
Runtime Visualization of Computer Architecture Simulations

H.C. Kok, A.D. Pimentel, L.O. Hertzberger

Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

fkok,andy,bobg@wins.uva.nl

Abstract

The discrete–event simulation language Pearl, which is
specifically designed for simulating computer architectures,
features a strong statistical analysis engine. However, the
output of this engine is text–based and postmortem. In this
paper, we introduce a flexible graphical user interface sup-
port library for Pearl, addressing the runtime visualization
of computer architecture simulations. The hierarchial struc-
ture of the library is highlighted and, with the help of a case
study that was extracted from previous work, the merits of
the library are presented.

1 Introduction

Performance studies of computer architectures often in-
volves discrete–event simulation. The simulation produces
a bulk of data, and postmortem analysis is done to evalu-
ate the performance of the simulated architecture. The Mer-
maid project[8], which focusses on the construction of sim-
ulation models for MIMD multicomputers, showed that it
would be helpful to capture runtime effects which have an
important influence on the overall performance.

In Figure 1 an overview of the Mermaid environment is
given. Within this environment, the capturing of specific
runtime effects should be part of the visualization and anal-
ysis tools. We decided that this should have the form of a
Graphical User Interface which can display values from the
simulation that have an important influence on the perfor-
mance. Because it is difficult to predict in advance which
values are (directly or indirectly) responsible for perfor-
mance issues, it was decided that the GUI should have a very
flexible nature.

The architecture models of the Mermaid project have
been implemented in the special purpose computer architec-
ture simulation language Pearl[7]. Because it was our inten-
tion to have a flexible GUI–support, it was decided to add
a GUI–support library to the runtime system of Pearl[5] in

Architecture level

Application level

Machine parameters

Architecture X

Architecture Y

Visualization and
analysis tools

Abstract
application model

generator

Architecture
independent

simulation models
Architecture

Operation-trace

Figure 1. Overview of the Mermaid environment.

such a way that it is independent of the Pearl code.
Related work in this field can, for instance, be found in

the simulation of the Data Diffusion Machine[4, 10]. How-
ever, the GUI–support for that simulation is static and can-
not be used for other simulations. On the other hand, another
example such as the Proteus environment[2] can display
statistics from generic simulations, but only postmortem.
The GUI–support for Pearl inherits a property from both en-
vironments: the runtime analysis of the Data Diffusion Ma-
chine simulation, and the generic nature of the Proteus en-
vironment.

The next section gives an introduction to the structure of
Pearl, and specifically the statistical analysis engine of Pearl.
Section 3 gives an overview of the structure of the GUI–
support library. A case study which shows how the GUI–
support library is used, is found in section 4, and finally, in
section 5 is a summary of this paper is presented.

2 Pearl

Pearl[7, 6] is an object–oriented discrete–event simu-
lation language with method based communication primi-
tives. In Pearl simulations, the objects represent modules
within the computer architecture model, such as a processor,
a memory, or a cache.

1



2.1 Objects and communication

Objects in Pearl are instances of a class. The classes of
the objects determine their behaviour and are described in
an imperative language, which has a syntax that is similar
to C.

Objects interact with each other by sending messages. A
message consists of three parts: the destination, the method
and a list of parameters. The method of a message is a pro-
cedure or function which is invoked by the object when the
message is received.

When a message is sent, it is queued in the buffer of the
receiving object. This does not mean that the message is re-
ceived immediately. The receiving object must specify that
it is receptive for this kind of message. Doing so will result
in blocking the execution within the object until a message
of the proper type is received.

The kind of communication that is described above is
asynchronous communication, which means that the send-
ing object will not block for an aknowledgement of the
message. There is, however, also a set of primitives for
synchronous communication. Synchronous communication
is defined in terms of asynchronous communication and a
blocking receive.

2.2 The virtual timer

To maintain the correct execution order, Pearl is equipped
with a virtual clock. When the simulation starts, the clock is
set to 0 and as the simulation progresses, it increments.

Objects can simulate work being done by suspending ex-
ecution for an amount of clock ticks. Next to waiting for
messages, this presents the only other way to suspend ob-
jects. When all objects are suspended the clock will advance
until the next event, i.e. the first object that was waiting on
the clock wakes up. If there is no event to be scheduled any-
more, the simulation terminates.

Besides waiting for just the clock, or certain messages, it
is also possible to wait for either of them to occur first. This
way, it is possible to simulate, for instance, interupts.

2.3 Statistical analysis in Pearl

The statistical analysis in Pearl based on a notion of the
state of objects. In Table 1 an overview is given of how the
state is defined.

With this notion of state, there are six different types
of statistical analysis provided by Pearl: utilization, con-
tention, profiling, call graph (critical path) analysis, average
bandwidth and statistics from the Pearl-level.

waiting for
clock message state

– – ready (if not scheduled)
– – running (if scheduled)
X – wait–for–clock
– X wait–for–message
X X wait–for–clock–or–message

Table 1. The s tate of objects .

2.3.1 Utilization analysis

Whenever an object is waiting for a message, it is said to be
idle, and when it is waiting for the clock, it is busy. When it
is in the state wait–for–clock–or–message, it is busy or idle
depending on how it is woken up: if it is woken up by a mes-
sage it was idle and if it is woken up by the clock it was busy.
The total amount of virtual time spent as idle or busy is trans-
lated into a percentage, which is displayed at the end of the
simulation for every object.

2.3.2 Contention analysis

The contention analysis and the utilization analysis are com-
bined in the output, as the amount of time the objects were
idle and busy is differentiated for the number of messages in
the message queue. This gives an indication of how much
time is spent with queued messages. If there are messages
queued for a considerable amount of the time in which an
object is busy, this may be an indication that there exists a
bottle–neck in the architecture.

2.3.3 Profiling analysis

The virtual time spent in each method is counted so the com-
puter architect can determine where time is spent inside the
object. If it turns out that time is spent mostly in just one
or a few methods, the computer architect can then decide to
optimize those methods.

2.3.4 Call graph analysis

The most complicated analysis supported by the Pearl kernel
is the call graph analysis. At the end of every idle period, the
kernel traces back to see which objects were responsible for
the objects being idle. For instance, the call–graph analysis
can determine that a processor–object is actually waiting for
a memory–object, even though it made a request to a cache–
object (which resulted in a miss).

2.3.5 Average bandwidth

The size of the parameters at each method call is added to
a total. For each two objects, the total size is accumelated

2



and at the end of the simulation, it is divided through the vir-
tual time. This results in an average bandwidth of commu-
nication between objects. This can help the computer archi-
tect to decide how to place the architecture components on a
board, so the communication between them does not pose a
problem. Note that only the average bandwidth is used and
that peak bandwidth is not taken into account.

2.3.6 Pearl–level statistics

In case there are statistics from the Pearl simulation that are
not supported by the standard statistical analysis, the Pearl
program must accumulate the statistics itself. A typical ex-
ample of this is, for instance, the hit rate of a cache. At the
end of the simulation, a special method is called in every ob-
ject, in which the Pearl program is given the chance to print
these statistics.

2.4 Interpreting the statistics

When running a Pearl simulation with a large number of
objects, the postmortem output would be a couple of thou-
sands of lines. It can therefore get very tedious for the de-
signer to get a global overview of the performance issues of
the simulation. A set of tools called RAPID[9] is available
to gather data from vast output files, but it is still cumber-
some to get a good indication of specific performance issues.

Besides it being awkward to interpret the simulation, the
statistical analysis provided by Pearl does not always give
any insight into why the performance of the simulated archi-
tecture is what it is. Often exceptional events in the simula-
tion can result in unpredicted behaviour, and Pearl does not
help the designer to trace those events. Consequently, the
designer will add a print statement at every event, redirects
the output to a file which can easily grow to over a few tens
of megabytes. This indicates that a better way of presenting
the statistics with, for instance, a graphical user interface is
desired.

3 The GUI–support library

As described in the introduction, it was very important
that the GUI–support is flexible in use. This was accom-
plished by shifting the description of the GUI to a seperate
file, and thus making the Pearl program independent of the
GUI. Besides that, the user should be able to make a selec-
tion of which statistics on what events or values, should be
displayed. From these two requirements the framework of
the GUI–support library evolved.

This framework consists of a so called canvas, the main
window, with a few controls which make it possible to run
the simulation in three different modes: continuously, per
time step, and per scheduled event.

On the canvas, small windows can be placed, each win-
dow depicting an object. Every object can have only one
window, but if the object is not interesting, it does not need
to have one. Visualizing widgets, or in short visuals, can be
placed inside the object–windows. Visuals come in various
types and they display statistics from the objects.

Defining visuals is done in three steps:

1. Determining which statistics from the simulation are
interesting.

2. Doing (optional) transformations on these statistics.

3. Determining in what way to present the (possibly
transformed) values.

3.1 Statistics from the simulation

The statistics from the simulation that can be retrieved by
the GUI–support lead to types of analysis that are quite simi-
lar to the original types of analysis without the GUI–support.
The kinds of analysis that are supported are utilization, con-
tention, profiling and analysis at the Pearl–level.

3.1.1 Utilization analysis

To determine the utilization of an object the interesting states
are wait–for-clock, wait–for-message and wait–for–clock–
or–message.

The utilization analysis by the GUI–support is slightly
different from the original statistical analysis of Pearl. In-
stead of an object being busy or idle, there is a new def-
inition of the state. In this new definition there are three
states, called work, wait and idle. Their definition is re-
lated to Pearl’s definition of state. An object is in state
work when the Pearl state is either wait–for–clock or wait–
for–clock–or–message. When the Pearl state is wait–for–
message, the object is said to be idle. The only exception
to this, is when an object is waiting for the reply message
from a synchronous communication. Then the object is in
state wait.

The problem that remains is the dubious interpretation
of the Pearl state wait–for-clock–or–message, as it can both
be interpreted as the object being idle or busy. This prob-
lem also exists in the statistical analysis of Pearl without the
GUI–support. However, it turns out that the way this state
is used, it is almost always interpreted as busy. Therefore
wait–for-clock–or–message maps to the state busy.

The advantage of identifying the state wait is that it gives
an opportunity to find objects responsible for other objects
being idle. This is a property that is usualy detected by ana-
lyzing the statistics from the call graph analysis from Pearl.
Making the statistics of the standard call graph analysis ac-
cessable for the GUI–support would not be difficult, but us-
ing it in a GUI would be quite cumbersome. For every pair

3



of objects in the simulation, a number is stored containing
the statistics on the call graph analysis. That means that the
size of the statistical data on call graph analysis is related to
the square of the amount of objects. If this should be visu-
alized, then a selection from these statistics must be made.
The problem is that it is often hard to predict where the crit-
ical path really is. Using state wait is less sophisticated but
gives a clear indication where objects wait on other objects.
For example, the amount of time that a processor object is
in the state wait is the sum of the time it is waiting for the
cache and (indirectly) for the memory.

3.1.2 Contention analysis

As indicated before, the message queue length can be an
indication of the amount of contention around an object.
Whenever a message is sent to an object, it is queued in
a buffer. If the object is unable to enter the appropriate
method, the message remains queued. When the message
queue length of an object is non-zero on a regular basis, it is
an indication that the object suffers from contention. There-
fore, the message queue length is the second statistic that can
be derived from a Pearl–simulation.

3.1.3 Profiling analysis

Every time a method is invoked, a counter for that method
is increased, and when it exits from the method, the counter
is decreased. The values of these counters can be retrieved
by the GUI–support and with these values, a profile of the
object can be made. Because of the way the counter works,
it is also possible to detect recursion.

3.1.4 Pearl–level analysis

The last means of collecting statistics from the simulation
is from data at the Pearl–level. This is done by tracing the
values assigned to global variables.

3.2 Dealing with statistics

Most of the values that are derived from the simulation
have a temporal character; they only provide information on
the simulation at the moment that they were derived. When
going through a simulation step by step to get a better under-
standing of what is happening, this is desirable, but when the
simulation is run continuously, a snapshot is not interesting.
One would like to see statistics from the simulation describ-
ing performance behaviour over a longer period of the sim-
ulation. This leads to dividing values from the simulation in
two catagories.

snapshot values are values that say something about the
simulation at a particular moment in the simulation.

integrated values are values that say something about the
simulation over some time interval.

The objective is to make integrated values out of snap-
shot values. This is accomplished by introducing a number
of simple transformations on raw values. These transforma-
tions form only one of the three steps in the path from the
simulation to the GUI. The complete path is:

� Retrieving raw values.

� Transformations on the raw values.

� Grouping values.

The last two of those steps are optional. To get a bet-
ter understanding of how the transformations work, they are
represented as some abstract structure. Because the interme-
diate results on this path form a handle to the values from the
simulation, these abstract structures have been called han-
dles.

3.2.1 Retrieving raw values

To get a better understanding of dealing with the values, an-
other catagorization is made.

quantative values are values that are a quantity, such as
the hit–rate of a cache object.

event values are values that describe an event being raised
or not, such as a value describing whether or not a
cache object is busy fetching a new cache block.

Typically, event values are of a boolean nature. However,
the message queue length, which indicates the event of an
object suffering from contention, can be any value greater
than 0. The same goes for the method invocation counter,
which also detects an event, but can be any value greater
than 0. The state of an object is even worse, as it can have
three enumerated values (busy, idle and wait).

For the state of an object, the solution is simple. In-
stead of having only one enumerated value that represents
the state of an object, there are three status values, one for
each state. The values are 1 if the object is in the appropri-
ate state, and 0 otherwise.

Sometimes the enumerated value can be useful (for in-
stance by associating every state with a color and displaying
that in one visual). For that purpose, the enumerated value
can be used translating to an integer that is either 0, 1 or 2.

For the message queue length and the method invocation
counter things are not much different. Sometimes the actual
number of messages in the queue is what is needed, while
in other situations it is enough to know there is one or more

4



messages in the queue. The same goes for the method invo-
cation counter. Therefore, it is possible to specify the val-
ues of the message queue length and the method invocation
counter as booleans. The GUI–support takes care that val-
ues declared as boolean will be 0 if the actual value is 0, and
otherwise it will be 1.

It is possible to pass raw values directly to the GUI–
support library. However, this is only of use when the
value in question is an integrated value. The logic behind
this is simple. Snapshot values have a tendency to change
very fast. Suppose we were to display the snapshot value
of, for instance, the message queue length, in continuous
mode. Because the message queue length changes rapidly,
the value displayed would never be stable and it would be
impossible to draw conclusions from it.

On the other hand, when going through the simulation
step by step, it usually is to get a better understanding of
what is actually happening in the simulation. This is done
by looking at the events occuring at a certain moment and
their effects on other events. The words “at a certain mo-
ment” already state that what is visualized, must be snapshot
values.

3.2.2 Transformations on raw values

Most values derived from the simulation are snapshot val-
ues. If the simulation is running in continuous mode, it is
required that the snapshot values are being translated to in-
tegrated values. This is done by sampling the value at regu-
lar intervals. With the acquired samples of the behaviour of
the value over a longer period can be determined.

Currently, there are four handles that are used to trans-
form snapshot values into integrated values. They are called
smooth, history, sum and average.

The fastest way to convert a snapshot value into an in-
tegrated value is by using smooth. When the smooth han-
dle is applied, the value that is being smoothed is sampled at
regular intervals. The smooth handle has three parameters,
the value that is being smoothed, the time between sampling
and the weight for the currently sampled value. This weight
is used when calculating the new smoothed value, which is
the weighted average of the old smoothed value and current
value. When the weight for the current value is relatively
low, the smoothed value will approximate the average of the
sampled values.

The second transformation that samples a value on regu-
lar intervals is history. Unlike what is done by the smooth
handle, a history of these samples is kept. Such a history can
either be used for further processing with handles, or it can
be passed directly to the GUI. In that case, the entire range
will be displayed in one visual.

The history handle also has three parameters. Just like
smooth, the first two are the sampled value and the time be-

tween samples. The third parameter is the number of sam-
ples the history keeps.

The sum and average handles are strongly related to the
history handle. In fact, the sum and average are only defined
on histories. Whereas history goes from one value to a range
of them, sum and average go from a range to one value. The
names are self–explanatory: sum sums up all the values in
a range, while average calculates the average.

The combination of history and sum or average presents
the second way to convert snapshot values to integrated val-
ues. An often used technique is to take a (raw) value that
can be either 0 or 1, make a history of length 100 from it,
and define a sum handle on the resulting history. The result
is an (integrated) value which gives the percentage of time
the raw value was equal to 1. This technique works on all
values that have a boolean character.

The advantage of using the combination of history with
sum and average instead of smooth, is that if enough sam-
ples are used in the history, it is more stable than smooth,
because smooth only averages over two values. The disad-
vantage is that it takes more memory, because all samples of
the history must be stored.

3.2.3 Grouping values

The last step that can be taken before visualizing, is to group
values together so they can be displayed together. The group
handle is used for this. It doesn’t do anything with the val-
ues, but only tells the GUI the values should be displayed
together in one visual.

3.3 Visualizing widgets

In the GUI–support library, there are five types of visuals
that make use of three different ways of displaying a value.
These three different ways are: by a colour, by the length
of a bar, or verbatim. Using the length of a bar is conve-
nient when displaying quantitive values. On the other hand,
it turns out, that event values are better interpreted if they
are represented by a colour rather than the length of a bar. In
case of step–by-step simulation, the event can be displayed
as being raised or not in two colours. When simulating in
continuous mode, the amount of time an event was raised
can be displayed as a range of colours, but also as the length
of a bar. The choice between those two depends on the char-
acteristics of the value and what the designer wants to detect
from them.

To get a clear picture of a simulation as a whole, using
colours is the easiest to interpret. Especially utilization and
contention can be seen in a glance if for instance the colour
red is associated with high contention, and blue with low
contention. However, values that are instable, would change
colour all the time and reduce the clarity of the GUI drasti-

5



cally. Such values are only of use in step–by–step simulation
or after they are first made integrated values.

3.3.1 Visualizing a value by the length of a bar

There are two visuals that use the length of a bar to display a
value. They are called graph and diagram, and are displayed
in Figure 2.

Graph Diagram

Figure 2. The vis ual– types graph and diagram.

The diagram takes a group of values and draws a num-
ber of bars of which the lengths are relative to the values.
As the value changes, the length of the bar changes as well.
The graph shows the recent past of a value. It scrolls from
right to left and new values are being drawn on the right. The
metrics of the value are omitted because it reduces the clar-
ity of the GUI.

The diagram is exceptionally convenient if there are
more diagrams displaying the same value but from differ-
ent objects, so it is possible to compare. Objects that show
different behaviour than the others, which are generally the
interesting ones, will be noticed very easily. This is a prop-
erty that all visuals that abstract from the exact value posses.

The graph visualizes the behaviour of a value over the
most recent past. It allows the designer to look at a time slice
of the simulation and monitor the statistics of which the de-
signer has a suspicion they are influenced by special events.
An example could be when the hit rate of a cache over some
time period is drawn in a graph. When one of the simulated
processors does a context switch, this will be clearly visi-
ble, because the hit rate will initially drop. Hence, the graph
allows the designer to see these events happen at runtime
rather than seeing the overall hit rate be emitted at the end
of the simulation.

3.3.2 Visualizing a value by a colour

There are also two visuals that use the colour to display a
value. They are called history and event, and are displayed
in Figure 3.

The history does with event–like values, what the graph
does with quantities. The same relation also holds for the

History Event

Figure 3. The vis ual– types history and event.

visual–types event and diagram. When simulating step–
by–step, the event visual is used to display events as being
raised or not, and the history visual to display their recent
past. However, the history and event visuals can do more.
When simulating in continuous mode, it is also interesting
to use them to display quantative values, when wanting to
compare the values with similar values from other objects.
Displaying a quantative value as a colour is done by assign-
ing a colour to the upper and lower bound of the value and
have a number of shades between the two extremes.

3.3.3 Displaying the exact value

There is one visual type, that displays the exact value. It is
called value, and an example of it is displayed in Figure 4.

Figure 4. The vis ual– type value.

This visual–type is used when the exact value is required.
It displays a name associated with the value (such as the
name of the global variable, or a method), followed by the
value. Using this visual a lot will result in a decrease of the
clarity of the GUI. It should therefore be used with some
care.

3.4 Agile

Describing the gui, using the structures which were de-
scribed in the previous sections, is done with a list of state-
ments in a special file. For this purpose, a language, called
Agile (A Graphical user Interface LanguagE), has been de-
veloped.

As the name suggests, Agile is a flexible and powerful
language. It is possible to specify a complete GUI with a
minimal amount of effort. Descriptions of GUIs in Agile
consists of three parts: a series of statements setting up the

6



environment, the placing of the objects, and the declaration
of the visuals.

width 44;
height 44;
border 0;
color bg hotpink;

(a)

place router.* (3,3) (8,8);
wrap router.* 4;
xoffset router.* 10;
yoffset router.* 10;

(b)

Figure 5. Some examples of Agile s tatements

The first part describes the environmental parameters of
the canvas. Figure 5a shows a few examples of statements
that are part of this section. Things like the size of the
canvas, its background colour and whether or not object
windows should have a border are defined there. The sec-
ond part, placing the objects, defines where the object win-
dows will be located on the canvas. Figure 5b shows how
a range of windows associated with a range of router ob-
jects are placed in a two–dimensional array with only four
statements. In this particular example, windows are placed
from left to right and wrap around after 4 objects. After it
wraps around, the next window is placed beneath the first
one again.

The third part is the creation and placing of the visuals. In
Agile, it is possible to describe the raw value, the transfor-
mations, the visual type and the parameters that are required
in just one statement. For instance, the line

display
value sum (

history router.*:method route (100,10,100)
)
(0,2) (8,2);

will create a visual of type value in each of the windows
all of objects router. The top left corner is at the coordi-
nates (0,2), it is 8 units wide, and 2 units high. The history
contains 100 elements which are sampled at intervals of 10
ticks. So in the visual, the percentage of time that the object
was in the method route over the last 1000 clockticks is
displayed.

It turns out that besides being flexible, Agile is also very
compact. Typically, files used to describe the GUI are some-
where between the 50 and 80 lines.

4 Using the GUI–support; a case study

During the design and implementation of the GUI–
support library, a simulation of a multi dimensional network
functioned as one of the testcases. The simulated network
consists of 49 nodes in a 7x7 matrix, which are connected
as either a mesh or a torus. It is possible to select between
two routing strategies[1], XY routing or routing based on the

Bresenham[3] algorithm (graphical routing). Messages are
partially generated using a random distribution and a small
percentage of all messages is always sent to the node in the
center of the network, thus creating a hotspot.

Within the simulation, every node consists of 6 objects: a
processor, a router and four channels. Because the processor
does not produce any interesting statistics, it is not displayed
in the GUI.

From the router objects, the average network contention
overhead is displayed. The latency that a message would
have when there is no contention, can be calculated. Every
clock tick that it takes longer, is overhead. When the total
overhead is multiplied by 100 and divided by the total of the
expected latency, the result is a percentage of the overhead.
This percentage, which is stored in a global variable, is dis-
played in a history visual, so when the simulation reaches
a steady state, this can be detected by the history being just
one colour.

The optimal configuration of a network under a given
load, is when there is as high utilization and as little con-
tention as possible. Because the router objects are only used
to measure contention, the channel objects are used to ana-
lyze the utilization. There are two possible ways to do so.
The first option would be to look at the time that is spent in
the method that is used by the channel to pass the message
to the adjacent router. However, this entity also accounts
for the time that the channel is waiting on that router before
it is ready to receive the message. This amount of time is
contention overhead and should not be interpreted as time
in which the channel object was busy. Therefore, using the
state of the object is more appropriate. A history is made
from state work, which is summed, and then used in an event
visual.

The next step is to tune the visuals so the values are dis-
played in a way that the extremes of the values results in
the extremes of the colours. Because all latencies are sim-
ulated by the channels and there is no routing latency, the
channels can be fully utilized. This means that the interest-
ing values from the channel utilization range from 0% up to
100%. The load that is placed on the network is rather heavy.
After some experiments, it turns out that in worst case situ-
ations, there is an overhead of about 115%. Therefore, it is
displayed in a range from 0 to 115%. To give as much con-
trast as possible, all the colours of the spectrum are used to
depict the values. It only takes 5 statements of Agile to pro-
duce these visuals, of which a single one look like this:

display
event(sum(

history north.#:state 0 (400,25,126)
[100]))

(0,0) (2,2)
( blue-cyan[25]-green[25]-yellow[25]

-orange[25]-red[25]);

7



0 %

5 %

10 %

20 %

Graphical XY

Figure 6. XY and Graphical routing in a torus

The syntax of this statement may look somewhat fright-
ning. It may seem that it is very error prone to specify a GUI
with Agile. That is one of the reasons we intend to build a
modelling environment which generates these statements.

Once the GUI has been added and the simulation is run,
the performance difference between graphical routing and
XY routing can easilly be visualized, especially with a rel-
atively high percentage of the hotspot. Figure 6 compares
XY and graphical routing in a torus for hotspots of 0%, 5%,
10% and 20% of all the message traffic.

With no hotspot at all, there is no difference. All routers
and channels behave identically. When the hotspot is 5%,
the difference is already visible. The router and the channels
of the hotspot are slightly less dark with graphical routing

0 %

5 %

10 %

20 %

Graphical XY

Figure 7. XY and Graphical routing in a mes h

than in the case of XY routing. Besides, the nodes north
and south from the hotspot suffer from a higher contention
than the other nodes. At 10% hotspot, the simulation starts
developing a hot region when using XY routing, whereas
the graphical routing still only gives heavy contention at the
hotspot. At 20% hotspot, the difference even gets worse.
The hot region of XY routing shows three nodes where the
contention is very high and two where it is above average. In
graphical routing it is still only the one hotspot, and adjacent
nodes being just slightly darker.

However, it turns out that when configuring the network
as a mesh, rather than a torus, the drop in performance is
quite significant.

Without a hotspot, the performance of XY routing is just

8



moderately less than when the network was configured as a
torus. However, with graphical routing there is a hot region
of nine nodes and twelve other nodes have a significantly
higher contention than in the torus configuration. When a
hotspot is introduced in the center, the contention gets less.
The reason for this is that the central position of the hotspot
makes the total amount of hops decrease, while the number
of messages stays the same. In the torus configuration this
did not influence the total number of hops, because the torus
wraps around and has no notion of “central”. The behaviour
of XY routing with an increasing hotspot is entirely differ-
ent than with graphical routing because XY routing gives a
better utilization of the channels at the edges of the mesh.

Although a more detailed study would be required to
make a more precise statement, it is not possible to say
which of the two routing strategy is better, since it depends
on the circumstances.

Of course, this conclusion could also have been taken by
using simulation without a runtime GUI. However, using
a GUI makes it much easier to interpret the results of the
simulation. Just a glance at the GUI after it reached steady
state indicates around which nodes the contention is concen-
trated, and how heavy it is. If the designer wants to evaluate
the contention of every node without a GUI, it requires dig-
ging through the output of the simulation and extract the per-
centages of the latency overhead. These percentages come
in plain text, and although they are more accurate than inter-
preting a colour, it takes much longer before the same under-
standing is reached as with a GUI.

5 Summary

In this paper, the support for a Graphical User Inter-
face(GUI) for the computer architecture simulation lan-
guage Pearl was introduced, which allows visualization of
runtime behaviour of computer architecture simulations.
Because Pearl provides great flexibility in the design of sim-
ulations, it was required that the GUI–support be generic.
This was accomplished by making the definition of the GUI
independent of the Pearl code, which also allows one to
add a GUI to older simulations, which were built before the
GUI–support existed.

Originally, the GUI–support was designed to get a better
and faster understanding of the simulated architecture and
its performance. It turns out, that it can be used in several
situations in which knowledge about a computer architec-
ture has to be aquired or passed on to someone else. Such
a situation can, for instance, also be part of an educational
process.

The GUI–support can be used in two distinct modes. In
case the designer wants to get a better understanding of the
simulated architecture, it is possible to go through the simu-
lation step by step, so the events that are greatly effecting the

performance of the simulated architecture can be detected as
they occur. A more broader view is given when the simu-
lation is run in continuous mode. In this mode, an impor-
tant part of the GUI–support is used which allows integrat-
ing raw values from the simulation over a certain time inter-
val.

Because Pearl is an object oriented simulation language,
the GUI is based on the objects that exist in a simulation.
The designer specifies the GUI in a compact language called
Agile, which creates the building blocks of the GUI, such as
transformations on values and the widgets to visualize the
statistics, called visuals. Visuals come in various types and
every type has the ability to visualize specific characteristics
of the values from the simulation, such as the behaviour in
time, or just a snapshot of a value.

Although there is still a lot of work that can be done on
the GUI–support, the case study that was discussed in this
paper showed that clear runtime visualization of computer
architecture simulations can be accomplished with simple
building blocks. Combined with the underlying flexibility
of Pearl, this makes the GUI–support a powerful tool and a
great asset to Pearl.

References

[1] Didier Badouel, Charles A. Wüthrich, and Eugene L.
Fiume. Routing strategies and message contention on
low–dimensional interconnection networks. Techni-
cal report, Computer System Research Institute of the
University of Toronto, 1991.

[2] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian
Colbrook, and William A. Weihl. Proteus: A High–
Performance Parallel–Architecture Simulator. Tech-
nical report, Massachusetts Institute of Technology,
September 1991.

[3] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics, Principles
and Practice, Second Edition. Addison-Wesley, Read-
ing, Massachusetts, 1990.

[4] Erik Hagerstein, Anders Landin, and Seif Haridi.
DDM – A Cache–only Memory Architecture. Reseach
report R91:19, Swedish Institute of Computer Science,
November 1991.

[5] Henk C. Kok. Visualizing Computer Architecture
Simulations — Graphical User Interface Support for
Pearl. Master’s thesis, University of Amsterdam,
1996.

[6] Henk Muler. Simulating Computer Architectures. PhD
thesis, University of Amsterdam, 1993.

9



[7] Henk Muller. Pearl: A Language for Architecture Sim-
ulation, February 1993.

[8] Andy D. Pimentel and L. O. Hertzberger. An archi-
tecture workbench for multicomputers. In Proc. of
the 11th InternationalParallel Processing Symposium,
pages 94–99. IEEE Computer Society Press, April
1997.

[9] Andy D. Pimentel and L.O Hertzberger. Rapid: Rapid
interpretation of data. Technical report, University of
Amsterdam, Januari 1997. CS–97–01.

[10] Paul W.A. Stallard, Henk L. Muller, and David H.D.
Warren. Performance Evaluation of Parallel Programs
on the Data Diffusion Machine. Proceedings of Per-
formance Evaluation on Parallel Systems PEPS’93,
pages 94–101, 1993.

10


