together with itslabel.
Succeeding callsto asetPC with anidentical 1abel will reset

the program counter to the saved value. Subsequently, the
assignyyp. and arith;,,. annotations describe the computa-
tional behaviour of the application. In these annotations, the
type must be specified on which is operated. For instance,
Ic means“Integer constant” and DF means“ Double Float”.
Handling the referencesto variablesis done by annotations
such as local and array. If required, these annotations in-
struct the ATL to model the fetching of variables according
to the variable descriptor table.

To generate the multiprocessor traces, the ATL models
concurrent execution by means of threads. For this pur-
pose, the tool which performs the instrumentation of pro-
grams also provides some support for converting (single-
threaded) target applications into multi-threaded programs.
For spmD-like applications, this conversion is fully auto-
mated. For other classes of applications, manual tuning of
the obtained threaded code is till necessary.

3.1.1 Modeling communication

The annotations describing communication behaviour di-
rectly map onto operations, such asthesendlistedin Table 1.
As the associated parameters of these operations are based
on the platform’s physical topology, the modelling of com-
munication still reflects some of the underlying hardware
characteristics. Ideally, such architectural detailsarenotvis-
ible at the application level. One way to achieve this, is by
defining the communication annotations such that they are
based on avirtual shared memory model. Consequently, all
explicit communication at the application level is removed
and substituted by memory references. This implies that
the simulation environment issues the communication re-
questsrather than the applications. Naturally, the generation
of these communication requests is dependent on the distri-
bution of data over the different processors. By specifying
how data is distributed within the simulation environment,
different data distributions can easily be evaluated without
the need to change the applications. Although this virtua
shared memory model has not yet been implemented, it is
considered as future work.

3.2 Stochastic workload modelling

Besides the tracing of real applications, we are currently
also investigating techniques to generate operation-traces
from stochastic application descriptions. In such a scheme,
the abstract application model consists of descriptions de-
scribing the application behaviour using probabilities. Ev-
idently, this technique represents the behaviour of (a class
of) applications only with modest accuracy. It alows, how-
ever, for more flexibility than the tracing of real programs.
For example, rapidly adjusting the application behaviour is
fairly easy using this technique, which can be useful when
fast-prototyping new architectures.

Application description

,’,/’\\:\\\‘*\\\
A///”;\\\ Tt

Kernel description Kernel description

Data desc. Operation desc. General desc.
- // > ~
s>~) N
Kernel desc. -+ Kernel desc.

(@

Operation Desc.

T e
Computation Branch Call New kernel desc.
~ |

S AT

Mem. Arithmetic Forward Backward

'ﬂ\/ R AR

Integer Float Double
R
(b)

Figure 7. Structure of a SEA description.

The probabilistic descriptions are written in the language
SEA (Stochastically Expressing Applications), which was
especialy designed for this purpose. A tool, called the
Stochastic Trace Generator (STG), interprets the SEA de-
scriptionsand subsequently generates operation-tracesfrom
them. Figure 7a shows the general structure of a SEA de-
scription. From a high-level point of view, an application
descriptionis constructed of a sequence of one or more ker-
nel descriptions. These kernel descriptions consist of three
parts: adata part, an operation part and a general part. The
data section describes what kind of variables can be manip-
ulated within a kernel. The operation section specifies the
types of operations taking place within akernel. Since this
section may also contain sub-kernel descriptions, the com-
plete application model isrepresented by atree of kernel de-
scriptions. Finally, the general section describes issues like
the number of operationsto be generated within akernel, ad-
dresses of segments, etc.

Figure 7b shows (a part of) the operation description hi-
erarchy. Each arc within the hierarchy is weighted with a
certain probability. When an operation is generated, the hi-
erarchy istraversed top-down according to the probabilities
of thearcsuntil aleaf containing acertain operation hasbeen
reached. In order to specify thetype of dataonwhich the op-
eration is performed (e.g. array, local variable, global vari-
able, etc.), the data section of the kernel description is tra-
versed in asimilar manner.

Using kernel descriptions as a building block allows the
modelling of an application at different abstraction levels.
Basically, the behaviour of a whole program can be de-
scribed with one kernel description only. In this case, the

kdescri ption[1024, 0x100] {
general {
instructions = 8;

}

data {
df p_data {
vari abl e[509 {
nunber = 1;
gl obal = 100%
aut o = 0%

}

array[509 {
nunber
av_si ze
gl obal

}

non_fp_data {
vari abl e[1009 {
nunber = 1;
gl obal = 0%
aut o = 100%

}
array[09 { }

1024;
100%

}

}
conput ati on[1009 {
mem expr[25% {
sfl _point = 0%
df | _point = 50%
i nteger = 50%
constant = 0%
}
arith_expr[75% ({
sfl_point = 0%
df | _point = 33%
i nt eger = 67%
constant = 33%

}
fp_expr {
pl ai n_f p[1009 {
fadd = 50% fmul
fdiv = 0% fsub
}
intrinsic_fp[0% { }

50%
0%

}
i nteger_expr {
non_bit _op[1009 {
add = 75% sub = 25%
mul =0% div = 0%

}
bit_op[09% { }

}

cal | s[0% {1}

branches[0% {1}

sub_kdesc[0% {1}
{1}

conmuni cati on[0%

Figure 8. SEA description of ddot.

applicationis described at a high abstraction level, whichis
flexiblebut might not bevery accurate. Alternatively, multi-
ple kernel descriptionscan be used to describethe behaviour
of certain parts of a program. This approach may require
somewhat more modelling effort but it represents the appli-
cation behaviour with higher accuracy.

To illustrate the stochastic modelling, consider Figure 8.
It shows a SEA description for the ddot code fragment of
the previous section with N=1024. For the sake of clarity,
weomitted afew linesof SEA codewhich were not relevant

to this example. The (single) kerndl is iterated 1024 times,
generating 8 operations per iteration starting at instruction
address 0x100. Of course, SEA would aso alow the non-
probabilistic values, such as the number of instructions, to
be random and to behave according to some distribution.

Currently, the SEA descriptions are produced by hand.
Naturally, thiswill eventually be automated by aframework
in which real programs are profiled in order to generate the
descriptions. Moreover, stochastic trace generation for mul-
tiprocessors is not yet supported. We are still investigat-
ing how, for instance, communication can be modelled best
within the SEA paradigm. A promising approach, however,
is proposed in [5]. As the stochastic modelling of applica-
tionsis still subject to many (fundamental) changes, we did
not yet perform validation experiments. For this reason, the
next section will purely focus on the validation of simula-
tions driven by traces from real applications.

4 Validation

To validate our simulation methodology, we instru-
mented severa applications and simulated them for an ex-
isting distributed memory multicomputer. This machine,
a Parsytec GCel, consists of Inmos T805 transputers con-
nected in a 2D grid network. Validation is performed by
comparing the simulation results of several benchmarks
with the results of real execution. Initialy, the computa
tional and communication model swerevalidated separately.
Table 2 shows the overall results of these experiments. It
givesthe average error, the standard deviation o of the aver-
ageerror and the worst case error of simulation compared to
execution. Theworkloadsfor the computational model con-
sisted of aset of well-known numerical kernel functions, in-
cluding ddot (double precision inner-product), daxpy (dou-
ble precision vector update) and some of the Lawrence Liv-
ermore kernels.

The communication workloads, which only model mes-
sage passing and its consequent (computational) delays, can
be divided into three categories. The first category, that

Average | o Worst Workload
error (%) case (%)
15 13 38

15 13 5.0

Computational 1oads
Light communication
loads
Uniform congesting
communication |oads
Non-uniform congesting
communication |oads

29 3.3 10.9

4.8 9.5 29.7

Table 2. Validation of the separate computational
and communication models.

22 R ‘ ‘ ‘ ‘ ‘
20 [real 120x120 & |
simul ated 120x120 —*—
18 ¢ real 90x90 ©
—~ 16t si nul ated 90x90 —+—
o 14 ¢
(O]
o 12 ¢
10 |
3
E g7
[= 6 I
4 L
2 r i
0 I | | ¥

1 2 4 8 16 32 64
Processors

real 60x60 <

2.5 [si nul ated 60x60 —+— |
real 30x30 O

si mul ated 30x30 —<—

Time (sec.)
=

1 2 4 8 16 32 64
Processors

Figure 9. A parallel matrix multiplication.

of light communication loads, uses benchmarks performing
message roundtrips. The two remaining types of communi-
cationworkloadsarefor so-called “ stress-testing” purposes,
asthey heavily congest the network. They can again be sub-
divided into uniform and non-uniform loads. The first type
of load uniformly distributes communication over the net-
work, while the latter type only stresses some small regions
within the network, causing hot-spots to appear.

For computation and light communication loads, the av-
erage error does not exceed 1.5%. More importantly, the
standard deviation and the worst case error indicate that
the performance estimates for these |oads are quite accurate
in general. The errors of the stress-testing communication
benchmarks are higher, especidly in the case of the non-
uniform loads. This can be explained by the fact that these
benchmarks produce workloads exhibiting high contention
for network resources, which tends to amplify any existing
modelling errors. While a worst case error of nearly 30%
was measured for these extreme loads, the standard devia-
tions suggest that the accuracy in general istolerable.

Validation of the integral system, consisting of both the
computational and communication models, has been per-

real 160x160 <
simul ated 160x160 —+— |

real 120x120 ©
sinmul ated 120x120 —<—

SN

Time (sec.)

O N W b~ 00O N

1 2 4 8 16 32 64
Processors

2 : ; ‘
q real 100x100 <
1.75 simul ated 100x100 —+—]
15! real 80x80 & |
P si mul ated 80x80 —<—

: | real 50x50 & |
§ 1.25 si mul at ed 50x50 —=—
- 1g
£0.75
=

0.5} D

0.25 B g " " 2 iy 1
O L L L L L

1 2 4 8 16 32 64

Processors

Figure 10. A parallel Gaussian solver.

formed by two paralel benchmarks. The first is a paral-
lel matrix multiplication and the second one concurrently
solvesasystem of linear equationsby Gaussian elimination.

Figures9and 10 depict the executiontimesand estimated
(ssmulation) times of both benchmarksfor arange of differ-
ent matrix sizes. With acalculated averageerror of 1.8% and
astandard deviation of 2.6 for the Gaussian solver, high ac-
curacy is obtained. For the simulation of the matrix multi-
plication, we measured a somewhat larger average error of
3.9% and a standard deviation of 3.2. The worst case errors
equal to 15% and 10% for the matrix multiplication and the
Gaussian solver respectively.

An important observation is that simulation closely fol-
lowsthe executiontrend. Thisis even the case for the small
irregularity in the graph of the Gaussian solver at a problem
size of 100x 100 using 32 processors. Closer examination
showed that thisirregularity is caused by aload imbalance.

5 Simulation performance

To give an indication of the simulation performance of
Mermaid, we measured the slowdown for several simula-

tions. The slowdown is defined by the number of cycles
it takes for the host computer to simulate one cycle of the
target architecture. An exact value for the slowdown can-
not be given since it depends on the type of application and
architecture that are being modelled. Therefore, a typical
value will be used. To determine the slowdown per simu-
lated processor, we examined both the transputer simulator
of the previoussection and asimulation model of aMotorola
PowerPC 604 using two levels of cache.

For a mix of application loads, we measured a typical
slowdown of about 60 to 750 per processor. So an Ultra
Sparc processor running at 143Mhz roughly simulates be-
tween 200,000 and 2,400,000 cycles per second. This per-
formance makes Mermaid fairly competitive with, for in-
stance, many direct execution simulators, which typically
obtain aslowdown of between 2 and afew hundred[2, 9, 3].

We believe, however, that the simulation efficiency can
still be enhanced, making Mermaid even more competitive
performance-wise. For instance, the Pearl ssimulation lan-
guage, in which the architecture models are written, empha-
sizes the modularity and easy implementation of architec-
ture models. It generates only moderately efficient code.
The choice of another modelling language might therefore
improve the simulation performance.

The slowdown of the simulation of an entire multicom-
puter isafunction of the slowdown of asingle processor and
the overhead caused by simulating the interconnection net-
work. Typicaly, thisslowdownis calculated by multiplying
the per-processor slowdown with the number of simulated
processors. Thus, asimulated multicomputer containing 64
nodes would then have a slowdown of somewhere between
4,000 and 50,000.

If fast prototyping of amulticomputer isthe primary goal,
then the communication model can be used directly. The
slowdown of thistype of simulation depends on the amount
of computation and communi cation present within the appli-
cation. Computation can be simulated extremely fast sinceit
ismodelled at the level of tasks, whereas communicationis
simulated in more detail and isthus less efficient. Our mea-
surements indicate that simulation at this level of abstrac-
tion resultsin atypical slowdown of between 0.5 and 4 per
processor. This means that an entire multicomputer can be
simulated with only a minor slowdown.

Figure 11 shows the slowdown per processor as a func-
tion of the number of simulated processors for the matrix
multiplication and the Gaussian solver simulations of the
previous section. Both graphs more or less suggest that
the slowdown decreases when simulating more processors.
Thisis caused by the fact that simulation of communication
isquite efficient in Mermaid, whereas computation is simu-
lated morelow-level and therefore more expensive. Inthese
particular experiments, the simulation of communicationis
even faster than the communi cation within the real machine.
Therefore, the slowdown decreases as the number of nodes
increases.

Sl owdown per processor

Sl owdown per processor

450

400
350 &
é X
300 % O é’
250 N - +
50 o 1
200 | <]
150
Pmat mul 30x30 <
100 r Pmat nul 60x60 +
Pmat mul 90x90 O
50 r Pmat nul 120x120 X
1 2 4 8 16
Nunber of sinulated processors
450 — :
¥ Gauss 50x50 <
400 r Gauss 80x80 +
Gauss 100x100 O
350 5 Gauss 120x120 X
300
&
250 «
200 + ¥
I &]
150 T
X
100 r <& ng
50 | @
1 2 4 8 16

Nunber of sinulated processors

Figure 11. Slowdown of the parallel matrix mul-
tiplication (top) and the parallel Gaussian solver
(bottom).

Another important aspect of multicomputer simulationis
the memory usage. Simulators that consume alot of mem-
ory may encounter problemswhen scaling the simulation to
a large number of nodes. Since instructions are not inter-
preted in Mermaid, it is not necessary to store large quanti-
ties of state information during simulation runs. For exam-
ple, the contentsof the memory doesnot haveto be modelled
and simulated caches only need to hold addresses (tags),
not data. As a consequence, the simulation of parallel plat-
formsisonly constrained by the memory consumption of the
(threaded) trace-generating applications.

6 Summary

In this paper, we provided an overview of the Mermaid
multicomputer simulation environment, which allows the
performance evaluation of awide range of architectural de-
signoptions. Mermaid featurestheability to simulate at var-
ious abstraction levels, each with its own accuracy and per-

formance. It therefore makes both accurate evaluation and
fast prototyping of multicomputers feasible. At the lowest
level of abstraction, simulationtakesplace at thelevel of ab-
stract machine instructions rather than interpreting real ma-
chineinstructions. Asaconsequence, theworkloadsthat are
driving the architectural simulators should be modelled ex-
plicitly.

The workload modelling within Mermaid can be divided
into two approaches. Thefirst approachisreality based and
applies the tracing of real applications. In this technique,
the augmentation of the programstakes place directly at the
high-level language level. This guarantees the architecture
independence of the application model we strive for. In the
second approach, application behaviour is modelled using
probabilistic descriptions. Such a scheme allows for more
flexibility than the tracing of real programs but its accuracy
is only modest. When fast-prototyping new architectures,
however, this may be a useful technique.

The Mermaid simulation methodology has been vali-
dated by comparing simulation estimates with the perfor-
mance results of an actual machine. These experiments
demonstrate that, despite of the reasonably high abstraction
level at which is modelled, good accuracy can be obtained.
Typicaly, errors were measured that do not exceed 10%.

Besides Mermaid’'s good accuracy, its simulators are
fairly efficient as well. For the experiments we performed,
we measured atypical slowdown of about 60to 750 per ssm-
ulated processor. This performance makes Mermaid quite
competitive with many other efficient architecture smula
tors.

This paper has described ongoing research. Clearly,
much work still hasto be donein order to provide a broader
support for trace generation. This includes techniques
for producing realistic, synthetic multiprocessor traces and
methods for validating these traces. Moreover, future ap-
plication modelling will eventually be based on a (virtu-
aly) shared memory model. This alows for a more flexi-
ble evaluation of architecture and application performance
under different data distributions.

Acknowledgements

We would like to thank Hugh McEvoy and Marcel
Beemster for their commentson an earlier version of thispa-
per.

References

[1] R.C.Bedichek. Talisman: Fast and accurate multicomputer
simulation. In Proceedings of the 1995 ACM SGMETRICS
Conference, pages 14-24, May 1995.

[2] B. Boothe. Fast accurate simulation of large shared memory
multiprocessors. Tech. Rep. CSD 92/682, Comp. Science
Div. (EECS), Univ. of Californiaat Berkeley, June 1993.

[3] E. A. Brewer, C. N. Déllarocas, A. Colbrook, and W. E.
Weihl. PROTEUS: A high-performance parallel-architecture
simulator. Tech. Rep. MIT/LCS/TR-516, MIT Laboratory
for Computer Science, Sept. 1991.

[4] D. Chiou, B. S. Ang, R. Greiner, Arvind, J. C. Hoe, M. J.
Beckerle, J. E. Hicks, and A. Boughton. StarT-NG: Deliver-
ing seamless parallel computing. In Proceedings of the First
International EURO-PAR Conference, pages 101-116, Aug.
1995.

[5] S. Chodnekar, V. Srinivasan, A. Vaidya, A. Sivasubrama-
niam, and C. Das. Towards a communication characteriza-
tion methodology for parallel applications. In Proc. of the
3rd International Symposium on High Performance Com-
puter Architecture (HPCA), pages 310319, Feb. 1997.

[6] R.F. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In Proc. of the 1994 ACM
S GMETRICS Conference on Measurement and Modelling
of Computer Systems, pages 128-137, May 1994.

[7] R. G. Covington, S. Dwarkadas, J. R. Jump, J. B. Sinclair,
and S. Madala. The efficient simulation of parallel computer
systems. Int. Journal in Comp. Smulation, 1:31-58, 1991.

[8] H.Davis, S. R. Goldschmidt, and J. Hennessy. Multiproces-
sor simulation and tracing using Tango. In Proc. of the 1993
Int. Conf. in Parallel Processing, pages 99-107, Aug. 1991.

[9] A.G. P Joubert. SPAM: A multiprocessor execution driven
simulation kernel. Tech. Rep. 708, IRISA research labora-
tory, Mar. 1993.

[10] H.C. Kok, A.D. Pimentel, and L. O. Hertzberger. Runtime
visualization of computer architecture smulations. To ap-
pear in Proc. of the Workshop on Performance Analysis and
itsImpact on Design (in conjunction with the 24th Int. Symp.
on Computer Architecture), June 1997.

[11] J R. Larus. Abstract execution: A technique for effi-
ciently tracing programs. Software Practice & Experience,
20(12):1241-1258, Dec. 1990.

[12] J R.Larusand T. Ball. Rewriting executable files to mea-
sure program behaviour. Software Practice & Experience,
24(2):197-218, Feb. 1994.

[13] H.L.Muller. Smulating computer architectures. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, Feb. 1993.

[14] A.D. Pimentel and L. O. Hertzberger. Evaluation of amesh
of clos wormhole network. In Proc. of the 3rd International
Conference on High Performance Computing, pages 158—
164. |EEE Computer Society Press, Dec. 1996.

[15] A.D.Pimentel and L. O. Hertzberger. An architecture work-
bench for multicomputers. In Proc. of the 11th International
Parallel Processing Symposium, pages 94-99. |[EEE Com-
puter Society Press, April 1997.

[16] A.D. Pimentel and L. O. Hertzberger. RAPID: RAPid In-
terpretation of Data. Tech. Rep. CS-97-01, Dept. of Comp.
Sys, Univ. of Amsterdam, Jan. 1997.

[17] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Lewis, and D. A. Wood. The Wisconsin Wind Tunndl: Vir-
tual prototyping of parallel computers. In Proc. of the 1993
ACM SIGMETRICS Conference, pages 48-60, May 1993.

[18] M. Rosenblum, A. S. Herrod, and A. Gupta. Complete com-
puter system simulation: The simOS approach. |EEE Paral-
lel & Distributed Technology, 03(04):34, 1995.

[19] C.B. Stunkel, B. Janssens, and W. K. Fuchs. Address trac-
ing for parallel machines. |IEEE Computer, 24(1):31-38, Jan.
1991.

