
A Computer Architecture Workbench

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam,

op gezag van de Rector Magnificus

prof. dr J.J.M. Franse

ten overstaan van een door het College van Promoties ingestelde
commissie in het openbaar te verdedigen in de Aula der Universiteit

op maandag 14 december 1998 te 11.00 uur

door

Andrew David Pimentel

geboren te Haarlem

Promotor: prof. dr L.O. Hertzberger (Universiteit van Amsterdam)

Commissie: prof. dr ir H.J. Sips (Technische Universiteit Delft)
prof. dr P.M.A. Sloot (Universiteit van Amsterdam)
prof. drs M. Boasson (Universiteit van Amsterdam)
dr H.L. Muller (University of Bristol)
dr W.G. Vree (Universiteit van Amsterdam)

Faculteit: Wiskunde, Informatica, Natuurkunde en Sterrenkunde
Kruislaan 403
1098 SJ Amsterdam
The Netherlands

Advanced School for Computing and Imaging

The work that is described in this thesis has been carried out in the ASCI graduate school
and was financially supported by:� Universiteit van Amsterdam, sectie Computer Architectuur & Parallelle Systemen� Philips Research Laboratories Eindhoven� Stichting High Performance Computing and Networking

ISBN 90-5776-017-7
ASCI dissertation series number 40.

c
�

1998 Andy Pimentel. All Rights Reserved.
Cover design: Willemijn de Lint.
Printed at Print Partners Ipskamp, Enschede, The Netherlands.

Acknowledgements

This dissertation could never have been completed without the help, sympathy and partici-
pation of many people. Therefore, the people I mention below deserve a round of applause.

First of all, I would like to thank my promoter, Bob Hertzberger. It is he who has guided
me during the past five years of research, while giving me a lot of freedom to define the scope
of my research. His feedback on drafts of this thesis certainly helped to improve its quality.
Bob, I am grateful for your support and the confidence you have placed in me. I really hope
that our co-operation will continue to be this fecund in the years to come!

After doing my Master’s, I was called up for military service and I suddenly realised that
it would be neat to become a conscientious objector (the simultaneous occurrence of these
two events was, of course, pure coincidence). Being a conscientious objector, this allowed
me to avoid the uselessness of serving in the army and to do something more serious by
performing research ... I mean, civil service ... at the IC � A (Interdisciplinary Center for
Complex Computer facilities Amsterdam). For this I thank Peter Sloot who arranged my
position at the IC � A.

Henk Muller has always been a mentor to me. Literally, he was one of the two gradu-
ation mentors for my Master’s (Benno Overeinder was the other one). After Henk left to
work at the University of Bristol, he continued to show interest in my work. Being one of
Henk’s apprentice wizards, it should be no surprise that many of the ideas presented in this
dissertation are in one way or another influenced by his previous and current work. Henk, I
hope to continue learning from you in the future. I thank you for giving me excellent com-
ments on draft versions of my thesis.

Special thanks go to two of my direct colleagues, namely Marcel “ace” Beemster and Jon
“type-checked” Mountjoy. During the past five years, Marcel has been a continuous source
of knowledge to me. Marcel, I am grateful for your patience to answer all my questions and
for allowing me to constantly borrow your books. You also did an excellent job in producing
valuable comments on this thesis. Thanks and keep on flying!

Jon is a person of the right type (I type-checked this). He has always been willing to
help me whenever my knowledge on the English language or on LATEX matters let me down.
Jon, I really appreciate your help and I will stop teasing you with your love for lazy (dis-)
functional languages ;-)

John van Brummen and Henk Kok directly contributed to this dissertation. John de-
veloped the initial version of Mermaid’s reality-based workload modelling framework and
Henk constructed Mermaid’s GUI for run-time visualisation. Guys, you did a great job,
thanks!

From Philips Research Laboratories in Eindhoven, I would like to thank all members
of the PROMMPT project team. Special thanks go to (in alphabetical order) Rudi Bloks,

iv

Jos van Eijndhoven, Evert Jan Pol, Frans Sijstermans, Pieter Struik, Marcel Tromp, Kees
Vissers and Pieter v/d Wolf for their direct involvement in my work.

Jonas Karlsson introduced me to the secrets of LH*LH. We have had several stimulating
conversations on the implementation details of this data structure. Jonas, thanks for your
help.

I would like to thank all the other (ex-)colleagues I have worked or socialised with.
Thanks Alfons, Arjan, Arjen, Ben, Benno, Berry, Dick, Drona, Edwin, Frank, Hamideh,
Hugh, Jaap, Jan, Jeroen, Joep, Martin, Pieter, Robert, Ruud, Theodossis, Theun, Toto and
Wim. Our secretariat deserves much gratitude for helping me with all kinds of organisa-
tional matters. They have made my life a whole lot easier. Thanks Hugo, Ina (who unfor-
tunately is not with us anymore), Laura, Monique and Virginie! I also thank Jan, Gert and
Robbert from our system group for their support and help.

There are, of course, people who were not directly involved in my work at the university
but who still earn a lot of appreciation. I thank my parents for everything they taught me.
Now, I am reaping the fruits of their lessons.

Last but certainly not least, I thank my dear wife Caroline for having such patience with
me. Never did she complain about the evenings, and sometimes nights, I spent behind my
computer or reading papers.

11th November 1998

Andy Pimentel

Contents

1 Introduction 1
1.1 Parallel computing . 3

1.1.1 Parallelism . 4
1.1.2 Parallelism is not a panacea . 5

1.2 Parallel computer architectures . 8
1.3 Organisation of this thesis . 12

I Simulation of parallel computer architectures 15

2 Computer architecture simulation 17
2.1 Trace-driven simulation . 19

2.1.1 Trace collection . 20
2.1.2 Trace reduction . 23
2.1.3 Optimising trace-driven simulation 25
2.1.4 Tracing of parallel applications . 27

2.2 Execution-driven simulation . 28
2.2.1 Instruction-level simulation . 28
2.2.2 Direct execution . 30

2.3 Simulation of parallel architectures . 32
2.3.1 Related work . 32
2.3.2 Discussion . 33

3 Mermaid 35
3.1 The simulation methodology . 36

3.1.1 The simulation environment . 37
3.1.2 Operation-driven simulation . 38
3.1.3 Computation versus communication 40
3.1.4 The implications of operation-driven simulation 43
3.1.5 Implementation issues of the operation-interface 43

3.2 Workload modelling . 45
3.2.1 Reality-based workload modelling 45
3.2.2 Stochastic workload modelling . 49

3.3 Architecture modelling . 53
3.3.1 The language Pearl . 53
3.3.2 Single-node computational model 55

vi Contents

3.3.3 Multi-node communication model 56
3.3.4 Putting it all together . 56

3.4 Analysis of simulation output . 58
3.4.1 The GUI–support . 58

3.5 Summary . 62

4 On the accuracy and efficiency of Mermaid 63
4.1 Validation . 63

4.1.1 The architecture model . 64
4.1.2 Experiments . 64
4.1.3 Discussion . 66

4.2 Simulation performance . 68
4.2.1 Mermaid’s performance . 69

4.3 Parallel Mermaid . 72
4.3.1 Parallel simulation performance 74
4.3.2 Discussion . 78

4.4 Summary . 78

II Case studies 81

5 Evaluation of a Mesh of Clos network 83
5.1 Wormhole routing . 84
5.2 The Mesh of Clos topology . 85

5.2.1 Routing . 88
5.3 The simulation approach . 88

5.3.1 Efficient wormhole routing simulation 89
5.4 Experiments . 89

5.4.1 Multiple flitbuffers . 93
5.4.2 Routing strategies . 97

5.5 Discussion . 98

6 Data prefetching for the TriMedia 101
6.1 The Philips TriMedia . 102

6.1.1 The TM-1 caches . 103
6.2 Data prefetching . 104

6.2.1 Static detection, static issuing . 105
6.2.2 Dynamic detection, dynamic issuing 106
6.2.3 Static detection, dynamic issuing 108

6.3 The simulation methodology . 110
6.3.1 The data cache model . 111

6.4 Experiments . 113
6.4.1 Hardware versus hybrid prefetching 114
6.4.2 Hybrid data-synchronised versus scalar prefetching 121

6.5 Validating our model . 125
6.6 Discussion . 127

Contents vii

7 Evaluation of LH*LH for a multicomputer architecture 129
7.1 Linear hashing . 131
7.2 The LH*LH SDDS . 132
7.3 The simulation model . 134

7.3.1 Validation . 136
7.4 Experiments . 137
7.5 Discussion . 144

8 Conclusions 147
8.1 Future work . 148

Bibliography 150

Dutch summary / Nederlandse samenvatting 162

Index 165

viii Contents

Chapter 1

Introduction

“Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and
weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and
perhaps weigh 1-1/2 tons.”

Popular Mechanics, 1949

The design of computer architectures is a difficult task due to the many tradeoffs and
the large design space architects have to deal with. Although good tools exist to aid the
computer architect in the design-phase, there are no real formalisms according to which the
actual design of the architecture should take place. Hence, much is left to the architect’s
experience and intuition. It is for this reason that computer architecture design is often called
an art rather than a science.

Most computer architects apply a top-down approach and, for this reason, use a design
cycle which is similar to the one shown in Figure 1.1. First, an initial architecture design is
made and specified at a low level of detail. Here, the architect should take the requirements
of the target architecture (e.g. the type of processor, I/O bandwidth, etc.) and the target ap-
plications (e.g. the programming model) into consideration. Using step-wise refinement,
the design is refined until it is specified at a level at which it can be implemented. This ap-
proach of step-wise refinement is an iterative process in which the architect is guided by
feedback obtained by evaluating (parts of) the intermediate designs. Typically, this eval-
uation aims at studying four characteristics of the architecture [97]: functionality, perfor-
mance, cost and physical requirements.

When evaluating the functionality of a design, it is checked whether or not the proposed
architecture works as it should, i.e. its functional correctness is verified. For this purpose,
quite a few tools are available of which many perform a detailed simulation of the architec-
ture. In other words, these tools imitate the functionality of the architecture in software. To
verify the architecture design, the simulation output for user-supplied input values is com-
pared to the expected values. This inferential approach carries, however, the risk that some
aspect of the design may not be tested. Therefore, an alternative approach based on formal
methods is gaining popularity. These formal verification tools use deductive reasoning tech-
niques borrowed from mathematics to compare the logic of an architecture directly against
the logic expressed in a functional specification. Although these techniques are promising,

2 Chapter 1. Introduction

Final design

Evaluation of design

Potential design

Figure 1.1: A typical design cycle.

they are still in their infancy and have difficulties with the verification of complex computer
architecture designs. A comprehensive discussion on formal verification techniques can be
found in [139].

To gain insight into the attainable performance of an architecture design and to detect
potential bottlenecks, a performance model of the architecture can be built. Doing so, one
could, for example, check whether or not the designed architecture meets the specified (if
any) real-time requirements. Moreover, the modelling of architecture performance also al-
lows for the scenario analysis necessary for studying the consequences of design decisions.
In other words, the performance model can give feedback to the architect regarding what-if
questions. It could, for example, give an estimation of the performance impact when chang-
ing (e.g. enlarging) the data cache of the processor.

In the past few decades, much research effort has been put in the performance evalu-
ation of computer architectures and, as a consequence, many techniques (and tools) exist.
Generally, all of these techniques are based on either analytical modelling or modelling by
means of simulation. In case of the first, a performance model is built using mathematical
equations [81, 59]. The main advantage of analytical modelling is its speed (response time).
When changing a parameter value in the model (e.g. the number of processing elements in
the system), a new performance estimation can be made in an instance. This allows the ar-
chitect to evaluate a large number of architecture designs, even the ones with ridiculously
large system parameters (e.g. 1 million processing elements).

Another pleasant feature of analytic models is that there exists a clear relation between
the model parameters. On the other hand, the most important drawback of this performance
evaluation technique is that accurate analytic models may easily become very complex. In
particular, the dynamic behaviour within architectures, such as contention in a network, is
hard to model accurately. For a more elaborate discussion on analytical modelling, the inter-
ested reader is referred to [1], which presents a good description of an analytic cache model.
Alternatively, in van Gemund’s dissertation [140], an excellent overview is given of the dif-
ferences between several analytical modelling techniques when evaluating the performance
of parallel systems.

In contrast to analytical methods, modelling by means of simulation can easily keep

1.1 Parallel computing 3

track of the dynamics in architecture behaviour. In fact, simulation models are capable of
modelling architectures at any required level of detail or, to put it differently, at any degree
of accuracy. There is, however, a tradeoff between simulation accuracy and efficiency: the
lower the level of detail of the simulator, the higher the computational demands of the sim-
ulation. Therefore, the major drawback of simulation is that it can be very computationally
demanding.

Generally, analytical modelling and simulation are supplementary rather than competi-
tive evaluation techniques. Although analytical modelling is more restricted than modelling
by means of simulation (it has a smaller domain of applicability), it often provides insight as
to how a model behaves under arbitrary experimental conditions. By contrast, one simula-
tion run only provides information on how the model behaves under the set of experimental
conditions applied during the simulation run. So, to quote François Cellier [20]:

“Only an idiot uses simulation in place of analytical techniques”

Compared to the rigorous methods to evaluate the functionality and performance of ar-
chitectures, the tools to evaluate the architecture’s cost and physical requirements, such as
the size or the power dissipation, are still in their infancy. As a consequence, this area of
architecture evaluation still heavily depends on the architect’s expertise.

It is, of course, dependent on the nature of the target architecture which of the four dis-
cussed evaluation aspects is important and which one is not. For example, a designer of
processors for calculators is more interested in the physical requirements and cost of the
design than in the performance. On the other hand, a supercomputer architect focuses on
performance rather than on cost and physical requirements.

In this thesis, we address the design of high-performance parallel computer architectures
and, in particular, we focus on simulation techniques for the performance evaluation of these
computer architectures. Before going into the details of computer architecture simulation,
the remainder of this chapter gives a short introduction on parallel computing and on the
computer architectures commonly used in this field.

1.1 Parallel computing

The development of faster computers is an ever continuing goal for computer architects.
Since the introduction of the Intel 4004 microprocessor in 1971, for instance, the perfor-
mance of microprocessors has increased with more than three orders of magnitude. This
significant achievement is due to the many architectural and physical improvements that
have been made to microprocessors in the last quarter of this century. Instruction pipelin-
ing, caching and branch prediction are just a few examples of the techniques, which were
already known from the field of supercomputer and mainframe architecture, that have been
introduced in microprocessor architectures to yield higher performance. Additionally, the
clock frequencies of microprocessors have increased from under the 1 MHz (the Intel 4004)
to several hundreds of MHz (e.g. the 600 MHz DEC Alpha 21164). In fact, 1 GHz (and
beyond) microprocessors are currently being announced. Moreover, the rapid advances in
packaging technology allow for higher transistor densities, which makes it possible to in-
crease the functionality (and thus more processing power or bigger caches) on a chip.

4 Chapter 1. Introduction

Unfortunately, there are some fundamental limitations that form, or will form, an ob-
stacle to the microprocessor performance push. First, the transmission speed on a chip is
limited by the speed of light. With the high clock frequencies and the small feature size of
chips, the large wire delays become an increasingly important dilemma which processor ar-
chitects have to face [14, 102, 26]. Second, the reduction of the size of chip components
is also constrained by physical limitations. As a matter of fact, efforts are already being
made to explore this limit by assembling molecular-sized or even atomic-sized components
[65]. Finally, there is the economical limitation. It becomes increasingly expensive to make
faster microprocessors. For example, running microprocessors at high clock frequencies
while still guaranteeing that a substantial amount of work is done within one clock cycle, is
a hard and especially expensive task.

A very natural solution to reduce the execution time (i.e. the wallclock time) of a pro-
gram, without being hit by the above limitations, is by performing independent calculations
simultaneously, or in parallel. So, instead of using a single fast and expensive computer, a
bunch of, potentially less expensive, computers could be used to solve a problem. To illus-
trate this, consider the following example which applies parallelism to people rather than to
computers. Imagine yourself being a mailman who has to take care for the distribution of a
number of letters. This requires each letter to be stamped after which it must be thrown into
the appropriate mailbag (destined for the correct town). However, if there were two people
to process the mail, then the letters can be divided among both persons and they can do the
work concurrently. Ideally, this halves the time it takes to perform the job for one person.
Because of the straightforwardness of this concept and its potential performance gain, many
of today’s computers exploit parallelism in one or another way.

1.1.1 Parallelism

The concept of parallel computing is not new. In 1842, general Menabrea [90] described
the Analytical Engine from Charles Babbage and wrote:

“When a long series of identical computations is to be performed, such as those
required for the formation of numerical tables, the machine can be brought into
play so as to give several results at the same time, which will greatly abridge
the whole amount of the processes.”

For a long period of time, the technology was not capable of realising these ideas. It wasn’t
until the late 1960’s, with the emergence of (V)LSI technology, that parallel computing be-
came reality. An example of one of these first parallel computers is the Illiac IV [36], which
contained an ����� array of processing elements. Although this computer was a technolog-
ical breakthrough (it was the first machine with a large number of processing elements), it
failed as a computer due to the fact that it was hard to program and had poor I/O perfor-
mance. Despite this, the Illiac IV was one of the important achievements that led to the
start of the parallel computing era.

Parallelism can be exploited at various levels. That is, the sub-tasks which are computed
in parallel can have different grain sizes. With respect to this grain size, roughly three types
of parallelism can be distinguished:

1.1 Parallel computing 5

� Fine-grained parallelism
Parallel computation is exploited at the level of instructions. An example is the In-
struction Level Parallelism (ILP) exploited by superscalar and VLIW microproces-
sors [10]. Their compilers and, in the case of superscalar processors, the hardware
are capable of scheduling multiple (independent) instructions such that they can be
executed simultaneously.� Medium-grained parallelism
Small or medium-sized sequences of code, such as procedures, are executed on differ-
ent processing elements. The use of threads, which are light-weight processes sharing
a single address space, can be regarded as a form of medium-grained parallelism. An
example of a thread-level parallel computer architecture is the Tera MTA machine [4].� Coarse-grained parallelism
An application is divided in large sub-tasks (potentially containing thousands of in-
structions) which are executed in parallel. For example, parallel programs adhering
to the SPMD (Single-Program, Multiple-Data) programming paradigm apply coarse-
grained parallelism [49]. In the SPMD paradigm, every processing element executes
a single common program, exploiting implicit parallelism by focusing on its share of
the multiple data.

For all three grain sizes, either data parallelism or functional parallelism can be exploited.
In data-parallel programs, such as the ones adhering to the SPMD model, each task performs
the same series of calculations but applies them to different data. In functional parallelism,
each task performs different calculations using either the same or different data.

1.1.2 Parallelism is not a panacea
The holy grail of parallel computing is to obtain a speedup of � when executing an ap-
plication on � processing elements. We define speedup as the time needed for sequential
execution divided by the parallel execution time. In other words, if we double the number
of processing elements, then we would like to get twice the performance. When this is true,
the parallel application is called to be scalable.

It was Gene Amdahl in 1967 who indicated that parallel computing might not have the
high performance potential everyone thought it had [5]. In his paper, Amdahl advocated the
use of sequential computing rather than parallel computing as the latter form of computa-
tion is less cost-effective. This proposition was based on the following observation. When
looking at one specific application and a fixed program input, linear speedup (i.e. perfect
scalability) of the application is often not possible, while the cost of the parallel machine
generally does scale linearly (or faster) with the number of processing elements. The inca-
pacity of scaling the application is due to the presence of sequential components which can-
not be parallelised. To illustrate this, consider Figure 1.2 which shows a possible task graph
of a data-parallel program. In this figure, the edges denote the dependencies between the
tasks and the numbers within the tasks give the processor number on which a task is sched-
uled. The length of the critical path between the start and end nodes defines the minimal
execution time of the application. Hence, it specifies the upper bound on the speedup. As
the start and end tasks of the application in Figure 1.2 are inherently sequential, scaling the

6 Chapter 1. Introduction

(b)(a)

Ti
m

e

1

1

1 2 1 2 3 4

1

1

Figure 1.2: A task graph of a data-parallel application.The numbers in the tasks refer to
the processors on which the tasks are scheduled. Scaling the application from 2 processing
elements (a) to 4 processing elements (b) does not double the performance.

application from 2 to 4 processing elements does not double the application’s performance;
only the performance of its parallel component is improved, not that of its sequential com-
ponents. Amdahl formulated this as follows, which is commonly referred to as Amdahl’s
law: �
	�������	�� �������
where � is the fraction of the program which is inherently sequential,

	
is the parallel fraction

of the program and � denotes the number of processing elements. So, if only 80% of an
application can be parallelised, then the upper bound on the speedup is 5, regardless of how
many processing elements are used.

The maximal attainable speedup is usually not obtained. The reason for this is that par-
allel execution typically requires synchronisation to coordinate the information exchange
between the parallel tasks. This synchronisation process may introduce latencies when par-
allel tasks are waiting for each other to complete. The overhead of these synchronisations
determines at which grain size parallelism can be effectively exploited. Fine-grained paral-
lelism, for instance, requires frequent synchronisation, basically after executing one or only
a few instructions. Therefore, the synchronisations must be cheap. On the other hand, syn-
chronisations in coarse-grained parallel applications are much less frequent. As a result,
these applications can tolerate higher synchronisation overheads.

Consider again the example in which a bunch of letters has to be stamped and ordered
according to the town of destination. Figure 1.3 shows the task graph of a possible parallel
algorithm for this application. Note that this algorithm is not meant to be the most efficient
one but it is only used for the purpose of illustration. Initially, processing element 1 dis-
tributes the letters evenly over processing elements 1 to � . Each of these processing ele-
ments stamps the letters and deposits them into a new mailbag, called the stamp-bag. There
is one private stamp-bag per processing element. When the stamp-bag of a processing el-
ement is full or there are no letters left to be stamped, the stamp-bag is sent to one of the
elements � � �

to � and the the process of stamping can be continued using a new, empty
stamp-bag. Subsequently, the processing elements � � �

to � sort the letters from the in-
coming stamp-bags. To do so, they deposit each letter into a container which is headed for

1.1 Parallel computing 7

Ti
m

e

1

1

1

1

1

N

N

N

1 N

N+1

N+1

N+1

M

M

M

MN+1

Stamp letters

with the same destination

Sort letters

Stamp-bag B-1

Stamp-bag 1

Stamp-bag 2

Stamp-bag B-1

Stamp-bag B

Stamp-bag 2

Stamp-bag 1

Stamp-bag B

Merge the containers

Figure 1.3: Stamping and ordering mail: a possible parallel algorithm.

the appropriate town. There is one container per destination for each of the elements � � �
to � . Finally, when all sorting is done, processing element 1 receives the per-town con-
tainers from elements � � �

to � and merges the containers that are destined for the same
town. If there are � stamp-bags stamped and sorted, then the critical path of this algorithm
consists of � ��� steps of which there are � parallelised.

The process of synchronisation is clearly shown in Figure 1.3: a stamp-bag cannot be
sorted until it is received from the processing elements which stamp the letters. For this
reason, elements � � �

to � are running one step behind with respect to the elements 1 to� .
Scaling this algorithm to a large number of processing elements could result in high syn-

chronisation overheads. Imagine, for instance, the extreme case where there are 100 peo-
ple to process 100 letters (i.e. � = 50 and � = 100). So, each person receives one letter
after which he or she can forward the letter immediately. In such a situation, a substantial
amount of time is spent on exchanging the letters rather than on stamping and ordering them.
A potential solution to this problem is by scaling the data size on which the computations
are performed, e.g. by increasing the number of letters which have to be processed. This
brings us to another famous definition of scalability, namely that of Gustafson [50]. This
definition essentially states that doubling the number of processing elements should allow
the computation of twice the problem size within the same time. So, rather than keeping the
problem size constant like Amdahl’s definition dictates, Gustafson’s definition of scalabil-
ity assumes that the problem size is scaled as well. This implies, however, that Gustafson’s

8 Chapter 1. Introduction

definition can only be applied to data-parallel applications as they allow the problem size to
be easily scaled.

Evidently, computer architectures may benefit from parallelism in order to yield higher
performance, but parallel computing is certainly not a panacea. Although the basic concept
of parallelism is straightforward, its effective exploitation is far from trivial. For this reason,
a lot of research has focused on finding techniques to automate the search for and exploita-
tion of parallelism. In some areas, this research effort has led to commercially viable prod-
ucts. For example, most of today’s microprocessors are superscalar. These processors dy-
namically issue instructions to their multiple execution units, thereby exploiting Instruction
Level Parallelism (ILP) at run-time. Basically, this process is hidden from the programmer,
who is therefore not bothered by the tedious task of finding the parallelism. Another, and
slightly older, success story is vector processing. For computer systems containing vector
co-processors [52, 143] (which will be described in the next section) and vectorisable appli-
cations, current compiler technology is sufficiently mature to generate code that effectively
utilises the vector processors. As a consequence, vector computing has been an accepted
and widely-used parallel computing technique for several decades now. However, because
of their high cost, vector computers are more and more superseded by less expensive MIMD

parallel platforms, which will be discussed in the next section.
In the areas where more coarse-grained parallelism is involved, the exploitation of par-

allelism is less implicit. In these cases, the programmer may have to invest a substantial
amount of time to restructure or reprogram applications in order to make them suitable for
parallel execution. Several efforts have been made, and are still being made, to assist the
programmer in this process of parallelisation. For instance, to improve the portability of par-
allel applications, products such as PVM [136] and the MPI [41] standard provide a generic
interface for the creation of and communication between (coarse-grained) parallel tasks. As
both PVM and MPI implementations are widely available, the applications using their in-
terfaces can more or less be readily executed on a wide range of parallel platforms.

Another example is High Performance Fortran (HPF) [54], which is a data-parallel SPMD

language. In this programming language, the programmer explicitly specifies both the dis-
tribution of the data over the processing elements and the parallel operations that must be
applied to the data. The compiler automatically translates the memory references to non-
local data (residing in some remote memory) into communication primitives which request
the remote data.

Despite of all these initiatives, many of the techniques and tools are still not sufficiently
mature to provide the desired basis for the development of coarse-grained parallel applica-
tions. Programming these applications still requires the programmer to be highly skilled,
especially in comparison with traditional sequential programming. So, there remains room
for improvement in order to make the exploitation of coarse-grained parallelism more user-
friendly.

1.2 Parallel computer architectures
Having described several different forms of parallelism, a similar distinction can be made
for the computer architectures which actually perform the parallel computations. An old but
still widely-used classification of computer architectures was proposed by Flynn in 1972

1.2 Parallel computer architectures 9

Data streams
Single Multiple

Instruction Single SISD SIMD

streams Multiple MISD MIMD

Table 1.1: Flynn’s taxonomy of computer architectures.

[39]. This classification takes two dimensions into account: the instruction stream and the
data stream. The first dimension indicates how many instruction streams are executed in
parallel, while the second dimension specifies how many data streams are operated upon
in parallel. As a result, four types of architectures can be distinguished, which are listed in
Table 1.1.

Pure sequential computers (i.e. traditional Von Neumann architectures) belong to the
class of SISD (Single-Instruction, Single-Data) computers. They execute one instruction
stream which processes a single data stream. Architectures in the remaining three classes
contain multiple processing elements. In the class of MISD (Multiple-Instruction, Single-
Data) computers, multiple processors operate on a single data stream. Only a few actual
examples of these computer architectures exist, like the special-purpose systolic arrays [73].
The MISD class was included more for the sake of orthogonality than to identify a group of
actual computers.

Computers from the SIMD (Single-Instruction, Multiple-Data) class have been around
for about 30 years now and, to a certain extent, quite successfully. As its name already sug-
gests, a SIMD architecture is inherently data-parallel. Basically, this class can be subdivided
into two categories: vector computers and array processors. A vector computer contains
pipelined vector units which allow operations on whole vectors (arrays of possibly hundreds
of data elements) at once. Vector computers are considered to be SIMD because the various
stages of a vector pipeline are simultaneously working on different data elements within
the vector. Well-known examples of vector machines, which are generally used for scien-
tific number-crunching applications, are the traditional supercomputers. The most famous
of these machines include, of course, the ones that belong to the Cray family, such as the
Cray Y-MP.

The alternative class of SIMD architectures, namely that of array processors, is some-
what different. These machines typically consist of a large number of, often simple, pro-
cessors which are connected in a network to exchange data with each other. All of these
processors synchronously execute the same instruction in parallel, where each processor ap-
plies the operation to its own (local) data elements. The application domain of this class of
architectures is usually restricted to scientific computing and image processing. The Think-
ing Machines CM-2 is an example of an array processor which exploits fine-grained paral-
lelism [143]. It contains up to ��� � processing elements that can perform bit-serial operations.
Naturally, more coarse-grained array architectures also exist, such as the TM CM-5 which
contains up to �!�#" 32-bit (and 64-bit floating point) Sparc processors [125, 143].

Nowadays, the MIMD (Multiple-Instruction, Multiple-Data) architecture is probably the
most popular type of parallel machine. Unlike SIMD architectures, MIMD computers al-
low asynchronous operation in which each processor executes its own program (instruc-

10 Chapter 1. Introduction

(b)(a)

Network

M M

PP

Network

MM

PP

Figure 1.4: The two memory organisations for MIMD architectures: a distributed memory
multicomputer (a) and a shared memory multiprocessor (b).

tion stream). Consequently, both functional and data parallelism are supported. Generally,
a MIMD machine is referred to as a medium to coarse-grained parallel platform in which
a number of processors are connected to each other in a network. However, fine-grained
parallel superscalar and VLIW processors can also be regarded as (synchronous) MIMD ar-
chitectures. Nevertheless, throughout this thesis, we only use the term MIMD to refer to the
more coarse-grained architectures.

The class of MIMD architectures can be divided into two categories based on the type of
memory organisation: distributed memory machines and shared memory machines. This
is illustrated in Figure 1.4. In distributed memory computers, which are commonly called
multicomputers, each processor has its own local memory (see Figure 1.4a). If a proces-
sor needs to access data which resides in another processor’s memory, then the data must
be explicitly transferred by sending a message from the remote processor to the requesting
processor. For this reason, these architectures are often called message-passing machines.
The big advantage of this type of architecture is that it is generally scalable to hundreds or
even thousands of processors. In the case of such a large machine, the term Massively Par-
allel Processor (MPP) is commonly applied. But, on the other hand, the communication
between processors in multicomputer machines is quite expensive and often not transpar-
ent. With the latter, we mean that the message-passing communication usually has to be
programmed explicitly. Naturally, a few exceptions exist, such as when using the previ-
ously mentioned HPF programming language. An example of a popular multicomputer is
the IBM SP-2, which consists of RS/6000 processors connected in a multi-stage network
[125].

In shared memory MIMD architectures, or multiprocessors, the programmer accesses the
memory using a single linear address space (see Figure 1.4b). The shared memory may re-
side at one central place (implemented as one memory or as a set of memory banks) or it
may be physically distributed such that a node of one or more processors “owns” a part of
the shared memory. In a configuration where the memory is centralised, the access charac-
teristics of the memory are identical for each processor. Therefore, these architectures are
called Uniform Memory Access (UMA) machines. If all the system’s resources can be ac-
cessed in a uniform manner, then the term Symmetric MultiProcessor (SMP) is often used.

1.2 Parallel computer architectures 11

Node
M

PP

Network

P P

Network

M
Node

Message-passing
network

Figure 1.5: The structure of a NUMA multiprocessor architecture.

For a long time, most multiprocessors were UMA machines. However, the problem with
these platforms is their poor scalability. It is often too expensive or even impossible to scale
the shared network of UMA platforms to support a large number of processors. If, for exam-
ple, a bus is used for the interconnect between a large number of processors and the shared
memory, then the contention on the bus could become so high that it makes the machine
come to a halt. Of course, caching will help to reduce the bus traffic, but it does not allow
to increase the number of processors endlessly.

To be more scalable, current shared memory MPPs typically distribute the memory over
their nodes. The nodes, which may contain multiple processors, are subsequently connected
to each other by a message-passing network. This is shown in Figure 1.5. These platforms
are called virtual shared memory machines as the memory is physically distributed but log-
ically shared. The difference between a virtual shared memory machine and a traditional
distributed memory multicomputer is that the programmer of the first machine still accesses
one linear address space. Memory references to non-local data are handled either by the
hardware or the Operating System (OS), which fetches a copy of the required data by means
of message passing. This is all done transparently to the user. However, as references to lo-
cal data only need a simple memory lookup and whereas the references to non-local data
require slower message-passing communication, there is an imbalance between the laten-
cies of local and non-local memory accesses. Therefore, these architectures belong to the
so-called class of Non-Uniform Memory Access (NUMA) machines. Because of the imbal-
ance between the latencies of local and remote memory references in NUMA architectures,
extra care has to be taken when programming these machines. More specifically, the pro-
grammer should try to limit the number of accesses to remote data. So, the aspect of locality
is even more important for NUMA machines than it is for UMA machines.

Like in UMA machines, the use of caches can reduce the network traffic as, for example,
copies of remote data may be alive in the local data cache for quite a while. However, using
caches in both UMA and NUMA architectures requires the consistency of the caches to be
guaranteed. If some data is read from a particular cache, then this data is supposed to be
up-to-date. At the time a data element is retrieved from the local cache, there may not exist
a newer (i.e. a more recently updated) version of that data element in another cache. To
accomplish this, a cache coherency protocol is required which guarantees the consistency

12 Chapter 1. Introduction

of the, possibly replicated, cached data [133]. For instance, NUMA machines that apply
these protocols are called cache-coherent NUMA, or ccNUMA, architectures.

Some NUMA architectures extend the amount of caching to its logical extreme. In these
so-called COMA (Cache Only Memory Architecture) machines, such as the KSR1 [72] and
the Data Diffusion Machine [141], the entire linear address space is spanned by associative
memories (i.e. caches) only. As a consequence, data elements do not have a fixed home
location and dynamically migrate when they are requested.

An example of a cache-coherent UMA machine is SGI’s Power Challenge. This ma-
chine is a bus-based multiprocessor that is capable of holding up to 18 MIPS R8000 pro-
cessors [125]. The more recent multiprocessor from SGI, the Origin 2000, is a ccNUMA
machine [80]. It scales up to 512 nodes containing one or two MIPS R10000 processors and
1 TB of memory in total. The nodes of this machine are connected in a hypercube network
by means of 800 Mbyte/s Cray-links.

As the performance of modern microprocessors reaches several hundreds of MFLOPS,
today’s MPP multicomputer and multiprocessor systems are capable of obtaining a peak
performance of hundreds of GFLOPS, or even 1 TFLOPS (the ASCI Red UltraComputer
powered by thousands of Intel Pentium Pros [142]). Although this peak performance is of-
ten not obtained in reality, parallel platforms typically provide a large amount of compu-
tational power. Clearly, such computational power can, for instance, be exploited to help
solving the so-called “Grand Challenge” problems. These well-known science and engi-
neering problems are extremely demanding with respect to their computational needs and
often to their memory consumption as well. Hence, it is unthinkable that they can be solved
using current uni-processor technology.

1.3 Organisation of this thesis
In this dissertation, we address the performance evaluation of computer architectures. More
specifically, we focus on the simulation techniques used for evaluating the performance of
parallel computers and, in particular, multicomputer architectures.

The remainder of this thesis is divided in two parts. The first part consists of three chap-
ters which deal with the simulation techniques and tools used for the performance evaluation
of parallel computers. The first of these chapters, Chapter 2, gives a general overview of the
field of computer architecture simulation. It describes several popular simulation methods,
such as trace-driven and execution-driven simulation, and discusses the issues playing a role
in the different simulation approaches.

Chapter 3 presents a novel simulation environment, called Mermaid [108, 109, 114],
which supports the performance evaluation of multicomputer and, to some extent, multi-
processor architectures. Mermaid differs from other simulators in the way it addresses the
tradeoff between simulation performance, flexibility and accuracy. For example, by lifting
the simulator’s detail to a level which is higher than the regularly-used instruction level, a
flexible architecture evaluation framework is obtained. The work discussed in this chapter
has been greatly influenced by the work of Henk Muller [97] who has, among other things,
developed the simulation language we use to implement our architectural simulators.

In Chapter 4, we show that Mermaid’s flexibility has hardly compromised the simulation
performance and accuracy. To do so, we have studied a simulation model of an available

1.3 Organisation of this thesis 13

multicomputer architecture using a suite of benchmark programs. In order to validate the
model, the simulation results are compared with the execution results from the real machine.
Furthermore, to get a feeling of where Mermaid stands performance-wise, we compare its
efficiency with that of several other, state-of-the-art parallel architecture simulators.

Chapter 4 also describes an extension to our simulation environment which makes it
possible to perform distributed simulation on a cluster of workstations. We have evaluated
the performance of this enhanced simulator and found that the distributed simulation may
significantly boost both the performance and the scalability of the simulation.

The second part of this thesis contains three case studies in which the Mermaid simu-
lation environment was used. Chapter 5 presents a performance evaluation of a wormhole-
routed Mesh of Clos network. This network forms the interconnect of a series of Parsytec
multicomputers that was introduced a few years ago. With the evaluation study, which was
performed before the actual machines were built, insight was gained into the potential com-
munication performance of this particular multicomputer architecture.

In Chapter 6, we discuss the application of Mermaid in the Philips PROMMPT project.
This project aims at the development of a successor of the Philips TriMedia TM-1 VLIW
processor [127]. We explored a part of the design space of this new processor. More specif-
ically, we studied several prefetch techniques for TriMedia’s data cache in order to reduce
the average memory latency.

Chapter 7 describes the modelling work that has been performed in the scope of the
IMPACT project [57], which was launched to stimulate the research on parallel computing
methods for large-scale databases. Our participation in this project consists of investigating
the performance behaviour of a particular scalable, distributed data structure for a number of
multicomputer network architectures. This distributed data structure will eventually form
the heart of a parallel version of the Monet database system [15], which is to be developed
at the CWI (this is the Dutch national institute for mathematics and computer science).

In the concluding chapter, Chapter 8, we look back on and discuss the work which was
carried out. Additionally, we mention some possible future research.

14 Chapter 1. Introduction

Part I

Simulation of parallel computer
architectures

Chapter 2

Computer architecture simulation

“Door meten tot weten (To knowledge by measurement).”
Heike Kamerlingh Onnes

The concept of modelling and simulation is applied in many disciplines of engineering
and science. It is used in the analysis of physical systems in order to gain a better under-
standing of the functioning of our physical world. Or, to quote Bernard Zeigler [144]:

“Modelling means the process of organising knowledge about a given system.”

Basically, modelling and simulation can be used from two different kinds of perspective, as
was mentioned by François Cellier in [20]:

“It can thus be said that modelling is the single most central activity that unites
all scientific and engineering endeavors. While the scientist is happy to simply
observe and understand the world, i.e., create a model of the world, the engineer
wants to modify it to his advantage. While science is all analysis, the essence
of engineering is design.”

So, simulation can be used for both analysis (the scientist’s point of view) and for design
(the engineer’s point of view). In this thesis, we take an engineering point of view as we
address the design of computer architectures.

Modelling and simulation can be characterised as the complex of activities associated
with constructing models of real world systems and simulating them on a computer. Gen-
erally, this involves two basic steps [115]:� Model development

The construction of a model that represents all of the important aspects of the system.
This also includes the validation of the model in which it is determined whether or
not the model is a representative reflection of the reality.� Experimentation
The design and evaluation of experiments using the model. Simulation allows exper-
imentation with systems that do not exist, or for which it is infeasible to perform the
actual experiment.

18 Chapter 2. Computer architecture simulation

In the first step, the model development, a lot of intuition is involved. The modeller should,
for instance, decide at which abstraction level a given system is modelled. Some system
components may not be of great interest and can therefore be modelled at a high level of
abstraction, which corresponds to a low level of detail. Similarly, important system com-
ponents can be modelled at a lower level of abstraction (i.e. at a higher level of detail) in
order to improve the simulation’s accuracy. Unfortunately, increasing the level of detail of a
model causes the simulation to be more computationally intensive. Hence, there is a trade-
off between simulation accuracy and performance.

Placing the above in the context of performance evaluation of computer architectures,
the architect should decide at which abstraction level the performance of the computer ar-
chitecture components is modelled. Should the model, for instance, be capable of explicitly
simulating each separate machine instruction from an application or should it try to estimate
the performance of a whole group of instructions (e.g. a basic block [3]) at once? Simulation
of separate machine instructions is, of course, more accurate but also more computationally
intensive than simulating whole groups of instructions at once.

Furthermore, it should also be decided which components of the architecture may af-
fect the performance and should therefore be included in the model, and which components
can be left out of the model. The significant involvement of the architect’s intuition and
expertise in all of these decisions indicates that the performance modelling of computer ar-
chitectures is, like computer architecture design itself, more an art than a science.

After a model has been developed, it must be validated. In other words, it must be
checked if the model is a representative reflection of the real system for the area of interest.
We define the area of interest as the set of experiments performed using the model. Gener-
ally, no model of a system is valid for all possible experiments except the real system itself
or an identical copy thereof. So, like François Cellier nicely stated in [20], the modeller
should take care not to fall in love with the model:

“All too often, simulation is a love story with an unhappy ending. We create a
model of a system, and then fall in love with it. Since love is usually blind, we
immediately forget all about the experimental frame, we forget that this is not
the real world, but that it represents the world only under a very limited set of
experimental conditions (we become ‘model addicts’).”

Strongly related to the model construction is the “model execution”, being the actual
simulation. Roughly, two types of simulation can be distinguished: time-driven and event-
driven simulation. In time-driven simulation, the simulated system is studied as a function
of the time. This simulation class can be further divided into continuous time and discrete
time simulation. Continuous time simulation uses differential equations to describe the sys-
tem’s behaviour over time [128]. This type of simulation is often applied in low-level simu-
lation of analog hardware (i.e. micro-architecture simulation), like in transistor-level mod-
els [20]. In discrete time simulation, the system under investigation is studied using a finite
number of discrete time steps. An example of this approach is a microprocessor model in
which every separate cycle is simulated. Here, a discrete time step is equal to the processor
cycle time.

Although time-driven simulation is well suited for the functional evaluation of computer
architectures, it is often less suited for studying the performance. In many occasions, the
performance of computer architectures can be accurately modelled at an abstraction level

2.1 Trace-driven simulation 19

Time steps

Figure 2.1: A typical example of the “interesting” events occurring in a computer system
as a function of the time. The dots refer to the events.

which is much higher than, for instance, the transistor-level. This is often referred to as
macro-architecture simulation. Due to the increase of abstraction level, the events which are
“interesting” for the performance evaluation of a computer architecture, and which should
therefore be modelled, do typically not occur at every possible time step. Instead, they take
place at arbitrary, non-uniform time steps. This is illustrated in Figure 2.1, in which the
dots denote the interesting events. When applying time-driven simulation under such cir-
cumstances, the time steps at which no interesting event occurs are also simulated, inducing
a lot of redundant overhead. Consider, for example, the time-driven simulation of the mi-
croprocessor again. In many simulated cycles, such as the ones in which the processor is
stalled, no interesting activity takes place. As a consequence, these cycles do not need to
be simulated explicitly.

To avoid these redundant simulation overheads, performance models often apply event-
driven simulation, which is commonly referred to as discrete-event simulation. In this sim-
ulation technique, only the events that actually contribute to the performance estimation of
the architecture are simulated. As a result, the execution time is linear to the number of
simulated events, which often is more efficient than time-driven simulation (which has an
execution time that is linear to the number of simulated time steps). The decision of which
events are interesting to model and which are not, largely depends on the abstraction level
of the model. If, for example, the performance of a data cache is modelled, then only mem-
ory reference events defining the type of operation (read/write) and the data address need to
be simulated.

All of the simulation techniques discussed in this thesis are based on discrete-event sim-
ulation. The differences between them are mainly related to the abstraction level at which
the simulation operates (i.e. the type of events which are used) and the approach of gener-
ating and consuming the events. In the remainder of this chapter, we present an overview
of the most popular techniques to simulate computer architectures.

2.1 Trace-driven simulation
The implementation of a computer architecture simulator can be divided into two compo-
nents: an event generator and a post-processor. The event generator produces a trace of ex-
ecution events which are consumed by the post-processor. Subsequently, the post-processor
handles the incoming trace of events with the required degree of interest: it may simply keep
behavioural statistics or it may perform a simulation of the target architecture in order to es-
timate, for instance, the timing consequences of the events. With the term “target architec-
ture”, we refer to the architecture that is being evaluated. If the post-processor is a simulator,
then we call this technique trace-driven simulation [138]. This simulation approach is typ-
ically used for studying the performance of memory hierarchies in uni-processor systems.

20 Chapter 2. Computer architecture simulation

simulator
Cache/TLB

A
dd

re
ss

 tr
ac

e

Application

Monitor execution

Figure 2.2: Trace-driven simulation of memory behaviour.

Consider, for example, Figure 2.2 in which trace-driven simulation of memory behaviour is
illustrated. The data address references of an application, and possibly the instruction ref-
erences, are captured by monitoring the execution of the application. Subsequently, the ob-
tained address trace is forwarded to the simulator which can perform a cache or TLB (Trans-
lation Lookaside Buffer) simulation to gather statistics on, for example, the missrate of the
cache or TLB. In this scheme, the application can basically be executed and monitored on
an arbitrary computer to gather the address trace. However, as we will explain later in this
chapter, doing so for the study of parallel machines requires extra measures to be taken.

The major advantage of trace-driven simulation is the separation of the trace genera-
tion and trace consumption. This simplifies the implementation of the simulator and allows
the results of a trace generation run to be stored (e.g. on disk) in order to be re-used with
different simulators (i.e. post-processors). Storing the generated traces may, however, con-
sume large amounts of storage. For this reason, much research effort has been put in finding
techniques to reduce the size of traces. A brief overview of these techniques is given later
in this section. First, we will discuss the methods which are commonly used for collecting
the traces. As trace-driven simulation is mostly used for evaluating memory behaviour, our
focus in the remainder of this section is on address tracing.

2.1.1 Trace collection

For accurate simulations, it is essential that the extracted address trace closely resembles the
actual memory behaviour of an application. Trace quality can be measured by its complete-
ness, level of detail and distortion. A complete trace includes the memory references made
by all components of the system, including those made by, for instance, the OS. In a detailed
trace, the trace events contain enough information to allow accurate reproduction of the ex-
ecution. This is, for example, not possible when a trace only contains raw addresses and
lacks information on the type of operations (read/write). Finally, a trace should be undis-
torted. This means that it should not include any memory references which do not appear

2.1 Trace-driven simulation 21

Tracing technique Completeness Detail Distortion
Hardware probes good medium no—low

Microcode good high medium
IL-simulation poor medium—high no

Code annotation poor medium high

Table 2.1: Characteristics of the different trace-collecting methods.

due to the execution of the application but are caused by the tracing process. Moreover, the
addresses in the trace should appear in the same order as the actual references. Two well-
understood forms of distortion are time dilation and space dilation which occur when the
tracing method causes the monitored application to slow down (time dilation) or to consume
more memory (thrashing the cache) than it normally would (space dilation).

The collection of an address trace can be performed at various levels using different
methods. The most well-known of these methods are:� External hardware probing� Microcode modification� Instruction-level simulation� Code annotation

As is shown in Table 2.1, each of these trace-collecting techniques has different character-
istics with respect to the completeness, level of detail and distortion of the resulting trace.

In hardware probing [38], probes are connected to the processor pins in order to record
their activity. The address and control signals are fed into an external memory buffer, and
when this buffer is full, its contents are transferred to a storage device, such as disk. Clearly,
this method generates a complete trace. If the generated trace can be stored entirely, then
the trace is free from distortion. This is, however, not trivial as the occasional emptying
of the buffer basically requires that the rest of the system is stalled. A good discussion on
this issue can be found in [138]. Moreover, the level of detail is not exceptionally high as
the captured hardware events may be hard to interpret. It is, for example, hard to relate a
memory reference to the process that made it. The main disadvantage of hardware probing
is, however, its high cost since logic analyzers are quite expensive.

In microcode-based trace collection, which was introduced by ATUM [2], the microcode
of a processor is modified to allow the tracing of memory references. Like hardware prob-
ing, this method is complete as all memory references (including those from the OS kernel)
go through the microcode. Moreover, at the microcode level, enough information is avail-
able to produce a detailed trace. This method does suffer, however, from small distortions.
Because instructions take longer to execute (due to the extra microcode), external devices
(e.g. disks) appear to the application to be faster than they actually are, and interrupts from
the system clock occur more frequently. As a consequence, the traced application behaves
differently compared to its original behaviour. The primary drawback of microcode-based

22 Chapter 2. Computer architecture simulation

tracing is that it is obsolete. Many of today’s microprocessors are based on the RISC prin-
ciple and therefore have hardwired control rather than microcode.

Similar to microcode instrumentation, instruction-level simulators can also be modified
to collect address traces. An instruction-level simulator interprets executable images, which
are written in the target instruction set, and executes them by emulating the hardware [25,
77]. In other words, it executes one Instruction Set Architecture (the target ISA) in terms
of another ISA (that from the host on which the simulation is running). A more elaborate
description of these simulators is presented later in this chapter.

Usually, instruction-level simulators do not trace the OS kernel references and are there-
fore not capable of generating complete traces. Most of the simulators that claim to trace
kernel references only intercept and emulate system calls. They do not trace the actual ref-
erences of the OS. There are, however, a few exceptions, such as SimOS [119, 118]. This
simulator allows for booting a fullfledged OS on top of it and is therefore capable of trac-
ing the actual OS references. To do so, the complete computer system must be simulated,
including the devices such as disks.

With respect to the trace detail, instruction-level simulators typically operate with vir-
tual addresses and they are unable to determine the actual physical addresses (naturally, this
is not true for SimOS). In contrast to microcode-based tracing, simulator-based tracing is
non-intrusive which implies that the resulting trace does not suffer from distortion. This is
because a simulator uses its own (virtual) simulation clock for timing purposes, which is not
affected by the trace collection code.

The major disadvantage of this type of trace collection is that instruction-level simula-
tion generally is inefficient. On the other hand, this method is more flexible and portable
than the two previously discussed methods.

Finally, if the target and host instruction sets are identical, then an application can be
statically annotated to record its behaviour rather than dynamically interpreting it by an
instruction-level simulator. With this technique, instructions are inserted around memory
references to create a new executable that produces an address trace whenever the applica-
tion is executed [35, 79, 76, 132].

Most code annotators are incapable of tracing kernel references and therefore do not gen-
erate complete traces. However, in some systems, such as Epoxie from Borg et al. [17], parts
of the OS are instrumented as well, supporting the collection of kernel references. Neverthe-
less, static code annotation does not allow the tracing of, for example, dynamically-linked
or dynamically-compiled code. Moreover, like the instruction-level simulators, code anno-
tators often have difficulties with respect to the calculation of physical addresses. But, in
contrast to simulation-based trace collection, the code annotation method is intrusive and
therefore suffers from distorted traces. Evidently, these distortions are caused by the in-
serted instructions.

Compared to the instruction-level simulators, code annotators are often more easy to
implement, faster and about equally flexible and portable. For these reasons, code annota-
tion is, despite its poor trace quality, the most popular form of trace collection. This clearly
illustrates the awkward tradeoff in trace generation: the trace collecting techniques that pro-
duce high quality traces are either obsolete or too expensive, while the flexible and low-cost
techniques only deliver modest trace quality.

2.1 Trace-driven simulation 23

2.1.2 Trace reduction

Modern superscalar microprocessors, running at high clock frequencies, may generate
address traces of hundreds of megabytes per second. Clearly, storing and processing such
large traces is a problem. The simplest way to solve the storage problem is by not storing the
traces at all. Some trace-driven simulators generate and process the traces on-the-fly. This
technique is most effective when a trace can be generated at approximately the same speed
as it can be read from disk. A prerequisite of this approach is that the traced application is
available. There may, however, be situations in which only the trace and not the application
can be made available. We encountered a similar situation in the PROMMPT project (see
Chapter 6) in which the traces were generated at Philips and simulated at our department.
In that case, one may have to fall back on explicitly storing the traces again.

Due to the above problems, there is a need for finding ways to actually reduce the enor-
mous size of traces to minimise both processing and storage requirements. Generally, two
classes of trace reduction approaches can be distinguished. The first class consists of tech-
niques that trade efficiency for smaller traces. These techniques require extra processing
time in order to reproduce the original trace from the reduced trace before the simulation can
be performed. In the second class of reduction methods, trace quality is traded for smaller
traces. Hence, these techniques produce smaller but incomplete and distorted traces. Sim-
ulating these incomplete and distorted traces results in a simulation error. Provided that the
error is kept reasonably small, this type of trace reduction might be applicable in some eval-
uation studies. Table 2.2 gives an overview of several widely-used reduction methods and
presents their individual characteristics. The numbers listed in this table are typical values
and were taken from [138]. The reproduction slowdown indicates the slowdown factor of
reproducing the reduced trace into the full trace compared to just reading the full trace from
disk. Furthermore, the simulation speedup refers to the number of times the trace processing
(i.e. simulation) performance has improved due to the smaller size of the filtered/sampled
traces.

The most straightforward approach to reduce the trace size is by applying a standard
data-compression algorithm, such as Lempel-Ziv compression [145]. Alternatively, a rel-
ative trace can be generated [121, 61]. In such a relative trace, offsets are used rather than
full addresses. To illustrate this, consider Figure 2.3 in which a trace is converted to a rel-
ative trace. The first instruction reference contains the full address, after which each suc-
ceeding instruction reference is relative to its predecessor. Due to the spatial locality of the
data references, an identical scheme can also be used for the load and store operations. Al-
ternatively, page addresses can be used comprising, for instance, the 16 higher-order data-

Reduction technique Reduction Reproduction Simulation Error
factor slowdown speedup

Trace compression 10-100 100-200 — —
Significant-event traces 10-40 20-60 — —
Trace filtering 5-100 — 4-50 $ 15%
Trace sampling 5-20 — $ 10 $ 10%

Table 2.2: Trace reduction techniques.

24 Chapter 2. Computer architecture simulation

I 3C00
I 3C04
I 3C08
L 0F0B00
I 3C0C
L 0FC800

S 0FCA16
I 3C10

I 3C14

I 3C00
I +4
I +4
P 0F
L 0B00
I +4
L C800
I +4
S CA16
I +4

Relative traceOriginal trace

Figure 2.3: Trace compression by calculating a relative trace. An I refers to an instruction
fetch, an L to a load, an S to a store and a P to setting a page address.

address bits. In this scheme, which is illustrated in Figure 2.3, the load and store events
only need to specify the 16 lower-order bits of a data address. The simulator subsequently
calculates the full data addresses by OR’ing the addresses of the load/store events with the
active page address.

Applying relative traces has two advantages. First, relative traces are, of course, smaller
than the original ones. Second, when used in combination with a Lempel-Ziv algorithm,
even higher compression rates are obtained. This is because of the large amount of reg-
ularity within the relative traces due to, for instance, the striding patterns. On the other
hand, the main drawback of trace compression techniques is that the original trace has to
be reproduced just before simulation, inducing a slowdown which may be substantial (see
Table 2.2). Generally, all trace compression techniques are lossless. This means that the
compressed trace has the same information quality as its original trace. So, there is no sim-
ulation error.

Another way to achieve lossless trace reduction is by generating a significant-event trace.
An example of such a trace system is AE [76]. In AE, only a small set of events, the so-
called significant events, is recorded. These events serve as input to an abstract version of
the program that reproduces a full trace by mimicking the portions of the original program
that involve address calculation and memory referencing. In this scheme, the significant
events are the addresses which are hard or impossible to determine statically by the abstract
program (like pointer parameters in functions).

Trace filtering is an approach that reduces both the size of traces and the time that is
needed to process them. This technique is, however, not lossless and therefore results in
a simulation error. Two well-known trace filtering methods are stack deletion and taking
snapshots [130]. In stack deletion, a stack is maintained containing the last % memory ref-
erences of the full trace. Subsequently, the memory references that hit in the stack are dis-
carded from the original trace while the references that miss are concatenated to form the
reduced trace. Similarly, when taking snapshots, the reduced trace only consists of every� th reference from the original trace. Naturally, more complex filtering techniques exist of

2.1 Trace-driven simulation 25

C
ac

he
 s

et
s

Time sampling

Set sampling

A
dd

re
ss

 s
pa

ce

Time

Figure 2.4: Time and set sampling of a trace.

which an overview can be found in [138].
Instead of occasionally throwing away references from the original trace, a subset sam-

ple of the original trace can also be taken. Figure 2.4 shows two types of trace sampling:
time sampling and set sampling. In this figure, the crosses represent the memory references
which are visualised according to their spatial distribution (vertical axis) and their temporal
distribution (horizontal axis). Time sampling is performed by selecting segments of ref-
erences that occur during some time interval [74]. This method should, however, be per-
formed with care. A sufficient number of trace segments must be collected to ensure that the
memory behaviour is adequately represented. Moreover, this trace reduction method am-
plifies the so-called cold-start bias of simulated caches: at the beginning of every sampled
trace segment, the cache does not know whether the initial references are hits or misses.

In set sampling [116], only the memory references are selected that map to one or more
specified sets of a set-associative cache [131]. Subsequently, simulating only the cache sets
which are present in the trace gives an estimate of the overall cache performance. Unlike
time sampling, set sampling does not suffer from a large cold-start bias as the sampled sets
include all references of the original trace. However, a difficulty in set sampling is that the
produced trace is more or less dependent on the cache configuration (i.e. its associativity).
There are methods to overcome this problem [138], but their description is beyond the scope
of this thesis.

2.1.3 Optimising trace-driven simulation

Accurate trace-driven simulation of memory behaviour may be surprisingly slow. In a paper
by Gee et al. [44], simulating the cache behaviour of the SPEC92 benchmark suite [99] is
reported to take 7 months of calendar time when running the simulations on seven worksta-
tions. This study also showed that a large amount of processing time is wasted in the com-
mon case. Addresses which hit the cache (the common case) are traced in the same fashion
as the addresses missing the cache. The cache hits, however, do not require any action from
the cache simulator in the case of a direct-mapped cache or a set-associative cache with ran-
dom replacement. Moreover, hits to the MRU (Most Recently Used) cache block within a
set of a set-associative cache with LRU replacement do, again, not require any action. For
this reason, the common case can often be optimised. Two of such optimisations are active
memory [82] and trap-driven simulation [137]. Both are on-the-fly simulation techniques,

26 Chapter 2. Computer architecture simulation

Application

co
lle

ct
io

n
Tr

ac
e

Lo
ok

up

Action

Application

co
lle

ct
io

n
Tr

ac
e

Lo
ok

up

Cache simulator

Action

Action cases

All addresses

Cache simulator

Active memory simulation

Trace-driven simulation

Figure 2.5: Trace-driven simulation (top) versus active memory simulation (bottom) of a
cache.

thus generating and processing the address trace at the same time. Hence, they rely on the
fact that the trace collection methods have improved to the point that regenerating the trace
is nearly as efficient as reading it from secondary storage [78].

In active memory, the memory is logically partitioned in user-defined blocks to which a
state can be attached. The state of a memory block determines whether or not it is resident
in the simulated cache. A large table, which stores the memory block states, is used by the
trace collection mechanism to swiftly determine if there is a cache hit or not. So, the cache
lookup is performed by the trace collector rather than by the cache simulator. According to
the state of an accessed memory block and the type of reference, a user-specified handler
routine is invoked. During the simulation, the state of the memory blocks is manipulated
to control which of the handlers is invoked when referencing a particular block. If the state
of a memory block is valid at its reference, indicating that it is present in the cache, then a
so-called NULL handler is invoked. This NULL handler specifies the common, no-action
case which can be processed quickly as it does not invoke the complete cache simulator. In
Figure 2.5, the difference between traditional trace-driven simulation and active memory
simulation is illustrated.

Trap-driven simulation is very similar to active memory but optimises the common case
to its logical extreme: the no-action cases are not traced at all. To do so, trap-driven simu-
lators exploit, or rather abuse, the available hardware facilities, such as the error correcting
code (ECC) bits of memory elements, to store the status bits of the memory blocks. In this
approach, the references which do not require any action (i.e. pointing to a valid memory
block) can run at full hardware speed. Subsequently, the references to an invalid memory
block cause a memory exception which invokes the simulator. To allow such control, the
trap-driven simulator needs to be located in the OS (e.g. in the virtual memory system). Al-
though this simulation technique is highly efficient, it clearly lacks the portability and gen-
erality of the previously mentioned simulation techniques. For example, the host machine’s

2.1 Trace-driven simulation 27

real cache(s) may interfere with the state mechanism, leading to inconsistent memory block
states [137].

2.1.4 Tracing of parallel applications

Trace-driven simulation must be used with extreme care when studying the performance
of parallel platforms. The control flow in parallel applications may be dependent on the
outcome of global events, such as shared-memory accesses in multiprocessors or message
passing communication. As these global events, on their turn, are affected by the latencies
of the underlying hardware, the application’s control flow may be non-deterministic. As a
consequence, such non-deterministic execution behaviour can change the traces for differ-
ent application runs and, evidently, for different parallel architectures [46, 53, 34]. So, for
example, an address trace of an application generated on one specific multiprocessor plat-
form is not by definition valid for another multiprocessor machine.

To illustrate this phenomenon, which is called the global trace problem [53], consider
Figure 2.6. In this picture, the fragment of code for processor N performs a non-blocking
receive operation (being a global event), which checks whether or not a message has ar-
rived from processor M. Dependent on the result, the code follows a different execution
path. If we assume that for a certain multicomputer architecture the message has not yet
arrived, then the code segment B is executed and, as a consequence, this segment is also
traced. However, when improving, for example, the interconnect of the multicomputer, the
message may well have been arrived. This would invalidate the previously generated trace
of code segment B since code segment A is now executed and must be traced accordingly.

The separation of the trace generation and trace processing phases in trace-driven sim-
ulation, which is often considered to be an advantage, is in this case the underlying prob-
lem which makes trace-driven simulation unsuitable for accurately modelling parallel ar-
chitectures. As the trace generator executes in isolation, only affected by the latencies of
the host computer it is running on and not by the target architecture’s latencies, it is unable

send(&Mesg, N);

 /* Code fragment A */
} else {
 /* Code fragment B */
}

Processor N

Processor Mif (receive(&Mesg,M) == RECEIVED) {

Network

Figure 2.6: A message-passing code fragment which is prone to the global trace problem.

28 Chapter 2. Computer architecture simulation

to adequately represent the behaviour of the (possibly non-deterministic) applications exe-
cuted on the target architecture. For this reason, most parallel architecture simulators apply
execution-driven simulation rather than trace-driven simulation to guarantee the validity of
the simulated events.

2.2 Execution-driven simulation
In execution-driven simulation, like its name already suggests, the execution of the appli-
cation and the architectural simulation are interwoven. More specifically, the execution of
the application, which generates the events for the simulation, is controlled by the simula-
tor. The simulator may, for instance, control the application’s execution by determining the
execution path it has to follow. Because the simulator knows the timing consequences of
the different events (e.g. the latency of a memory reference), it can “help” the application to
execute as it would have on the target architecture. For this reason, execution-driven simu-
lation is suitable for the simulation of parallel platforms. As the execution is dependent on
the architectural simulation, non-deterministic application behaviour is automatically sim-
ulated as well. We should note that some authors directly relate the term execution-driven
simulation to, what we call, direct execution. In this thesis, execution-driven simulation
refers to a much broader class of simulation techniques. Direct execution will be discussed
later in this section.

Since the execution of the application and the simulation are interwoven, the generated
simulation events are consumed on-the-fly. Thus, the problem of storing large traces is non-
existing in execution-driven simulation. On the other hand, the application has to be re-
executed for every simulation run. It is therefore essential that the application’s execution
and the simulation are efficiently integrated. In the remainder of this section, we will show
how several widely-used execution-driven simulation techniques address this efficiency is-
sue.

2.2.1 Instruction-level simulation
A conventional method to establish execution-driven simulation is to interpret the machine
instructions of executables, which are compiled for the target architecture, and to emulate
these instructions like they would have executed on the target machine. The most straight-
forward implementation of such an instruction-level simulator is to simply fetch, decode
and execute each machine instruction like a real processor does [32]. Thus, an instruction
is fetched by reading the contents of the executable’s text segment. Subsequently, the in-
struction is decoded by determining its opcode and its operands. Finally, it is emulated by
updating the machine state, such as the modelled register set. Figure 2.7(a) illustrates this
type of simulation. In this figure, the variable ST (Simulated Time) keeps track of the vir-
tual simulation clock. For the sake of simplicity, we assume that the load instruction only
takes 1 cycle to execute. In reality, the simulator would, of course, model the latency more
accurately by taking, for example, cache hits and misses into account.

The major drawback of this simulation approach is its inefficiency. Therefore, several
researchers have proposed and implemented different kinds of optimisations for instruction-
level simulators. Two well-known optimisations are: instruction predecoding [9, 77] and

2.2 Execution-driven simulation 29

found

Not
found

To Search

Not

(b) Dynamic instruction predecoding

(c) Dynamic translation

4

ld r2,4(r1)

Executable
Emulate

registers
Modelled

reg[1]
reg[2]

reg[n]Decode

Fetch

(a) Traditional instruction interpretation

ld r2,4(r1)

Executable

Predecode table

Search

Decode

Opcode Rd Rs

reg[1]
reg[2]

reg[n]

Modelled
registers

ST += 1;

ST+= 1;
*Rd = *addr;
addr = *Rs + 4;

reg[Rd] = *addr;
addr = reg[Rs] + 4;

ld r2,4(r1)

Executable Search

Translate

Translation table

addi ST,ST,1

ld r2,4(r1)

Handler

Figure 2.7: Several instruction-level simulation techniques. Figure (a) illustrates a conven-
tional interpreting simulator, figure (b) a simulator with dynamic predecoding and figure (c)
a dynamic translation simulator. In the figures, ST stands for Simulation Time, which is a
variable keeping track of the virtual time.

translation [25]. With instruction predecoding, the cost of repeatedly decoding the machine
instructions is avoided by first translating the executable to an intermediate, predecoded for-
mat which can be rapidly handled by the emulation engine. Alternatively, the predecoding
of instructions can also be performed lazily while the program is emulated. In this case,
the instructions which are executed for the first time are decoded in the traditional manner
after which the results are cached in a predecode table. Any future references to the same

30 Chapter 2. Computer architecture simulation

instruction can then be handled quickly from this table. In Figure 2.7(b), simulation with
dynamic predecoding is illustrated.

In translation, even more work is saved for the instruction decoder. By translating each
target instruction directly into the corresponding host code which is used for emulating the
instruction, the decoding stage has more or less been discarded. Like predecoding, transla-
tion can also be performed either statically or dynamically by means of a translation cache.
In static translation, the target application is directly rewritten (i.e. cross-compiled) to the
corresponding host emulation code. Similarly, dynamic translation translates any newly en-
countered target instruction on-the-fly, caches the generated code sequence and jumps to it.
Hence, subsequent references to the target instruction can immediately jump to the cached
code sequence. Compared to static translation, dynamic translation is more complex to im-
plement but, unlike static translation, it allows to be used with, for instance, dynamically-
linked code. The concept of dynamic translation is shown in Figure 2.7(c). In this example,
it is assumed that the target and host instruction sets are identical.

Besides the optimisations mentioned above, there are quite a few additional optimisa-
tions, which will not be discussed, in order to reduce the time required for interpreting the
instructions in instruction-level simulation. An alternative way to achieve higher simula-
tion efficiency is by increasing the abstraction level at which is simulated. This brings us
to execution-driven simulation techniques which do not interpret instructions. One of these
techniques in particular, called direct execution, has become increasingly popular.

2.2.2 Direct execution
Direct execution [27] is a special case of static translation and is typically applied when sim-
ulating parallel architectures. This technique depends on two requirements. First, the host
and target instruction sets should be identical. Naturally, such a requirement significantly
limits the generality of this simulation technique. Second, in direct execution it assumed
that explicit simulation of every instruction is not needed for obtaining a reasonably accu-
rate performance estimate. To help to understand this, we will first explain how direct exe-
cution works in the context of the simulation of parallel architectures. In direct execution,
two types of instructions are distinguished: local and global instructions. An instruction is
local if its execution affects only the local processor. For example, all register-to-register
instructions are local. Global instructions, such as shared memory accesses and network
communication, may influence the execution behaviour of more than one processor. Evi-
dently, global instructions and global events, which were introduced in Section 2.1.4, are
one and the same.

The concept of direct execution is to execute the local instructions directly on the host
computer (which is possible due to the equivalence of the host and target instruction sets)
and to augment the code with cycle-counting instructions estimating the execution time of
these local instructions. Thus, the performance impact of the local instructions is estimated
statically, at compile-time. Subsequently, any encountered global instruction is trapped and
explicitly simulated according to the specification of the target architecture. The idea to
only simulate the global instructions stems from the belief that this type of instructions is
often the primary concern of parallel computer architects: the focus of performance stud-
ies is typically on the network and memory design of parallel architectures. In these situa-
tions, the local computations are only relevant with respect to how they impact the timing of

2.2 Execution-driven simulation 31

add r1, r1, r2
sub r3, r3, r1
add r3, r3, r4

add r1, r1, r2
sub r3, r3, r1
add r3, r3, r4

addi Stime, Stime, 3sw r3, A

call Sim_sw
move r1, r3
la r0, A
sw r3, sim_r3
sw r1, sim_r1

Original code

; pass simulator arguments

; save modified registers

Augmented code

Figure 2.8: An example of code augmentation for direct execution.

global instructions and do therefore not need to be simulated in detail. Hence, by applying
simulation only where it is required (the other parts of the code, i.e. the local instructions,
are directly executed), the simulation overhead is reduced considerably. As a consequence,
high simulation efficiency is obtained at the cost of a small decrease in accuracy due to the
static performance estimation of the local instructions.

Figure 2.8 uses a small fragment of MIPS assembly to demonstrate the code augmen-
tation necessary for direct execution simulation. In this example, we assume that the target
machine is a shared-memory multiprocessor. Moreover, the store instruction (sw) is consid-
ered to be a global event as it stores a value to shared memory. The effects of this instruction
should therefore be simulated in detail. The other instructions, being local instructions, do
not require to be simulated. As can be seen in the augmented version of the code, the two
add instructions and the sub instruction are directly executed. Furthermore, the variable
Stime is immediately updated to keep track of the execution time of the local instructions.
So, here we estimate that simple arithmetic instructions take one cycle to execute. For the
store instruction, Stime is updated by the simulator. Passing arguments to the simulator
function Sim sw is done via r0 (the address) and r1 (the value).

Though direct execution is fast, it does not allow the same degree of freedom in the eval-
uation of (parallel) architectures like the instruction-level simulators do. As was mentioned
earlier, direct execution requires strong similarities between the instruction sets of the host
and target platforms thereby constraining the general applicability of the technique. More-
over, because the performance of local instructions is determined statically, direct execution
simulators are often unable to evaluate the architecture components which might affect the
performance of the local instructions. For example, the performance evaluation of instruc-
tion caches or private data caches cannot, or only marginally, be performed by means of
direct execution.

32 Chapter 2. Computer architecture simulation

2.3 Simulation of parallel architectures
In the remainder of this thesis, the focus will be on the simulation of parallel computer archi-
tectures. More specifically, we propose a new computer architecture simulation methodol-
ogy which we have embedded into an environment, or rather a workbench, that allows the
performance evaluation of parallel platforms, and in particular, multicomputer platforms.
At this point, the question may arise whether or not a new simulation environment, or even
a new simulation methodology, is really needed. This because there already exists a fairly
extensive collection of parallel machine simulators. Before motivating our work, we first
present a brief overview of several state-of-the-art parallel machine simulators. Thereafter,
we provide a discussion indicating where there is, in our opinion, room for improvement
and in which we motivate our decision to develop a new simulation environment.

2.3.1 Related work
Parallel architecture simulators can be subdivided into three categories. First, the simula-
tors that only address the simulation of shared-memory multiprocessors. Examples of these
simulators are Tango [33], FAST [16], SimOS [119, 118], Wisconsin Wind Tunnel (WWT)
[117, 96], Proteus [18] and SPAM [63]. All of these simulators apply direct execution to
obtain tolerable simulation efficiency. SimOS also provides multiple levels of simulation.
This enables the architect to position the simulation at an interesting state using a fast and
abstract level of simulation. Thereafter, the interesting section is studied using a more ac-
curate, and thus less efficient, mode of simulation. The WWT is probably the most extreme
example of how the performance of architectural simulation can be boosted. It implements
direct execution by means of trap-driven simulation: the ECC bits of the memory are set to
cause an exception at a shared-memory reference which subsequently invokes the simula-
tor. Furthermore, the WWT also exploits the inherent parallelism found in simulations of
parallel architectures by executing the simulation in parallel, which is commonly referred
to as distributed simulation. In Chapter 4, which includes an overview of the performance
of several parallel architecture simulators, it is shown how WWT’s optimisations are trans-
lated into performance.

The second type of simulator allows the simulation of both multiprocessors and multi-
computers. The Rice Parallel Processing Testbed (RPPT) [28], SPASM [126] and SMART
[105] are examples from this category. The RPPT and SPASM are, again, based on di-
rect execution. Interesting about these two simulators is that they both use the simulation
language CSIM [29] to implement their architecture models rather than using a traditional
general-purpose language like most simulators do. As simulation languages often operate
at a higher level than general-purpose languages, using a simulation language may result in
a minor decrease of simulation performance but it may significantly improve the flexibility
of the simulator. That is, it allows the modeller to focus on the modelling of the computer
architecture rather than having to think about simulation details as well (these are taken care
of by the run-time system of the simulation language).

The SMART simulator from Petrini et al. [105] does not use direct execution but ap-
plies some sort of static translation. As will be shown in the next chapter, there are quite
some similarities between the techniques we have used in our simulation environment and
the ones applied in SMART. We should note that our simulation environment was developed

2.3 Simulation of parallel architectures 33

entirely independent of SMART and at approximately the same time. There are, however,
some essential differences between the two simulation environments which will also be in-
dicated in the next chapter.

Finally, simulators in the last category entirely focus on the simulation of multicomputer
architectures. A well-known example is Talisman [9], which is an efficient instruction-level
simulator using dynamic translation. This simulator is highly geared towards the simulation
of only one multicomputer in specific, namely the Meerkat machine [8].

2.3.2 Discussion
Like the simulator overview of the previous section already suggests, we found that the ma-
jority of the parallel architecture simulators are multiprocessor simulators. This observa-
tion is based on the number of available simulators that evaluate the performance of the
entire parallel platform. We did not consider the simulators that only simulate a multicom-
puter/multiprocessor network in isolation, such as MultiSim [88] and HSIM [55]. So, for
starters, we think that the complete simulation of multicomputer architectures deserves to
receive additional attention.

Moreover, it is obvious that most parallel architecture simulators use direct execution as
the core simulation technique. As these simulators only simulate the global events (shared-
memory references or explicit message passing), they emphasise the modelling of the com-
munication and/or shared-memory system of the parallel architecture. This is, of course,
justifiable for many performance studies. When studying, for instance, cache-coherent mul-
tiprocessors, of which the performance is often constrained by the coherency protocol, fo-
cusing on the memory sub-system definitely is a good approach. However, we question
whether the emphasis should always be entirely on the communication/shared-memory sys-
tem. For example, the performance gap between the CPU and the network in MPP systems
has been reduced in the last decade. The performance of processors did improve by roughly
a factor 20 in this period (compare, for instance, a 1988 MIPS R3000 with a 1998 DEC Al-
pha), whereas the latency and bandwidth of MPP networks improved by approximately two
orders of magnitude (compare a 1988 Intel iPSC/2 with a 1998 Cray T3E) [125, 52]. So,
although the network latency is still a dominant factor in the overall performance of many
parallel applications, this problem has become less severe. Moreover, latency hiding tech-
niques, such as multithreading and data prefetching [48], may further decrease the impact
of communication overhead on the application performance. We therefore believe that it
becomes increasingly important to include, when necessary, the explicit simulation of the
performance behaviour at the local nodes rather than only simulating global events. Hence,
in this respect, we think that direct execution (which only allows the simulation of global
events) is not a suitable simulation technique.

Another potential drawback of the previously mentioned simulators is that most of them
apply “low-level” techniques, such as direct execution or dynamic translation, in order to
yield high simulation performance. This implies that these simulators are highly dependent
on both the host and target processors’ instruction set architectures. Again, this is no prob-
lem when the focus is on the communication/shared-memory system of the architecture.
However, when the scope of the evaluation study is broader, including for instance the type
of processor on a node, these architecture dependencies might seriously hamper the flexi-
bility of the simulator.

34 Chapter 2. Computer architecture simulation

From the above can be concluded that the existing simulators typically trade perfor-
mance for flexibility. The simulation techniques they use are efficient but are also limited
in their capabilities (e.g. direct execution) or highly architecture dependent. This is, in our
opinion, a major weakness of current simulator technology. We think it is essential for simu-
lators to provide a high level of flexibility in order to guarantee their applicability for a wide
range of performance evaluation studies. As we prefer the modelling to be more flexible,
this means that we have to find alternative ways to improve the simulation performance. In
other words, we need a simulation method that allows for the performance evaluation of par-
allel computer architectures in a flexible manner and which is also competitive performance-
wise with, for instance, direct-execution simulation. We use the term flexible in the sense
that the simulation method should allow for simulating both local and global instructions
and should also be highly architecture independent. These flexibility requirements facili-
tate the evaluation of all aspects of the parallel machine, including for instance the type of
processors.

The need for a flexible simulation environment is illustrated by the case studies pre-
sented in the last chapters of this thesis. The focus in each of these case studies is on different
aspects of the computer architecture. Without a flexible simulation method, we would not
have been able to perform these studies using only one simulation framework.

The next chapter describes the Mermaid simulation environment, in which we have im-
plemented our ideas regarding flexibility and performance. The primary focus of the Mer-
maid environment is on the performance modelling of multicomputer architectures. How-
ever, it is not restricted to this type of platforms. Support for the evaluation of different types
of multiprocessor platforms (e.g. UMA, NUMA, etc.) is also provided. To establish a high
degree of flexibility while providing high simulation performance, Mermaid applies a sim-
ulation method that is a combination of trace-driven and execution-driven simulation. This
will be explained elaborately in the next chapter.

Chapter 3

Mermaid &

“There are finer fish in the sea than have ever been caught.”
Irish proverb

To evaluate the performance of MIMD multicomputer architectures, we developed the
Mermaid (Modelling and Evaluation Research in MIMD ArchItecture Design) simulation
environment. The design of this architecture workbench was guided by a number of re-
quirements. First of all, the architectural simulation must be efficient. This implies that it
should be possible to simulate representative application loads within reasonable time. In
this context, the term reasonable is hard to define. We will use other efficient multiproces-
sor/multicomputer simulators to act as a reference for Mermaid’s simulation performance.

Like was shown in the previous chapter, most modern parallel architecture simulators
address simulation efficiency quite aggressively and, by doing so, typically trade the gained
performance for flexibility. A good example are the commonly used direct execution sim-
ulators which are dependent on the host’s instruction set and which limit the architectural
evaluation to the parts that are really simulated (i.e. the global events). Flexibility is our sec-
ond requirement, which means that Mermaid should yield good performance while provid-
ing a high degree of modelling freedom. It supports, for example, the evaluation of a wide
range of design options by means of parameterisation and configuration of the simulation
models at different levels: from processor parameters, such as cache specifics, to switching
and routing techniques in a message-passing communication network. Moreover, our archi-
tecture models are highly modular. As a result, the changing of important simulation-model
components, like the type of processors, requires only little remodelling effort. To allow this
high degree of modelling freedom, Mermaid does not apply simulation techniques which
inherently limit flexibility, like direct execution does. Instead, we use a method which is
a combination of trace-driven and execution-driven simulation. This simulation methodol-
ogy will be described in detail in the next section.

Finally, good simulation accuracy is our third and last requirement. Like it is hard to
determine how well the absolute simulation performance is, the same is true for accuracy.
Nevertheless, we aim at modelling errors that on the average do not exceed 5%. This should
be accurate enough to perform design space exploration. Here, we define modelling error'

This chapter is based on [108, 109, 114].

36 Chapter 3. Mermaid

as the difference between the predicted execution time of an application and the actual ex-
ecution time obtained by the real machine.

Like it was already shown for the simulation efficiency and flexibility, the aforemen-
tioned requirements typically conflict with each other. For example, achieving higher sim-
ulation efficiency may result in lower accuracy and less flexibility. In Mermaid, we have
therefore tried to find a good tradeoff between these factors. To do so, we address the issue
of simulation performance in a different way compared to most other parallel architecture
simulators. Instead of applying low-level and architecture-dependent simulation techniques
(such as direct execution), we exploit the tradeoff between abstraction level (i.e. level of de-
tail) and performance allowing us to zoom in on only the architecture specifics which are
interesting to us. As we will show, this approach results in flexible and efficient simulation
of parallel computer architectures and is still capable of obtaining good simulation accuracy.

3.1 The simulation methodology
The simulation of a computer architecture can be regarded as a process which involves two
tasks. In the first place, the behaviour of the computer architecture has to be captured in a
simulation model. To use this model for experimentation, it should be driven by a workload
representing the behaviour of an application. So, the second task consists of describing the
application behaviour in one way or another (e.g. by using real, compiled programs) with
the intention to create a workload for the architecture simulation model. We refer to this as
application modelling.

In Mermaid, the application behaviour is described in terms which are unrelated to ar-
chitecture specifics while the architectural behaviour is described in terms of its components
and its interactions. By separating the modelling of application behaviour and architecture
behaviour, a flexible evaluation of either one is possible without the other being affected.
This decoupling of application and architecture modelling is a key feature of Mermaid. It
allows, for example, the modelling of application behaviour at different levels of abstrac-
tion without the architecture models being affected. This will be explained in more detail
later in this chapter.

To include both application and architecture behaviour in one simulation, an intermedi-
ate layer is required that bridges the gap between them and which strives for efficient and
optimal utilisation of hardware resources. In other words, this intermediate layer maps one
complex system (the application) to another complex system (the computer architecture)
[129]. To do so, it must define the interface between the application and architecture levels.
In Mermaid, this interface is established by means of traces of events, called operations.
These operations represent the processor activity, memory I/O and message-passing com-
munication due to the execution of an application. Here, one should think of events such as
“add two integers”, “load a word from memory” or “send a message from one processor to
another”. The actual form of the operations will be discussed later on.

The intermediate layer translates the application behaviour into an appropriate trace of
operations which is subsequently consumed by the simulator at the architecture level. The
interface between the intermediate layer and the architecture level is bi-directional, allowing
the architecture level to give feedback to the intermediate layer. As will be explained later,
this may be necessary for the correct generation of operations. The concept of operations,

3.1 The simulation methodology 37

Architecture level

Application level

Machine parameters

Architecture X

Architecture Y

Visualization and
analysis tools

Abstract
application model

generator

Architecture
independent

simulation models
Architecture

Operation-trace

Figure 3.1: Mermaid simulation environment.

which essentially forms the heart of our simulation methodology, results in a technique we
call operation-driven simulation.

3.1.1 The simulation environment

The separation of application and architecture is reflected by Mermaid’s simulation envi-
ronment. Figure 3.1 depicts the simulation environment. It is layered in a natural fashion
and shows a clear distinction between the application and the architecture levels. We will
first present a brief description of each of these two levels, after which the remainder of
this chapter gives a more comprehensive overview of the design and implementation issues
regarding the various simulation environment components.

The application level

The application level consists of an abstract application model which specifies workloads in
an architecture-independent manner. These workload specifications are either the sources of
real programs that have been instrumented with annotations describing the exact execution
behaviour or they consist of stochastic representations of application behaviour. Note that
we explicitly use the term specifications since the workloads do not require to be executable
at this level. If we take our code annotation method as an example, the workload specifica-
tion consists of a C source program that has been instrumented with calls (i.e. the annota-
tions) to a library which generate the operations whenever the application is executed. So,
the actual workload description, being the C code, is not directly executable. Furthermore,
the workloads may range from full-blown parallel programs to small benchmarks used to
tune and validate the (machine parameters of the) simulation models.

The architecture level

The operation-driven architecture simulation models reside at the architecture level. These
models are implemented in a modular fashion and are highly parameterised. By adjusting
the machine parameters, which are stored in a separate data-base (see Figure 3.1), different

38 Chapter 3. Mermaid

architecture configurations can swiftly be evaluated. Like the RPPT [28] and SPASM [126]
simulation environments, our architecture models are also written in a special-purpose (sim-
ulation) language rather than in a traditional general-purpose language. This considerably
enhances the flexibility of the architectural simulator as it reduces the time to develop or
adapt the architecture models.

At the architecture level, Mermaid also provides a suite of tools in order to visualise and
analyse the simulation output. Visualisation of simulation data can be performed at run-time
or post-mortem. Moreover, a tool called RAPID [110] facilitates the statistical analysis of the
simulation output. This tool allows the user to select interesting information and to perform
a range of standard statistical methods on the selected data.

3.1.2 Operation-driven simulation
The operation-driven simulation technique can be regarded as a combination of trace-driven
and execution-driven simulation. In this technique, a trace generator implements the inter-
mediate level between the application and architecture levels. It provides the architectural
simulator with the operation-traces which account for the overall application behaviour, thus
including both local and global (i.e. affecting the execution behaviour of other processors)
instructions.

The trace generator produces a separate operation-trace for each processor within the
multicomputer architecture model according to the workload specifications at the applica-
tion level. For this purpose, it mimics concurrent execution by means of threads [11]. Each
thread accounts for the behaviour of one processor (or node) within the parallel machine. In
this respect, we assume that there is only one user process running on a processor. So, we do
not consider issues like process scheduling. To guarantee the validity of the traces and solve
the global trace problem, which was discussed in Section 2.1.4, a form of execution-driven
simulation is established by applying physical-time interleaving [34, 98]. In this technique,
the trace generation is interleaved with the simulation of the target architecture and the traces
are generated on-the-fly. This allows the architecture simulation to control the trace genera-
tor by giving it feedback with respect to the scheduling of global events. More specifically,
whenever a thread encounters a global event, it is suspended until it is explicitly resumed
by the simulator (depicted by the broken arrows in Figures 3.1). Subsequently, the simula-
tion does not resume a thread until all other threads have reached the same point in simu-
lated time as the suspended thread. When this has happened, no other events can affect the
global event within the suspended thread anymore. Therefore, the suspended thread can be
safely resumed again. Such a thread-scheduling scheme, under the control of the simula-
tor, guarantees that the multicomputer trace is exactly the one that would be observed if the
application was actually executed on the target machine.

In order to illustrate the thread-scheduling scheme, consider the example of the global
trace problem from Section 2.1.4 again: a thread requests whether or not a certain message
has arrived (i.e. it performs a non-blocking receive) and dependent on this result it follows
a different execution path. In Figure 3.2a, this situation is depicted. A “box” in between the
trace generator and simulator denotes an operation-trace produced by a single thread. At the
moment the non-blocking receive operation is issued by the trace generator, the receiving
thread is suspended. The operations from all the other threads, however, continue to be sim-
ulated up to the moment in simulated time at which the requesting thread was suspended.

3.1 The simulation methodology 39

(b)(a)

R
es

um
e

th
re

ad

S
us

pe
nd

 th
re

ad

receive

receive

(m
es

sa
ge

 a
rr

iv
ed

?)

Simulator Simulator

Trace generator Trace generator

operation

operation

operation

operation

operation

operation

operation

operation

operation

operation

operation

Figure 3.2: Thread scheduling under control of the simulator to guarantee the validity of the
multiprocessor traces.

Because all message passing has now been simulated up to the moment of the request, the
simulator can safely resume the requesting thread by giving it the required information on
the presence of the message, as illustrated in Figure 3.2b.

Application-level synchronisation

Synchronising the trace generator with feedback from the simulator may affect the trace
generating performance, and thus the overall simulation performance, as the trace genera-
tion is constrained by the simulator’s efficiency. However, in many cases, a short-cut opti-
misation for synchronising the trace-generating threads can be applied. A lot of multicom-
puter applications, and especially the ones belonging to the popular class of SPMD (Single-
Program, Multiple-Data) programs, contain fixed communication patterns. In other words,
their communication does not depend on the underlying architecture which makes them
to behave deterministically. This type of application allows for synchronising the trace-
generating threads at the application level rather than synchronising them with simulator
feedback. As a result, the simulation does not need to be execution-driven. Instead, the ar-
chitectural simulator can now operate in pure trace-driven mode, thereby not constraining
the execution of the trace generator.

The synchronisation at the application level is illustrated in Figure 3.3. Again, a thread
is suspended when executing a global event, such as a blocking receive. In this case, how-
ever, the suspended thread can be resumed directly by the thread which produces the re-
quested data. Whenever the latter thread is ready, it copies the required data to the sus-
pended thread’s local memory and subsequently wakes it up. Because data is directly ex-
changed between threads at the application level, it is not necessary to simulate the explicit
data transfer at the architecture level. Instead, if a processor sends a message of size � to
another processor, the simulator models this by sending an “empty” message of size � .

We should note that if the execution of the application does not depend on global events,

40 Chapter 3. Mermaid

Receive

Send
Requested data

= trace generator thread

execution
resume

execution
suspend

Figure 3.3: Application-level synchronisation between trace-generating threads.

then it is neither needed to synchronise nor to copy data between trace-generating threads
because the threads’ execution does not depend on the data which is transferred between
processors. Hence, in this situation, the simulation does not require data consistency.

3.1.3 Computation versus communication

Many applications running on distributed memory multicomputer platforms, and especially
the extensive class of scientific applications, contain coarse-grained computations alternated
with periods of communication. Typically, these computation and communication phases
are distinct. Therefore, Mermaid separates the simulation of application behaviour into a
computational model and a communication model. This is depicted in Figure 3.4. The mod-
els operate at a different level of detail and define their own set of operations. The computa-
tional model simulates the application’s computational behaviour. It models the incoming
computational operations at a level of abstract machine instructions. Communication op-
erations are not simulated by this model, but are directly forwarded to the communication
model. Subsequently, the communication model accounts for the application’s communi-
cation behaviour. To address the issues of synchronisation and load-balancing properly, the
communication model simulates the computational delays found in between communica-
tion requests at the task level. A parallel workload for this model therefore resembles a
graph containing computational tasks and global events (communication operations). The
computational tasks are derived from the computational model, which constructs them by
measuring the simulated time between two consecutive communication operations.

As can be seen from Figure 3.4, the cooperation between the computational and commu-
nication models results in a two-stage meta model, which we call Mermaid’s hybrid model.
This hybrid model allows for simulation at different abstraction levels. If accuracy is re-
quired, then the complete hybrid model (both the computational and communication mod-
els) can be used. However, if there is only the need for a quick and less accurate analysis of
the architecture performance, which is commonly referred to as fast prototyping, then just

3.1 The simulation methodology 41

model

model

Computational

Communication

Computational
tasks

Application workload

Fe
ed

ba
ck

Communication
operations

Computational
operations

= Application level

= Architecture level

Figure 3.4: The computational and communication models.

using the communication model might be sufficient. In that case, the task-level operation
traces must be directly produced by the trace generator. To some extent, this is similar to
what happens in the direct execution simulation technique: the performance of the code seg-
ments in between two global events (forming the computational tasks) has to be statically
estimated.

The idea of having multiple levels at which simulation can take place is also present in
SimOS [119, 118]. However, Mermaid is more static in this respect: while SimOS allows
the simulation to dynamically change from one level to another, Mermaid can only operate
at one abstraction level during the whole simulation.

Computational operations

The computational operations are abstract machine instructions. They are based on a load-
store architecture. This does not imply that other types of architectures cannot be simulated.
The current set of computational operations can easily be extended or used as a building
block for more powerful operations in order to support the modelling of alternative types of
architectures.

Table 3.1 shows the computational operations. The first category consists of operations
for transferring data between registers and the memory hierarchy. Parameters of these oper-
ations indicate the type of memory reference and, if appropriate, the memory location. As
our focus is on distributed memory multicomputers, atomic operations to support the mod-
elling of shared memory platforms are currently not provided. These atomic operations, like
read-modify-write, can be added with relative ease.

The second category of operations are arithmetic functions that solely operate on reg-
isters. The associated parameter indicates the type on which the function should be per-
formed. This can be integer, single precision or double precision floating point.

The third category of operations is associated with instruction fetching. With the ifetch
operation, an instruction fetch from a memory location can be modelled. As the simulation
does not interpret machine instructions, the simulator is not aware of loops and branches.
The application trace generator evaluates loop and branch-conditions, and produces the op-

42 Chapter 3. Mermaid

Description Computational operations
load(mem-type, address)

Accessing memory store(mem-type, address)
load([f]constant)
add(type) sub(type)

Performing arithmetic mul(type) div(type)
...
ifetch(address)

Instruction fetching branch(address) syscall()
call(address) ret(address)

Table 3.1: Computational operations.

eration trace for the invocated control flow. This implies that every invocation of a loop
body is individually traced and leads to recurring addresses of instruction fetches.

The branch operation models the target processor’s branching latency and triggers its
branch prediction scheme, if available. Finally, the syscall, call and ret operations mimic
the overhead involved with system calls or function calling.

Communication operations

The operations that act as input for the communication model are mainly based on straight-
forward message passing. The format of these operations, as shown in Table 3.2, is similar
to the simulation events used by HSIM [55], which is a trace-driven network simulator of
hypercube-based multicomputers. Both synchronous (blocking) and asynchronous (non-
blocking) communication operations are supported. Furthermore, it is assumed that nodes
are uniquely numbered within a given communication network.

Note that the send and asend operations do not include the data that is transferred. The
actual data transfer (not the synchronisations) between the trace-generating threads is al-
ways performed at the application level, as was illustrated in Section 3.1.2. Copying data
directly at the application level rather than performing the data transfer at the lower, archi-
tecture level is, of course, more efficient. It does not suffer from the redundant overhead
of copying data between the application and architecture levels. If application-level syn-
chronisation is used (i.e. the communication patterns are fixed), then the trace-generating

Description Communication operations
Synchronous communication send(message-size, destination)

recv(source)
Asynchronous communication asend(message-size, destination)

arecv(source)
Computation compute(duration)

Table 3.2: Communication operations.

3.1 The simulation methodology 43

threads directly copy the data to the correct destination address within the receiving thread.
But, in the case simulator feedback is required, it may be architecture dependent which data
is actually received by the destination processor. There could, for example, be multiple pro-
cessors sending a message to the receiving processor. Therefore, the access to the copied
data is facilitated by an identifier which is returned by the recv and arecv operations. This
identifier, pointing to a data structure containing the appropriate message information, is
determined by the corresponding send or asend operation.

Computation performed within the communication model is simulated at task level by
means of the compute operation. This operation simply tells a processor to be busy for a
certain duration.

3.1.4 The implications of operation-driven simulation
Applying operation-driven simulation has several consequences. As the operations abstract
from the processors’ instruction sets, the simulators do not have to be adapted each time
a processor with a different instruction set is simulated. We simulated, for example, both
multicomputers based on Inmos Transputers [58] and on Motorola PowerPC [94] proces-
sors with little remodelling effort. Essentially, operation-driven simulation shifts a part of
the required modelling effort from the architecture level to the application level: architec-
tural modelling becomes more flexible due to the abstract operation-interface, whereas at
the application level, raw applications cannot be used as workloads anymore because the
simulators are driven by operations (rather than interpreting real instructions). As a result,
application behaviour must be modelled explicitly. Because our focus is on the evaluation
at the architecture level, we definitely regard the gain of flexibility at the architecture level
at the cost of a slightly more complex application level as an advantage. Furthermore, as
will be shown later in this chapter, the explicit modelling of application behaviour opens
new perspectives for simulating workloads at different levels of abstraction and accuracy.

Simulating at the level of operations rather than interpreting real instructions allows for
modelling only the timing consequences of instruction execution. Most of the state transi-
tions caused by instruction execution, such as the actual storing of a value in a register, do
not need to be modelled. Therefore, it is not necessary to store large quantities of state infor-
mation during simulation runs. For example, register and memory contents do not have to
be modelled and simulated caches only need to hold addresses (tags), not data. As a result,
our approach may yield higher simulation performance compared to the more traditional
instruction-level simulation techniques.

On the other hand, the strength of abstraction is also Mermaid’s weakness. The loss of
information, such as the lack of register specifications in the operations, prohibits an accu-
rate low-level simulation of, for example, the processor pipelines. This means that Mermaid
is not suited for purposes like compiler testing or debugging.

3.1.5 Implementation issues of the operation-interface
The actual form of operations and the way in which they are transferred from the trace gen-
erator to the consuming architectural simulator may greatly influence the performance and
flexibility of the entire simulation system. If the operations are defined in ASCII format, the
simulator needs to perform quite a lot of parsing and decoding of the incoming operation

44 Chapter 3. Mermaid

OS kernel

OS kernel

Trace
generator

Simulator Trace
generator

Simulator

File interface Pipe interface

Trace
generator

Simulator

Shared memory interface

Figure 3.5: Different types of trace-interface implementations. The possibility of simulator
feedback is illustrated by a broken arrow.

traces, thereby hampering the simulation efficiency. On the other hand, the ASCII opera-
tions may be useful for direct verification or validation of the application behaviour as they
are readable. Alternatively, operations in (predecoded) binary format reduce the decoding
overhead in the simulator and therefore yield higher simulation performance, but they are
less friendly to study in isolation.

The interface between the trace generator and the simulator, transferring the operation-
traces, can also be implemented in various ways. This is illustrated in Figure 3.5. A reason-
ably simple interface is obtained by Unix’ pipes. This mechanism also allows to store the
generated traces on disk (if their size allows this) in order to re-use them and thereby speed-
ing up consecutive simulations of the same architecture. However, in this case, extreme
care must be taken that the traces are only re-used for identical architectures to prevent the
global trace problem (see Section 2.1.4). On the downside, the major disadvantage of pipes
and files is their relatively poor performance as all data is copied through the OS kernel.
An additional drawback of a file interface is that it is, unlike other types of interfaces, not
suitable for providing simulator feedback.

A more efficient interface is obtained when performing communication via a piece of
memory which is shared between the generator and the simulator. Although this method
allows for a much faster interface than with pipes or files, it also requires more bookkeep-
ing. For example, the generator and simulator must now synchronise to guarantee mutual
exclusion with respect to the piece of shared memory.

The shared memory interface allows for different types of optimisations. An obvious
one is to use two buffers in shared memory: a primary buffer containing the operations
which are being consumed by the simulator and a shadow buffer which is filled by the trace
generator concurrently with the consumption of the primary buffer. When the primary buffer
is empty, the functionality of the two buffers is swapped.

As each of the aforementioned implementation approaches has its pros and cons, Mer-
maid includes them all by means of conditional compilation. By default, however, the sim-
ulators optimise for speed: binary operations and a shared memory interface between gen-
erator and simulator are used.

3.2 Workload modelling 45

model

Reality based Stochastic

operations
Task level
operations

model

Instruction level

Architecture
level

Computational Communication

Application model

Figure 3.6: Application modelling within Mermaid. The large shaded area indicates the
modelling path currently supported.

3.2 Workload modelling

In Figure 3.6, the workload modelling framework of Mermaid is illustrated. Application be-
haviour is modelled explicitly, enabling us to model a workload at various abstraction levels
and with different degrees of accuracy. A workload is either based on a real application or
it is synthetic and produced by some stochastic process. Furthermore, both real and syn-
thetic workloads can model computation either at the level of abstract machine instructions
or at the level of tasks. Computation at the instruction level is typically simulated by the
computational model, whereas task level operations are simulated by the communication
model.

Currently, Mermaid only supports the generation of abstract instruction-level operations,
as depicted by the large shaded area in Figure 3.6. We will therefore limit our discussion to
this area of workload modelling.

3.2.1 Reality-based workload modelling

To obtain a realistic model of application behaviour, it is required to trace a real program.
Traditionally, the tracing of applications is often performed by augmenting either the assem-
bler code [76, 135], the object code [132] or the executable itself [79, 78]. Of these three
tracing techniques, instrumenting executables is the most convenient in its use as this tech-
nique does not require the source of the program to be available. However, all three tech-
niques, and especially the the ones dealing with compiled machine code, introduce depen-
dencies on either the host or the target architectures. As we strive for an architecture inde-
pendent application level, this is undesirable. So, to guarantee a high degree of architecture
independence at the application level, we decided to refrain from these techniques. Instead,
Mermaid augments programs at the highest level possible: that of the high-level language it-
self. This means that the source code of applications, which in our case has to be written in C

46 Chapter 3. Mermaid

C source

TableFile

Executable

C compiler

Annotation

Descriptor Descriptor

Library

Annotation
Translation

tool

& linker

Machine Variable Annotated
C source

A
rc

hi
te

ct
ur

al
 fe

ed
ba

ck
fro

m
 s

im
ul

at
or

Multiple operation
traces to simulator

Figure 3.7: Generation of operations by augmenting real applications.

[69], is instrumented with annotations following the program’s memory, computational and
communication behaviour. Hence, Mermaid’s abstract application model for reality-based
workloads consists of augmented high-level language programs. Because these augmented
source codes are highly architecture independent, the instrumentation has to take place only
once, after which the application model can be used to evaluate any multicomputer archi-
tecture.

Figure 3.7 gives an overview of how Mermaid generates operations by augmenting real
applications. A special annotation tool instruments the C source code and constructs a so-
called variable descriptor table. This table determines whether a variable is global, local,
or a function argument. Additionally, it contains information on the addresses of variables,
whether they are placed in a register or not and the types of the variables. The annotation tool
also models several common and straightforward compiler optimisations by optimising (i.e.
rewriting) the generated annotations. These optimisations include common subexpression
elimination and constant folding [3].

The Annotation Translation Library (ATL) is the trace generating core, which is linked
to the annotated application. As the annotations are simply calls to the ATL, the annota-
tions are dynamically translated into the appropriate trace of operations when the obtained
executable is executed. For this purpose, the ATL uses the variable descriptor table and a
machine descriptor table. The latter contains architecture-dependent information necessary
for the trace generation (e.g. instruction size, number of registers, etc.). When, for example,
an annotation indicates that a variable should be loaded, the generator uses the information
from both tables to translate the annotation into the appropriate instruction fetch and mem-
ory operations. The ATL can thus be regarded as a kind of generic compiler. It performs
the translation of annotations according to the runtime model and addressing capabilities of

3.2 Workload modelling 47

double a, x[N], y[N];

void foo(...) {

int i;

[...]

for (i = 0; i < N; i++) {
a += x[i] * y[i];

}

[...]
}

double a, x[N], y[N];

void foo(...) {
int i;

set_function(foo, (void *)foo);

[...]

for (assignIc(local(i), 0), i = 0;
setPC(c1),
arithIc(REG, N, local(i), CMP), i < N;
arithIc(local(i), 1, local(i), ADD), i++) {

a += x[i] * y[i];

arithDF(REG, array(&x, local(i), &x[i]),
array(&y, local(i), &y[i]), MUL);

arithDF(&a, REG, &a, ADD);
setPC(l1);

}
setPC(l1);

[...]

ret_function();
}

Figure 3.8: A double precision inner-product (top) and its annotated version (bottom).

the target processor. In this approach, only the ATL and the machine descriptor file are ar-
chitecture dependent and may need to be updated in order to generate operation-traces for
a new (possibly non-existing) architecture.

To illustrate the process of instrumentation, consider Figure 3.8. The upper box shows a

48 Chapter 3. Mermaid

code fragment of a double precision inner-product (ddot), whereas the lower box shows the
annotated version of the same code fragment. The annotations set function, ret function and
setPC describe the control flow behaviour of the program. For example, the setPC(label)
annotation is some sort of basic block indicator: the first time a setPC is triggered, it saves
the current (pseudo) program counter together with its label. Subsequent calls to a setPC
with an identical label will reset the program counter to the saved value. For example, the
two setPC(l1) annotations at the end of the loop in Figure 3.8 take care that the program
counter is correctly updated when the loop has finished. The first setPC(l1) saves the cur-
rent program counter, which has to be adopted when the loop has finished. The second
setPC(l1) (outside the loop), which is reached after the conditional expression of the for-
loop has failed, sets the program counter to the saved value.

The assign (*) �,+ and arith (*) �-+ annotations describe the computational behaviour of the ap-
plication. In these annotations, the type must be specified on which is operated. For in-
stance, Ic means “Integer constant” and DF means “Double Float”. If required, these anno-
tations also instruct the ATL to model the fetching of the operands. To do so, special handles,
such as local and array, are used to query the variable descriptor table to determine the lo-
cation (e.g. in a register, on the heap, on the stack, etc.) of the operands. Additionally, the
keyword REG explicitly specifies that the source or destination is a register.

For now, the performance impact of system calls to the OS is modelled by an annotation
which simply generates the syscall operation. The syscall operation mimics the overhead
involved with the system call. This method is not accurate enough for applications which
contain a large number of system calls. In these cases, the semantics of the system calls
might have to be modelled to generate a trace of operations which properly represents the
system call’s behaviour. Moreover, the OS itself is not modelled in Mermaid. To our knowl-
edge, of all existing parallel architecture simulators, only SimOS [118, 119] is capable of
doing this.

To generate the multiprocessor traces, the ATL models concurrent execution by means
of threads. For this purpose, the tool which performs the instrumentation of C programs
also provides some support for converting (single-threaded) target applications into multi-
threaded programs. For SPMD applications, this conversion is fully automated. For other
classes of applications, manual conversion to the threaded code is still necessary.

Modelling communication

The ATL is also capable of inserting annotations describing the message-passing behaviour
of an application. These communication annotations directly map onto operations, such
as the send listed in Table 3.2. As the associated parameters of these operations are based
on the platform’s physical topology, the modelling of communication still reflects some of
the underlying hardware characteristics. Ideally, such architectural details are not visible
at the application level. One way to achieve this, is by using application-defined commu-
nication structures, also called virtual topologies [120]. This requires an extra translation
step that translates the virtual communication requests to physical communication requests.
This translation must be guided by a pre-established mapping of the virtual communication
topology on the platform’s physical communication topology [120]. In the context of the
Mermaid simulation environment, such a translation could be performed at the intermediate
layer between the application and architecture levels, i.e. by the trace generator.

3.2 Workload modelling 49

A more radical method to hide architectural details at the application level is to define the
communication annotations such that they are based on a virtually shared memory model.
This approach, which is also followed by the SMART simulation environment [105], is sim-
ilar to that of the High Performance Fortran initiative [54]. As a result of this approach, all
explicit communication at the application level is removed and substituted by memory refer-
ences. This implies that a component of the simulation environment, presumably the trace
generator, issues the communication requests rather than the application itself. Naturally,
the generation of these communication requests is dependent on the distribution of data over
the different processors. So, by manually specifying how the data is distributed, different
data distributions can easily be evaluated without the need to change the applications.

There are, of course, several issues that have to be addressed when adopting a virtually
shared memory model to describe application behaviour. Access to distributed data needs
to be synchronised to avoid, for example, data hazards like RAW (read after write), WAR
(write after read), and WAW (write after write). These hazards are similar to the data haz-
ards in instruction pipelining [52].

Neither the virtual topologies nor the virtually shared memory model are implemented,
both are future work.

3.2.2 Stochastic workload modelling
Besides the tracing of real applications, we have also investigated techniques to generate
operation-traces from stochastic application descriptions. In such a scheme, the abstract
application model consists of descriptions expressing the application behaviour using prob-
abilities. Evidently, this technique represents the behaviour of (a class of) applications only
with modest accuracy. However, it offers more flexibility than the tracing of real programs.
For example, rapidly adjusting the application behaviour is fairly easy using this technique,
which can be useful when fast-prototyping new architectures. At this moment, our stochas-
tic application modelling framework only supports the modelling of computation for a uni-
processor system. For this reason, we limit the discussion in this section to sequential com-
puting only.

The probabilistic descriptions are written in the language SEA (acronym for Stochas-
tically Expressing Applications), which was especially designed for this purpose. A tool,
called the Stochastic Trace Generator (STG), interprets the SEA descriptions and generates
operation-traces from them. Like in the case of realistic workloads, the STG uses a machine
descriptor file to tune the traces for a particular target architecture. For example, the descrip-
tor file’s information on the available number of registers in the target architecture is used
to filter out memory accesses from the operation-trace in order to model register accesses.

Figure 3.9a shows the general structure of a SEA description. From a high-level point of
view, an application description is constructed of a sequence of one or more kernel descrip-
tions. These kernel descriptions consist of three parts: a data part, an operation part and a
general part. The data section describes what kind of variables can be manipulated within a
kernel. The operation section specifies the types of operations taking place within a kernel.
Since this section may also contain sub-kernel descriptions, the complete application model
is represented by a tree of kernel descriptions. Finally, the general section describes issues
like the number of operations to be generated within a kernel, addresses of segments, etc. To
reduce the size of SEA descriptions, inheritance is supported. This allows the specifications

50 Chapter 3. Mermaid

Application description

Kernel desc.Kernel desc.

Data desc. General desc.

Kernel description Kernel description

Operation desc.

(a)

Arithmetic Forward Backward

Integer Double

Branch CallComputation

Float

Operation Desc.

Mem.

New kernel desc.

(b)

Figure 3.9: Structure of a SEA description.

from a parent kernel to be inherited by its child. Consequently, only the description fields
which are really new have to be specified, thereby overwriting their old values inherited by
the parent kernel.

Figure 3.9b shows (a part of) the operation description hierarchy. Each arc within the
hierarchy is weighted with a certain probability. When an operation is generated, the hier-
archy is traversed top-down according to the probabilities of the arcs until a leaf containing
a certain operation has been reached. In order to specify the type of data on which the op-
eration is performed (e.g. array, local variable, global variable, etc.), the data section of the
kernel description is traversed in a similar manner.

Using kernel descriptions as a building block allows the modelling of an application at
different abstraction levels. Basically, the behaviour of a whole program can be described
with one kernel description only. In this case, the application is described at a high abstrac-
tion level, which is flexible but might not be very accurate. Alternatively, multiple kernel
descriptions can be used to describe the behaviour of certain parts of a program. This ap-
proach may require somewhat more modelling effort but it represents the application be-
haviour with higher accuracy.

To illustrate the stochastic modelling, consider Figure 3.10. It shows a SEA descrip-
tion for the loop from the ddot code fragment of the previous section when using � =1024.
For the sake of clarity, we omitted a few lines of SEA code which were not relevant to this
example. The kernel, which consists of 6 instructions and starts at hexadecimal instruction
address 100, is iterated 1024 times. SEA would also allow the non-probabilistic values (e.g.

3.2 Workload modelling 51

kdescription[1024, 0x100] {
general { instructions = 6; }
data {

dfp_data {
variable[50%] {

number = 1; global = 100%; auto = 0%;
}
array[50%] {

number = 2; av_size = 1024; global = 100%;
}

}
non_fp_data {

variable[100%] {
number = 1; global = 0%; auto = 100%;

}
array[0%] {}

}
}
computation[100%] {

writeback_expr[33%] {
sfl_point = 0%; dfl_point = 50%;
integer = 50%; constant = 0%;

}
arith_expr[67%] {

sfl_point = 0%; dfl_point = 50%;
integer = 50%; constant = 50%;

}
fp_expr {

plain_fp[100%] {
fadd = 50%; fmul = 50%;
fdiv = 0%; fsub = 0%;

}
intrinsic_fp[0%] {}

}
integer_expr {

non_bit_op[100%] {
add = 50%; sub = 50%;
mul = 0%; div = 0%;

}
bit_op[0%] {}

}
}
calls[0%] {}
branches[0%] {}
sub_kdesc[0%] {}
communication[0%] {}

}

Figure 3.10: SEA description of ddot loop.

52 Chapter 3. Mermaid

for (i = 0; i < N; i++) {
a += x[i] * y[i];

}

1. REG = i - N // i < N
2. REG = x[i] * y[i]
3. REG = a + REG
4. a = REG
5. REG = i + 1
6. i = REG

Original ddot loop Pseudo assembly of the loop-body

Figure 3.11: Translation of the ddot loop into pseudo assembler instructions.

the number of instructions) to be random and behave according to some distribution.

The SEA description in Figure 3.10 has been constructed by first translating the body
(including the conditional expression) of ddot’s loop into some sort of pseudo assembler
instructions. This translation is shown in Figure 3.11. The resulting pseudo assembly con-
sists of 6 instructions, which explains why the SEA description specifies that each kernel
iteration should generate the operations for 6 instructions. The branch at the end of the loop
is omitted as it is generated automatically by the STG.

The computation part of the SEA description basically describes the probabilities de-
rived from these 6 pseudo assembler instructions. For example, as 2 of the 6 assembler in-
structions write their result back to memory, there is a 33% chance of an instruction being a
writeback expression. Of these memory instructions, 50% store integer values (instruction
6), while the other 50% store doubles (instruction 4). The remaining 67% (4 out of 6 pseudo
instructions) of instructions should perform arithmetics and store the results in a register (the
arith expr part of the description). From these instructions, 50% performs calculations on
doubles (instructions 2 and 3), while the remainder operates on integers. Assuming that �
is a constant, then 50% of the arithmetic instructions use a constant value as one of their
operands (instructions 1 and 5). Furthermore, the fp expr part of the description shows that
an arithmetic instruction performing a calculation on doubles is either an addition or a multi-
plication (instructions 2 and 3). The remaining parts of the SEA description are constructed
in an identical manner. We note that the STG typically generates multiple operations for a
single pseudo assembler instruction. For example, if the STG determines that an operand
of an arithmetic instruction is not located in a register, then it first generates the operations
to address and fetch the operand after which it generates the arithmetic operation.

Currently, the SEA descriptions are produced by hand. This will eventually be auto-
mated by a framework in which real programs are profiled in order to generate the descrip-
tions. Moreover, as was mentioned earlier, the stochastic trace generation for parallel plat-
forms is not yet supported. We are still investigating how, for instance, communication can
be modelled best within the SEA paradigm. A promising approach, however, is proposed
by Chodnekar et al. [23]. They show that it is possible to express the communication be-
haviour (e.g. message generation, spatial distribution of destination nodes, etc.) in terms of
commonly used distributions.

3.3 Architecture modelling 53

3.3 Architecture modelling
At the architecture level, Mermaid requires two different architecture models: a computa-
tional model accounting for the computational behaviour of a single node and a communica-
tion model simulating the communication and synchronisation behaviour and thus including
all the nodes of the parallel platform. This approach is similar to one followed by SMART
[105], which also distinguishes between a single node model and a global network model.
Before describing Mermaid’s architecture models, we will first give a short introduction on
the object-oriented simulation language Pearl, which is used for the implementation of the
models.

3.3.1 The language Pearl

The Pearl language [97] was especially designed for easily and flexibly implementing sim-
ulation models of computer architectures. It has been greatly influenced by three other lan-
guages: POOL [6], C [69] and SIMULA [12]. A Pearl program consists of a collection of
objects running concurrently and communicating with each other via messages. This com-
putational model of objects originates from POOL. The statement structure and the syntax
of Pearl stems from C, while the object-oriented simulation model is similar to the one that
is used in SIMULA. Pearl is a small language and does not support any sophisticated fea-
tures, like most general purpose languages do. The idea behind this is that these features
are not needed for architecture simulation.

The compilation path of a Pearl program is shown in Figure 3.12. It consists of four
stages. In the first stage, the Pearl-compiler compiles the object definitions (Pearl code) to
regular C code. The C-compiler then compiles the generated C code and may link ordinary
C libraries with it. In the third stage, the loader interprets a defined topology of objects and
loads the simulation with its given parameters on the host machine. Finally, in the last stage,
the host runs the simulation, possibly using program input.

Objects

Pearl objects are processes that behave according to a specification given in a class; an ob-
ject is said to be an instance of a class. Objects execute ordinary sequential code and have
their own data space which cannot directly be modified by other objects. Instead, when an
object wants to modify some remote data, it sends a message to the object with a request to

Pearl
compiler

C-compiler Loader

Object definition Extra C-libraries simulation parameters
Topology,

Program input

Executable InstancesC

Host

Figure 3.12: The compilation path of a Pearl program

54 Chapter 3. Mermaid

change the data. The remote object may then change the data explicitly after receiving such
a request.

Moreover, Pearl makes a clear separation between data and objects. Data is used to
model the state of the hardware components (e.g. the cache state, register contents, the bus
state, etc.), while the objects model the functionality of and the interactions between the
hardware components. Unlike other object-oriented languages, the objects in Pearl are not
dynamically created but are generated during the startup of the program. This approach
originates from the fact that objects represent hardware components, which, of course, can-
not be created dynamically.

Communication

Communication between objects is accomplished by either synchronous or asynchronous
message-passing. Asynchronous communication continues immediately after transmission
while synchronous communication waits for a reply message from the other side. An asyn-
chronous message is composed and sent in one single action, as in the example below:

dest !! m_id(par_1, ... , par_n);

This statement places the message, which is calling method m id with the parameters par 1
...par n, in the message-queue of an object called dest. So, the method m id should be a
function in the class corresponding to the object dest. When the destination object decides
to process the message, the message is retrieved from the queue and the function m id is
called inside the object with the parameters that reside in the body of the message.

The receiver of a message explicitly decides when to handle a message by executing
a so-called block statement. This statement blocks until a message for one of the specific
methods arrives. When multiple messages reside in the message queue of the object in ques-
tion, the messages are handled in a FIFO order. For example

block(method1, method2);

blocks until a message for either method method1 or method2 arrives. When the message
arrives, the appropriate method is called after which control is returned to the statement after
the block statement. The keyword any may be used to indicate all possible methods, while
a call to block without parameters will block forever.

The synchronous send is denoted using a single exclamation mark:

x = dest ! m_id(par_1, ... , par_n);

A reply is sent back within the receiving method by using the statement:

reply(a_value);

Blocking for synchronous messages is identical to the blocking scheme discussed for asyn-
chronous communication.

3.3 Architecture modelling 55

Virtual time

Because of its simulation nature, Pearl is equipped with a virtual clock. During the run of
a Pearl program, this clock always holds to the current simulation time. This clock neither
can go backwards in time nor does it flow continuously, which implies that Pearl obeys a
discrete-event model. An object can indicate that it wants to wait an interval in simulated
time and does not want to be re-scheduled during that period. For example, an object that
wants to wait 5 time units executes:

blockt(5);

When all objects are waiting for the virtual clock or messages, the clock is advanced to the
first time in the future where some object will become active. If all objects are waiting for
messages, implying that there is a deadlock situation and none of the objects will be active
again in the future, then the simulation is said to be terminated.

3.3.2 Single-node computational model
We used Pearl to implement Mermaid’s two template architecture models: a single-node
computational model and a multi-node communication model. The first of these models, the
single-node computational model, simulates the processor(s) and the memory hierarchy of a
multicomputer node. It is generic in the sense that a wide range of node architectures can be
represented by means of parameterisation. Figure 3.13a depicts the computational template
model in which roughly each component (i.e. box) is implemented by a Pearl object.

The CPU component simulates a microprocessor within the node architecture. It sup-
ports the operation set described in section 3.1.3. Each operation is associated with a fixed
execution latency. The CPU is parameterised with the operation latencies in clock cycles
and the clock speed. Furthermore, the CPU component can be configured to include more
advanced features such as a model for superscalar processing. The inclusion of these de-
tails generally results in improved accuracy and, inherent to that, a more computationally
intensive simulation. Nevertheless, a cycle-accurate simulation of instruction pipelines is
not feasible due to the lack of information in the operations.

The cache hierarchy component simulates the first-level cache and, if available, also the
higher-level caches of the memory hierarchy. It is parameterised with the cache dimensions,
associativity, block replacement strategy, write strategy and the latencies associated with

(a) (b)

Out

In

In

In

In

Out

Out

Out

Memory

processor

Links

CPU

RouterAbstract

Cache hierarchy

Bus

Figure 3.13: The template architecture models.

56 Chapter 3. Mermaid

cache hits, misses and replacements. Moreover, a cache can either be configured to work as
an instruction/data cache or as a unified cache.

The single-node model supports a setup of multiple processors using a common cache
hierarchy. To guarantee cache consistency in such a configuration, the caches provide a co-
herency protocol [133]. By default, this is a snoopy cache protocol. But other strategies,
like directory schemes, can be added with relative ease.

To connect the processors and the cache hierarchy to the memory, the template model
defines a bus component. It is a simple forwarding mechanism, carrying out arbitration upon
multiple accesses. The parameters used to configure this component include the bus-width,
bus cycle-time and arbitration details. Changing the bus to a more complex structure, such
as a multistage network, can be done without much remodelling effort. In that case, only
a new Pearl module needs to be written, replacing the bus component within the template
model.

Finally, the memory component simulates a simple DRAM memory. It is parameterised
with memory size, memory refresh rate, and memory access latencies.

3.3.3 Multi-node communication model
A node within the communication template model is constructed from an abstract proces-
sor, a router and multiple communication links. This setup is shown in Figure 3.13b. The
nodes are connected in a topology that reflects the physical interconnection scheme of the
multicomputer, resulting in a multi-node simulation model.

Each abstract processor within the multi-node model reads an incoming operation-trace,
processes the compute operations and dispatches the communication requests to a router
component. After this point, the router is responsible for further handling the transmission.
This may include splitting up messages into multiple packets. Furthermore, the router com-
ponent routes the resulting and all other incoming messages (packets) through the commu-
nication network. For this purpose, it uses a configurable routing and switching strategy.
Currently, only routing algorithms for two-dimensional mesh networks are available: deter-
ministic routing based on dimension ordering and partially adaptive negative-first routing
[100, 101]. Other routing schemes can be added and evaluated by simply plugging in a new
router component.

Parameters also include communication link bandwidth, packet size, routing hop la-
tency, message setup and processing delays and buffering specifics. For packet switching,
the routers support both the store-and-forward [100] and the wormhole routing [31] tech-
niques. A more elaborate discussion of these switching techniques is presented in Chapter 5.

3.3.4 Putting it all together
Detailed simulation of a multicomputer architecture requires that the single-node computa-
tional model is replicated for each of the nodes taking part in the simulation. Each instance
of the single-node model is then assigned to a node within the communication model in or-
der to feed it with the computational tasks and communication operations. This is illustrated
in Figure 3.14, which essentially is a more detailed version of Figure 3.4.

The multi-node communication model, with its message passing, intrinsically suggests
that the system under investigation should belong to the class of multicomputer architec-

3.3 Architecture modelling 57

Communication

model

operations &

Communication

computational model
Instance of the

Fe
ed

ba
ck

computational
tasks

Computational & communication operations

Mem

Bus

Node Node

NodeNode

CPU

Caches

Figure 3.14: Detailed simulation of a distributed memory multicomputer in Mermaid.

tures. But, by only using the computational model and configuring it with multiple proces-
sors, a symmetric multiprocessor (SMP) can be simulated. Note, however, that this would
require the addition of atomic operations to the current set of computational operations. A
disadvantage of this approach is that simulation can only be performed at the level of com-
putational operations, being the highest level of detail.

Hybrid architectures, such as the ones belonging to the increasingly popular class of
CCNUMA machines [80, 86], can be modelled by both defining multiple processors on
a node sharing a memory and using the communication model to interconnect multiple of
these SMP clusters in a message-passing network.

Mermaid’s simulation methodology is in many aspects similar to that of the SMART
simulation environment [105], which was developed at roughly the same time as Mermaid.
There are, however, several important differences between both simulation environments.
For example, SMART initially focused on the simulation of communication and its conse-
quent computation. Simulation of the application’s computation (i.e. the local instructions)
could not or could only partially be performed. Only recently, extensions have been made
which make it possible to fully simulate parallel platforms [104]. This is in contrast to Mer-
maid, which has always supported the simulation of the whole parallel platform. Moreover,
there is a difference with respect to the generation of the simulation events. In SMART, the
target assembler code is augmented, while Mermaid uses the higher, and thus less architec-
ture dependent, C source level for augmentation. Besides this, Mermaid does not perform
augmentation at all in the case it uses the stochastic application model.

58 Chapter 3. Mermaid

3.4 Analysis of simulation output
&

Computer architecture simulations typically produce a large quantity of simulation output
offering statistics on all parts of the modelled architecture. These statistics require post-
mortem analysis, which often is a tedious task because of the bulkiness of the data. For this
reason, we have built a tool which allows for extracting the required data from the simulation
output and which, in addition, can perform all kinds of statistical methods on the obtained
data. The tool, which is called RAPID (RAPid Interpretation of Data), contains a specifica-
tion language in which the user specifies what statistical methods should be used on which
parts of the simulation data. According to this specification, RAPID generates an executable
performing the specified types of analysis. A comprehensive description of RAPID can be
found in [110].

Post-mortem analysis may, however, not be sufficient to gain a good insight into the per-
formance behaviour of a computer architecture. In some situations, it might be helpful, or
even essential, to capture runtime effects which have an important influence on the overall
performance. Studying these runtime effects may result in a better understanding of why
the performance of the simulated architecture is what it is. Therefore, Mermaid also offers
a Graphical User Interface (GUI) supporting the runtime visualisation of architecture sim-
ulations.

3.4.1 The GUI–support

At the design-phase of the GUI, we identified three important requirements to which the
GUI should adhere: flexibility, clarity and applicability. Regarding flexibility, the GUI must
not be geared towards one specific type of architectural model or simulation. As Mermaid’s
architectural models can easily be adapted, the GUI should allow the visualisation of basi-
cally any computer architecture. For this reason, we decided to offer the GUI-functionality
at the Pearl level rather than at a higher level, such as at the level of Mermaid’s architectural
template models. Moreover, the GUI must be user friendly. Therefore, it should be able to
display the required data in a clear manner without burying the user under loads of statisti-
cal information. Finally, the GUI-support must be easily applicable and, of course, it should
be equally simple to leave out the visualisation without being hit by a performance penalty.
To achieve this, the GUI is defined entirely independent of the Pearl code. A special GUI-
description, written in Agile (A Graphical user Interface LanguagE), specifies the structure
and the functionality of the GUI. It describes, for example, which data values should be ex-
tracted from the simulation and how they should be visualised. The Pearl runtime system
uses this description to take care of the actual visualisation. So, in this approach, the Pearl
code is not polluted by all kinds of graphics-primitives. As a consequence, we can use the
GUI-support for older simulations without the need to modify the Pearl code. A more de-
tailed overview of Agile is beyond the scope of this thesis. The interested reader is therefore
referred to [70].'

This work is based on [71].

3.4 Analysis of simulation output 59

Discrete Continuous
snapshot values — values that integrated values — values that

Temporal behaviour say something about the simu- say something about the simu-
lation at a particular moment lation over some time interval

Spatial behaviour event values — values that quantitative values — values
describe an event being raised or not with a large domain

Table 3.3: Classification of values according to their temporal and spatial behaviour.

The basic framework of the GUI, as obtained by the Agile description, consists of a so-
called canvas (the main window) with a few controls which make it possible to run the sim-
ulation in three different modes: continuously, per time step and per scheduled event. On
the canvas, small windows can be placed representing the different components of the com-
puter architecture. In this scheme, every Pearl object is attached to one window. However,
if an object is not interesting, its window can be omitted. Visualising widgets, or in short vi-
suals, can be placed inside the object-windows. These visuals, which come in various types,
are the building blocks for displaying statistics from the objects. Using this framework, the
construction of a GUI is composed of three steps:

1. Determining which data values from the simulation are interesting.

2. Doing (optional) transformations on these values.

3. Determining how to present the (possibly transformed) values. In other words, spec-
ifying which visuals should be used.

Retrieving and transforming data values

Values which are retrieved from a running simulation can, of course, be directly displayed.
This is, however, not very sensible as most values first require a transformation of some sort
before they actually represent meaningful information. For example, most of the values that
are retrieved from the simulation have a temporal character; they only provide information
on the simulation at the moment that they were derived and therefore tend to change very
fast. When going through a simulation step by step to get a better understanding of what
is happening, such a value can be directly displayed. But when the simulation is run con-
tinuously, its direct visualisation is not desirable. Instead, one would like to see the value’s
evolution over some time interval. So, we should realise that there are different types of data
values, each having its own characteristics and thus requiring different visualisation meth-
ods. In Table 3.3, we present a classification of data values according to their spatial and
temporal characteristics: a value can either be discrete or continuous in both time and space.
Discrete values have a small domain (discrete in space) or the length of the simulation time
frame on which these values hold information is limited (discrete in time). On the other
hand, continuous values have a large domain (continuous in space) or hold information for
an arbitrary period of simulation time (continuous in time).

Many of the data values are snapshot values, which cannot be directly visualised when
simulating in continuous mode. These snapshot values should first be translated into in-
tegrated values. For this purpose, special transformer functions are used, which sample a

60 Chapter 3. Mermaid

Graph Diagram Value

History Event

Figure 3.15: The visual-types.

snapshot value at regular intervals and, as a consequence, determine the behaviour of the
value over a longer period of time. Currently, there are five transformer functions: smooth,
history, sum, average and group. Applying the smooth transformer, a value is smoothed
by sampling it at regular intervals and calculating its new value from its previous sample
and its current value according to a certain weight. The history transformer also samples a
value on regular intervals but, unlike smooth, stores these samples. This history of samples
can then be used for further processing with transformers or it can be passed directly to the
GUI. In case of the latter, the entire range will be displayed in one visual. The sum and
average transformers are strongly related to the history transformer. In fact, the sum and
average are only defined on histories. Whereas history maps one value to a range of them,
sum and average map a range to one value. The names are self-explanatory: sum sums up
all the values in a range, while average calculates the arithmetic mean. Finally, values can
be grouped together to display them in one visual by means of the group transformer.

Visuals

The visuals which are capable of displaying the (transformed) values are shown in Fig-
ure 3.15. Each of these visuals uses one of three different ways to display a value: by a
colour, by the length of a bar or verbatim. Using the length of a bar is convenient when dis-
playing quantitative values. On the other hand, event values can often be interpreted more
easily when they are represented by a colour rather than the length of a bar. In the case a
simulation is executed in step-mode, an event can be displayed as being raised or not in two
colours. When simulating in continuous mode, the amount of time an event was raised can
be displayed as a range of colours, but also as the length of a bar. The choice between those
two depends on the characteristics of the value and what the user wants to detect from them.

The two visuals that use the length of a bar to display a value are called graph and di-
agram. The diagram visual takes a group of values and draws a number of bars of which
the lengths are relative to the values. As the value changes, the length of the bar changes as

3.4 Analysis of simulation output 61

0 %

20 %

Graphical XY

Figure 3.16: Visualising XY and Graphical routing in a mesh network.

well. The graph shows the recent past of a value. It scrolls from right to left and new values
are being drawn on the right. The metrics of the value are omitted because they may easily
reduce the clarity of the GUI.

The visuals history and event use a colour to display a value. When simulating step-
by-step, these visuals typically display event-like values: event is used to display events as
being raised or not and history displays their recent past. However, the history and event
visuals can do more. When simulating in continuous mode, it might also be interesting to
use them to display quantitative values. This can be done by assigning a colour to the up-
per and lower bound of the value and have a number of shades between the two extremes.
With this technique, a large number of values from different objects can be compared in
an instance. Figure 3.16 gives an example of this type of visualisation. It shows the con-
gestion in a mesh network by colouring the routers and the channels within the network.
Dark grey values denote high congestion, whereas the light grey values indicate that there
is (almost) no congestion. In reality, these are real colours ranging from from blue (no con-
gestion) to red (high congestion). The two pictures on the right show the network behaviour
when packets are routed using an XY routing scheme [100, 101], while the pictures on the
left show the behaviour using Graphical routing [7]. XY routing is a technique based on di-
mension ordering (first route a packet in the X coordinate, then in the Y coordinate), whereas
Graphical routing is based on Bresenham’s algorithm to draw lines as known from the field

62 Chapter 3. Mermaid

of computer graphics [40]. The pictures at the top are for a uniform communication load,
whereas the pictures at the bottom show the behaviour for a communication load in which
a hotspot in the center of the mesh is introduced. This hotspot consumes 20% of all mes-
sage traffic. It is not our intension to explain the pictures in detail, but the point we want to
make is that the pictures clearly suggest that XY routing outperforms Graphical routing for
a mesh network and for the applied communication loads. Thus, using visualisation, this
result is noticeable instantly, while this may not be true when a vast amount of simulation
data has to be analysed post-mortem. The interested reader is referred to [71] for a more
detailed discussion of this example.

The last visual type, called value, directly displays a value. A frequent use of this visual
will result in a decrease of the clarity of the GUI. It should therefore be used with some care.

3.5 Summary
In this chapter, we presented the Mermaid framework for the performance evaluation of
MIMD multicomputer architectures. The simulation environment allows for study of the in-
teraction between software and hardware at different levels, ranging from the application
level to the runtime system level. Architecture simulation is supported at various abstrac-
tion levels. For example, if only fast prototyping is required, then simulation can be per-
formed at a high level of abstraction. However, if accuracy is required then the simulation
environment is capable of simulating at a lower, but less efficient, level of abstraction.

Mermaid strives to support the evaluation of a wide range of architectural design op-
tions. To allow this modelling freedom while delivering good simulation performance, de-
tailed simulation is performed at the level of abstract machine instructions rather than at the
level of real instructions. For this purpose, we use an execution-driven simulation technique
that is strongly related to traditional trace-driven simulation. The traces driving the simula-
tor consist of events, called operations, which represent processor activity, memory I/O or
message-passing communication. To guarantee the validity of these multiprocessor traces,
the trace generation can be controlled by the simulation of the target architecture. In other
words, the trace generator is interleaved with the architecture simulator.

Because Mermaid’s architectural simulators are operation-driven and therefore do not
interpret real machine instructions, application behaviour must be modelled explicitly. This
workload modelling can be done in two ways. In the first approach, real applications are in-
strumented in order to trace their execution behaviour. The instrumentation of the programs
takes place directly at the C source level to reduce the architecture dependence of the appli-
cation model. This basically allows us to use the same augmented application for the eval-
uation of any multicomputer architecture. In the second approach, application behaviour
is modelled using probabilistic descriptions. Such a scheme provides more flexibility than
the tracing of real programs but its accuracy is only modest. When fast-prototyping new
architectures, however, this may be a useful technique.

To facilitate the analysis of the simulation output, Mermaid features tools for both the
post-mortem and run-time analysis of data. In the case of the latter, the user is allowed to
define a GUI visualising the run-time effects which may have impact on the performance of
the computer architecture.

Chapter 4

On the accuracy and efficiency of
Mermaid &

“Even a stopped clock is right twice a day.”
Source Unknown

Modelling in general, and so the modelling of computer architectures, always requires
the model to be validated. To put this in the context of the above quote, we should find out
whether or not the model is “more than a stopped clock”. Without any knowledge on the
accuracy of the simulation, the computer architect cannot perform design space exploration
in a sensible manner. An inaccurate model may lead to wrong design decisions, harming
the architecture’s performance or cost, or both. In this chapter, we will therefore address the
validation of our simulation methodology. This validation study purely focuses on reality-
based workloads as Mermaid’s stochastic modelling of workloads is still subject to many
(fundamental) changes. The validation of our stochastic workload modelling framework is
future work.

In the previous chapter, we also recognised that good simulation efficiency is essential
for an architectural simulator. To evaluate whether or not we have succeeded in building an
efficient simulation environment, this chapter presents an additional study on Mermaid’s
performance. Furthermore, we suggest several methods to improve the simulation perfor-
mance. Of these methods, we have implemented one: Parallel Mermaid, which allows dis-
tributed simulation on a pool of workstations.

4.1 Validation
To gain insight in the capabilities of our simulation methodology with respect to accuracy,
we have modelled an existing distributed memory multicomputer. This machine, a Parsytec
GCel, consists of Inmos T805 transputers connected in a 2D grid network. The following
section briefly describes the architecture model that has been built for the Parsytec multi-
computer and presents a set of validation experiments.'

This chapter is based on [108, 111].

64 Chapter 4. On the accuracy and efficiency of Mermaid

Channel throughput 1.7 Mbyte/s Routing overhead 2 . s
Receive overhead 25 . s Inter-board penalty per byte 0.25 . s
Send overhead 47.5 . s Context switch 0.75 . s
Packet creation overhead 10 . s Memory latency per word 180 ns

Table 4.1: Parameters of the Parsytec GCel communication model.

4.1.1 The architecture model

For the architecture model of the Parsytec GCel multicomputer, we used Mermaid’s hybrid
machine model as shown in Figure 3.14. Each instance of the computational model sim-
ulates a T805 transputer. The configuration of the computational model is straightforward
as it only consists of three components: a processor core, a bus and a DRAM. There are
no caches � that need to be modelled. The latencies of the computational operations were
derived from both measurement on a real transputer and from technical documentation.

Regarding the communication model, we configured it to represent a mesh topology per-
forming store-and-forward XY routing. On the real machine, this routing is entirely done
in software. This implies that whenever the transputer routes an incoming packet, a con-
text switch is performed to a system process routing the packet after which the transputer
switches back to the user process. Context switches can, however, be performed relatively
fast on transputers as they have some kind of hardware mechanism for context switching.

The entire set of parameters for the communication model is listed in Table 4.1. A diffi-
culty in determining the values for these parameters is the fact that the Parsytec’s operating
system has been a black box to us. So, the OS overheads of message-passing communica-
tion (e.g. communication setup overheads) were not known. We therefore tried to deter-
mine these overheads by means of experimentation. All parameters in Table 4.1 should be
self-explanatory, except for the inter-board penalty. This penalty is caused by the physical
network organisation of the Parsytec GCel multicomputer. The mesh network is constructed
by boards containing clusters of 16 processors. We found that inter-board communication
adds a significant latency in comparison with intra-board communication.

4.1.2 Experiments

The validation has been performed by comparing the simulation results of several bench-
marks with the results of real execution. Initially, the computational and communication
models were validated separately. Table 4.2 shows the overall results of these experiments
using normalised errors. The normalised error, referred to as /error, is the ratio between the
actual and the predicted execution time and is defined as

/error
�

max 02143 + 57628 1:92;=<?> 6@5 (*;*A BDC
min 0E1F3 +#5G628 1
9H;I<J> 6@5 (*;*A#BDCK

The T805 transputer contains a small addressable SRAM which can be used as some sort of cache. This
memory is not included in our model.

4.1 Validation 65

where 1F3 + 576 is the actual time measured on the real system and 1L9H;I<J> 6@5 (*;*A#B is the predicted
time. So, an /error of 1 implies that there is no modelling error. Table 4.2 gives the average/error for several experiments (calculated using the geometric mean), the standard devia-
tion M of this average error and the worst case /error. The workloads for the computational
model consisted of a set of well-known numerical kernel functions, including ddot (double
precision innerproduct), daxpy (double precision vector update) and some of the Lawrence
Livermore kernels [89].

The communication workloads, which only model message passing and its consequent
(computational) delays, can be divided into three categories. The first category, namely that
of light communication loads, uses benchmarks performing message roundtrips. The two
remaining types of communication workloads are for so-called “stress-testing” purposes,
as they heavily congest the network. These two workloads can again be subdivided into
uniform and non-uniform loads. The first type of load uniformly distributes communication
over the network, while the latter type only stresses some small regions within the network,
causing hot-spots to appear.

For the computation and light communication loads, the average /error is small as it does
not exceed 1.015. More importantly, the standard deviation and the worst case error indicate
that the performance estimates for these loads are quite accurate in general. The errors of
the stress-testing communication benchmarks are higher, especially in the case of the non-
uniform loads. This can be explained by the fact that these benchmarks produce workloads
exhibiting high contention for network resources, which tends to amplify any existing mod-
elling errors. While a worst case /error of nearly 1.30 was measured for these extreme loads,
the standard deviations suggest that the accuracy in the general case is tolerable.

Validation of the integral system, consisting of both the computational and communi-
cation models, has been performed by three SPMD-type benchmarks which are listed in Ta-
ble 4.3: gauss (a solver of linear equations), pdmm (a matrix multiplication) and sort (an in-
teger sort). Of these three benchmarks, none requires execution-driven simulation (i.e. they
all contain fixed communication patterns). This implies that, in all three cases, the simula-
tion can be performed in pure trace-driven mode. Furthermore, only the execution of sort
is data dependent. Consequently, when simulating sort, the trace generator threads need to
synchronise at the application level (see Section 3.1.2).

Average M Worst-case Workload/error /error
1.015 0.013 1.038 Computational loads
1.015 0.013 1.050 Light communication

loads
1.042 0.031 1.109 Uniform congesting

communication loads
1.088 0.092 1.297 Non-uniform congesting

communication loads

Table 4.2: Validation of the separate computational and communication models.

66 Chapter 4. On the accuracy and efficiency of Mermaid

Benchmark Description Data input
Gauss A solver of linear equations NO�QP matrices

using Gaussian elimination
Pdmm A double-precision matrix NO�QP matrices

multiplication
Sort An integer odd-even N K of integers

transposition sort

Table 4.3: The parallel benchmark applications used for validation.

Figure 4.1 depicts the execution times and estimated (simulation) times of the bench-
marks for a range of different data sizes. With a calculated average /error of 1.022 and a stan-
dard deviation of 0.029 for gauss, high accuracy is obtained. For the simulation of pdmm,
we measured a somewhat larger average /error of 1.040 and a standard deviation of 0.035.
Finally, in the case of sort, we achieved an average /error of only 1.019 with a M of 0.019.
So, again, good accuracy is obtained. The worst case /error for pdmm, gauss and sort equal
to 1.181, 1.115 and 1.077 respectively.

Another important observation is, of course, that the simulation closely follows the ex-
ecution trend. This is even the case for the small irregularity in the graph of gauss at a prob-
lem size of 100 � 100 using 32 processors. Closer examination showed that this irregularity
is caused by a load imbalance.

4.1.3 Discussion
The validation experiments demonstrate that, despite of the high abstraction level, good ac-
curacy can be obtained. Nearly all measured values of /error (except for the non-uniform
stress-testing workload) are below 1.05, which means that we more or less achieved our
accuracy-goal of keeping the average errors below the 5% (see Chapter 3). Naturally, this
conclusion is only appropriate for the model we investigated. The process of validation
must therefore be a continuous effort which is repeated every time a model is constructed
or changed.

In the Mermaid framework, three areas can be distinguished where validation is neces-
sary:� Is the translation from annotations to operations accurate for a given target processor,

runtime model and compiler?� Does stochastic generation of a trace of operations resemble the behaviour of real ap-
plications?� Does the architecture model resemble the latencies of the real operations under dif-
ferent loads of operations?

Validating the translation of annotations to operations can be done by a comparison of
generated assembly code and generated operations, if a compiler for the target processor is

4.1 Validation 67

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Gauss

real 100x100
simulated 100x100

real 80x80
simulated 80x80

real 50x50
simulated 50x50

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Gauss

real 160x160
simulated 160x160

real 120x120
simulated 120x120

(a)

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Pdmm

real 60x60
simulated 60x60

real 30x30
simulated 30x30

0
2
4
6
8

10
12
14
16
18
20
22

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Pdmm

real 120x120
simulated 120x120

real 90x90
simulated 90x90

(b)

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Sort

real 8K
simulated 8K

real 16K
simulated 16K

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16 32 64

Ti
m

e
(s

ec
.)

Processors

Sort

real 32K
simulated 32K

real 64K
simulated 64K

(c)

Figure 4.1: Validation results of gauss (a), pdmm (b) and sort (c).

68 Chapter 4. On the accuracy and efficiency of Mermaid

available. Specific compiler optimisations can be detected, which may result in tuning the
annotations or even in adjusting the trace generator.

To verify the accuracy of the stochastic generation of operations, the performance criti-
cal parts of a typical application can be instrumented to generate a reality-based operation-
trace of the application. From this trace, the amount and locality of the application’s data
and instruction accesses, its arithmetic behaviour and its communication behaviour can be
quantified. The resulting quantification can then be used during or after the stochastic gen-
eration as a semantic accuracy check. Evidently, this is not a trivial task since, for instance,
locality of reference is hard to quantify. There is still no clear metric for locality, although
some metrics have been proposed [19]. Hence, this topic requires additional research.

On the other hand, the stochastic trace generator does not always have to operate strictly
within the range of application behaviour, as there is the additional interest in studying the
performance degradation when applying extreme workloads.

Finally, to validate the architecture models, one typically simulates a suite of reality-
based benchmarks and compares the results with real execution. These benchmarks can be
simple and only concentrate on rudimentary architecture operations. Once these operations
have been correctly calibrated, the validation can be extended to cover larger and more com-
plicated benchmarks or applications.

Naturally, this type of validation of the architecture models requires (parts of) the target
architecture to be available. Unfortunately, this is often either not the case or the available
parts are hard to study in isolation. As a result, the validation is mainly restricted to the
visual inspection of the model code by the programmer. Additionally, in some cases, simple
benchmarks of which the execution behaviour is well-understood might be used to act as a
sanity check [13].

4.2 Simulation performance
In order to indicate the performance of computer architecture simulations, it is common use
to calculate the slowdown of the simulator. This metric is an indication of the overhead intro-
duced by the simulator as opposed to real execution on the target platform. An exact value
for the slowdown of a simulator cannot be given since it may depend on the host machine
and the type of application and architecture that are being simulated. Therefore, a typical
value is generally used.

There are several ways to calculate the slowdown. The simplest one, and the most com-
monly used, is by calculating the fraction between the simulation time needed by the host
computer and the time the target computer would have needed:

slowdown (*;=< +SR execution time TUAV9H(
execution time (5 3#W + ((4.1)

The problem with this slowdown calculation is that it probably says as much about the host’s
performance as about the efficiency of the simulator. More specifically, the calculation is
entirely based on execution time and therefore disregards the differences between the host
and target architectures.

To reduce the slowdown’s dependency on the performance of the host platform, some
researchers apply a somewhat different calculation which is based on cycles rather than on

4.2 Simulation performance 69

time. In this case, the slowdown is defined by the number of cycles it takes for the host
computer to simulate one cycle of the target architecture:

slowdown XE)YX 6@+ R execution time TUAV92(
cycle time TUAV92(Z cycle time (5 3#W + (

execution time (5 3 W + ((4.2)

As this calculation takes the cycle time of both the host and target architectures into ac-
count, it is more meaningful than Equation 4.1. However, it is still architecture dependent
as the host and target architectures may perform different amounts of work in one cycle.
So, ideally, the slowdown calculation would specify the simulation overhead in the number
of instructions required by the simulator to simulate one instruction on the target architec-
ture. This means that the number of Cycles Per Instruction (CPI) of both the host and target
platforms should also be taken into account:

slowdown ;=B[9H(*3 R execution time TUAV92(
cycle time TUAV92(Z CPI T,A\9H(]Z cycle time (5 3 W + (Z CPI (5 3 W + (

execution time (5 3 W + ((4.3)

But, because average CPI values often are ambiguous and hard to obtain, the slowdown ;=B92(*3
metric is hardly ever used. Therefore, we use slowdown X2)GX 6^+ as the metric for our simulation
performance throughout the rest of this chapter.

4.2.1 Mermaid’s performance
To determine the simulation performance of Mermaid, we examined both the multicomputer
simulator of the previous section and a simulation model of a Motorola PowerPC 604 using
two levels of cache. For a mix of application loads, we measured a typical slowdown XE)GX 6^+ of
60 to 650 per simulated processor. So, an Ultra Sparc processor running at 143Mhz roughly
simulates between 220,000 and 2,400,000 cycles per second. The slowdown of the simu-
lation of an entire multicomputer is a function of the slowdown of a single processor and
the overhead caused by simulating the interconnection network. Typically, this slowdown
is calculated by multiplying the per-processor slowdown with the number of simulated pro-
cessors. Thus, a simulated multicomputer containing 64 nodes would then have a slowdown
of somewhere between 4,000 and 40,000.

Figure 4.2 shows the slowdown XE)YX 6@+ per processor as a function of the number of simu-
lated processors for the three benchmarks of the previous section. All graphs more or less
suggest that the slowdown decreases when simulating more processors. This is caused by
the fact that simulation of communication is quite efficient in Mermaid, whereas computa-
tion is simulated more low-level and therefore more expensive. In these particular experi-
ments, the simulation of communication is even faster than the communication within the
real machine. Therefore, the slowdown decreases as the number of nodes increases.

To have a reference for comparison, Table 4.4 shows the typical slowdowns per pro-
cessor of several of the multiprocessor/multicomputer simulators which were already dis-
cussed in Section 2.3.1. We should note, however, that the comparison must be performed
with care. This because the effect of different compilers, host platforms, operating systems
and target architectures which cannot be isolated and therefore devaluates a direct compar-
ison between the various simulators. Table 4.4 is split into two parts; one part contains the
simulators for which the slowdown was calculated based on cycles while the second part
contains slowdowns of simulators based on time.

70 Chapter 4. On the accuracy and efficiency of Mermaid

50

100

150

200

250

300

350

400

450

1 2 4 8 16

S
lo

w
do

w
n

pe
r p

ro
ce

ss
or

Number of simulated processors

Gauss

50x50
80x80

100x100
120x120

50

100

150

200

250

300

350

400

450

1 2 4 8 16

S
lo

w
do

w
n

pe
r p

ro
ce

ss
or

Number of simulated processors

Pdmm

30x30
60x60
90x90

120x120

50

125

200

275

350

425

500

575

1 2 4 8 16

S
lo

w
do

w
n

pe
r p

ro
ce

ss
or

Number of simulated processors

Sort

8K
16K
32K
64K

Figure 4.2: Slowdown per processor versus the number of simulated processors.

To recapitulate, except for Talisman, all simulators listed in Table 4.4 apply direct ex-
ecution. Talisman is an extremely fast instruction-level simulator which is highly geared
towards the simulation of one architecture: the Meerkat multicomputer [8]. Both the Wis-
consin Wind Tunnel (WWT) and Tango Lite use, besides direct execution, distributed sim-
ulation to boost performance (Tango Lite is the distributed implementation of Tango [33]).
For SimOS, it is quite hard to determine the typical slowdown. Like Mermaid, it also pro-
vides several levels at which can be simulated. SimOS’ less detailed level of simulation ob-

4.2 Simulation performance 71

Simulator Typical slowdown
per processor

Cycle-based slowdown
WWT [117, 96] 2–60
FAST [16] 10–100
Talisman [9] 100–150
Mermaid 60–650

Time-based slowdown
Tango Lite [45] 15–40
SimOS [119, 118] 2–250
Proteus [18] 35–100
SPAM [63] 15–425
Mermaid 13–600
Tango [33] 500–2000

Table 4.4: Typical slowdowns of several multicomputer/multiprocessor simulators.

tains only very small slowdowns, whereas its most detailed mode of simulation may reach
slowdowns of up to 13,000 per processor. We did not consider this detailed mode in Ta-
ble 4.4.

The numbers from Table 4.4 suggest that Mermaid is slightly slower than most of the
other simulators. Apparently, we have traded some some performance for the extra flexibil-
ity obtained by operation-driven simulation. However, the performance numbers we have
presented until now are those for its most detailed mode of simulation. If fast prototyping of
a multicomputer is the primary goal, then Mermaid’s communication model can be used di-
rectly. The slowdown of this type of simulation depends on the amount of computation and
communication present within the application. Computation can be simulated extremely
fast since it is modelled at the level of tasks, whereas communication is simulated in more
detail and is thus less efficient. Our measurements indicate that simulation at this level of ab-
straction results in a typical slowdown XE)GX 6^+ of between 0.5 and 4 per processor. This means
that an entire multicomputer can be simulated with only a minor slowdown and, in some
cases, even with a speedup! Comparing these numbers to the ones listed in Table 4.4, one
can conclude that using this mode of simulation, Mermaid is significantly faster than any of
the other simulators.

We believe that the simulation efficiency can still be enhanced, making Mermaid even
more competitive performance-wise. For instance, the Pearl simulation language, in which
the architecture models are written, emphasises the modularity and easy implementation of
architecture models. It generates only moderately efficient code. The choice of a general-
purpose language to implement our models might therefore improve the simulation perfor-
mance. However, this would probably harm Mermaid’s flexibility which is, in our opinion,
undesirable.

A more promising approach is to exploit the inherent parallelism found in simulations
of parallel computers. By performing distributed simulation, performance might be gained

72 Chapter 4. On the accuracy and efficiency of Mermaid

without sacrificing any accuracy. Results from the WWT and Tango Lite have shown that
distributed simulation may improve the simulation performance considerably [117, 96, 45].
In fact, the WWT is presently one of the fastest, if not the fastest, multiprocessor simula-
tor available. This performance gain can subsequently be used for the study of larger target
architecture configurations and more realistic applications. As a side-effect, distributed sim-
ulation also improves the simulator’s scalability with respect to the memory consumption.
Because the memory requirements are spread over multiple host computers, it is possible
to simulate workloads that consume large amounts of memory, which is common for mul-
ticomputer applications.

We believe that the next logical step in improving Mermaid’s efficiency and scalability
is to extend it in order to support the distributed simulation of multicomputer architectures.
For this reason, we implemented a prototype of parallel Mermaid which allows the simu-
lation to be distributed and executed on a cluster of workstations. In the next section, we
present an overview of this parallel Mermaid version, discussing its design issues and its
performance.

4.3 Parallel Mermaid
Mermaid’s hybrid architecture model, as depicted in Figure 3.4, exhibits a lot of inherent
parallelism, which simplifies the parallelisation. The instances of the computational model
perform computations which are local to a single node only. So, these instances are inde-
pendent of each other (i.e. their synchronisation and communication is simulated in the
communication model only). As a consequence, they can easily be simulated in parallel
on different hosts. Normally, distributed simulation requires extra measures to guarantee
the causality within the simulated system [75]. However, in our simulation methodology,
all events which are global to the distributed nodes are simulated by the centralised commu-
nication model. So, when the communication model is not parallelised and is executed on
a single host, it can correctly sequentialise the incoming communication requests, thereby
keeping one global notion of simulation time. In other words, the sequential communica-
tion model synchronises the distributed simulation clocks of the computational model. As
a consequence, no communication event will ever take place out of order, implying that
Lamport’s Clock Conditions are met at any time which, by that, guarantees the causality
within the simulation [75]. Hence, there is no need for so-called PDES (Parallel Discrete-
Event Simulation) algorithms, like the ones discussed in [43, 91, 60], to synchronise the
distributed simulation clocks. This is in contrast to, for instance, the WWT which uses a
conservative PDES algorithm to guarantee causality [117, 96].

When applying the above parallelisation scheme, it may seem that the (sequential) com-
munication model could become a potential bottleneck. For two reasons, however, this is
unlikely to occur. First, the number of communication requests typically is much smaller
than the number of computational operations. This is especially true for a large and impor-
tant class of multicomputer applications, namely that of scientific (computationally inten-
sive) applications. For applications which are constrained by communication (which will
probably not run very well on multicomputers anyway), the communication model may in-
deed limit the parallel simulation performance. Despite the fact that communication is not
extremely dominant in our applications, the communication model is still essential for cor-

4.3 Parallel Mermaid 73

Sync

modelmodel modelmodel
Comp Comp Comp Comp

S S

Communication
model

= trace generator thread

Figure 4.3: Distributed multicomputer simulation with Mermaid.

rectly modelling the synchronisation behaviour of the applications. Second, Section 3.1.2
explained that many multicomputer applications do not require execution-driven simula-
tion. In such cases, the communication model can operate in pure trace-driven mode, thereby
not constraining the execution of the threaded trace generator.

The question that remains is whether or not to parallelise the threaded trace generator.
We decided to perform its parallelisation for reasons of scalability. By dividing the gener-
ator threads over multiple workstations, the threads’ memory requirements are spread over
multiple machines as well. This allows for scaling the simulation to larger applications and
to target architectures containing more processors.

The distributed version of the hybrid simulation model is shown in Figure 4.3. The trace-
generating threads are, together with the instances of the computational model which they
feed, spread over multiple workstations. This division of work can be performed according
to any distribution scheme. But here we assume that the work is evenly shared among all
the hosts. As was mentioned earlier, the communication model is not parallelised and is
therefore executed on a single host machine.

A special process, referred to as SYNC, coordinates the synchronisation of the distributed
threads of the trace generator when simulator feedback is needed or when synchronisations
at the application level have to be performed (see Section 3.1.2). In the case execution-
driven simulation of the communication model is required, the SYNC process provides the
threaded trace generator with the feedback from the architectural simulator. To send the

74 Chapter 4. On the accuracy and efficiency of Mermaid

simulator feedback to the appropriate thread, SYNC is connected to all participating work-
stations. On the other hand, if the communication model does not need execution-driven
simulation, then SYNC can perform synchronisations at the application level, so directly be-
tween the trace-generating threads. To do so, remote threads are able to receive and send
messages from/to each other via SYNC to synchronise and to exchange data in order to keep
their notion of local data consistent. Remember, however, what was already explained in
Section 3.1.2 that if the workload execution is not dependent on the transferred data, then
SYNC does not have to perform the data transfers (nor any synchronisations) at all.

To coordinate these types of control at the side of the trace generator, each distributed
part of the trace generator has one extra thread, called the S-thread, which takes care of
the communication between the trace generator and SYNC. The S-thread will, for instance,
signal (and possibly wake up) a trace-generating thread when data for it has arrived from
another, distant thread.

Typically, the SYNC process is placed onto the same host as the communication model.
Communication between the different components within this distributed environment is
performed by either Unix sockets or shared memory, depending on the location of the com-
municating processes. For example, the threaded trace generator communicates via shared
memory (or pipes) with the computational model, whereas each instance of the computa-
tional model uses a socket to talk to the communication model.

4.3.1 Parallel simulation performance
To evaluate the performance of parallel Mermaid, we used the multicomputer architecture
model from Section 4.1. Again, we simulated the operation-traces of the three benchmark
applications gauss, pdmm and sort (see Table 4.3). As was mentioned earlier, none of the
benchmarks requires execution-driven simulation and only the execution of sort is data de-
pendent. The latter implies that, when simulating sort, the SYNC process transfers data be-
tween remote threads to keep their notion of local data consistent. In the case of the other
two benchmarks, SYNC is simply not used.

The experiments were performed using multicomputer configurations of 16 processors
(16p), 64 processors (64p) and, where possible, 128 processors (128p). The cluster of host
workstations over which the simulation is distributed consists of sixteen 110Mhz Sun Sparc-
4s connected by normal Ethernet. These are not particularly high-end machines, but they
form a lightly loaded, homogeneous cluster of workstations. In the future, we might also
build a parallel version of Mermaid for a more tightly-coupled, distributed-memory MIMD

platform.
Figure 4.4 shows for each benchmark the speedups of the parallel simulation environ-

ment. These measurements were performed by using wallclock times. For the parallel sim-
ulations, this includes both the actual simulation time and the time it takes to distribute the
processes over the multiple hosts. Note that both axis have a logarithmic scale.

Gauss

The graph at the top of Figure 4.4 presents the results for gauss. These results clearly indi-
cate that most of the obtained speedups are substantial. For instance, the 128p configuration
with 128 � 128 matrices is simulated 14.2 times faster on 16 hosts than it is simulated on a

4.3 Parallel Mermaid 75

1

2

4

8

16

1 2 4 8 16

S
pe

ed
up

Number of hosts

Gauss

16p, 64x64
64p, 64x64

16p, 128x128
64p, 128x128

128p, 128x128
linear speedup

1

2

4

8

16

1 2 4 8 16

S
pe

ed
up

Number of hosts

Pdmm

16p, 64x64
64p, 64x64

16p, 128x128
64p, 128x128

128p, 128x128
linear speedup

1

2

4

8

16

1 2 4 8 16

S
pe

ed
up

Number of hosts

Sort

16p, 32K
64p, 32K

128p, 32K
16p, 64K
64p, 64K

128p, 64K
linear speedup

Figure 4.4: Performance results of parallel Mermaid.

76 Chapter 4. On the accuracy and efficiency of Mermaid

0

2

4

6

8

10

12

14

16

4 8 16 32 64 128

S
im

ul
at

io
n

tim
e

(x
 1

00
0

se
cs

)

Number of simulated processors

Gauss, 128x128
Pdmm, 128x128

Sort, 64K

Figure 4.5: Simulation time v.s. the size of the simulated multicomputer on a single host.

single host. For nearly all simulations using two hosts we measured a super-linear speedup.
This is most probably due to caching effects. Only the simulations using 64 � 64 matrices
fail to obtain significant speedups beyond 4 host platforms. Apparently, the grainsize of
these workloads is too small.

The fact that the multicomputer configurations containing more processors perform bet-
ter than those with fewer processors is caused by the increased overheads in the simulations
of larger configurations. This will be elaborated upon in the discussion of pdmm’s results.

Pdmm

For pdmm, of which the results are shown in the middle graph of Figure 4.4, the paral-
lel performance is even better. All simulations properly scale with the increasing number
of hosts. Using 16 hosts, for example, speedups of between 10.75 and 19.3 are obtained.
Thus, again super-linear speedups were measured. In fact, all parallel pdmm simulations of
the 128p configuration with matrices of 128 � 128 obtain super-linear speedups. To explain
this, consider Figure 4.5. For each benchmark, this graph shows the simulation time as a
function of the number of simulated processors on a single host. The graph demonstrates
that the simulation time of all benchmarks is at least doubled when the multicomputer sim-
ulation is scaled up from 4 to 128 processors. This is caused by the increase of overheads
that are related to the threaded execution of the sequential simulation, such as the thread-
scheduling overhead and the locking overhead. Since the overheads per host within the dis-
tributed simulation are smaller (i.e. the overheads are parallelised), super-linear speedups
might be obtained. In the case of pdmm, the simulation time for a single host starts to in-
crease significantly after 64 processors. This corresponds with the super-linear speedup of
128p in Figure 4.4. The attained super-linear speedups also indicate that the implementa-
tion of the sequential simulation may be improved. Perhaps a more efficient thread-package
(Sun’s Solaris threads are currently used) reduces the thread overhead such that super-linear
speedups are not encountered anymore.

4.3 Parallel Mermaid 77

Gauss
16p

Gauss
128p

Pdmm
16p

Pdmm
128p

Sort
16p

Sort
128p

0

10

20

30

40

50

%
 o

f e
xe

cu
tio

n
tim

e

Waiting for TG

Comm. with CM

TG busy with SYNC

Figure 4.6: Breakdown of where the execution time goes due to certain parallel overheads.
The white bar shows the average time the computational model waits for the Trace Gener-
ator (TG), the grey bar indicates the average time the computational model communicates
with the Communication Model (CM). Finally, the black bar represents the average time
the TG is busy transferring data via the SYNC process. All numbers are percentages of the
total execution time. These experiments were performed for 128x128 matrices (gauss and
pdmm) and 64K of integers (sort) on a cluster of 16 hosts.

Sort

The graph at the bottom of Figure 4.4 shows the results of sort. Again, substantial speedups
are obtained. Although Figure 4.5 shows an impressive increase of simulation time for
larger multicomputer configurations, no super-linear speedups were measured for sort. This
is due to the synchronisations between the remote trace-generating threads, which cover up
the gain of parallelising the overheads. To illustrate this, consider Figure 4.6. This graph
shows a breakdown of the average overheads in the parallel instances of the trace generator
and the computational model. These results are for the 16p and 128p simulations of all three
benchmarks on 16 hosts with the largest data sizes. Three types of parallel overheads are
distinguished: the time the computational model waits for operations from the trace gen-
erator (white bars), the time the computational model communicates with the communica-
tion model (grey bars) and the time the trace generator is busy with transferring data via the
SYNC process (black bars). Note that all three types of bars are overheads and do therefore
not sum up to 100%. The white bars in Figure 4.6 demonstrate that, in the case of sort, the
computational model generally waits longer for the trace generator compared to the other
two benchmarks. This can be explained by the fact that a trace-generating thread may be
suspended (i.e. waiting for remote data) for a quite a while before being resumed by the
remote thread. These synchronisation overheads do not occur in the other two benchmarks,
as they do not perform remote data transfers. Nevertheless, it may seem that the difference
in overhead between the simulations of, for example, pdmm’s and sort’s 128p configuration
is only marginal. Note, however, that the results are averages and we measured a standard
deviation (M) of 3.4% for sort, while pdmm’s M only equals to 0.2%. The large M for sort is
caused by a few parallel instances suffering from high synchronisation overheads of which
the largest equals to 22% of the execution time.

78 Chapter 4. On the accuracy and efficiency of Mermaid

Figure 4.6 shows that the synchronisation overhead is extremely high for the 16p sim-
ulation of sort: the computational model waits on the average for more than 40% of the
execution time for the trace generator. So, this must the reason for the poor parallel perfor-
mance of the 16p simulations on 16 hosts (see Figure 4.4). It is, of course, not surprising
that this particular configuration suffers from these overheads as there resides only one sim-
ulated processor on a host. Thus, when suspending a thread, no other thread can take over
and the simulation on the host is entirely stalled.

Due to the higher, parallelisable, overheads of sequential simulation of larger configu-
rations and the existence of multiple trace-generating threads per host, the performance of
the 64p and 128p simulations does scale up after 8 host machines.

4.3.2 Discussion
For the simulated benchmarks, the results indicate that the sequential communication model
does not constrain the parallel simulation performance. As the grey bars in Figure 4.6 show,
the overhead of the communication between the computational model and the communi-
cation model is for all benchmarks exceptionally small. Figure 4.6 also demonstrates that
the overhead of data transfers by SYNC is neglectable (black bars). Naturally, this overhead
only exists for sort as the other two benchmarks do not use SYNC. Note that, in this study, all
necessary synchronisations within the trace generator are performed at the application level
rather than at the architecture level. We still need to investigate how architectural feedback
would affect the parallel simulation performance.

The obtained performance improvements due to our parallel extensions are very promis-
ing. Whereas the original Mermaid simulators obtain a typical slowdown of between 60
and 650 per processor compared to the real machine, parallel Mermaid may reduce these
slowdowns by an order of magnitude. The average speedup, for instance, for all performed
simulations with 16 host computers is nearly 12. So, when reconsidering Table 4.4 and as-
suming that the slowdown now is in the range of 6 to 65, it is clear that we obtain one of
best slowdown figures. Only the Wisconsin Wind Tunnel [117, 96], being a direct-execution
distributed simulator, yields better simulation performance.

Furthermore, the obtained super-linear speedups illustrate the improved scalability of
parallel Mermaid with respect to its sequential counterpart. Simulating large multicomputer
configurations on a single host machine may easily lead to performance degradations due
to increased overheads or is simply impossible due to the excessive memory consumption
of the workloads.

Up to now, the experiments were done using a homogeneous pool of 16 workstations. It
would be interesting to investigate whether or not parallel Mermaid scales up beyond these
16 hosts. Moreover, in practice, heterogeneous workstations with different computational
powers might be used. This would accentuate the importance of load-balancing strategies
to optimally divide the computations over the hosts.

4.4 Summary
In this chapter, we presented a validation and efficiency study of the Mermaid simulation
methodology. The validation experiments show that good accuracy can be obtained. For the

4.4 Summary 79

multicomputer model under investigation and the applied benchmarks, we generally mea-
sured small errors between the real execution time and the predicted one. On the average,
these errors do not exceed 5% with only modest variance.

Besides Mermaid’s good accuracy, its simulators are fairly efficient as well. For the ex-
periments we performed with a simulator running on a single host computer, we measured a
typical slowdown of about 60 to 650 per simulated processor. To improve this performance,
and to increase the scalability of the architectural simulator, we extended the simulation en-
vironment to allow distributed simulation on a cluster of host workstations. Experiments
have shown that this parallel version of Mermaid obtains significant speedups reducing the
original slowdowns by roughly an order of magnitude. Evidently, this performance makes
Mermaid extremely competitive with, and in most cases faster than, many other efficient
architecture simulators.

The set of benchmarks used in this chapter is rather limited. In the future, we therefore
need to extend the benchmark suite. Doing so, we should definitely add non-deterministic
applications to investigate the impact of workloads that require execution-driven simula-
tion.

80 Chapter 4. On the accuracy and efficiency of Mermaid

Part II

Case studies

Chapter 5

Evaluation of a Mesh of Clos network &

“Communication is not only the essence of being human, but also a vital prop-
erty of life.”

John A. Piece

The type of multicomputer network and its performance are an essential factor of the
platform’s total performance. Basically, two main types of networks can be distinguished.
In direct networks, each node has a direct, or point-to-point, communication channel to a
number of other nodes, called neighbours. Neighbouring nodes may send messages to each
other directly, while messages between non-neighbouring nodes have to be routed by other
nodes in the network [37]. The routing is either done by the processor itself or by a special-
purpose routing device residing at the node. In indirect networks, there are no point-to-point
connections between nodes. Instead, a node is connected to one or more separate routing
devices, which on their turn can be connected to other routers. Consequently, all message
passing requires routing by at least one of the routing devices. Example topologies for di-
rect networks are 2D grids and hypercubes, while multistage topologies can be regarded as
examples of indirect networks.

An important challenge in the development of networks is to design a topology which is
affordable with respect to its wiring complexity and still has good topological characteris-
tics. With the latter we mean, for instance, a small network diameter (the maximum shortest
path between two nodes) and a high bisection bandwidth (the minimum bandwidth between
all possible network halves). For a more comprehensive overview of these network charac-
teristics, see for example [143].

Another important issue regarding the network performance is its message passing ef-
ficiency. This efficiency depends heavily on the process of transferring data from one node
to another, commonly referred to as switching [123, 31, 68, 93]. In the past few years, one
switching technique in particular, called wormhole routing [31], has become increasingly
popular. The reason for this is that wormhole routing offers a low network latency while
minimising hardware expenses.

This chapter presents a case study on the simulation and the performance evaluation of
a wormhole-routed network connected in a so-called Mesh of Clos topology. Our interest'

This chapter is based on [107].

84 Chapter 5. Evaluation of a Mesh of Clos network

in this particular type of network originates from a series of Parsytec multicomputers that is
based on this communication technology. Before the actual realisation of these machines,
we evaluated their potential network performance using the Mermaid modelling framework.

5.1 Wormhole routing
Early multicomputers used store-and-forward switching [101]. In this switching technique,
when a message reaches an intermediate node, the entire message is stored in a message
buffer. The message is then forwarded to a selected neighbouring node when the appropriate
output channel is available and the destination node has an available buffer. This method
has two drawbacks. First, each node must buffer every incoming message, consuming quite
a large amount of memory space. Second, the network latency is, besides the packet size,
also proportional to the distance between the source and destination nodes.

To overcome these problems, a new switching technique, called wormhole routing [31],
was introduced. In this technique, a message is divided into a sequence of small, constant-
size flits (flow control digits). The first flit (the header) of the sequence holds the destina-
tion’s address since it is used to determine the path the message must take. As the header
advances along its route, the trailing flits follow in a pipelined fashion. This results in a net-
work latency that is nearly distance insensitive if there exists no channel contention between
messages [101]. To illustrate this, consider Figure 5.1 in which the difference in latency of
wormhole routing and store-and-forward switching is shown.

In wormhole routing, once a channel has been acquired by a message, the channel stays
reserved until the last flit (the tail) has been transmitted. Whenever the header encounters a
channel that is already occupied by another message, the headerflit is blocked until the chan-
nel in question is released. Instead of being buffered in one large message buffer, the trailing
flits stay in the network during the stall of the header. They are stored in small flitbuffers
along the established route, which eliminates the need for large message buffers at interme-
diate nodes. The fact that channels stay reserved during a message-stall has one potential
disadvantage. The idle, but reserved, channels cannot be used by other messages which may
for this reason also block, as illustrated in Figure 5.2. This can lead to a snowball-effect,
causing so-called tree-saturation.

By introducing virtual channels [30], which are multiplexed onto the physical channel,
this problem can be solved. Each virtual channel has its own flit-buffers which allows mul-

Time

Node

Source

I1

I2

Wormhole routing

Source

I1

I2

Node

Time

Store-and-forward

Figure 5.1: The difference in latency of wormhole routing and traditional store-and-forward
switching. The grey parts denote the message header.

5.2 The Mesh of Clos topology 85

Message A

Message B

Figure 5.2: A channel conflict. Message A is blocked and keeps its channels reserved. Mes-
sage B cannot use A’s idle, but reserved, channels and is therefore also blocked.

tiple message transfers to be active on a channel at the same time. In this study, however,
we did not apply the concept of virtual channels. So, here we only focus on pure wormhole
routing.

5.2 The Mesh of Clos topology
Increasing the efficiency of communication networks by changing their topology often leads
to a decrease of realisability due to the high cost. Particularly, networks with multistage
topologies can offer a small diameter, large bisection width and a large number of redun-
dant paths but are hard and expensive to construct because of the complex wiring structure.
By combining a multistage network with an easy to realise mesh network, the Mesh of Clos
network [92] addresses this tradeoff between efficiency and realisability. As its name al-
ready suggests, it is based on the Clos multistage network [24]. We define a Clos network
of height _ , constructed of routers with 2 ` bidirectional communication channels, by the
following recursive scheme:� A single router with 2 ` bidirectional communication channels of which ` are con-

nected to nodes is a Clos network of height 1.� A Clos network of height _ is built by connecting ` Clos networks of height _ba �
by ` Tdc � routers. Since each of the ` subnetworks has ` Tdc � external channels, ` Tdc �
routers are used at level _ such that the e -th external channel of each subnetwork con-
nects to the e -th router at level _ .

Figure 5.3 shows a Clos network of height 2 in which four channels of each router at the top
level are left unused. Subsequently, the Mesh of Clos(_ , f) topology, or in short MoC(_ , f),
is defined by replacing the f top stages of a Clos network of height _ by a � 3 � � 3 mesh
structure. Here we assume that the routers are configured with eight communication chan-
nels of which at most four can be connected to nodes, i.e. ` �hg

. Two examples of a Mesh
of Clos network are depicted in Figure 5.4. Both are configured in a � � � mesh, the first
having clusters of four nodes and the other having clusters of sixteen nodes. The latter is ac-
tually called a Fat Mesh of Clos since the mesh structure that interconnects the clusters can
be regarded as four independent layers of 2D meshes (as illustrated by the different shaded
surfaces in Figure 5.4). Note that there are several optimisations possible for the networks

86 Chapter 5. Evaluation of a Mesh of Clos network

Figure 5.3: A Clos network of height 2 with ` �
4. Boxes refer to routers and circles to

nodes. All channels are bidirectional.

shown in Figure 5.4 by connecting unused channels. However, as these optimisations are
not generically applicable, we do not consider them and only focus on the pure Mesh of Clos
topology.

Table 5.1 gives a comparison of the network parameters for the Mesh of Clos and mesh
topologies. From this table can be seen that, for small values of f , the Mesh of Clos has bet-
ter network characteristics than a mesh. Another important issue is, of course, the number
of routers (and channels) the network requires to be built. Evidently, a mesh containing �
nodes requires � routers. The number of routers in a Mesh of Clos(h,r) with � nodes and` �ig

is given by the equation

Routers j AVk R lnm
if oqp�rqs mtVt �uLv*wx uzy|{ p�r {4}?~!�G������V� � �J� c � otherwise

(5.1)

Figure 5.5 draws this function (dark surface) against the number of routers required by a
mesh network (light surface). The axis labeled with f defines the number of top stages that

node
router

Figure 5.4: A Mesh of Clos(2,1) network (left) and a Mesh of Clos(3,1) network (right).
The boxes refer to routers and the circles to nodes.

5.2 The Mesh of Clos topology 87

Mesh of Clos(h,r) Mesh

Router degree 8 4
Diameter �������-�:�������Y�����^�����G� ������� �������
Bisection width ���G� !�¡ � (with ��¢�£) � �

Table 5.1: Network parameters of the Mesh of Clos and mesh networks containing � nodes.

are removed from the Clos network to form the Mesh of Clos. Note that the surface within
the triangle between f � � and 1024 nodes is not defined because f would then be equal to
or larger than the height of the Clos network. Or, in other words, all Clos levels or more
levels than there are available would be removed. Figure 5.5 illustrates that the number of
routers, which is rapidly increasing for a pure Clos (f ��¤

), can be reduced considerably
by replacing the top stages of the Clos for a mesh structure, i.e. by increasing f . However,
as demonstrated by Table 5.1, f should not become too large in order to preserve a small
network diameter and a large bisection width. More specifically, if f¦¥ _ then the MoC’s
network diameter becomes similar to that of the mesh network while the bisection width
may eventually become worse than that of the mesh.

Monien et al. have performed a study on the behaviour of several Mesh of Clos networks
using an analytical model [92]. They found that for communication patterns exhibiting high
locality only a slight decrease in performance is introduced with respect to a pure Clos net-
work. For communication patterns that are communicating across the mesh network more
frequently, the performance decrease will be larger due to the limitations of the mesh net-
work.

In this evaluation study, we restrict us to instances of the two Mesh of Clos topologies
shown in Figure 5.4. We scale the mesh parts of these Mesh of Clos networks while keeping
their Clos parts untouched. The reason for this is that the machines under investigation are
based on these topologies.

MoC(h,r)

1
2

3
4 64

256
1024

4096
0

2000
4000
6000
8000

r
Nodes

Routers Mesh

Figure 5.5: Number of routers required for a Mesh of Clos (dark surface) and a normal mesh
network (light surface).

88 Chapter 5. Evaluation of a Mesh of Clos network

5.2.1 Routing

Although its name may suggest otherwise, wormhole routing is purely a switching tech-
nique and does not deal with the routing of messages (determining the path of messages
through the network). Therefore, we also have to define how messages find their way from
source to destination. Throughout this case study, we assume that routing of messages in
the mesh structure is performed by deadlock free, deterministic XY routing [101]. In this
technique, a message is first routed to the appropriate X-coordinate, then to its Y-coordinate.
For the Mesh of Clos networks containing Clos structures of height 2, however, additional
routing is required within the Clos parts. The routers directly connected to the nodes, called
node routers (see Figure 5.4), must decide at which mesh-layer messages should travel to
their destination. For now, we assume a deterministic approach in which a node always
sends data over a pre-defined and fixed layer according to the following scheme: if a node
router connects to nodes N
; (with

¤�§ e §h¨
) and the four mesh-layers are numbered 0 to 3

then messages from node N
; are routed to mesh-layer e .
5.3 The simulation approach

To simulate the Mesh of Clos network, we have used Mermaid’s communication model and
changed it to represent the infrastructure as shown in Figure 5.6. This figure depicts the
model of a four node cluster which contains all the basic components. The model, imple-
mented by Pearl objects, consists of a processor, a Virtual Communication Processor (VCP),
two channels (input and output) and a router. The bidirectional communication channels are
modelled by two unidirectional channel objects. A channel object is a straightforward for-
warding mechanism with a certain latency. The processor component generates the commu-
nication requests which are dispatched to the VCP. After receiving such a communication
request, the VCP is responsible for handling the transmission. The message setup latency
is split up and modelled within both the processor and VCP components. Finally, the router
component routes all incoming flits according to a specified routing algorithm. It connects
to other intermediate routers or to neighbouring clusters in order to realise the Mesh of Clos
network.

Processor

VCP

Chan. In

e

u
o
R

r

Chan. Out

t
4 Channels

4 Channels

processors
To/From other routers

To/From other

Node

Figure 5.6: The simulation model of a cluster containing four nodes. An oval box refers to
a basic model component.

5.4 Experiments 89

5.3.1 Efficient wormhole routing simulation

An important issue in simulating large-scale multicomputer networks is to efficiently model
the communication behaviour within the network. Explicit simulation of each separate flit
must be avoided because this would result in a simulation time that is linear in the message
size and in the distance traveled by the message. Instead, full advantage should be taken of
the pipelined fashion in which flits move through the network. This behaviour allows for
explicitly simulating the header and tail flits only. The movements of the intermediate flits
are implicit. This approach basically results in a simulation time that is insensitive to the
message size, and thus is only linear in the distance to travel.

Wormhole-routed networks sometimes use multiple flitbuffers per incoming channel on
a router as this may have a positive effect on the communication performance. By increas-
ing the buffer space, channels may be unblocked earlier, thereby potentially improving the
throughput. However, the presence of multiple flitbuffers per channel on a router makes
efficient simulation slightly more difficult: once the header flit is blocked, the trailing flits
continue to be transferred while there are enough free flitbuffers. In [88], McKinley et al.
present a simulation algorithm that exploits the implicit movement of intermediate flits and
that solves the problem of multiple flitbuffers. The outline of this algorithm when applied
to the transmission of a single message is shown in Figure 5.7. There are three variables de-
fined per message. The first, tts, is an array containing the amount of time tts[i] that channel
i requires in order to send the flits currently stored in the flitbuffers of the sending router.
Each element of tts is associated with a router along the path followed by the message. The
variable blocked at indicates the amount of time until all movements of trailing flits stall
due to full flitbuffers. Finally, last chan refers to the channel longest held by the message.
The key to efficiency for this algorithm is the use of a single variable (i.e. tts) representing
the state of a message with regard to each router it traverses.

Our network simulator has been implemented in both the naive manner (simulating ev-
ery single flit) and using an optimised algorithm which is derived from the one discussed in
[88]. The optimised algorithm, as sketched in Figure 5.7, was implemented partly in C and
Pearl and has been embedded in the VCP and channel components of our model (see Fig-
ure 5.6). We used the naive model to verify the more sophisticated implementation of the
optimised model with small communication loads. The efficient simulation model showed
an efficiency improvement of more than an order of magnitude compared to the naive ap-
proach.

5.4 Experiments

To evaluate the Mesh of Clos network, four types of synthetic communication loads were
used. The loads perform synchronous communication, which means that every message
must be explicitly acknowledged. As a result, the acknowledgements put an additional load
onto the network. A side-effect of the synchronous communication is that the workloads are
self-regulating, implying that the rate at which messages are issued to the network depends
on the amount of network traffic (i.e. the network latency). When the network latency is
high, the time between the issuing of two messages will increase as it takes longer before
the first message is acknowledged. The reason for using synchronous communication origi-

90 Chapter 5. Evaluation of a Mesh of Clos network

tts[i] : time to send in order to free all buffers
at channel i.

blocked at : time to send until transmission of all flits
within the message is stalled due to full
buffers.

last chan : longest held channel by the message.

/* “advance tailflit” means releasing last chan */
/* and updating last chan with the next channel */
/* along the route */

while the headerflit has not arrived at destination do
route headerflit along channel next chan
while next chan is occupied by other message do

if tts[last chan] $ blocked at then
simulate time until tts[last chan] time units
have past or next chan has been released
if next chan has not been released then

advance tailflit
fi

else
simulate time until blocked at time units have
past or next chan has been released

fi
update tts array and recompute blocked at

done
if tts[last chan]

§
transmission time of a flit then

simulate transmission time of a flit, advancing
tailflit after tts[last chan] time units

else
simulate transmission time of a flit

fi
update tts array and recompute blocked at

done
while tailflit has not arrived at destination do

simulate tts[last chan] time units
advance tailflit and update tts array

done

Figure 5.7: Algorithm for efficient simulation of wormhole routing.

5.4 Experiments 91

Mesh Clos Bisection
Nodes size height Diameter width # Routers���Q� mesh 64 8 � 8 — 14 8 64

MoC(3,2) 64 4 � 4 1 8 4 16
MoC(3,1) 64 2 � 2 2 6 8 32�© � �©

mesh 256 16 � 16 — 30 16 256
MoC(4,3) 256 8 � 8 1 16 8 64
MoC(4,2) 256 4 � 4 2 10 16 128

Table 5.2: Network characteristics of the modelled networks.

nates from the fact that this type of communication is widely used in multicomputer applica-
tions. For example, most SPMD programs communicate via synchronous message passing.

In the first communication load, called uniform, messages are sent in a random manner
such that the destinations are uniformly distributed. The second load, referred to as hotspot,
represents a less ideal model of communication. It defines several non-neighbouring nodes
that receive a disproportionately large number of messages, causing hotspots to appear in the
network. This type of load is similar to the one used by Pfister and Norton to study hotspots
in shared memory systems [106]. The third load, called hotregion, distinguishes a cluster
of 12 nodes (for the smaller networks) or 16 nodes (for the larger networks) forming a “hot
region”, rather than defining single nodes as hotspots. In both hotspot and hotregion, the
total hotspot area receives 40% of all messages. Finally, partner represents a point-to-point
load, in which every processor communicates with one fixed partner. The partner tuples are
formed such that there exists a variety of routing-path distances and there is a relatively high
degree of channel contention. For all communication loads, messages are generated at fixed
intervals of time.

The communication loads have been simulated for four different Mesh of Clos topolo-
gies. Two of them are based on Clos structures of height 1, whereas the other two con-
tain Clos structures of height 2. The Mesh of Clos networks of height 1, the MoC(3,2) and
MoC(4,3), are similar to the MoC(2,1) network shown in Figure 5.4. However, they con-
tain meshes of 4 � 4 and 8 � 8 respectively. The Mesh of Clos networks of height 2 are the
MoC(3,1) (see Figure 5.4) and the MoC(4,2), of which the latter contains a 4 � 4 mesh. To
compare the Mesh of Clos results, we have also simulated the traditional and widely-used
mesh topology using the same model components as our Mesh of Clos model. Table 5.2
shows an overview of the characteristics of the modelled networks.

Message setup time 70 . s
Channel bandwidth 40 Mbyte/s
Routing overhead 100 ns/flit
Packet creation overhead 2.5 . s
Memory latency per word 100 ns

Table 5.3: Communication parameters for all network models.

92 Chapter 5. Evaluation of a Mesh of Clos network

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192

Th
ro

ug
hp

ut
 (M

by
te

s/
s)

Message size (bytes)

uniform

256 nodes:
MoC(4,2)
MoC(4,3)

16x16 mesh

64 nodes:
MoC(3,1)
MoC(3,2)
8x8 mesh

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 2048 4096 8192

Th
ro

ug
hp

ut
 (M

by
te

s/
s)

Message size (bytes)

hotspot

256 nodes:
MoC(4,2)
MoC(4,3)

16x16 mesh

64 nodes:
MoC(3,1)
MoC(3,2)
8x8 mesh

(a) (b)

0

20

40

60

80

100

64 128 256 512 1024 2048 4096 8192

Th
ro

ug
hp

ut
 (M

by
te

s/
s)

Message size (bytes)

hotregion

256 nodes:
MoC(4,2)
MoC(4,3)

16x16 mesh

64 nodes:
MoC(3,1)
MoC(3,2)
8x8 mesh

0

25

50

75

100

125

150

175

64 128 256 512 1024 2048 4096 8192

Th
ro

ug
hp

ut
 (M

by
te

s/
s)

Message size (bytes)

partner

256 nodes:
MoC(4,2)
MoC(4,3)

16x16 mesh

64 nodes:
MoC(3,1)
MoC(3,2)
8x8 mesh

(c) (d)

Figure 5.8: Estimated throughputs for the uniform (a), hotspot (b), hotregion (c) and partner
(d) communication loads.

Every network model is parameterised with the same latencies which were derived from
the specification of an early model of the multicomputers under investigation. These com-
munication parameters are summarised in Table 5.3. By default, the routing devices are
equipped with one flitbuffer per incoming channel. Furthermore, the very limited operating
system functionality that is modelled on the nodes takes care of splitting up messages into
packets of 128 bytes. After this is done, the packets are divided into single byte flits with a
header of 2 flits attached to each packet.

Figure 5.8 shows the estimated total network throughputs for the different types of com-
munication loads. The solid lines refer to the networks containing 256 nodes, whereas the
dotted lines refer to the networks of 64 nodes. The graphs do not give the raw network per-
formance since the effects of message setup overheads and acknowledgement overheads are
also included in the results.

The point after which no additional throughput is obtained for increasing message sizes,
indicates that the network is saturated. For the hotspot and hotregion loads, Figure 5.8 shows

5.4 Experiments 93

that the networks containing 256 nodes reach this point of saturation earlier than their coun-
terparts of 64 nodes. The reason for this is that the larger number of nodes can stress the
specific hotspot areas more intensively. The graphs clearly show the decrease of through-
put when communication is not distributed uniformly. For example, the hotspots created
by the hotspot workload lead in many cases to a throughput deterioration of more than 50%
compared to uniform communication.

The MoC(4,2) and MoC(3,1) networks, being the Mesh of Clos networks of height 2,
achieve the highest throughputs for all communication loads. Using these topologies, we
obtained throughputs that are calculated to be 75% higher than those for the normal mesh
network. This suggests that these Mesh of Clos networks are less prone to contention than
the more flat networks that have been examined. As a consequence, the Mesh of Clos net-
works of height 2 often saturate more slowly than the other networks. To illustrate this,
consider the graph of uniform in Figure 5.8. It shows that the 16 � 16 mesh saturates at a
message size of 512 bytes, while the MoC(4,2) reaches the point of saturation at a message
size of 1Kb.

Interestingly enough, the results also indicate that the performance of the mesh networks
is superior to that of the Mesh of Clos networks of height 1 (i.e. the MoC(4,3) and MoC(3,2)
networks). Apparently, the routers within the latter type of network suffer from high con-
tention. This can be explained by the small bisection width of the MoC(4,3) and MoC(3,2)
networks. The routers in these networks must handle traffic from both their four nodes and
from their neighbouring routers within the flat mesh structure. As the Mesh of Clos of height
1 shows such poor performance, we will not use this type of network for further evaluation.
The next sections, which address the buffering and routing characteristics of Mesh of Clos
networks, will therefore only focus on the MoC(4,2) topology.

5.4.1 Multiple flitbuffers
To investigate the influence of increasing the number of flitbuffers per channel, we simulated
the communication loads using various router configurations. In these experiments, each
applied flitbuffer contains one byte as we use single-byte flits. Figures 5.9 and 5.10 display
the relative increase of throughput for several message sizes due to multiple flitbuffers in a
MoC(4,2) network. It shows that many communication loads modestly benefit from a larger
buffer space. The highest measured gain of throughput equals to 14%. Naturally, the larger
number of flitbuffers has the greatest impact on the hotspot and hotregion loads, as their
hotspot areas cause high contention. For small message sizes (i.e. 128 bytes), none of the
communication loads does improve. This is because not enough network traffic is generated
to cause the contention that is needed to benefit from the extra flitbuffers.

As can be seen from Figure 5.9 and 5.10, the performance results of the multi-flitbuffer
configurations are less predictable than one would expect. For some instances of the com-
munication loads, we even measured a decrease of throughput when adding flitbuffers. This
unexpected behaviour is due to a number of effects. The multiple flitbuffers cause channels
to be unblocked earlier, enabling new packets to enter the network and thereby increasing
the network traffic. Subsequently, the header stall delays that packets encounter within the
network will change due to the effects of the extra network traffic and the enlarged buffer
space: packet headers are potentially more often blocked because of the higher network traf-
fic, but have a shorter mean stall time due to the larger number of flitbuffers. This change

94 Chapter 5. Evaluation of a Mesh of Clos network

128 512 2048 8192
Message size (bytes)

96

100

104

108

112

R
el

at
iv

e
in

cr
ea

se
 o

f t
hr

ou
gh

pu
t

uniform

1 buffer

4 buffers

16 buffers

64 buffers

128 512 2048 8192
Message size (bytes)

92

96

100

104

108

112

116

R
el

at
iv

e
in

cr
ea

se
 o

f t
hr

ou
gh

pu
t

hotspot

1 buffer

4 buffers

16 buffers

64 buffers

Figure 5.9: Relative increase of throughput due to multiple flitbuffers for uniform (top) and
hotspot (bottom).

of header stall delays means that the order in which packets arrive at and are handled by
routers will change as well. If such a change of packet handling order results in a delay of
the packets that are on the critical path of the application load, then the overall throughput
may decrease. This critical path can be formed by synchronisations, either by acknowledge-
ments or at the application level.

To illustrate the above, consider Figure 5.11. It shows a routing scenario at two routers
R1 and R2 in which a packet A has to be routed in western direction, while two other packets
B and C need to be routed to the north. The packets A and B will contend for the eastern input
channel at R1, and the packets B and C will contend for the northern output channel at R2.
It is assumed that router R1 routes packet A first and that packet C is on the critical path of
the application. The latter implies that the transmission of packet C forms the critical path
delay in this example. This scenario allows two different packet handling orders. If, due to
the lack of free flitbuffers, packet B is still blocked before router R1, then R2 routes packet C
first. After this packet has left R2, packet B may be routed at the moment enough flitbuffers

5.4 Experiments 95

128 512 2048 8192
Message size (bytes)

96

100

104

108

112

R
el

at
iv

e
in

cr
ea

se
 o

f t
hr

ou
gh

pu
t

hotregion

1 buffer

4 buffers

16 buffers

64 buffers

128 512 2048 8192
Message size (bytes)

96

100

104

108

112

R
el

at
iv

e
in

cr
ea

se
 o

f t
hr

ou
gh

pu
t

partner

1 buffer

4 buffers

16 buffers

64 buffers

Figure 5.10: Relative increase of throughput due to multiple flitbuffers for hotregion (top)
and partner (bottom).

become free. In this scheme, packet B does not interfere with the packets on the critical path
(packet C in this example). On the other hand, if we add more flitbuffers at the routers then
this would allow packet B to arrive first at router R2. In that case, packet C has to wait for
packet B and is blocked at router R2. Now, the critical path delay has been increased by the
transmission delay of packet B from router R2. Hence, this order of packet handling will
result in a decrease of overall throughput.

As communication in our loads is synchronous, the synchronisations at the operating
system level form an essential part of the critical path: a node cannot continue sending until
it has received the acknowledgment of the previous message. To demonstrate the influence
of changes in the order of packet handling on these synchronisations, the hotspot load will be
subject to closer examination (as this load shows the most irregular behaviour). For hotspot
using a message size of 512 bytes, Figure 5.12 shows the distribution of the cumulative time
that nodes have been waiting for acknowledgements, which we call the acknowledgement
latency. The Y-axis shows the number of nodes (i.e. the frequency) at which a particular

96 Chapter 5. Evaluation of a Mesh of Clos network

E

N

S

W

R1

R2

B

A

C

Figure 5.11: Different packet handling orders.

acknowledgement latency is measured. So, each counted acknowledgement latency corre-
sponds to one of the 256 nodes in the MoC(4,2) network.

From the distribution can be seen that the peaks for 4 flitbuffers are shifted slightly to-
wards the right with respect to the peaks for one flitbuffer. This implies that the network
latencies of acknowledgements are generally higher in the configuration of 4 flitbuffers than
in the single-flitbuffer configuration. Evidently, this contributes to the decrease of through-
put for 4 flitbuffers (see Figure 5.9). Also, the distribution shows that the smallest latencies
are achieved with 16 flitbuffers, followed by the configuration of 64 flitbuffers. This corre-
sponds with the results of Figure 5.9.

To investigate the reason behind the increased latency of the acknowledgements in the
case of 4 flitbuffers, Figure 5.13 gives a more microscopic view of what happens within the
network. It shows the differences in the average time that packet headers are blocked within
the 16 Clos clusters of the MoC(4,2) for the configuration of 4 flitbuffers compared to the
single-flitbuffer configuration. Each bar corresponds to a cluster located in the 4 � 4 mesh
of the MoC(4,2). It might be interesting to know that the hotspots are placed in the four
corner clusters.

0

5

10

15

20

25

30

35

40

45

50

35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

Time (milliseconds)

Fr
eq

ue
nc

y

1 buffer
4 buffers
16 buffers
64 buffers

Figure 5.12: Distribution of the cumulative time that nodes waited for acknowledgements
in hotspot on a MoC(4,2) using messages of 512 bytes.

5.4 Experiments 97

Cluster X

Cluster Y0 1 2 3Cluster X 0
1

2
3

Cluster Y

Cluster X

Cluster Y
-100

-50

0

50

100

150

200

250

R
el

at
iv

e
di

ff
er

en
ce

 o
f h

ea
de

r
st

al
l t

im
e

(%
)

Cluster X

Cluster Y

Figure 5.13: The relative difference in average header blocktime within a certain cluster
of the MoC(4,2) network. These results are for hotspot with messages of 512 bytes and 4
flitbuffers and are relative to the results of the single-flitbuffer configuration.

Although in many clusters a decrease of header stall delay is measured (dark bars), the
stall delays in several other clusters have increased considerably (light bars). One cluster in
specific (the big peak at the front) is forming a large bottleneck, as we measured an increase
of roughly 210% for this cluster. Apparently, the larger number of flitbuffers creates new
or amplifies existing hotspots within the network. These hotspots may on their turn affect
a large quantity of packets, including those on the critical path of the application (e.g. ack-
nowledgements). This can result in a decrease of overall throughput, as shown in Figures 5.9
and 5.10.

5.4.2 Routing strategies
The non-adaptive routing strategy of the node routers is reasonable simple to implement.
Nevertheless, this strategy might not fully exploit the potentials of the layered mesh struc-
ture in the Mesh of Clos(4,2) network. Adaptively routing the packets to one of the four lay-
ered meshes may result in a better utilisation of network resources. By doing so, the pack-
ets within a message can arrive out of order at the destination, as they may travel through
distinct mesh-layers with potentially different latencies. Therefore, additional support is re-
quired in order to reconstruct a message using the correct sequence of packets.

Several adaptive node router strategies have been simulated to investigate the perfor-
mance effects on the communication loads. To model the reconstruction of messages, an
extra latency has been added at the VCP for each message it receives. The routing within
the 2D meshes is still performed deterministically. So, deadlock prevention is not necessary
as packets cannot switch from mesh-layer during their journey and thus no “inter-layer” de-
pendency cycles can be formed.

The first two adaptive routing strategies we have examined are Random and RoundRobin.
They route packets unconditionally, which means that they do not examine the state of the
output channels. Random randomly selects a channel to a layer and RoundRobin selects a
channel in round robin fashion. Without contention, the selected channel by RoundRobin,

98 Chapter 5. Evaluation of a Mesh of Clos network

Routing uniform hotspot hotregion partner Overall M ª / « / ¬
strategy (%) (%) (%) (%) av.(%)
Random 0.2 -1.1 -2.1 1.1 -0.5 4.0 ª

RoundRobin 0.4 -1.7 -0.2 -1.3 -0.7 1.7 ¬
IdleFixed 4.7 1.5 1.4 1.9 2.4 3.0 «

IdleRandom 2.8 2.6 0.5 3.2 2.3 3.2 «
Table 5.4: Average increase of throughput due to adaptive routing for the different types of
communication loads.

which is the least recently used channel, will have the greatest chance of being idle. In the
third strategy, called IdleFixed, packets are routed along an idle channel. If more idle chan-
nels are available, then one is selected at random. Are all channels busy, then this strat-
egy falls back on the original deterministic scheme (see Section 5.2.1). Finally, the IdleRnd
strategy is similar to IdleFixed with the difference that a channel is randomly selected if
there are no idle channels available.

Table 5.4 gives an overview of the relative performance effects due to adaptive routing,
as compared to the performance of the original non-adaptive routing strategy. It contains
the average throughput gain for each communication load, the overall average increase of
throughput and the standard deviation of this overall average. Furthermore, the last column
indicates whether a routing strategy is statistically equal to (ª), more effective («) or less ef-
fective (¬) than non-adaptive routing when using a confidence interval of 98%. All numbers
are percentages and have been averaged over a wide range of message sizes.

The results clearly show that Random and RoundRobin are the least effective adaptive
routing strategies. For most non-uniform communication loads, they actually decrease the
throughput. Statistically, the performance of Random is not significantly different from that
of the non-adaptive strategy. This is caused by the irregular performance behaviour of the
Random strategy, as illustrated by the large standard deviation that is obtained. So, besides
the many throughput decreases, there were measured quite a few increases of throughput.

The RoundRobin strategy, on the other hand, cannot compete with the original non-
adaptive scheme. Within the given interval of confidence, its communication performance
is inferior to that of non-adaptive routing.

IdleRand and IdleFixed achieve the highest average throughputs for all communication
loads. The overall average performance of both strategies is nearly identical, with IdleFixed
performing slightly better. Using the confidence level of 98%, it can be concluded that these
adaptive routing strategies are more effective than the non-adaptive scheme. Despite this,
the throughput improvements are still marginal. Judging from these results, it might not be
worthwhile to add extra complexity to the hardware or to the software in order to support
adaptive routing at the node routers.

5.5 Discussion
In this chapter, we presented an evaluation study of wormhole-routed Mesh of Clos net-
works. This type of network, which combines the mesh and Clos topologies, addresses the

5.5 Discussion 99

tradeoff between realisability and efficiency. Simulation experiments with different types
of communication loads indicate that the Mesh of Clos networks with Clos structures of
height 2 are potentially less prone to contention than flatter mesh-based networks. Under
circumstances of congestion, throughputs of up to 75% higher than those for a normal mesh
network were measured. Moreover, it was found that the Mesh of Clos network of height
1 generally suffers from high contention. For all applied communication loads, its commu-
nication performance is inferior to that of a normal mesh network.

It was shown that adding flitbuffers to router devices does not guarantee a better commu-
nication performance. Although many communication loads gain some benefit from a larger
number of flitbuffers, the performance impact is not as predictable as one would expect. In
several cases, a decrease of throughput was measured when enlarging the buffer space. This
is due to the additional network traffic and the altered stall delays of packets that the extra
flitbuffers cause. These effects may change the order in which packets are handled by the
routers within the network, which subsequently can affect the delays of packets that are on
the critical path of the application. This may, in some extreme cases, lead to a degraded
overall communication performance.

For a Mesh of Clos network of height 2, which contains four independent layers of two-
dimensional meshes, we investigated several strategies to adaptively route packets to these
mesh-layers. Of the four adaptive schemes that have been examined, only two obtain a
slightly higher throughput compared to a straightforward non-adaptive strategy. These two
strategies, which both make routing decisions based on the state of the communication chan-
nels, achieve an average throughput increase of roughly 2.4%. So, at first sight it might not
be worthwhile to invest in the extra hardware or software necessary for adaptive routing.

Throughout this study, we have assumed that routing within the mesh structures is per-
formed deterministically (see Section 5.2.1). However, applying (partially) adaptive routing
within a mesh, combined with a strategy to adaptively route packets to a particular mesh-
layer, may result in another gain of throughput. This may therefore be an issue for future
research.

100 Chapter 5. Evaluation of a Mesh of Clos network

Chapter 6

Data prefetching for the TriMedia &

“Predicting the future is easy. It’s trying to figure out what’s going on now that’s
hard.”

Fritz R. S. Dressler

The memory design community has not been able to keep up with the rapid advances
in microprocessor technology of the last two decades. As a consequence, a large gap be-
tween the performance of microprocessors and main memory developed. To a certain ex-
tent, caches are capable of reducing this performance gap. However, as the speed of micro-
processors is still improving with great pace, the delays which are due to cache misses (the
so-called cache penalties) become an increasingly dominant factor in the execution time of
programs. In many cases, the cache performance, and thus the average memory latency ex-
perienced by the microprocessor, can be improved by simply increasing the cache size or
the number of levels of cache. However, there are several application domains for which
this solution does not help. In particular, the applications that suffer from a large number
of compulsory misses (caused by references that have not been referenced before) are gen-
erally not served by increasing the amount of cache space. For example, in multimedia ap-
plications, calculations are often applied to one or multiple data (e.g. video) streams. This
stream processing usually exhibits no to little re-use of data (i.e. a low temporal locality),
which results in a high rate of compulsory cache misses.

Prefetching is a technique that can be used in order to hide the latencies associated with
compulsory cache misses. By bringing a data element into the cache (or some other fast
memory) before it is actually referenced, the access to the memory is performed simultane-
ously with computation. The methods for prefetching can be divided into binding and non-
binding types. Binding prefetching brings the data in and assigns it to a specific location,
such as a register or a location in memory, from which it can later be used. For example,
the speculation technique proposed for the new EPIC architecture [51] from Intel and HP
can be regarded as binding prefetching. By contrast, non-binding prefetching is only a hint
to the memory system to try to bring data closer to the microprocessor (e.g. fetch it into
the data cache) such that a later binding memory reference will complete much faster. Ide-
ally, all these future memory references will hit in the memory where the prefetched data is'

This chapter is based on [112, 113, 134].

102 Chapter 6. Data prefetching for the TriMedia

stored. This implies that the prefetches should always retrieve the correct data and that this
data is always available in time. But, even in the case the data is still being prefetched and
is only partly available at the time it is referenced, there usually still is a performance gain
with respect to a plain (cache) miss. On the other hand, the danger of non-binding prefetch-
ing is trashing: it might fetch data which is not going to be used, and which in its turn may
replace valuable data from the cache.

This chapter presents an evaluation of several non-binding prefetching techniques. We
study traditional methods found in literature and we assess a novel prefetching approach.
The motivation behind this work is to find methods for reducing the average memory latency
of future versions of the Philips TriMedia microprocessor. The TriMedia, which will be
discussed in the next section, is a VLIW processor which is specialised in the processing of
multimedia applications [127]. Hence, our focus is on this particular class of applications.
Also, we restrict our view to data prefetching only and do not take instruction prefetching
into account.

The most important contribution of this study to the Mermaid work is that it illustrates
that Mermaid’s computational model provides enough architectural detail in order to eval-
uate uni-processor behaviour. This model is easily modified to allow the evaluation of data
prefetching techniques. We demonstrate that the resulting model obtains good performance
predictions.

6.1 The Philips TriMedia

The TriMedia is a processor architecture for high-performance processing of multimedia
applications in which high-quality video and audio is involved. Figure 6.1 shows the block
diagram (taken from [47]) of the first implementation of TriMedia’s architectural family, the
TM-1. The heart of the TM-1 consists of a general-purpose VLIW processor core which
coordinates all on-chip activities. Besides the VLIW core, there are several DMA-driven
multimedia I/O units and co-processors. The I/O units format the incoming/outgoing data
such that the software which is processing the media can be made efficient. The multime-
dia co-processors operate in parallel with the VLIW core and perform operations specific
to important multimedia algorithms, such as image filtering and resizing and colourspace
conversion. This study only deals with the VLIW core of the TriMedia architecture.

The TM-1 VLIW core, of which the block diagram is shown in Figure 6.2, is a 32-bit
processor. Because of its VLIW nature, instructions contain five slots in which RISC-like
operations can be scheduled. At most two of the operation slots can be used for memory ac-
cesses (load or store operations). To support predicated execution [56, 87], each instruction
slot contains a guard register that determines whether or not the operation should be exe-
cuted. Moreover, the instructions are stored in a compressed format and are decompressed
on-the-fly when they are issued.

Each operation within an instruction is routed to one of the 27 execution units. These
execution units read and write from/to a single register file containing 128 32-bit registers.
Since an instruction can hold up to five operations, ten read ports (for the operands) and
five write ports (for the results) are needed. In addition, five 1-bit read ports are required
for reading the bit that is responsible for the guard value.

6.1 The Philips TriMedia 103

SDRAM

camera, etc.
I C bus to
2

2/4/6/8 chan. dig. audio

CCIR601/656
YUV 4:2:2

38 MHz(19 Mpix/s)

I SDC - 100 kHz
2

YUV 4:2:2

V. 34 or ISDN
Front End

PCI (32 bits, 33 MHz)

Down & upscaling
YUV to RGB
50 Mpix/s

Huffman decoder
Slice-at-a-time

32 bits data, 400 MB/s

80 MHz (40 Mpix/s)

CCIR601/656

MPEG 1&2

Stereo dig. audio

I SDC - 100 kHz2

CPU
VLIW

32K
I$

16K
D$

Interface

2
I C

Out
Audio

In
Audio

In
Video VLD

Video
Out

Timers

Image

PCI Interface

Coprocessor

Interface
Serial

Synchronous

Coprocessor

Memory interface

Figure 6.1: The TriMedia TM-1 block diagram.

6.1.1 The TM-1 caches
The TM-1 core contains a 32 Kb instruction cache and a 16 Kb data cache. Both caches are
8-way associative with 64-byte cache blocks and apply some sort of pseudo-LRU, called hi-
erarchical LRU, for replacing the cache blocks. The data cache uses the copyback and write-
allocate policies for write operations [52]. Furthermore, the data cache is non-blocking,
which implies that it can handle memory transfers and processor requests simultaneously,
provided that the processor requests hit in the cache (i.e. memory transfers and processor
requests do not interfere).

In order to reduce the stall time of the processor for read operations, the data cache uses
a critical word first read policy [52] and, in addition, applies so-called streaming. In stream-
ing, the cache updates a special scoreboard each time the cache receives a piece of data from
the bus. The scoreboard holds the per-word valid bits of the fetched cache block. This may
reduce the duration of processor stalls in the case data is required which is already actively
being retrieved by the cache. Without streaming, and thus using only a single valid bit for
an entire cache block rather than per-word valid bits, the processor is forced to wait until
the whole cache block has been retrieved.

As a TM-1 instruction can hold two memory operations, the data cache is dual-ported.
This allows the two memory operations to access the cache in parallel, provided that both
operations access a different cache bank (the data cache is composed of 8 banks).

104 Chapter 6. Data prefetching for the TriMedia

Instruction cache (32 Kb)

Instruction Fetch Buffer

Instr. Decompression Hardware

Issue Register (5 Ops)

Operation Routing Network

Register Routing and Forwarding Network

Execution Units (27 functions)

Register File (128 x 32)

Data cache (16 Kb)

Figure 6.2: The TriMedia TM-1 VLIW core.

6.2 Data prefetching
Prefetching is not a new technique. In 1982, for instance, Alan Jay Smith wrote a well-
known paper on caches which discusses a hardware-based prefetching scheme [131]. As
a matter of fact, prefetching merely regained the interest of microprocessor architects in
the past few years because of the expanding gap between processor and memory perfor-
mance. As stream-processing applications, such as multimedia applications, have become
increasingly popular, it is recognised that prefetching may be a viable technique to reduce
the average memory latency.

In this study, we evaluate several (non-binding) techniques to prefetch data streams. Be-
cause a wide variety of these so-called stream prefetching methods exists, we first discuss
the different efforts that have been made in this field according to a classification. This clas-
sification identifies the two actions of which stream prefetching is composed:� Stream detection:

Detects when an application is performing operations on data-streams.� Issuing prefetches:
Request the prefetch engine (which is usually located in the data cache) to regularly
prefetch a certain amount of data. These prefetch requests should be controlled so
that no or little trashing occurs.

Both the detection and the issuing can either be performed statically (by the compiler or
programmer) or dynamically (in hardware). The different detection/issuing combinations
are shown in Table 6.1. In this table, a checkmark means a valid combination, whereas a

6.2 Data prefetching 105

Issuing prefetches
Static Dynamic

Stream Static (Section 6.2.1) (Section 6.2.3)
detection Dynamic � (Section 6.2.2)

Table 6.1: Classification of different types of stream prefetching.

cross denotes a combination which is infeasible to implement. In the following sections, we
will discuss each of the valid combinations. For the sake of convenience, we only refer to
the compiler when describing static techniques. However, in most cases, these techniques
can also be applied by the programmer.

6.2.1 Static detection, static issuing
A straightforward way to prefetch data is to add a scalar prefetch instruction to the proces-
sor’s instruction set. This instruction, which is inserted in the code at strategic places by the
compiler, instructs the prefetch engine to prefetch a certain cache block. So, the compiler
must detect where prefetch instructions have to be inserted and, additionally, it should insert
enough prefetch instructions to prefetch the entire stream in time. This software-driven type
of prefetching is becoming increasingly popular. For example, the HP PA-8000 features a
scalar prefetch, which turns out to be quite effective for some applications [122].

Several methods have been proposed to perform the insertion of prefetch instructions at
compile-time. A well-known example is the compiler algorithm devised by Mowry et al.
[95]. This algorithm inserts prefetch instructions into code that operates on dense matrices
by identifying the references that are likely to be cache misses. An interesting alternative
has been proposed by Zucker et al. in [147]. They apply a compile-profile-compile cycle to
insert the prefetch instructions at the appropriate places. During the profile phase, a stream
detection technique derived from hardware prefetching (which will be discussed in the next
section) is used to identify the data streams within the program.

The major disadvantage of scalar prefetching is the increase of the number of instruc-
tions. For each cache block that has to be prefetched, at least one instruction has to be exe-
cuted by the processor core. Additionally, the prefetch instructions also affect the compiler
optimisations. To reduce the number of prefetch instructions, for instance, loop unrolling
and loop splitting is often required [95]. These techniques are employed in order to prevent
the insertion of superfluous prefetch requests referring to memory locations that are already
in the cache. As a consequence, the number of prefetch instructions is limited to the ones
that are really needed, i.e. the ones with a prefetch address that crosses a new cache block
boundary. However, such optimisations may be hard to perform when multiple streams are
involved which are misaligned relative to each other.

The compiler also has to take care that prefetching is started in time. This requires, for
instance, the addition of so-called prefetch prologues to establish the appropriate prefetch
distance before the stream is actually accessed. This prefetch distance is the distance that
the prefetches “run ahead” with regard to the actual program references. An example of
scalar prefetching is shown in Figure 6.3b.

106 Chapter 6. Data prefetching for the TriMedia

for (i = 0; i $ 3; i++)
prefetch(&a[i]);

for (i = 0; i $ N; i++) for (i = 0; i $ N - 3; i++) ®
sum = a[i] + sum; prefetch(&a[i+3]);

sum = a[i] + sum;¯
for (; i $ N; i++)

sum = a[i] + sum;

(a) (b)

Figure 6.3: Statically detected, statically issued prefetching. Code fragment (a) shows the
original loop. The code in (b) is augmented with scalar prefetches. The new loop in front
of the original loop is the prefetch prologue establishing a prefetch distance of 3 prefetches.

6.2.2 Dynamic detection, dynamic issuing

Opposed to software (scalar) prefetching is pure hardware prefetching. In this technique,
both the detection of the streams and the issuing of prefetch requests are performed at run-
time by a hardware prefetch engine. Note that when the streams are detected dynamically
by means of hardware, the prefetch requests must be issued by hardware.

Smith was the first to propose a hardware-based prefetching method [131]. In his one-
block-lookahead (OBL) scheme, the cache prefetches cache block e � �

whenever a demand
miss brings block e into the cache. Jouppi expanded this idea with his proposal for stream
buffers [64]. In this scheme, a miss which causes block e to be brought into the cache triggers
prefetch requests for the blocks e � �

to e � N . Subsequently, the prefetched blocks are
stored in a special stream buffer. As there is often more than one stream active at the same
time, Jouppi also proposed a multi-way stream buffer which allows for maintaining multiple
streams. To reduce the amount of trashing in the stream buffer, Palacharla et al. devised a
filtering technique which detects the regular access pattern of a stream [103].

Another hardware prefetching method, proposed by Fu and Patel [42], introduces a hard-
ware table which records the history of memory references to identify streams and to predict
future references. This table, which is called the Stride Prediction Table (SPT), stores the
instruction address of memory references together with the data address that is referenced.
At a new memory reference, the program counter (PC) is searched for in the SPT. If the PC
is found in the SPT, a stride can be calculated by subtracting the data address stored in the
SPT-entry from the data address of the current reference. So, the stride equals the distance
between two consecutive memory references (made by the program) in a stream. Subse-
quently, a request is issued to prefetch data from the location which is anticipated to be ac-
cessed next, being the current data address plus the stride. This type of hardware prefetching
is illustrated in Figure 6.4. Hence, in this method, the issuing of the prefetches is synchro-
nised using the instruction addresses of memory operations.

Chen and Baer proposed several optimisations to this scheme [22], of which we discuss
the two most important. In order to reduce the number of erroneous prefetches, they added

6.2 Data prefetching 107

for (i = 0; i < 100; i++)

Instr. addr. Prev. addr. Stride

ld A[i][j]

ld B[j][i]

Instr. addr. Prev. addr. Stride

ld A[i][j]

ld B[j][i]

100000

200000

100004

200400

4

400

i = 0, j = 1.

i = 0, j = 2.

 for (j = 0; j < 100; j++)
 A[i][j] += B[j][i];

prefetch request for 100008

prefetch request for 200800

(a)

(b)

(c)

Figure 6.4: Hardware prefetching using a stride prediction table (SPT). In figure (a), a code
fragment is shown which operates on two data streams A and B. Situation (b) shows the state
of the SPT after the first iteration of the inner-loop. The instruction addresses of both load
operations have been inserted in the SPT together with the data addresses which have been
loaded. In figure (c), the situation is sketched after the second iteration of the inner-loop.
Both load operations did hit in the SPT after which a stride has been calculated from the new
data addresses and the SPT-stored previous addresses. Subsequently, the SPT-stored data
addresses are updated with the new addresses and there are two prefetch requests issued.

state information to each SPT entry. This state indicates whether or not a prefetch request
should be issued at an SPT hit. For example, the state of an SPT-entry is valid (implying
it can issue prefetch requests) only when a constant stride is measured within the stream.
By doing so, irregular access patterns do not cause erroneous prefetches as the SPT just
ignores these accesses. Chen and Baer also describe a technique to use a so-called lookahead
program counter (LA-PC) instead of the normal PC to search the SPT. With the help of the
processor’s branch prediction table, the LA-PC runs ahead with respect to the PC and is
therefore able to increase the prefetch distance.

Most of these SPT-based methods bring the prefetched data into the data cache. There is,
however, also work performed on SPT-based prefetching to a special stream cache which
is similar to the previously mentioned multi-way stream buffer from Jouppi. This stream
cache may act as a L2 cache or it may be queried in parallel with the L1 data cache [146].

The fact that SPT-based prefetching relies on the instruction addresses of memory oper-
ations for the identification of streams and synchronisation of prefetches has several con-

108 Chapter 6. Data prefetching for the TriMedia

sequences. First, the SPT should be reasonably large as every memory operation might
indicate the start of a stream. Second, the program counter has to be routed to the SPT
logic (which might be located in the data cache), thereby affecting the processor’s logic.
Hence, this method does not allow to simply exchange the normal data cache for a prefetch-
ing data cache. A potential solution to this problem is to perform both the stream detection
and prefetch synchronisation solely on the basis of data addresses. Although this is quite
complex, attempts are currently being made to support this type of prefetching [62]. Third,
loop unrolling may affect the performance of SPT-based prefetching as one stream is split
into multiple smaller streams which all have to fit in the SPT. Other drawbacks of SPT-based
prefetching are the delay before a stream is actually detected (it takes at least two memory
references) and the fact that the SPT may issue erroneous prefetch requests (e.g. it issues a
request for the cache block beyond the end of a stream).

6.2.3 Static detection, dynamic issuing

Prefetching can also be done in a hybrid manner, thus by both software and hardware. Do-
ing so, the best of both worlds can be combined. For example, the problem of the large
number of extra instructions as experienced in pure software prefetching is solved by issu-
ing the prefetch requests dynamically rather than statically. Moreover, by statically detect-
ing streams, there is more control over the prefetching than in case of dynamic detection.
As a consequence, the number of erroneously prefetched cache blocks can be minimised
or even reduced to zero. Additionally, the amount of required hardware resources for hy-
brid prefetching is smaller than for SPT-based prefetching. This because the latter form of
prefetching also records information on memory references that may behave as a stream.

In hybrid prefetching, the compiler detects streams within a program and inserts spe-
cial stream prefetch instructions at these places. The stream prefetch instructions command
a special piece of hardware to issue a prefetch request from time to time. The term “from
time to time” is, however, rather subtle as prefetches should be started way before their data
is actually needed. So, like pure hardware prefetching, there should be some synchronisa-
tion between the actual references of the program and the issuing of prefetch requests by the
hardware. Basically, we can distinguish three types of synchronisation for hybrid prefetch-
ing: using a time interval, PC-based synchronisation and synchronisation on data addresses.
The latter one is a method we have recently proposed [134].

Time interval

First, one can use a time interval for synchronisation. This means that the stream prefetch in-
struction should specify a time interval in cycles, allowing the hardware to set some timer in
order to repetitively issue prefetch requests. Clearly, this method puts high demands on the
compiler to figure out when exactly certain data elements should be prefetched. Especially
in the case of conditional branches, it may be hard to keep this time-based prefetching in
sync with the actual application references. Because of these disadvantages, this technique
is hardly ever used. Therefore, we will not consider it any further.

6.2 Data prefetching 109

PC-based synchronisation

In PC-synchronised prefetching, the program counter is used to synchronise prefetches with
the actual references. This method is identical to the synchronisation in SPT-based prefetch-
ing. The stream prefetch instruction initialises an entry in a special hardware table, called
the Prefetch Information Table (PIT), to drive the prefetch engine. The instruction provides
the PIT with information on the instruction address which should trigger a prefetch (i.e. on
which the prefetches are synchronised), the data address at which should be prefetched, the
stride with which should be prefetched and a count specifying the number of prefetches that
should be performed. In addition, the preferred prefetch distance, or runahead, can also
be specified. This runahead is established by directly issuing the appropriate number of
prefetch requests at the time the PIT entry is initialised. Naturally, there are multiple en-
tries in the PIT, allowing multiple stream prefetches to be active at the same time. At each
memory access of the program, the PIT checks its entries and may issue a prefetch request
accordingly. The latter occurs when the program counter (PC) of a memory access hits in
the PIT. After such a PIT hit, and thus after issuing a prefetch request, the information in the
relevant PIT entry (e.g. the prefetch address) is updated. In [21], Chen describes the Hare
prefetch engine which is based on this principle.

This prefetch technique still has several drawbacks. The instruction address specified
in the stream prefetch instructions (for synchronisation purposes) may be hard to determine
when the prefetch instructions are inserted manually at the source level. Furthermore, like
in SPT-based prefetching, the program counter requires to be routed to the PIT. As a result,
PC-synchronised hybrid prefetching is not transparent to the processor. Finally, PC-based
synchronisation in general may easily be affected by compiler optimisations such as loop
unrolling. For example, when unrolling a loop with several streams, a multiple of smaller
streams is created which may all have to fit in the PIT (or the SPT, for that matter). To
overcome these drawbacks, we have proposed a new hybrid prefetching scheme which is
based on data address synchronisation rather than on PC-based synchronisation [134].

Data address synchronisation, a novel approach

Synchronisation on data addresses is similar to PC-based synchronisation as it also uses a
PIT. Again, a stream prefetch instruction initialises a PIT entry with information on the data
address at which should be prefetched, the stride, the number of prefetches and the runahead.
But, rather than specifying an instruction address that synchronises the prefetches, the start-
ing data address of the stream is specified for the synchronisation. This is illustrated in Fig-
ure 6.5b. Thus, instead of matching the PC, the data address of memory references is used
to determine whether or not there is a PIT hit. At every hit, a new prefetch request is issued
after which the synchronisation and prefetch addresses of the PIT entry are updated (using
the stride).

Compared to PC-synchronised prefetching, our data address synchronisation scheme
has three advantages. First, the program counter does not need to be forwarded to the PIT.
Second, data address synchronisation may lead to a significantly smaller PIT because this
technique is not affected by compiler optimisations. Unrolling a loop with a stream, for in-
stance, does not result in a multiple of smaller streams in the PIT; there is still one PIT entry
for the unrolled stream. Third, data synchronised prefetching is more robust than its PC-

110 Chapter 6. Data prefetching for the TriMedia

prefetch(&a[0], N, 4, 3);
for (i = 0; i $ N; i++) for (i = 0; i $ N; i++)

sum = a[i] + sum; sum = a[i] + sum;

(a) (b)

Figure 6.5: Statically detected, dynamically issued prefetching. Code fragment (a) shows
the original loop. In code fragment (b), the code is augmented with a data-synchronised
stream prefetch instruction. Its parameters include the number of prefetches, the stride in
bytes and the preferred prefetch distance (3 in this case).

synchronised counterpart. More specifically, address synchronisation determines where the
processor is accessing a stream, rather than determining that the processor is accessing a
stream like PC-based synchronisation does. This allows, for example, prefetching with a
stride that is different from the one used for the actual referencing of the stream. Especially
in the presence of conditional data accesses or when the stride is regular but not always
fixed within a stream, this may improve the ability to prefetch considerably. For example,
if a stream is accessed using two strides a and b in an alternating manner, then the stream
can be prefetched by synchronising on the data addresses referenced by the strides a and b
separately.

On the other hand, as there is no such thing as a free lunch, there is one drawback of data
synchronised prefetching. The synchronisation addresses which are searched for in the PIT
change dynamically over time (at each PIT hit, the synchronisation address is updated using
the stride). This implies that the PIT must be implemented using a fully associative memory.
By contrast, PC-synchronised prefetching can use a table which is not fully associative (e.g.
set-associative) because the PIT is indexed by static instruction addresses. However, since
the PIT can be kept reasonably small when using data synchronised prefetching, its fully
associative implementation should not be a real problem.

6.3 The simulation methodology

For this performance evaluation, we have used Mermaid’s single-node computational model
as a starting framework for the simulator. As we are interested in TriMedia’s memory hi-
erarchy, the operation-traces driving the simulator only consist of memory-related opera-
tions. This includes instruction fetches, load and store operations and, when required, spe-
cial prefetch operations which we added to simulator. The traces were obtained by executing
and tracing applications in TMsim [124], which is a cycle-accurate simulator of the TriMe-
dia processor. The resulting output trace was then converted to our operation format. To
reduce the size of the operation-traces, we applied both Lempel-Ziv compression and rela-
tive tracing using page addresses (see Section 2.1.2).

With respect to the architecture model, we preserved the basic infrastructure as shown in
Figure 3.13a. Only the functionality of several components has been changed. The proces-
sor component, for example, now acts like a pseudo 1-CPI processor. At every instruction-

6.3 The simulation methodology 111

fetch operation, which represents the issuing of a TriMedia instruction comprising of five
operation-slots, it accumulates the cycle count to model the execution of the instruction. No
instruction cache is modelled as its hit-ratio is assumed to be perfect. After an instruction-
fetch, there may follow one or two memory-reference operations (as the TriMedia instruc-
tion allows two memory I/O operations per instruction) which are explicitly simulated by
the data cache component. At a data cache hit, no extra latency is counted. In this case, the
memory operation is just performed in one cycle. Thus, here we assume that in case of a
load operation, the cache access latency is covered up by scheduling the load early enough
before the data is actually needed. Hence, the data cache component only models penal-
ties due to resource conflicts, cache misses or to synchronisations. Therefore, the real (i.e.
measured) CPI can be calculated as follows:

CPI
� 02°�3 +#5G±7²´³ 3\;=(+ � Average DataCache Penalty C � °[(µA#(5G6°�(µA (576

where °�(µA#(5G6 denotes the total number of instructions and °[3 +#5G±7²´³ 3 ;=(+ is the number of memory
references.

The processor component also allows for filtering the incoming operation-trace to rep-
resent different execution behaviour. For example, a SIMD-like trace can be obtained by
combining several arithmetic instruction-fetch operations into one event. Here, an arith-
metic instruction is defined by an instruction-fetch operation which is not followed by a
memory-I/O operation but immediately by the next instruction-fetch operation.

The data cache component models the non-blocking TM-1 data cache. In addition, it
also provides support for software-based, hardware-based and hybrid data prefetching. This
component is discussed more elaborately in the next section. Finally, the bus and memory
components are less sophisticated as they just are simple delay mechanisms accounting for
the access and transfer delays of the 64-bit bus and the SDRAM memory.

6.3.1 The data cache model

The data cache component of the simulator models the geometry and functionality of the
TM-1 data cache as it was described in Section 6.1.1. In addition, the cache model also sup-
ports an allocate-but-not-fetch-on-write policy, also referred to as the write-validate policy.
For this purpose, a valid bit is kept for each separate byte within a cache block. We have
included this policy because of the fact that stream-processing applications rarely read their
results after writing them to memory. So, this implies that it is unnecessary to bring the data
into the cache after it has been written.

Furthermore, to allow data prefetching, the data cache model features a Prefetch Queue
(PQ). In this PQ, the issued prefetch requests (originating from either scalar prefetch instruc-
tions or from the SPT/PIT) wait to be consumed by the data cache. The PQ is a simple FIFO
buffer which ignores new prefetch requests in the case it is full. Moreover, the data cache
model includes an SPT for hardware prefetching and a PIT for hybrid prefetching. Both
tables apply an LRU replacement strategy. By default, the SPT is 4-way set-associative
containing 32 sets and the PIT is 16-way fully associative. The SPT uses state bits, similar
to ones proposed by Chen and Baer [22], to guarantee that prefetch requests are only issued
when a stream exhibits a constant stride.

112 Chapter 6. Data prefetching for the TriMedia

To avoid the situation in which the PQ is flooded with prefetch requests for the same
cache block, the SPT only issues a request when the prefetch address points to a “new” (not
yet requested) cache block. For example, when the address of a prefetch request crosses
a cache block boundary, the request is approved and issued. So, the SPT will never issue
two prefetch requests for the same cache block to the PQ. This approach is not directly ap-
plicable for hybrid prefetching as the PIT does not store the previously referenced data ad-
dress. Hence, for this type of prefetching we have taken other measures to limit the PQ
flooding. First, the PIT checks the contents of the cache and only issues a prefetch request
when the required cache block is not present (this is also done by the SPT). Second, in
data-synchronised hybrid prefetching only one prefetch request per cache block is issued
by manipulating the stride in the calculation of the prefetch address. More specifically, the
PIT checks the given stride (specified in the stream prefetch instruction) and if this stride
is smaller than the cache block size, then the PIT uses the cache block size (instead of the
stride) to calculate the next prefetch address. For PC-synchronised hybrid prefetching, this
stride manipulation is not straightforward as this would make the synchronisation process
more complex (it may, for instance, require an extra counter determining when to issue a
prefetch request at a PIT hit). Therefore, we did not apply this technique to PC-synchronised
hybrid prefetching, implying that the PIT may issue multiple prefetch requests for the same
cache block. For this reason, this prefetching method might require a larger PQ.

We have also addressed the potential weakness of the traditional SPT-based prefetch-
ing method associated with the timing of prefetches, that is, the prefetch requests are is-
sued only one iteration before the data is really needed. If the loop body is too small, the
prefetched data may arrive too late for the next access. Unlike Chen and Baer, who intro-
duce a lookahead-PC [22] to solve this problem, we have chosen for a simpler approach.
Our technique, which is called early-prefetch, exploits the situations in which the stride is
smaller than the cache block size. Whereas normal SPT-based prefetching ignores a prefetch
request that still refers to the same cache block as the previous request, early-prefetch sim-
ply issues a prefetch request for the succeeding cache block in that case. Because this al-
lows multiple prefetch requests (for the next cache block) to be issued from different ac-
cesses within one cache block, the SPT prevents this from happening by explicitly check-
ing whether or not an early-prefetch request has already been made or not. To illustrate the
early-prefetch technique, consider Figure 6.6. In this figure, the arrows indicate the stream
memory-references made by the program. Furthermore, the blocks refer to the cache blocks
which are being accessed. When normal SPT-based prefetching is applied, the prefetch re-
quests are issued one iteration before a next cache block is accessed, as indicated by the
arrows tagged with “normal” in Figure 6.6. However, in the early-prefetch mode, prefetch-
ing starts earlier. If, at the first access in a “new” cache block, the next access will still be
located in the same block, then this access would normally have been ignored. But in the
case of early-prefetch, a prefetch request for the succeeding block is already being issued.
This is indicated by the arrows tagged with “early pf” in Figure 6.6. Doing so, the early-
prefetch technique may increase the prefetch distance significantly. On the other hand, for
streams that are small enough to fit into one cache block, this technique may increase the
number of erroneous prefetches (as it will prefetch the next cache block). Moreover, early-
prefetching is only beneficial when the data streams are contiguously laid out over the cache
blocks. If the stride within a stream is equal to or larger than the cache block size, then early-
prefetching has no effect, implying that the prefetch distance remains unchanged.

6.4 Experiments 113

Prefetch Prefetch

Block i Block i + 1

block i
(normal)

Prefetch
block i + 1
(early pf)

block i + 1
(normal)

Prefetch
block i + 2
(early pf)

Prefetch
block i + 2
(normal)

Prefetch

(early pf)
block i + 3

Figure 6.6: The difference between normal SPT-based prefetching and prefetching using
the early-prefetch mode.

As all prefetching is done into the data cache, this may lead to the removal of valuable
data, i.e. trashing. To reduce the effect of trashing, the cache model allows to specify a sub-
set of cache blocks which may be the target for prefetched data. One could, for instance,
configure only two of the 8 blocks in a cache set for prefetching. In that case, the remaining
six blocks within the set are strictly used for normal data references. Normal data references
can, however, use the prefetch lines as well. For the prefetch lines, an additional replace-
ment strategy is used, which currently is LRU. Prefetches update both the global strategy
(i.e. hierarchical LRU) and the “local” prefetch strategy. As a consequence, normal data
references will try to avoid prefetch lines when a lot of prefetching is done, thereby almost
guaranteeing exclusive access to the prefetch lines by prefetches only. On the other hand,
if there is not much prefetch activity, the cache is free to use all the lines within a set for
normal data references.

6.4 Experiments
To evaluate the different prefetching techniques for future TriMedia VLIW processors, we
have performed a simulation study using a “de-interlacing” application, called Median. This
program processes the odd and even frames of an interlaced video stream in order to produce
non-interlaced frames. The following pseudo-code shows Median’s computational kernel
for the processing of one frame (either even or odd):

for (line = 0; line < NR_OF_LINES; line++)
for (pixel = 0; pixel < NR_OF_PIXELS; pixel++) {

process pixel;
}

So, the inner-loop iterates over the pixels in a scan line and the outer-loop over the scan
lines within the frame. Unfortunately, this is the only application we were able to study.
Access to more advanced programs, such as MPEG-2, was not available. This is because
these applications are still in the process of being implemented (or tuned) for the new Tri-
Media architecture, i.e. the successor of the TM-1. Because our investigation is limited to
a single, rather straightforward benchmark, the main purpose of this study is to gain insight
into the relative behaviour of several different prefetching techniques. By no means, we try
to predict absolute performance improvements by extrapolating the results from the Median
benchmark.

114 Chapter 6. Data prefetching for the TriMedia

The evaluation is divided into two studies. In the first study, the performance gain of
pure hardware prefetching is compared to that of hybrid prefetching, while the second study
investigates the differences between hybrid and scalar prefetching.

6.4.1 Hardware versus hybrid prefetching
In this section, we use two performance metrics: the hit-ratio and the Memory CPI (MCPI).
The latter specifies the extra fraction of CPI added by cache penalties, or formally:

MCPI
� 02°�3 +#5G±7²´³ 3\;=(+ � Average DataCache Penalty C°�(µA (576

where °�3 +#5G±7²´³ 3\;=(+ again refers to the number of memory references and °(µA (576 to the total
number of instructions. As was mentioned earlier, the average data cache penalty is due
to resource conflicts, cache misses and synchronisations. So, since the simulator is based
on a 1-CPI model, the actual CPI equals to 1 + MCPI. We simulated the address traces of
two instances of Median: SMedian de-interlaces a 400 � 20 image (32Kb in total), whereas
LMedian uses a larger 200 � 140 image (160Kb). In Table 6.2, the cache hit-ratio and MCPI
for both benchmarks are shown when there is no prefetching performed. The table gives the
results for both the fetch-on-write and write-validate policies.

SMedian LMedian
Write-validate Fetch-on-write Write-validate Fetch-on-write

Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI
97.37% 0.234 97.43% 0.278 98.32% 0.157 98.34% 0.185

Table 6.2: Hit-ratio and MCPI for a non-prefetching cache with fetch-on-write or write-
validate.

The results from Table 6.2 indicate that Median benefits from a write-validate data cache.
As the hit-ratios obtained by the fetch-on-write policy are only marginally higher than the
write-validate hit-ratios, this suggests that there is not much data which is read after it has
been written. So, by not fetching cache blocks at write misses (i.e. the write-validate policy)
valuable memory bandwidth is saved. As a consequence, the MCPI values for the write-
validate policy are roughly 15% lower than the ones obtained by a fetch-on-write cache.
Our goal is to reduce these MCPI values even further using prefetching.

For hybrid prefetching, the kernel of Median (as shown in the previous fragment of
pseudo-code) has been instrumented with stream prefetch instructions. Hence, prefetch-
ing only occurs during the execution of this kernel. By contrast, with hardware prefetching,
prefetch requests can be issued during the execution of the whole program. As the Median
benchmark also includes several input and output system calls for the video streams, these
code segments may benefit from hardware prefetching as well.

Hardware prefetching

For pure hardware prefetching, a 4-way set-associative SPT is used which may range in
size from 8 to 256 entries. By default, this SPT operates in normal mode, thus without the

6.4 Experiments 115

early-prefetch optimisation. Unless stated otherwise, the data cache features a single-entry
Prefetch Queue (PQ) and contains two prefetch blocks per cache set in order to reduce trash-
ing.

As TriMedia instructions can hold two memory references, which both will use the same
instruction address for prefetch synchronisation, the SPT should handle both memory ref-
erences separately. Given this background, we have studied three possible SPT implemen-
tations. First, the SPT can be split into two banks, one for every memory-IO slot in the
TriMedia instruction. Indexing such an SPT is done like

SPT[instr slot][instr adr mod BANKSIZE]

In this case, a memory reference hits the SPT when the entry is valid and the instruction
addresses match. We refer to this as a split SPT. A second implementation can be realised
with one bank where the indexing is done like

SPT[(instr adr + instr slot) mod BANKSIZE]

Here, the instr slot refers to the memory-IO slot of the TriMedia instruction and assumes
either 0 or 1. The addition of instr slot prevents aliasing between two memory operations
within one instruction. Like in the previous configuration, a memory reference hits the SPT
when the entry is valid and the instruction addresses match. We call this a shifted SPT. Fi-
nally, a single-banked SPT could use the following index function:

SPT[instr adr mod BANKSIZE]

In this case, the SPT is supposed to store slot-identifiers as well. Subsequently, a memory
reference hits the SPT when the entry is valid and both the instruction addresses and the
slot-identifiers match. We refer to this as a slotted SPT.

Table 6.3 shows the SPT hit-ratios for the three different SPT implementations: shifted,
slotted and split. These results were obtained using a write-validate policy. Clearly, the
shifted and split SPTs outperform the slotted SPT for a small number of entries. This can
be explained by the fact that the compiler may schedule two stream references into one

SMedian LMedian
SPT size Shifted Slotted Split Shifted Slotted Split

8 85.97% 66.65% 85.87% 88.06% 72.50% 88.03%
16 86.39% 67.74% 87.21% 88.41% 74.06% 89.76%
32 91.15% 70.92% 90.49% 94.41% 77.72% 94.46%
64 92.77% 93.24% 93.31% 98.26% 98.25% 98.23%

128 95.65% 95.23% 95.44% 98.93% 98.74% 98.82%
256 96.77% 96.53% 96.72% 99.23% 99.15% 99.22%

Table 6.3: SPT hit-ratio for the three SPT configurations (using a write-validate policy).

116 Chapter 6. Data prefetching for the TriMedia

TriMedia instruction. In a slotted SPT, such stream references map to the same SPT set
which might cause trashing when there is only a small number of SPT sets available. But,
as can be seen from Table 6.3, the differences between all three SPT implementations be-
come marginal when increasing their size.

In Table 6.4, the hit-ratios of a shifted SPT are shown for both the fetch-on-write and
write-validate policies. Note that in the case of fetch-on-write there will be prefetches on
both read and write operations, whereas in write-validate there are only prefetches on read
operations. As SPT hit-ratios are no direct indicator of real performance, the table also
shows the obtained MCPI values for the same experiment. The results clearly illustrate that
prefetching has significantly decreased the MCPI values as compared to the values listed in
Table 6.2. The MCPI reductions we measured are between 16% and 32%. Not surprisingly,
the best improvements are for the write-validate policy. In the fetch-on-write policy, a lot
of prefetches are, when compared to the write-validate policy, not effective as they are used
for write operations only and not for read accesses. These prefetches did, however, prevent
other (valuable) prefetches from being executed.

Furthermore, Table 6.4 also indicates that the SPT hit-ratios of write-validate are better
than the ones of fetch-on-write for smaller SPT sizes (smaller than 64 entries). This is prob-
ably due to several write operations which are not part of a stream but still trash the SPT.
Another observation is that improving the SPT hit-ratio (by increasing the SPT’s size) does
not result in a performance gain (i.e. a lower MCPI). This can be explained by the fact that
the number of prefetches issued by both small and large SPTs are identical (these numbers
are not shown). The extra hit-ratio of large SPTs does not cause the issuing of many extra
(effective) prefetches.

The above conclusions can also be drawn when using a slotted or split SPT rather than
a shifted SPT (we do show these results for the sake of brevity). The obtained MCPI values
are for all three SPT implementations identical, except when using a small slotted SPT. In
the case of the latter, a lower MCPI was measured due to the poor SPT hit-ratio (see Ta-
ble 6.3).

Table 6.5 shows the cache hit-ratio and the MCPI when the number of prefetch blocks
per set in the cache are varied. Limiting the number of prefetch blocks can reduce the amount

SMedian LMedian
SPT size Write-validate Fetch-on-write Write-validate Fetch-on-write

Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI
8 85.97% 0.159 76.36% 0.214 88.06% 0.124 80.99% 0.156

16 86.39% 0.159 86.66% 0.212 88.41% 0.124 89.27% 0.156
32 91.15% 0.159 88.46% 0.212 94.41% 0.124 91.74% 0.156
64 92.77% 0.159 91.69% 0.212 98.26% 0.124 95.84% 0.156
128 95.65% 0.159 94.23% 0.212 98.93% 0.124 97.43% 0.156
256 96.77% 0.159 95.88% 0.212 99.23% 0.124 98.98% 0.156

Table 6.4: SPT hit-ratio and MCPI of a (shifted) SPT with a fetch-on-write or write-validate
cache.

6.4 Experiments 117

Nr. of SMedian LMedian
prefetch Write-validate Fetch-on-write Write-validate Fetch-on-write

lines Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI
1 98.50% 0.164 98.27% 0.416 99.07% 0.126 98.78% 0.324
2 98.53% 0.159 99.04% 0.212 99.08% 0.124 99.40% 0.155
3 98.44% 0.162 99.02% 0.201 99.05% 0.125 99.40% 0.155
4 98.38% 0.164 99.00% 0.214 99.01% 0.122 99.39% 0.155
5 98.36% 0.164 98.99% 0.207 98.98% 0.120 99.39% 0.155
6 98.32% 0.169 98.97% 0.218 98.96% 0.119 99.38% 0.156
7 98.27% 0.169 98.93% 0.216 98.93% 0.121 99.37% 0.158
8 98.25% 0.171 98.88% 0.221 98.91% 0.122 99.34% 0.155

Table 6.5: The performance of different prefetch configurations with fetch-on-write or
write-validate.

of cache trashing (e.g. replacing persistent data from the cache) due to prefetching. In this
experiment, a 128-entry shifted SPT is used. The results show that one prefetch block is
too few when applying the fetch-on-write policy. For the other configurations, the perfor-
mance differences are marginal and there cannot be detected a clear trend. We have reached
the same conclusion when using different SPT types and sizes. It is therefore hard to deter-
mine the optimal number of prefetch lines. This suggests that Median does not use a lot of
other, more persistent, data besides its video streams. So, the Median program is not a very
good measure for this experiment as the outcome might be significantly different for other
benchmark programs.

For a write-validate cache and a 128-entry shifted SPT, Table 6.6 shows the results when
varying the Prefetch Queue (PQ) size. It shows both the number of cancelled prefetch re-
quests due to a full PQ and the performance impact (hit-ratio and MCPI). Table 6.6 sug-
gests that increasing the PQ size, which results in less cancellations of prefetch requests,
only marginally improves the performance. This can be explained by the fact that although
the larger PQ size avoids a large number of the cancellations, most of the “saved” prefetch
requests are handled too late. This means that the required cache blocks have already been
referenced at the time the prefetch requests are handled, after which the requests are dis-

PQ SMedian LMedian
entries # Cancel. Hit-ratio MCPI # Cancel. Hit-ratio MCPI

1 1438 98.53% 0.159 4044 99.08% 0.124
2 644 98.53% 0.158 3140 99.08% 0.123
4 182 98.54% 0.157 1143 99.09% 0.123
8 65 98.54% 0.156 8 99.13% 0.121

Table 6.6: Performance impact of a larger PQ when using write-validate and a 128-entry
shifted SPT.

118 Chapter 6. Data prefetching for the TriMedia

SMedian LMedian
Overall Hit-ratio Overall Overall Hit-ratio Overall
hit-ratio in kernel MCPI hit-ratio in kernel MCPI

No prefetching 97.37% 95.80% 0.234 98.32% 95.80% 0.157
HW prefetching 97.54% 97.54% 0.219 98.44% 97.31% 0.146

Table 6.7: Performance of a data cache with and without prefetching in the inner loop (ker-
nel) of Median (using write-validate and a 128-entry SPT).

carded after all.
Thus far, the prefetch results are obtained by a model in which prefetching is turned

on during the whole trace. To allow a comparison with hybrid and software prefetching,
which only prefetch during the execution of Median’s kernel, we also measured the impact
when hardware prefetching is only enabled in the kernel. Table 6.7 shows the results of this
experiment. For these simulations, we used a 128-entry shifted SPT and a write-validate
cache. Without prefetching, the hit-ratio in Median’s kernel is much lower than the over-
all hit-ratio due to the high rate of compulsory cache misses generated within the kernel.
The hit-ratios improve when prefetching is activated but certainly not to the level of the hit-
ratios in Table 6.5. To be more precise, we measured an MCPI improvement of 32% for
SMedian when prefetching is allowed for the whole trace (see Table 6.5), while the MCPI
only improves with 6.4% when strictly prefetching in the kernel (see Table 6.7). So, most
of the performance gain due to SPT-based prefetching is obtained during the execution of
auxiliary functions (e.g. the input and output routines) rather than in the kernel.

In Table 6.8, the results are shown for the early-prefetch optimisation. The table lists
both the results for prefetching during the whole trace and kernel-only prefetching. Note,
however, that the hit-ratios and MCPI values in the table are overall values (measured for the
whole trace). As can be seen from Table 6.8, the early-prefetch optimisation is quite effec-
tive for the Median benchmark. It decreases the MCPI for kernel prefetching of SMedian
with about 17% and for LMedian the MCPI is decreased with 25% compared to the nor-
mal prefetching mode. When comparing this to the Median execution without prefetching,
this resolves into MCPI reductions of 23% and 31% respectively. If prefetching is allowed
during the whole trace, then the improvements are even more substantial. In that case, the
MCPI values have decreased with 48% (SMedian) and 60% (LMedian) compared to normal

SMedian LMedian
Prefetch Total trace Kernel Total trace Kernel

mode Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI Hit-ratio MCPI
Normal 98.53% 0.159 97.54% 0.219 99.08% 0.124 98.44% 0.146
Early 98.72% 0.085 97.74% 0.181 99.25% 0.049 98.62% 0.109

Table 6.8: Performance impact of the early-prefetch optimisation when using write-validate
and a 128-entry shifted SPT.

6.4 Experiments 119

SPT-based prefetching. This means that the MCPI values are reduced by 64% (SMedian)
and 69% (LMedian) when comparing them with the no-prefetch results of Table 6.2. These
large improvements indicate that, in the normal mode of prefetching, a lot of prefetches are
started (or finished) too late.

So far, we did not mention the effect of prefetching on the bus utilisation. This is be-
cause the prefetching techniques we investigate are nearly perfect, implying that they issue
a small number of erroneous prefetch requests. As a result, we measured only tiny differ-
ences ($ 1%) between the bus utilisation of non-prefetching and prefetching data caches.

Hybrid prefetching

For the hybrid prefetching experiments, we again use a cache model containing two prefetch
blocks per set and which applies a write-validate policy. By default, we have parameterised
the stream prefetch instructions with a lookahead of 3 and a stride of 8. This implies that
prefetching runs

¨·¶ � � � g bytes ahead. Remember that the following experiments should
be compared with the kernel prefetching results of the previous section.

Table 6.9 shows the results of hybrid prefetching using PC-based synchronisation. The
top entry of the table gives the performance of a non-prefetching data cache, while the re-
maining entries present the results for a prefetching cache with different PQ sizes. From
Table 6.9 can be seen that, like for pure hardware prefetching, the PQ size only marginally
affects the performance. A PQ of four entries seems to be the best choice when observing
the MCPI values but the differences are only marginal.

When comparing these results to the ones in Table 6.8, one can conclude that hybrid
prefetching yields lower MCPI values than normal, in-kernel hardware prefetching. More
specifically, hybrid prefetching improves the MCPI on the average with about 13.5% com-
pared to (normal) in-kernel hardware prefetching. However, hardware prefetching using the
early-prefetch optimisation still outperforms hybrid prefetching for the Median traces when
a runahead of 3 is applied.

In Table 6.10, the effects of varying the runahead are shown. Again, the first entry gives
the results for a non-prefetching cache. The results indicate that the performance steadily
improves when increasing the runahead until a runahead of 12 is reached. According to Ta-
ble 6.10, a runahead of 12 yields the lowest MCPI values, which are even slightly lower than

SMedian LMedian
Nr. of Overall Hit-ratio Overall Overall Hit-ratio Overall

PQ entries hit-ratio in kernel MCPI hit-ratio in kernel MCPI
— 97.37% 95.80% 0.234 98.32% 95.80% 0.157
1 97.68% 98.89% 0.198 98.56% 98.88% 0.125
2 97.68% 98.89% 0.195 98.56% 98.88% 0.121
4 97.68% 98.89% 0.193 98.57% 98.89% 0.121

16 97.68% 98.89% 0.193 98.57% 98.89% 0.121

Table 6.9: Performance of hybrid prefetching (PC-synchronised, using a runahead of 3 ref-
erences and write-validate).

120 Chapter 6. Data prefetching for the TriMedia

SMedian LMedian
Runahead Overall Hit-ratio Overall Overall Hit-ratio Overall

hit-ratio in kernel MCPI hit-ratio in kernel MCPI
— 97.37% 95.80% 0.234 98.32% 95.80% 0.157
1 97.56% 97.64% 0.220 98.50% 97.98% 0.144
2 97.62% 98.26% 0.200 98.52% 98.31% 0.131
4 97.70% 99.09% 0.187 98.59% 99.18% 0.115
8 97.76% 99.69% 0.179 98.65% 99.91% 0.104

12 97.77% 99.80% 0.176 98.66% 99.99% 0.102
16 97.77% 99.78% 0.176 98.66% 99.97% 0.102

Table 6.10: Performance of hybrid prefetching (PC-synchronised, using a 16-entry PQ and
write-validate).

the ones obtained by early-prefetch hardware prefetching (see Table 6.8). It is not surprising
that both hybrid prefetching with a runahead of 12 and early-prefetch hardware prefetching
perform almost identically: both methods more or less guarantee that the succeeding cache
block is prefetched as soon as its predecessor is referenced. For example, a runahead of 12
means a prefetch distance of � ¶ � � �¹¸ ©

bytes, which is larger than the 64-byte block-
size of the cache. So, from Table 6.10 can be concluded that a reasonably large runahead is
essential for effective prefetching in the Median benchmark.

Table 6.11 presents the results of data-synchronised hybrid prefetching with different
PQ sizes. It may be surprising that data-synchronised prefetching performs worse than PC-
synchronised prefetching for a 1-way PQ because the latter type of prefetching may flood
the PQ more easily. The poorer performance of data-synchronised prefetching is due to
the fact that if the cache cancels a prefetch request, then the particular cache block can
not be prefetched anymore as there is only one prefetch request per cache block in data-
synchronised prefetching (see Section 6.3.1). This is in contrast to the PC-synchronised
mode, in which multiple prefetch requests may be issued for one cache block. Therefore,

SMedian LMedian
Nr. of Overall Hit-ratio Overall Overall Hit-ratio Overall

PQ entries hit-ratio in kernel MCPI hit-ratio in kernel MCPI
— 97.37% 95.80% 0.234 98.32% 95.80% 0.157
1 97.68% 98.00% 0.205 98.47% 97.70% 0.132
2 97.68% 98.91% 0.192 98.57% 98.90% 0.120
4 97.68% 98.91% 0.192 98.57% 98.90% 0.120

16 97.68% 98.91% 0.192 98.57% 98.90% 0.120

Table 6.11: Performance of hybrid prefetching (data-synchronised, using a runahead of 3
and write-validate).

6.4 Experiments 121

SMedian LMedian
Runahead Overall Hit-ratio Overall Overall Hit-ratio Overall

hit-ratio in kernel MCPI hit-ratio in kernel MCPI
— 97.37% 95.80% 0.234 98.32% 95.80% 0.157
1 97.56% 97.63% 0.218 98.50% 97.99% 0.142
2 97.66% 98.68% 0.201 98.55% 98.65% 0.131
4 97.71% 99.15% 0.187 98.60% 99.27% 0.114
8 97.76% 99.71% 0.179 98.65% 99.92% 0.104

12 97.76% 99.73% 0.177 98.66% 99.99% 0.102
16 97.76% 99.73% 0.177 98.66% 99.99% 0.102

Table 6.12: Performance of hybrid prefetching (data-synchronised, using a 16-entry PQ and
write-validate).

cancellations are less critical in this mode. Apparently, flooding of the PQ is not always a
problem but it may have positive effects as well.

The results from Table 6.11 suggest that when increasing the PQ size (even to a PQ size
of 2) the critical cancellations are avoided. In these cases, the obtained MCPI values are
roughly identical to the ones of PC-synchronised prefetching. The small variations between
the results of PC and data synchronised prefetching are caused by the different strategies for
issuing prefetch requests to prevent PQ flooding.

Table 6.12 shows the impact of runahead on data-synchronised prefetching. As these
results are only marginally different from the PC-synchronisation results as listed in Ta-
ble 6.10, one can conclude that both PC-synchronised and data-synchronised prefetching
are affected in the same manner when changing the runahead.

6.4.2 Hybrid data-synchronised versus scalar prefetching
In this section, we study the performance differences between pure software (i.e. scalar)
prefetching and hybrid data-synchronised prefetching. The scalar prefetching was imple-
mented using the straightforward technique of having a prologue which establishes the runa-
head, the (kernel) loop itself and an epilogue, being the last iterations of the loop without
prefetching (see Figure 6.3). No effort was made to calibrate the scalar prefetch instructions
such that they only refer to the start of a cache block in order to limit the number of prefetch
instructions to the ones that are essential. Because the multiple streams are misaligned with
respect to each other, this would require a major, and probably an awkward, rewrite of the
application.

Again, we used the Median benchmark as workload. However, for the following ex-
periments, we only simulated the SMedian trace (de-interlacing a 400 � 20 image). More-
over, the results for hybrid prefetching in the following study slightly differ from the hybrid
prefetching results presented in the previous section. This unfortunate discrepancy is due to
several changes that have been made to the TriMedia compiler during the period between
the two studies. For example, the number of instruction fetch and data reference operations
in the SMedian traces used in the two studies differ significantly. Therefore, a comparison

122 Chapter 6. Data prefetching for the TriMedia

Cycles 6 A 5G± MCPI 6 A 57± Hit-ratio # Bank cfl.
7.1% 0.419 97.28% 3973

Table 6.13: Performance results for SMedian without prefetching.

between the results of both studies must be performed with care.
In the following study, we have only used the write-validate cache policy. This implies

that prefetching is only done with respect to load operations. For this reason, we do not use
the generic MCPI metric but, instead, we use a MCPI 6 A 5G± metric. This MCPI 6 A 57± is the CPI
fraction due to cache penalties from load operations only. Formally,

MCPI
�

MCPI 6 A 57± � MCPI 9H(µA 3 +�
Additionally, we introduce a new metric, called Cycles, which denotes the percentual perfor-
mance improvement of the total cycle count due to prefetching when compared to simula-
tion without prefetching. For this metric, a negative value means a speedup while a positive
value means a slowdown.

Table 6.13 shows the performance results of SMedian when no prefetching is performed.
The Cycles 6 A 57± metric denotes the fraction of the total number of cycles that is wasted due to
cache penalties from load operations. So, the Cycles 6 A 5G± suggests that only 7.1% of the total
cycle count can be improved with latency reduction techniques, such as prefetching (note
that we only prefetch on loads as we apply the write-validate policy). In other words, a
reduction of 7.1% of the total cycle count would mean that there are no load penalties any-
more (this includes the entire trace, so also the auxiliary routines). Moreover, Table 6.13
also presents the number of bank conflicts that occurred in the data cache during the simu-
lation. The relevance of this metric will be shown later.

In Table 6.14, the performance results are presented when applying either scalar or hy-
brid prefetching. Interestingly enough, scalar prefetching only obtains speeddowns. Ap-
parently, the overhead induced by the prefetch instructions is too large to benefit from the
prefetching itself. This effect is, of course, intensified due to the fact that our benchmark is-
sues multiple (scalar) prefetch requests for the same cache block. Another interesting point
is the number of bank conflicts. The compiler seems to have more freedom of scheduling
memory references when prefetch instructions are included in the loop, thereby reducing
the number of bank conflicts.

For hybrid prefetching, all experiments obtain speedups. Note that a speedup of 1.8%
means that �7º »¼ º � = 25% of Cycles 6 A 5G± is reduced. Moreover, the runahead of the stream prefetch
instructions is not really affecting the results. This is in contrast to the hybrid prefetch re-
sults presented in the previous section where the runahead did impact the performance quite
substantially. This difference is caused by the new compiler used for the experiments in this
study. The SMedian trace generated for this new compiler contains more instruction fetches
and less data references in the kernel. Hence, the kernel consists of more instructions that do
not access the data cache, implying that the amount of computational work per kernel loop
iteration has increased. As a consequence, the implicit prefetch distance (i.e. the runahead)
of the kernel loop has become larger, thereby diminishing the effect of the explicit runahead

6.4 Experiments 123

Runahead Cycles MCPI 6 A 5G± Hit-ratio # Bank cfl.
1 +2% 0.250 97.70% 211
2 +1.6% 0.230 97.73% 249

Scalar 4 +1.4% 0.224 97.75% 325
8 +1.3% 0.232 97.70% 477

16 +1.1% 0.239 97.73% 781
1 -1.7% 0.306 97.69% 3982
2 -1.8% 0.298 97.71% 3982

Hybrid 4 -1.8% 0.298 97.71% 3982
8 -1.8% 0.297 97.71% 3982

16 -1.8% 0.297 97.71% 3982

Table 6.14: Performance results of scalar and hybrid prefetching for the SMedian bench-
mark.

established by the stream prefetch instruction.
The obtained values for MCPI 6 A 5G± might, at first sight, be somewhat surprising as they

are lower for scalar prefetching than for hybrid prefetching. The lower MCPI 6 A 5G± values for
scalar prefetching are due to the large number of extra prefetch instructions. The additional
execution time of these instructions reduces the relative fraction of time during which the
processor stalls due to cache penalties. In other words, the extra prefetch instructions in-
crease the °d(µA#(5G6 in the MCPI formula (see Section 6.4.1), thereby reducing the MCPI.

In the following experiment, of which the results are shown in Table 6.15, we unrolled
Median’s innerloop 2 or 4 times. In the case of scalar prefetching, we kept the number of
prefetch instructions per loop iteration constant while unrolling the loop. This means that
the total number of scalar prefetch instructions has decreased for the loop-unrolled versions
of Median (as there are less iterations and still the same number of prefetch instructions per

Unroll factor Cycles MCPI 6 A 5G± Hit-ratio # Bank cfl.
0 — 0.419 97.28% 3973

No pref. 2 — 0.421 97.22% 3972
4 — 0.431 97.27% 3973
0 +1.1% 0.239 97.73% 781

Scalar 2 -0.5% 0.239 97.72% 781
4 -2.5% 0.231 97.73% 781
0 -1.8% 0.297 97.71% 3982

Hybrid 2 -2.1% 0.294 97.75% 3982
4 -2.6% 0.288 97.73% 3982

Table 6.15: Performance results of scalar and hybrid prefetching when loop-unrolling is
applied. All results are for a runahead of 16.

124 Chapter 6. Data prefetching for the TriMedia

PQ entries Cycles MCPI 6 A 57± Hit-ratio
1 -2.3% 0.238 97.71%
2 -2.4% 0.231 97.73%

Scalar 4 -2.5% 0.231 97.73%
8 -2.5% 0.231 97.73%

16 -2.5% 0.231 97.73%
1 -1.2% 0.359 97.59%
2 -2.5% 0.293 97.72%

Hybrid 4 -2.5% 0.291 97.72%
8 -2.6% 0.288 97.73%

16 -2.6% 0.288 97.73%

Table 6.16: Performance results when the prefetch queue size is varied. The runahead in
this experiment is 16 and the kernel loop is unrolled 4 times.

loop iteration). As a consequence, the overhead of the prefetch instructions should have
been reduced.

Table 6.15 clearly shows that loop unrolling is essential for scalar prefetching, that is,
for our scalar prefetching implementation. Unrolling the loop 4 times results in a perfor-
mance gain which is identical to the one obtained by hybrid prefetching: about 2.5%. This
is a

u º ½¼ º � = 35% reduction of the Cycles 6 A 5G± from Table 6.13. This improvement is partly due
to the reduction of the number of scalar prefetch instructions. But as the speedup for hy-
brid prefetching also improves when unrolling the kernel loop, there is an additional effect
causing this performance improvement. The loop unrolling has made the code more effi-
cient while the cache penalties have remained unchanged. Thus, in other words, the per-
formance of Median has become increasingly memory bound. This means that a reduction
of the number of cache misses due to prefetching will have a greater impact on the total
number of executed cycles when compared to the non-unrolled Median version.

In Table 6.16, the results are shown when the size of the PQ is varied. In this experi-
ment, the innerloop is unrolled 4 times. Scalar prefetching is not really affected by the PQ
size. This is a consequence of the fact that in this type of prefetching a lot of prefetch re-
quests for the same cache block are issued. When one of them is cancelled due to a full PQ,
there is a high probability another prefetch request will take over. In accordance to what
was found in the previous section (the study of hardware versus hybrid prefetching), hybrid
prefetching with a prefetch queue of only 1 entry yields poor performance. Again, this is
due to the issuing of one prefetch request per cache block. These requests may easily be
cancelled when using a single-entry PQ, implying that the cache block in question cannot
be prefetched anymore. As can be seen from Table 6.16, increasing the PQ size to 2 or more
entries alleviates this problem.

The final experiment focuses on hybrid prefetching only. In Table 6.17, the cache perfor-
mance is shown when the processor exploits subword or SIMD parallelism. With special
SIMD instructions, operations on several (distinct) data elements, which are packed into
a single word, can be performed simultaneously. Assume, for example, that a data word

6.5 Validating our model 125

PQ entries Cycles MCPI 6 A 57± Hit-ratio
No pref. — 0% 0.431 97.27%

1 -1.7% 0.364 97.59%
2 -3.5% 0.292 97.72%

Hybrid 4 -3.5% 0.290 97.72%
8 -3.5% 0.289 97.73%

16 -3.5% 0.289 97.73%

Table 6.17: Performance results when applying SIMD operations. In this experiment, the
runahead is 16 and the innerloop is unrolled 4 times.

contains four pixel values and that the special SIMD instructions operate on 4-tuples such
that the calculations are done on each element of the 4-tuple individually. For instance, the
quadadd instruction would perform 0H¾ 8U¿8UÀÁ8 � C � 0 	 8UÂ�8 f 8 � CS¥ 0#¾ � 	 8�¿ � ÂD8UÀ � f 8 � �Ã� C .

As this type of parallelism is well suited for imaging applications, future TriMedia ver-
sions will feature a set of SIMD instructions. To investigate the impact of SIMD parallelism
on data prefetching, we filtered the address trace such that a number of instruction-fetch
events belonging to arithmetic operations were removed. This removal mimics the combi-
nation of several arithmetic operations into one SIMD instruction. Evidently, this method
is not accurate and the results should therefore be interpreted with care. However, the ex-
periment gives us a rough feeling of how the performance is affected when more powerful
arithmetic operations are applied.

The results in Table 6.17 indicate that prefetching becomes more important when SIMD
parallelism is exploited (the reduction of the total number of cycles has increased to -3.5%).
The reason for this is identical to the effect of unrolling the kernel’s loop. More specifically,
the SIMD operations improve the computational efficiency of the program, while the mem-
ory latencies remain unchanged. As a consequence, the program’s performance has become
increasingly memory bound.

6.5 Validating our model
Struik et al. [134] presented hybrid prefetching experiments which are similar to the ones
discussed in this study. However, Struik’s study uses the cycle-accurate TMsim simula-
tor [124] rather than our more abstract, but faster and more flexible, operation-driven simu-
lator. Nevertheless, the similarity between their experiments and the ones presented in this
chapter provides us with a means to validate our 1-CPI model results against the accurate
TMsim results. So, where it is possible, we will indicate the differences (or the similarities,
for that matter) between the two studies.

In Table 6.18, the performance estimations of both the cycle-accurate TMsim simulator
and our operation-driven simulator are shown when varying the PQ size. Columns two and
three give the estimated cycle count for the processing of one video frame for TMsim and
Mermaid respectively. The fourth column shows the error between these two estimations.
In columns five and six, the number of executed prefetches for both simulator is given. Fi-

126 Chapter 6. Data prefetching for the TriMedia

Nr. of Cycles �\Ä 3 5 < + Error # prefetches Hit-ratio 6 A 5G± 9
PQ entries TMsim Mermaid Cycles ��ÅVÆEÇVÈÊÉ TMsim Mermaid TMsim Mermaid

8 23683 22324 5.7% 234 244 100% 99.98%
4 23683 22396 5.4% 234 240 100% 99.91%
2 23684 22426 5.3% 235 238 100% 99.90%
1 24379 25767 5.7% 118 121 97.95% 97.81%

Table 6.18: Validating our results against the TMsim cycle-accurate simulation results [134]
when varying the PQ size. In this experiment, the loop is 4 times unrolled and the runahead
is 16.

Unroll Cycles �\Ä 3 5 < + Error # prefetches Hit-ratio 6 A 5G± 9
factor TMsim Mermaid Cycles ��ÅVÆEÇVÈÊÉ TMsim Mermaid TMsim Mermaid

0 33313 31868 4.3% 234 244 100% 99.98%
2 25862 24531 5.1% 234 243 100% 99.96%
4 23683 22324 5.7% 234 243 100% 99.96%

Table 6.19: Validating our results for loop unrolling against the TMsim cycle-accurate sim-
ulator. In this experiment, the prefetch queue has 8 entries and the runahead is 16.

nally, the last two columns present the hit-ratios for load operations while prefetching is
activated (kernel hit-ratio).

The relatively small differences between the results for both simulators suggests that
our simulation model is fairly accurate. More important, although the absolute numbers ob-
tained by our model slightly differ from the ones obtained by TMsim, the trends are identical
for both simulators, indicated by a fairly constant error (5 Ë 0.7 %).

Table 6.19 shows the hybrid prefetching outcomes of both simulators when applying
loop unrolling. The meaning of the columns is identical to that of the previous table. Again,
the errors are relatively small and the behaviour of Cycles �\Ä 3 5 < + is identical for both simu-
lators. So, as was already shown in Muller’s dissertation [97], a reasonably abstract simu-
lation model may already give good performance estimates. These validation results are of
great importance as they increase our confidence in the obtained simulation results.

Finally, in the TMsim study from [134], Struik et al. also performed an experiment
which is similar to our SIMD experiment. However, that experiment applied real SIMD in-
structions rather than mimicking their presence by removing instruction-fetch events. The
cycle-accurate results show that the trend reflected by the results of our simple SIMD experi-
ment (as were shown in Table 6.17) is quite realistic as TMsim also indicates that prefetching
becomes more important when applying SIMD parallelism.

6.6 Discussion 127

6.6 Discussion
In this case study, we discussed the concept of data prefetching with the intention to improve
the average memory latency of future Philips TriMedia processors. We first presented a clas-
sification of the different types of data prefetching, ranging from pure software prefetching
to pure hardware prefetching. From this prefetching classification, we concluded that a hy-
brid software/hardware prefetching technique yields the highest degree of flexibility and
transparency while the prefetch engine is still straightforward and cheap to implement.

Many hardware and hybrid prefetching techniques synchronise the issuing of prefetch
requests on the instruction address of data references. We have shown that this synchro-
nisation method has several drawbacks. For this reason, we have proposed a novel hy-
brid prefetching technique which synchronises on data addresses rather than on the program
counter. This may increase the robustness of the prefetch engine considerably.

To investigate the performance impact of data prefetching for the TriMedia architecture,
we have performed a simulation study using Mermaid. We studied most of the prefetch-
ing techniques identified in our classification, including our newly proposed prefetching
method. Unfortunately, we were able to study one benchmark program only. Evidently, this
reduces the value of the obtained results with respect to their absolute meaning (we cannot
extrapolate the results to the general case). For this reason, we used the benchmark mainly
to investigate the relative differences between the various prefetching techniques.

A number of observations can be made from the results of our experiments. First, the
results indicate that prefetching is an effective latency reduction technique for the workload
we have studied. We measured reductions of up to roughly 70% of the CPI fraction due to
cache penalties.

A second observation is that pure hardware prefetching obtains the largest improve-
ments for the applied workload. This is because hardware prefetching allows for prefetching
during the execution of the whole application. By contrast, hybrid and software prefetch-
ing only allow for prefetching during code segments which were explicitly instrumented to
do so. As a consequence, the code segments which would not have been instrumented for
prefetching in the case of software or hybrid prefetching (e.g. system calls) may still benefit
from hardware prefetching.

When focusing on the code segments in which prefetching is enabled for all evaluated
techniques, we found the hybrid prefetching technique to be the most effective one. Nev-
ertheless, the performance differences of the various prefetching techniques are minimal.
But, as hybrid prefetching is more transparent (and thus easier in its use) than pure software
prefetching and cheaper to implement compared to pure hardware prefetching, we clearly
prefer hybrid prefetching.

With respect to the different types of hybrid prefetching, we have shown that our pro-
posed method obtains a performance gain which is identical to that of the more traditional
hybrid prefetching techniques (using synchronisation on the program counter). However,
we believe that our method is easier to implement and more robust than the traditional tech-
niques.

For several experiments, we were able to validate our results against those from a cycle-
accurate TriMedia simulator. The validation results indicate that the differences in predicted
cycle-count are reasonably small (roughly 5%). Furthermore, all trends we measured are
identical for both simulators. Evidently, this increases our confidence in the obtained results.

128 Chapter 6. Data prefetching for the TriMedia

Equally important is the fact that we obtain these results in a fraction of the time needed by
the cycle-accurate simulator (our current Mermaid simulator, which is not yet optimised for
speed, is about an order of magnitude faster than the cycle-accurate TriMedia simulator),
allowing us to explore a wider design space than which is possible with the cycle-accurate
simulator. To conclude, the ease with which we constructed our simulation model and its
good simulation performance, together with the encouraging validation results, demonstrate
that Mermaid’s simulation framework is suitable for zooming in on the evaluation of uni-
processor platforms.

Chapter 7

Evaluation of LH*LH for a
multicomputer architecture

“I have traveled the length and breadth of this country and talked with the best
people, and I can assure you that data processing is a fad that won’t last out the
year”

The editor in charge of business books for Prentice Hall, 1957

Whereas the two previous case studies mainly focused on the performance evaluation at
the architecture level, this chapter presents a case study in which the emphasis is on the
performance evaluation at the application level. This should demonstrate that Mermaid is
capable of evaluation at both the architecture and application levels. The application we
study in this chapter is strongly related to distributed database systems. Clearly, this type of
application is different from the workloads we have used so far, which were mostly related
to scientific computing.

Modern database applications require fast access to large volumes of data. Sometimes
the amount of data is so large than it cannot be efficiently stored or processed by a uni-
processor system. Therefore, a distributed data structure can be used that distributes the
data over a number of processors within a parallel system (or a number of workstations in
a local area network, for that matter). This is an attractive possibility because the achieve-
ments in the field of communication networks for parallel and distributed systems have made
remote memory accesses faster than accesses to the local disk [52]. So, even when disre-
garding the additional processing power of parallel platforms, it has become more efficient
to use the main memory of other processors than to use the local disk.

There are many ways in which the data can be distributed over multiple processors. The
simplest variant is striping, which implies that the data is partitioned across the processors
in a round-robin fashion. Alternatively, data records can be distributed according to their
keys using a hash function or a range partitioning. The drawback of all these techniques is
that they are static and thus not scalable. They do not allow the data to easily expand over
more processors than there were initially allocated. Expansion of the data requires an ex-
plicit redistribution of all data and cannot be done in a scalable, incremental way. However,
scalable data structures are highly desirable in modern database systems. The database’s

130 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

storage requirements may easily grow beyond the processor’s physical memory limit, which
may result in a severe performance degradation due to the extra swapping, page misses etc.
A scalable data structure can be characterised as follows [66]:� The time to insert and retrieve data is independent of the number of stored data ele-

ments.� The data structure can handle any amount of data; there is no theoretical upper limit
after which performance degrades.� The data structure grows and shrinks incrementally rather than it has to reorganise
itself totally on a regular basis (e.g. rehashing of all distributed records).

For distributed memory parallel systems, a number of Scalable Distributed Data Structures
(SDDSs) have been proposed which provide the above features [85]. In these distributed
storage methods, the processors are divided into clients and servers. A client manipulates
the data by inserting data elements, searching for them or removing them. A server stores
a part of the data, called a bucket, and receives requests from clients that operate on the
bucket. Generally, there are three ground rules for the implementation of an SDDS in order
to realise a high degree of scalability [66]:� The SDDS should not be addressed using a central directory which forms a bottle-

neck.� Each client should have an image of how data is distributed which is as accurate as
possible. This image should be improved each time a client makes an “addressing
error”, i.e. contacts a server which does not contain the required data. The client’s
state (its current image) is only needed for efficiently locating the remote data; it is
not required for the correctness of the SDDS’s functionality.� If a client has made an addressing error (due to an outdated image), then the SDDS is
responsible for forwarding the client’s request to the correct server and for updating
the client’s image.

For an efficient SDDS, it is essential that the communication needed for data operations (re-
trieval, insertion, etc.) is minimised while the the amount of data residing at the server nodes
(i.e. the load factor) is well balanced. In [85], Litwin et al. propose an SDDS, called LH*,
which addresses the issue of low communication overhead and balanced server utilisation.
This SDDS is a generalisation of Linear Hashing (LH) [83, 84], which will be elaborated
upon in the next section. For LH*, insertions usually require one message (from client to
server) and three messages in the worst case. Data retrieval requires one extra message as
the requested data has to be returned.

In this case study, we evaluate the performance of a variant of the LH* SDDS, called
LH*LH. For this purpose, we use a simulation model which is based on the architecture of a
Parsytec CC multicomputer but which can be configured to simulate several different types
of network topologies. With this model, we investigate how scalable the LH*LH SDDS
actually is and which factors affect the scalability of this particular SDDS. Our interest in the
LH*LH SDDS originates from the fact that this data structure will eventually form the heart
of a parallel version of the Monet database system [15]. As part of the IMPACT project [57],
an initial version of this parallel database is developed for a Parsytec CC multicomputer.

7.1 Linear hashing 131

7.1 Linear hashing
Linear Hashing (LH) is a method to dynamically manage a table of data. More specifically,
it allows the table to grow or shrink in time without suffering from a penalty with respect
to the space utilisation or the access time. The LH table is formed by �Ì� � ; � N buckets,
where � is the number of starting buckets (� Í �

and Nh$ � ;). The meaning of e and N
is explained later on. The buckets in the table are addressed by means of a pair of hashing
functions _Ê; and _´; ² � , with e �Î¤ 8 � 8 �ÐÏÑÏ�Ï Each bucket can contain a predefined number of
data elements. The function _z; hashes data keys to one of the first � � � ; buckets in the
table. As we show later on, the function _�; ² � is used to hash data keys to the remaining
buckets. A popular way to hash the data keys is by using a modulo-based hash function:

_Ê;V0 key CÒ¥ ` �[Ó
mod 0#�Ì� � ; C (7.1)

The LH data structure grows by splitting a bucket into two buckets whenever there is a col-
lision in one of the buckets. With a collision, we mean that a certain load threshold is ex-
ceeded. To illustrate this bucket splitting, consider Figure 7.1. In this figure, we assume
that � equals to 2, that the hash functions are of the form as shown in Equation 7.1 and that
buckets have a load threshold of two elements. At the moment a collision occurs (the inser-
tion of 4 in Figure 7.1a), a bucket has to split. Which bucket has to be split is determined
by a special pointer, referred to as N (pointing to bucket 0 in Figure 7.1a). So, even in the
case we insert a number into bucket 1 (which is also causing a collision), bucket 0 is still
split. The actual splitting involves three steps: creating a new bucket, dividing the data el-
ements over the old and the newly created bucket and updating the pointer N . Dividing the
data elements over the two buckets is done by applying the function _4; ² � to each element
in the splitting bucket. The N pointer is updated by applying N � 02N � � C�P�Ô � � � � ; .
Figure 7.1b shows the situation after bucket 0 has split. Because of the splitting, indexing
the LH data structure is performed using both _�; and _´; ² � . Or, formally:

index ÕÖ>-X#× + (� _´;¡0 key C (7.2)
if (index ÕÖ>-X#× + ($�NØC then index ÕÖ>-XH× + (� _´; ² � 0 key C

As the buckets below the N pointer have been split, these buckets should be indexed using_´; ² � rather than with _Ê; . Figure 7.1c shows that inserting a key with number 5 again causes
a split to occur. This time, bucket 1 needs to be split. After this split, N wrapped around to
0. When this happens, e (which is often called the bucket-level) should be incremented.

Split Split

Insert 4

n 0
1

122
3 7

2
n

0
1
2

4 12

i = 0i = 0

(a) (b)

Insert 5

i = 1

(c)

3 7
2

0
1
2

4 12

3 3

5
n

7

Figure 7.1: The splitting concept in linear hashing.

132 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

So far, we assumed that a bucket splits whenever a collision occurs (i.e. a fixed load
threshold is exceeded). This is called uncontrolled splitting. However, one could also ini-
tiate a split whenever the load factor of an LH bucket has exceeded a dynamic threshold
value which is based on the global load factor including all buckets. It has been shown that
this method, which is called controlled splitting, results in a better utilisation of the buckets
within the LH data structure [85].

The process of shrinking is similar to the growing of the LH data structure. Instead of
splitting buckets, two buckets are merged whenever the load factor drops below a certain
threshold. In this case study, we limit our discussion to the splitting within SDDSs. Further-
more, we assume that the hash functions are always of the form as shown in Equation 7.1.

7.2 The LH*LH SDDS
The LH* SDDS is a generalisation of linear hashing (LH) to a distributed memory paral-
lel system [85]. In this case study, we focus on one particular implementation variant of
LH*, called LH*LH [66, 67]. The LH*LH data is stored over a number of server processes
and can be accessed through dedicated client processes. These clients, which are not part
of the actual LH*LH SDDS, form the interface between the application and LH*LH. We
assume that each server stores one LH*LH bucket of data, which implies that a split always
requires the addition of an extra server processes. This scheme could, of course, be opti-
mised by placing multiple LH*LH buckets at a single server. Globally, the servers apply
the LH* scheme to manage their data, while the servers use traditional LH for their local
bucket management. Thus, a server’s LH*LH bucket is implemented as a collection of LH
buckets. Hence, the name LH*LH. In Figure 7.2, the concept of LH*LH is illustrated.

As was explained in the previous section, addressing a bucket in LH is done using a

Server 0 Server S

Network

Client 0

Requests

Client C

Local LH Local LH

Requests

Global LH*

Figure 7.2: The LH*LH SDDS.

7.2 The LH*LH SDDS 133

key and the two variables e and N (see Equation 7.2). In LH*LH, the clients address the
servers in the same manner. To do so, each client has its own image of the values e andN : e#Ù and NFÙ respectively. Because the images e\Ù and N4Ù may not be up to date, clients can
address the wrong server. Therefore, the servers need to verify whether or not incoming
client requests are correctly addressed, i.e. can be handled by the receiving server. If an
incoming client request is incorrectly addressed, then the server forwards the request to the
server that is believed to be correct. For this purpose, the server uses a forwarding algorithm
[85] for which it is proven that a request is forwarded at most twice before the correct server
is found. Each time a request is forwarded, the forwarding server sends a so-called Image
Adjustment Message (IAM) to the requesting client. This IAM contains the server’s local
notion of e and N and is used to adjust the client’s eVÙ and NFÙ in order to get them closer to the
global e and N values. As a consequence, future requests will have a higher probability of
being addressed correctly.

The splitting of an LH*LH bucket is similar to the splitting of LH buckets. The pointer N
is implemented by a special token which is passed from server to server in the same manner
as N is updated in LH: it is forwarded in a ring of the servers 0 to �¹� � ; , where � is the
number of starting servers. When a server holds the N token and its load factor is larger
than a particular threshold, the server splits its LH*LH bucket and forwards the N token.
Splitting the LH*LH bucket is done by initialising a new server (by sending it a special
message) and shipping half of its LH buckets to the new server (remember that the LH*LH

bucket is implemented as a collection of LH buckets). The use of LH local at the servers
in combination with global LH* allows for efficient splitting of the data. By sharing the
hashed keys between the local LH and the global LH* schemes, it is not required to visit or
rehash all data elements when splitting the server’s data. Instead, the LH buckets that have
an odd index are shipped to the new server while the even buckets are compacted and stay at
the splitting server. This is illustrated in Figure 7.3. A comprehensive explanation of how
the sharing of keys between LH and LH* works, can be found in [67].

It has been shown in [85] that a splitting threshold which can be dynamically adjusted

LH
 b

uc
ke

ts

Before splitting

Buckets that stay

Buckets shipped to new server

A

B
C

D

E
F

E
D

B

F

C

A

Figure 7.3: Splitting the local LH buckets of an LH*LH bucket.

134 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

performs better than a static one. Therefore, LH*LH applies a dynamic threshold which is
based on an estimation of the global load factor and which is calculated by the following
formula [67]:

1 � � �OÚÛ� � ; � N� ;
where � is a sensitivity parameter and Ú is the capacity of an LH*LH bucket in number
of data elements. Typically, � is set to a value between 0.7 and 0.9. If the number of data
elements residing at the server with the N token is larger than the threshold 1 , then the server
splits its data. We note that in this scheme the decision to split is made autonomously, which
means that an underloaded token-holder can keep other overloaded servers from splitting.

In LH*LH, splits are performed in a concurrent manner which allows the server to con-
tinue with handling client requests. If the server notices that a requested piece of data has
been or is being shipped, then it forwards the request to the new server. In the case the re-
quested data is being shipped, the server takes care of the correct serialisation: first the ship-
ment has to be finished before the request can be forwarded. A more detailed description of
the LH*LH data structure can be found in [66, 67].

In the next section, we describe how we used Mermaid as a vehicle to study the scala-
bility behaviour of LH*LH for a multicomputer architecture. Thereafter, we present several
experiments in which we investigate the factors that affect LH*LH’s scalability and study
its interaction with the multicomputer’s architecture.

7.3 The simulation model

The parallel architecture we focus on in this study is based on that of a Parsytec CC mul-
ticomputer. The platform’s configuration we have used for our experiments consists of 16
PowerPC 604 processors connected in a network with an application-level throughput of
27 MByte/s for point-to-point communication. The network topology of this particular ma-
chine, which has been derived from the Clos topology (see Chapter 5), is shown in Fig-
ure 7.4. In this evaluation study, we focus on the communication load that is generated by
the LH*LH SDDS. So, to model this multicomputer architecture, we have taken the com-
munication model from Chapter 5 (see Figure 5.6) and configured it to support the topology
of the Parsytec CC. For performance reasons, we decided to embed the server and client

0 113 4 7 8 12 15

Figure 7.4: The network topology of the modelled Parsytec CC. The white boxes refer to
routers and the black circles to processors.

7.3 The simulation model 135

Architecture level
Mermaid communication model

of Parsytec CC architecture

0
Clients

C 0 S
Servers

Application level

LH*lh commands
Messages with

Application requests

Model of LH*lh server and client processes

Figure 7.5: The simulation model for studying the LH*LH SDDS.

processes, which are part of the application model, into the architectural communication
model. In the resulting monolithic model, we do not need an explicit interface between
the application and architecture levels (like the interfaces that have been discussed in Sec-
tion 3.1.5) which slows down the simulation. To embed the clients and servers into the ar-
chitectural communication model from Chapter 5, we substituted the processor component
of this model with a component that models either an LH*LH server or client process. This
implies that a modelled node can contain one server or client process only. Another conse-
quence is that the clients are always placed on the multicomputer’s nodes. So, we are not
able to evaluate alternative schemes in which the clients are placed on, for example, a fast
front-end machine of the multicomputer.

Although there are some limitations regarding the placement of server and client pro-
cesses, the ease with which we constructed the simulation model again illustrates the flexi-
bility that is achieved with Mermaid. By simply exchanging a single model component (i.e.
the processor), which can be done with a relatively small amount of effort, we are able to
study LH*LH’s performance behaviour.

In Figure 7.5, the infrastructure of our simulation model is shown. For the sake of conve-
nience, the figure separates the application and architecture levels. But, like we said before,
in reality these levels are integrated into one (communication) model. As illustrated in Fig-
ure 7.5, a particular application can access the distributed data via the client processes. In
this study, we investigate an application which builds the distributed data structure by using
a Dutch dictionary as the data keys. The dictionary contains roughly 180,000 words.

The client processes provide the architecture level of the simulation model with com-
munication requests. These requests are messages from the client to a server containing
commands that operate on the LH*LH SDDS (e.g. insert, lookup, etc.). The server pro-
cesses also issue communication requests, like when a client request has to be forwarded to
another server. In Table 7.1, a complete overview of all possible communication requests
is given.

The insert, lookup and remove requests are more or less self-explanatory. For the in-
sertion request, the Datasize parameter refers to the size of the data element that is inserted.

136 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

Type of request Parameters From To
Insert Key, Datasize Client Server
Insert (forward) Key, Datasize Server Server
Lookup Key Client Server
Lookup (forward) Key Server Server
Remove Key Client Server
Remove (forward) Key Server Server
Token forward — Server Server
Shipment Keys, Datasize Server Server
Start new server e Server Server
Image Adjustment Message (IAM) e , N Server Client
Acknowledgement Null or Datasize Server Client

Table 7.1: Types of communication requests in the LH*LH model.

The token is forwarded with a special token forward request. This request does not contain a
parameter. The shipment request indicates the shipment of one LH bucket from the splitting
server to a newly created server. Its parameters specify the keys of the data elements that are
being shipped and the total size of the shipped data. In our model, the data of one LH bucket
is shipped using a single bulk message. Before a server can split its data, a new server has
to be created by sending it a special “activation” request. This request contains the bucket-
level e as parameter. To adjust the clients’ image of e Ù and N Ù , there is an IAM request which
is sent from server to client. Finally, all client requests are acknowledged in our model of
LH*LH. For insertions and removals, the acknowledgement is just an empty message and
for lookups the acknowledgement contains the size of the returned data element.

The architecture level of the communication model models a wormhole-routed network
that simulates the communication requests at the flit-level, like was explained in Chapter 5.
The model can be configured to simulate the Parsytec CC’s topology (as shown in Fig-
ure 7.4), the generic Mesh of Clos topology or a mesh topology. For routing, the model
uses the same scheme as in Section 5.2.1 (deterministic XY-routing for mesh networks and
a deterministic scheme based on the source node’s identity for multistage networks). Fur-
thermore, messages larger than 4K are modelled to be split up in separate packets of 4K
each.

7.3.1 Validation

To validate the architecture level of our simulation model, we have performed several val-
idation experiments using the message-roundtrip benchmark and the stress-testing bench-
marks from Section 4.1. The benchmarks were both executed on the real Parsytec CC and
simulated by our model after which the real and predicted execution times were compared.
For all experiments, we measured an average error that does not exceed 3.5%. The worst-
case error that was measured equals to 9.8%. Unfortunately, several of the simulations ob-
tain an average error with a reasonably large standard deviation. This is especially true for

7.4 Experiments 137

the message-roundtrip benchmark results. For this particular experiment, we measured an
average error of 3.4% and a standard deviation of 4.1. The high variance is probably caused
by the AIX kernel that runs on the nodes of the real machine. Measurements on the real ma-
chine, for example, show an irregular performance behaviour for simple message transfers.
So far, we have not been able to capture this irregular behaviour in our abstract communi-
cation model.

7.4 Experiments
We performed a range of experiments with an application which builds the LH*LH SDDS
using a Dutch dictionary. By default, our architecture model only accounts for the delays
that are associated with communication. Computation performed by the clients and servers
is not modelled. In other words, the clients and servers are infinitely fast. This should give
us an upper bound of the performance of LH*LH when using the modelled network tech-
nology. We believe that the assumption of constant server latencies (which are in our case,
by default, zero) still gives realistic results. This is because linear hashing is used for local
storage at the servers, for which insertions are ÜÝ0 � C on the average. Furthermore, the data
elements that are being inserted consist of a key only (they do not have “a data body”) un-
less stated otherwise. Throughout this section, we use the term blobsize when referring to
the size of the body of data elements (so, by default, the blobsize is 0).

The first experiments concern LH*LH’s performance on the 16-node Parsytec CC plat-
form. Thus, we configured our model to simulate the network topology as shown in Fig-
ure 7.4. In the model, the client processes are allocated from nodes 0 up to À a �

, where À is
the number of clients. The servers are placed (when they are created at a split) at the nodes
starting from node À . Throughout the remainder of this chapter, we assume that the number
of starting servers is one, i.e. � � �

. We have also experimented with other mappings of
the client and server processes, but we found that the performance differences of the various
mappings are negligible.

Because the number of available nodes in the modelled platform is rather limited (16
nodes, to be exact), we needed to calibrate the split-threshold such that the LH*LH SDDS
does not grow larger than the available number of nodes. Another result of the limited num-
ber of nodes is that the model only simulates up to 5 clients in order to reserve enough nodes
for the server part of LH*LH. To overcome these problems, we have also simulated a larger
multicomputer platform, of which the results are discussed later in this chapter.

Figure 7.6a shows the prediction of the time it takes to build the LH*LH SDDS when
using À clients, where À � � 8 � 8 ÏÑÏÑÏ 8,Þ . In the case multiple clients are used, they concurrently
insert a different part of the dictionary. The data points in Figure 7.6a correspond to the
points in time where LH*LH splits take place. The results show that the build-time scales
linearly with the number of insertions. Thus, the insertion latency is independent on the
size of the data structure (it is dominated entirely by the message round trip time). As noted
earlier, this characteristic is required for a data structure to be scalable. So, in this respect,
Figure 7.6a clearly indicates that LH*LH is scalable.

The results of Figure 7.6a also show that the build-time decreases when more clients
are used. This is due to the increased parallelism as each client concurrently operates on
the LH*LH SDDS. In Figure 7.6b, the relative effect (i.e. the speedup) of the number of

138 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

0

20

40

60

80

100

120

20 60 100 140 180

Ti
m

e
(s

ec
.)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0

1

2

3

4

5

0 1 2 3 4 5

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Perfect scalability
Actual performance

(a) (b)

Figure 7.6: Building the LH*LH SDDS: absolute performance (a) and scalability (b). In
graph (a), the data points correspond to the moments in time where splits take place.

clients is shown. When increasing the number of clients, the obtained speedup scales quite
well for the range of clients used.

Another observation that can be made is that the occurrence of splits (the points in Fig-
ure 7.6a) is not uniformly distributed with respect to the insertions. Most of the splits are
clustered in the first 20,000 insertions and near the 180,000 insertions. This phenomenon
is referred to as cascading splits [85]. It is caused by the fact that when the load factor on
server N (the token-holder) is high enough to trigger a split, the servers that follow serverN are often also ready to split. This means that after server N has split and forwarded the N
token to the next server, the new token-holder immediately splits as well. As a result, a cas-
cade of splitting servers is formed which terminates whenever a server is encountered with
a load factor that is lower than the threshold. Essentially, cascading splits are undesirable as
they harm the incremental fashion with which the distributed data structure is reorganised.
In the worst case, the cascade includes all servers which is equal to a total reorganisation of
the data structure. Litwin et al. [85] have proposed several adjustments to the split threshold
function in order to achieve a more uniform distribution of the splits. Experimental results
have shown that these adjustments are quite effective.

Figure 7.7a plots the curves of the average time needed for a single insertion, as expe-
rienced by the application. Because the data points for the first 20,000 insertions are rela-
tively hard to distinguish, Figure 7.7b zooms in on this particular range. Figure 7.7a shows
that the worst average insertion time (for 1 client) does not exceed 0.65ms. This is about
one order of magnitude faster than the typical time to access a disk. However, we should
remind the reader that these insertion latencies reflect a lower bound (for the investigated
multicomputer architecture) since no computation is modelled at the clients and servers.

As can already be expected from Figure 7.6a, Figure 7.7 shows that the average insertion
time decreases when increasing the number of clients. Additionally, the average insertion
time also decreases when increasing the number of insertions. This is especially true during
the first few thousand of insertions and for the experiments using 3 or more clients. The rea-

7.4 Experiments 139

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 60 100 140 180

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 8 12 16 20

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

(a) (b)

Figure 7.7: Average time per insertion in milliseconds.

son for this is that a larger number of clients requires the creation of enough servers before
the clients are able to effectively exploit parallelism, i.e. allowing the clients to concurrently
access the LH*LH SDDS with low server contention. As can be seen in Figure 7.7b, after
about 8,000 thousand insertions, enough servers have been created to support 5 clients.

In Table 7.2, the message statistics are shown for building the LH*LH SDDS. For about
180,000 insertions, the maximum number of IAMs (Image Adjustment Messages) that were
sent is 55 (for 5 clients). This is only 0.003% with respect to the total number of insertions.
Moreover, the average number of messages per insertion is near the optimum of 2 (needed
for the request itself and the acknowledgement). The last column of Table 7.2 shows the
average message overhead (due to IAMs and the forwarding of messages) for a single in-
sertion. These results confirm the statement from Litwin et al. [85] in which they claimed
that it usually takes one message only to address the correct server.

The previously discussed results correspond with the results presented in a study by
Karlsson [66, 67]. In this study, an actual implementation of LH*LH was evaluated for a
different Parsytec multicomputer, namely the Parsytec GC/PowerPlus. This multicomputer
is a predecessor of the Parsytec CC and is based on a mesh topology rather than a multi-
stage topology. The resemblance between our simulation results and the LH*LH results for

Clients # IAMs Msg./insertion Average overhead
1 14 2.0008 0.04%
2 24 2.0011 0.06%
3 43 2.0012 0.06%
4 48 2.0014 0.07%
5 55 2.0014 0.07%

Table 7.2: Number of messages required to build the LH*LH SDDS.

140 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

0

20

40

60

80

100

120

20 60 100 140 180

Ti
m

e
(s

ec
.)

Number of insertions (x 1000)

1 client
2 clients
3 clients
4 clients
5 clients

0.1

0.2

0.4

0.8

1.6

64 128 256 512 1K 2K 4K 8K

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Blobsize (bytes)

1 client
2 clients
3 clients
4 clients
5 clients

(a) (b)

Figure 7.8: Effect of the blobsize on the performance: the build-time when using a blobsize
of 2K (a) and the effect of the blobsize on the average time per insertion (b).

an actual machine can be regarded as a kind of validation; it increases the confidence in our
simulation model.

In Figure 7.8, the results are shown when experimenting with the blobsize of data ele-
ments. Figure 7.8a plots the curves for the build-time when using a blobsize of 2K (note
that the blobsize excludes the key). So, in this experiment the creation of a data structure of
nearly 350 Mbytes is simulated. The results show that the build-times are still linear to the
number of insertions and that the performance scales properly when adding more clients.
In fact, the build-times are not much higher than the ones obtained in the experiment with
empty data elements (see Figure 7.6a). The reason for this is twofold. First, since compu-
tational latencies like memory references are not simulated, our simulation model is espe-
cially optimistic for data elements with a large blobsize. Second, the communication over-
head caused by the AIX kernel is rather high (at least 325 . s per message) and dominates the
communication latency. This reduces the effect of the message size on the communication
performance.

Figure 7.8b depicts the average time per insertion when varying the blobsize from 64
bytes to 8K (the latter is building a data structure of 1.4 Gbytes). Note that both axes have a
logarithmic scale. Two observations can be made from this figure. First, the average inser-
tion time suddenly increases after a blobsize of 128 bytes. This effect is, however, dimin-
ished when using more clients. The reason for this is a peculiarity in the implementation
of synchronous communication for the Parsytec CC machine. Messages smaller than 248
bytes can piggy-back on a fast initialisation packet, which sets up the synchronous commu-
nication between the source and destination nodes. Beyond these 248 bytes, normal data
packets have to be created and transmitted, which slow down the communication (e.g. the
software overhead is higher). By increasing the number of clients, and thus increasing the
potential parallelism, the larger communication overhead of big messages (ß 248 bytes) can
be hidden.

A second observation that can be made from Figure 7.8b is that the curves are relatively
flat for blobsizes below the 1K. Again, this can be explained by the fact that the large OS

7.4 Experiments 141

0

2

4

6

8

10

12

14

0 1K 2K 4K 8K
T

im
e

(u
se

c.
)

Blobsize (bytes)

1 client
3 clients
5 clients

Figure 7.9: The average time that packets blocked within the network.

overhead dominates the insertion performance for small blobsizes. For insertions with large
blobsizes (ß 1K), the network throughput and possibly the network contention become the
most dominant performance factor. To investigate whether or not the network contention
plays an important role in the insertion performance, Figure 7.9 shows the average time that
packets were stalled within the network. We should note that the variation of these averages
is rather large, which implies that they should be interpreted with care. Nevertheless, the
graph gives a good indication of the intensity of the network contention. From Figure 7.9
can be seen that the contention increases more or less linearly when increasing the blobsize
in the case of 1 client. However, when using more clients, the contention starts to scale ex-
ponentially. The highest average block time equals to 31 . s (8K blobsize with 5 clients),
which is only 1/10 (ÑT of the 325 . s software communication overhead for a single message.
So, in our experiments, the contention is not high enough to dominate the insertion perfor-
mance. This suggests that the insertion performance for large blobsizes (see Figure 7.8b)
is mainly dominated by the network throughput (and not by contention). We return to the
topic of contention later in this section, when LH*LH’s behaviour is studied for a larger
multicomputer platform.

So far, we have assumed that the server (and client) processes are infinitely fast (com-
putation is not modelled). To investigate the effect of server overhead on the overall perfor-
mance, we modelled a delay for every incoming insertion on a server (the clients continue
to be infinitely fast). During the delay, which takes place after acknowledging the client’s
request, the server is inactive. Since the server overhead can overlap with the transmission
of new client requests, this scheme exploits parallelism for all client configurations (even
when 1 client is used). We varied the server overhead from 0 (no overhead) to 50ms per in-
sertion. The use of constant overheads is, of course, reasonably simplistic as the overheads
may in reality be dependent on issues such as the blobsize, the load factor of the server, etc.

Figure 7.10 depicts the results of the server overhead experiment. In Figure 7.10a, the
effect on the average insertion time is shown. Note that both axes have a logarithmic scale.
Figure 7.10a shows that the insertion latency starts to be seriously affected by the server
overhead after a delay of approximately 0.1ms. Beyond a server overhead of 1ms, the in-
sertion latency increases linearly with the server overhead which indicates that the inser-
tion latency is entirely dominated by the server overhead. After this point, the differences

142 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

0.1

0.25

0.5

1

2

4

8

16

32

0 10us 0.1ms 1ms 10ms 100ms

A
vg

. i
ns

er
t t

im
e

(m
se

c.
)

Server overhead per insert

1 client
2 clients
3 clients
4 clients
5 clients

0

1

2

3

4

5

0 1 2 3 4 5

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Perfect
No overhead

10us overhead
0.1ms overhead

1ms overhead
10ms overhead

(a) (b)

Figure 7.10: Effect of the server overhead on the performance: the average time per inser-
tion (a) and the scalability (b).

between the various client configurations have more or less been disappeared as well, i.e.
the curves converge. This implies that the large server overheads reduce the potential paral-
lelism. An important reason for this is that when the server overhead approaches or exceeds
the minimum time between two consecutive insertion requests from a single client (which
is in our case simply the 325 . s communication latency as the clients do not perform any
computation), the rate at which a server can process insertion requests becomes lower than
the rate at which a single client can produce requests. Evidently, this means that a server
can easily become a bottleneck when adding clients.

The reduction of parallelism caused by large server overheads is best illustrated in Fig-
ure 7.10b. This figure shows the speedup for multiple clients when varying the server over-
head. It is obvious that while the scalability is good for server overheads of 0.1ms and less,
the scalability for larger overheads has collapsed completely.

Until now, the experiments have been performed using the simulation model of a 16-
node Parsytec CC architecture. This has limited our simulations to allocating a maximum
of 5 clients and 11 servers. To investigate how LH*LH behaves for a larger number of clients
and servers, we have also experimented with larger networks. More specifically, we have
modelled two 64-node networks: a Mesh of Clos(3,1) (see Figure 5.4) and an 8 � 8 mesh.
We found, however, that the results are almost identical for these two 64-node networks (the
differences are less than 2%). This is readily explained by the fact that our LH*LH workload
does not generate the network contention which is necessary to notice performance differ-
ences between the two networks. Therefore, we will only present the results for the Mesh
of Clos(3,1) network.

In the Mesh of Clos model, we have used a different allocation scheme for the client pro-
cesses as compared to one from the Parsytec CC model. This is because the latter scheme
(allocating nodes 0 to À a �

for À client processes) would centralise the clients at one or
two clusters within the Mesh of Clos(3,1) network. As a consequence, most communica-
tion needs to cross the mesh part of Mesh of Clos, which is more prone to contention (see
Chapter 5). Therefore, we have distributed the clients evenly over the four Clos clusters of

7.4 Experiments 143

0

20

40

60

80

100

120

20 60 100 140 180

Ti
m

e
(s

ec
.)

Number of insertions (x 1000)

Blobsize = 0

1 client
2 clients
4 clients
8 clients

16 clients
32 clients

0

20

40

60

80

100

120

140

160

20 60 100 140 180

Ti
m

e
(s

ec
.)

Number of insertions (x 1000)

Blobsize = 2K

1 client
2 clients
4 clients
8 clients

16 clients
32 clients

(a) (b)

Figure 7.11: Build-times for the MoC(3,1) network using blobsizes of 0 (a) and 2K (b).

the Mesh of Clos. Unfortunately, the performance improvements due to the new allocation
scheme are quite insignificant (a few percents only). We suspect that this is again due to the
relative low network contention. Because the performance improvements are marginal, we
do not show them in this case study.

Figure 7.11 shows the build-times for the Mesh of Clos(3,1) when using blobsizes of 0
(Figure 7.11a) and 2K (Figure 7.11b). Again, the data points refer to the moments in time
where a split occurs. We adapted LH*LH’s split-threshold such that the distributed data
structure grows to nearly 32 servers. As a result, we were able to simulate up to 32 clients.
The curves in Figure 7.11 show the same behaviour as was observed in the experiments with
the Parsytec CC model: the build-time is linear to the number of insertions and decreases
with an increasing number of clients. The occurrence of cascading splits is also illustrated
by the clusters of points in Figure 7.11.

In Figure 7.12, the scalability for several blobsizes is plotted by the curves which are
labelled with normal. Additionally, the curves labelled with “1/3” and “1/9” show the scal-
ability when the OS communication overhead is reduced by a factor 3 and 9 respectively.
Remember that the original overhead (the normal curve) equals to roughly 325 . s per mes-
sage.

A number of observations can be made from Figure 7.12. First, the normal curves indi-
cate that the configurations with blobsizes up to 2K scale to roughly 8 clients, whereas the
configuration with a blobsize of 8K only scales up to about 4 clients. The deterioration of
scalability for large blobsizes is due to the increased network contention. Remember Fig-
ure 7.9, in which it was shown that the contention already grows exponentially with the
blobsize when using five clients.

Another, quite interesting, result is that the scalability for the large blobsizes is reduced
even more when decreasing the software communication overhead. This effect is caused
by an increase of network contention: the smaller the overhead, the higher the frequency at
which the clients inject insertion messages into the network. Clearly, the higher frequency
of insertions with large blobsizes results in more network traffic and thus more contention.

144 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Blobsize = 0

Perfect
Normal

1/3 overhead
1/9 overhead

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Blobsize = 512

Perfect
Normal

1/3 overhead
1/9 overhead

(a) (b)

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Blobsize = 2K

Perfect
Normal

1/3 overhead
1/9 overhead

1

2

4

8

16

32

1 2 4 8 16 32

R
el

at
iv

e
pe

rfo
rm

an
ce

Number of clients

Blobsize = 8K

Perfect
Normal

1/3 overhead
1/9 overhead

(c) (d)

Figure 7.12: The scalability for blobsizes of 0 bytes (a), 512 bytes (b), 2K (c) and 8K (d).
The curve labelled with normal refers to the results of the original model. The other two
curves (1/3 and 1/9) present the results for a modified model in which the software commu-
nication overhead is reduced by a factor of 3 and 9 respectively.

So, one can conclude that a part of the measured scalability for large blobsizes is due to
the high communication overhead of the modelled platform. Apparently, the increase of
network traffic in the case of a blobsize of 512 bytes is not severe enough to cause a lot of
extra contention.

7.5 Discussion
In this case study, we have shown how Mermaid can be used for evaluating the performance
at the application level. For this purpose, we evaluated the LH*LH distributed data struc-
ture for a multicomputer architecture. This data structure, which is based on linear hashing,

7.5 Discussion 145

should provide fast access to a vast amount of (distributed) data. To do so, the data structure
is designed to be scalable, which can be characterised by three requirements: (i) operations
on the distributed data are not dependent on the amount of data stored, (ii) the data structure
can handle any amount of data and (iii) the data structure grows and shrinks incrementally
over the distributed resources, i.e. the servers.

We studied LH*LH’s scalability behaviour with a benchmark that builds the distributed
data structure using a dictionary for the insertion keys. In this evaluation, we were mainly
interested in the communication load that is generated by LH*LH. Therefore, we have used
an adapted version of the communication model from Chapter 5 to perform the architectural
simulation.

Our simulation results confirm that LH*LH is indeed scalable (according to the previ-
ously mentioned requirements). We found that the time to insert a data element is indepen-
dent on the size of the data structure. For the studied multicomputer, the insertion time as
experienced by a single client can be an order of magnitude faster than a typical disk access.
The insertion time can even be reduced by using multiple clients which concurrently insert
data into the distributed data structure. The results indicate that the speedup of insertions
scales reasonably well up to about 8 clients for the investigated network architecture.

We have also shown that the scalability of insertion performance can be affected in more
than one way. For instance, the larger the data elements that are inserted, the poorer is the
scalability when increasing the number of clients. We found, for example, that the perfor-
mance of insertions with data elements of 512 bytes scales up to 8 clients, whereas the per-
formance of insertions with 8K data elements only scales up to 4 clients. Moreover, a large
server overhead (we experimented with constant computational overheads) can seriously
hamper the client-scalability of the LH*LH data structure. Our results indicate that it is
important to keep the server overhead below the minimum time between two consecutive
requests from a single client. This increases the potential for exploiting parallelism as it en-
sures that the rate at which a server can process requests is higher than the rate at which a
single client can produce requests. Finally, we found that a part of the speedup for multiple
clients is due to the hiding of software communication overhead (which is quite large for the
studied architecture). When the communication is optimised (i.e. the overhead is reduced),
lower speedups are achieved.

For several experiments, we were able to compare our simulation results with the results
from a real LH*LH implementation. Although the measurements for the real implementa-
tion were obtained using a multicomputer which is different from the one we have modelled,
the comparison between our simulation results and the actual execution results can still give
us some insight into the validity of our simulation model. We found that the simulation re-
sults correspond closely to the behaviour measured for the real implementation.

Throughout this study, we focused on the evaluation of the application level, being the
LH*LH data structure. In the future, we might extend these experiments to include more as-
pects of LH*LH’s functionality (e.g. the way in which buckets are shipped, different types
of split-threshold functions, etc.). Alternatively, we could also focus on the architecture
level. At this level, aspects such as the influence of the routing scheme or the type of parallel
platform (e.g. using a cluster of workstations rather than a multicomputer) can be investi-
gated for the LH*LH workload.

146 Chapter 7. Evaluation of LH*LH for a multicomputer architecture

Chapter 8

Conclusions

“Our achievements speak for themselves. What we have to keep track of are our
failures, discouragements, and doubts. We tend to forget the past difficulties,
the many false starts, and the painful groping.”

Eric Hoffer

Performance evaluation by means of simulation plays an important role in the design cycle
of computer architectures. It allows for accurately exploring the design space, which is es-
sential for optimising the computer architecture’s speed. In the second chapter of this thesis,
we have presented an overview of the simulation techniques that are commonly used when
evaluating the performance of computer architectures. We ended the overview by focusing
on the simulation methods that are suitable for the study of parallel computers. Here, we
concluded that most of the existing simulators apply techniques that trade simulation speed
for flexibility. For example, several of these simulation methods assume that the instruction
sets of the host computer (on which the simulation is executed) and the destination architec-
ture (which is simulated) are identical. Such architectural dependencies are, in our opinion,
undesirable. They affect the ease with which the simulation models are constructed or, even
worse, hamper the modelling freedom. The need for modelling flexibility is well illustrated
by the diversity of the three case studies presented in the last chapters of this thesis.

In this thesis, we have addressed the tradeoff between simulation performance and flex-
ibility by introducing a new simulation methodology, called operation-driven simulation.
This methodology is a combination of traditional trace-driven simulation and execution-
driven simulation. The trace events, which are called operations, can be chosen such that
their abstraction level fits the architecture specifics in which we are interested. For exam-
ple, the operations can be (abstract) machine instructions in order to study the performance
behaviour with relative high accuracy or they can specify computation and communication
at a much higher level (e.g. at task level) to establish a fast but less accurate type of simula-
tion which might be useful for the purpose of fast-prototyping. So, in other words, we use
abstraction as an instrument to control the speed and, as a consequence, the accuracy of the
simulation.

Operation-driven simulation allows for a high degree of modelling flexibility. The rea-
son for this is twofold. First, the operations can be chosen such that they are not depen-

148 Chapter 8. Conclusions

dent on the host’s nor the destination’s architecture. This implies that, for example, differ-
ent processor types (with non-identical instruction sets) can be simulated without changing
the simulator. Second, the operation-based interface of the simulator allows for decoupling
the modelling of application behaviour (i.e. the generation of operations) and architectural
behaviour. More specifically, the generation of the operation events can now be performed
at various levels of abstraction and with different degrees of accuracy. For instance, the
behaviour of a real program can be traced to obtain a realistic reflection of application be-
haviour or some stochastic process can generate the operations. The latter technique is flex-
ible (application behaviour is easily changed) but not highly accurate.

In Chapter 3, the Mermaid simulation environment was presented in which we have em-
bedded the operation-driven simulation methodology. This environment provides a work-
bench for the performance evaluation of parallel computer architectures and, in particular,
multicomputer architectures. Chapter 4 has shown that Mermaid’s flexibility, obtained by
the operation-driven simulation engine, does not compromise the efficiency and accuracy
of the simulation. Validation experiments have demonstrated that, despite the high abstrac-
tion level of our simulation models, accurate performance predictions are achieved. Also,
we have shown that Mermaid’s simulation performance is competitive with other, state-of-
the-art parallel architecture simulators. To boost the simulation performance even more, we
have added functionality to Mermaid which allows for distributed execution of the simula-
tion on a cluster of workstations. The resulting distributed simulator outperforms nearly all
other parallel architecture simulators.

Chapters 5 to 7 present three case studies in which Mermaid has been applied. In the
first study, a wormhole-routed network with a Mesh of Clos topology is evaluated using a
set of synthetic communication workloads. The second study zooms in on the performance
behaviour of a single processor only. In this study, we evaluated several prefetching tech-
niques for the data cache of a VLIW processor. Finally, the third case study investigates the
performance behaviour of a scalable, distributed data structure for a multicomputer archi-
tecture.

The diversity of the case studies together with the fact that we were able to readily use
Mermaid for all three of them clearly illustrates the flexibility of our simulation methodol-
ogy. It also shows that Mermaid is capable of evaluating the performance at both the archi-
tecture level (Chapters 5 and 6) and the application level (Chapter 7).

For two case studies, we were able to compare some of our simulation results with the re-
sults from either a real machine or a highly detailed simulator. These validation experiments
confirm what was already found in Chapter 4, namely that a reasonably abstract model can
obtain good simulation accuracy.

8.1 Future work
This thesis has described research that is ongoing. There is still room for improvement, es-
pecially at the application level of our simulation environment. For example, we would like
to investigate techniques to generate and validate realistic, stochastic multicomputer traces.
In particular, the validation of stochastic traces is non-trivial. For instance, the locality of
reference is hard to quantify as there is still no clear metric for locality.

Furthermore, we should make our reality-based workload modelling more robust. Cur-

8.1 Future work 149

rently, Mermaid only allows for instrumenting and tracing C programs. The capability of
handling alternative languages, such as Fortran or Java, would take Mermaid to an even
higher level of flexibility.

150 Chapter 8. Conclusions

Bibliography

[1] A. Agarwal, M. Horowitz, and J. L. Hennessy. An analytic cache model. ACM Trans-
actions on Computer Systems, 7(2):184–215, May 1989.

[2] A. Agarwal, R. L. Sites, and M. Horowitz. ATUM: A new technique for capturing
address traces using microcode. In Proc. of the 13th Int. Symposium on Computer
Architecture, pages 119–127, 1986.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Ad-
dison Wesley, Reading, Massachusetts, 1986.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The Tera computer system. In Proceedings of the 1990 ACM Int. Conference on Su-
percomputing, pages 1–6, 1990.

[5] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Spring Joint Computer Conf., number 30 in AFIPS conf.
proc., pages 483–485. Thompson Books, Academic Press, April 1967.

[6] P. America and J. Rutten. A parallel object-orientated language: design and seman-
tic foundations. PhD thesis, Free University, Amsterdam, May 1989.

[7] D. Badouel, C. A. Wüthrich, and E. L. Fiume. Routing strategies and message con-
tention on low-dimensional interconnection networks. Technical report, Comp. Sys-
tem Research Institute, University of Toronto, Dec 1991.

[8] R. C. Bedichek. The Meerkat Multicomputer: Trade-offs in Multicomputer Design.
PhD thesis, Dept. of Computer Science, University of Washington, Aug. 1994.

[9] R. C. Bedichek. Talisman: Fast and accurate multicomputer simulation. In Proceed-
ings of the 1995 ACM SIGMETRICS Conference, pages 14–24, May 1995.

[10] M. Beemster. Fine-grained parallelism in a lazy functional language. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, March 1996.

[11] A. D. Birrell. An introduction to programming with threads. Technical Report 35,
Digital Systems Research Center, Jan. 1989.

[12] G. M. Birtwistle, O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula begin, 1973.

152 Bibliography

[13] B. Black and J. P. Shen. Rigorous validation of superscalar performance models.
In Proc. of the Workshop on Performance Analysis and its Impact on Design (in con-
junction with the 24th Int. Symposium on Computer Architecture), pages 64–70, June
1997.

[14] M. T. Bohr. Interconnect scaling – the real limiter to high performance ULSI. In Int.
Electron Devices Meeting Technical Digest, pages 241–244, 1995.

[15] P. A. Boncz and M. L. Kersten. Monet: An impressionist sketch of an advanced
database system. In Proc. of IEEE BIWIT workshop, July 1995.

[16] B. Boothe. Fast accurate simulation of large shared memory multiprocessors. Techni-
cal Report CSD 92/682, Comp. Science Div. (EECS), Univ. of California at Berkeley,
June 1993.

[17] A. Borg, R. Kessler, and D. Wall. Generation and analysis of very long address traces.
In Proc. of the 17th Int. Symposium on Computer Architecture, pages 270–281, 1990.

[18] E. A. Brewer, Ch. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A high-
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516,
MIT Laboratory for Computer Science, Sept. 1991.

[19] R. B. Bunt and J. M. Murphy. The measurement of locality and behaviour of pro-
grams. The Computer Journal, 27(3):238–245, 1984.

[20] F. E. Cellier. Continuous System Modeling. Springer-Verlag, 1991.

[21] T-F. Chen. An effective programmable prefetch engine for on-chip caches. In Proc.
of the 28th Int. Symposium on Microarchitecture, pages 237–242, Nov. 1995.

[22] T-F. Chen and J-L. Baer. Effective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44(5):609–623, May
1995.

[23] S. Chodnekar, V. Srinivasan, A. Vaidya, A. Sivasubramaniam, and C. Das. Towards
a communication characterization methodology for parallel applications. In Proc. of
the 3rd Int. Symposium on High Performance Computer Architecture (HPCA), pages
310–319, Feb. 1997.

[24] C. Clos. A study of non blocking switching networks. Bell System Technical Journal,
pages 775–785, Mar. 1953.

[25] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. In Proc. of the 1994 ACM SIGMETRICS Conference on Measurement and
Modelling of Computer Systems, pages 128–137, May 1994.

[26] IEEE Computer. Special issue on future microprocessors. 30(9), Sept. 1997.

[27] T. M. Conte and C. E. Gimarc, editors. Fast Simulation of Computer Architectures.
Kluwer Academic Publishers, 1995.

Bibliography 153

[28] R. G. Covington, S. Dwarkadas, J. R. Jump, J. B. Sinclair, and S. Madala. The ef-
ficient simulation of parallel computer systems. Int. Journal in Comp. Simulation,
1:31–58, 1991.

[29] R. G. Covington and J. R. Jump. Csim 2.0 users guide. Technical Report TR8501,
Elec. and Comp. Eng. Dept., Rice University, Feb. 1986.

[30] W. J. Dally. Virtual channel flow control. In Proc. of the 17th Int. Symposium on
Computer Architecture, pages 60–68, May 1990.

[31] W. J. Dally and C. L. Seitz. The torus routing chip. Journal of Distributed Computing,
1(3):187–196, 1986.

[32] P. Davies, P. Lacroute, J. Heinlein, and M. Horowitz. Mable: a technique for efficient
machine simulation. Technical Report CSL-TR-94-636, Stanford University, Oct.
1994.

[33] H. Davis, S. R. Goldschmidt, and J. Hennessy. Multiprocessor simulation and tracing
using Tango. In Proc. of the 1991 Int. Conf. in Parallel Processing, pages 99–107,
Aug. 1991.

[34] M. Dubois, F. A. Briggs, I. Patil, and M. Balakrishnan. Trace-driven simulations
of parallel and distributed algorithms in multiprocessors. In Proc. of the 1986 Int.
Conference in Parallel Processing, pages 909–915, Aug. 1986.

[35] S. Eggers, D. Keppel, E. Koldinger, and H. Levy. Techniques for efficient inline
tracing on a shared-memory multiprocessor. In Proc. of the 1990 ACM SIGMET-
RICS Conference on Measurement and Modelling of Computer Systems, pages 37–
47, 1990.

[36] G. H. Barnes et al. The ILLIAC IV computer. IEEE Transactions, C-17:746–757,
1968.

[37] S. A. Felperin, L. Gravano, G. D. Pifarre, and J. L. Sanz. Routing techniques for
massively parallel communication. In Proceedings of the IEEE, volume 79, pages
488–503, Apr. 1991.

[38] J. K. Flanagan, B. E. Nelson, J. K. Archibald, and K. Grimsrud. BACH: BYU address
collection hardware, the collection of complete traces. In Proc. of the 6th Int. Conf.
on Modelling Techniques and Tools for Computer Performance Evaluation, pages
128–137, 1992.

[39] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers, C-21(9):948–960, Sept 1972.

[40] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics, Princi-
ples and Practice, Second Edition. Addison-Wesley, Reading, Massachusetts, 1990.

[41] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical report, 1994.

154 Bibliography

[42] J. W. C. Fu and J. H. Patel. Stride directed prefetching in scalar processors. In Proc.
of the 25th Int. Symposium on Microarchitecture, pages 102–110, 1992.

[43] R. M. Fujimoto. Parallel discrete event simulation. Communications of the ACM,
33(10):30–53, October 1990.

[44] J. D. Gee, M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith. Cache performance of
the SPEC92 benchmark suite. IEEE Micro, 13(4):17–27, Aug. 1993.

[45] S. R. Goldschmidt. Simulation of Multiprocessors: Accuracy and Performance. PhD
thesis, Dept. of Electrical Eng., Stanford University, June 1993.

[46] S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-driven simulations of
multiprocessors. In Proc. of the 1993 ACM SIGMETRICS Conference, pages 146–
157, May 1993.

[47] TriMedia Product Group. TM-1 Preliminary Data Book, March 1997.

[48] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W-D. Weber. Comparative
evaluation of latency reducing and tolerating techniques. In The 18th Int. Symposium
on Computer Architecture, pages 254–263, May 1991.

[49] R. Gupta. SPMD execution of programs with dynamic data structures on distributed
memory machines. In Proceedings of the 1992 International Conference on Com-
puter Languages, pages 232–241, Apr. 1992.

[50] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(3):532–533, May 1988.

[51] L. Gwennap. Intel, HP make EPIC disclosure. In Microprocessor Report, Oct. 1997.

[52] J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[53] M. A. Holliday and C. S. Ellis. Accuracy of memory reference traces of parallel com-
putations in trace-driven simulation. IEEE Transactions on Parallel and Distributed
Systems, 3(1):97–109, Jan. 1992.

[54] HPF-Forum. High Performance Fortran Language Specification, version 1.0. Scien-
tific Programming, 2(1-2):1–170, 1993.

[55] J.-M. Hsu and P. Banerjee. Performance measurement and trace driven simulation of
parallel CAD and numeric applications on a hypercube multicomputer. IEEE Trans-
actions on Parallel and Distributed Systems, 3(3):451–464, July 1992.

[56] W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E. Haab,
J. C. Gyllenhaal, and D. I. August. Compiler technology for future microprocessors.
Proceedings of the IEEE, 83(12):1625–1640, Dec. 1995.

[57] Projectvoorstel: HPCN in de Financiele Diensten Sector. Groot-schalige parallelle
gegevensverwerking en applicatie ontwikkeling, March 1995.

Bibliography 155

[58] Inmos. The Transputer Databook. Inmos Ltd., 1992.

[59] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Inc., 1991.

[60] D. R. Jefferson. Virtual Time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, July 1985. D:3.3.

[61] E. E. Johnson and J. Ha. PDATS: Lossless address trace compression for reducing
file size and access time. In Proc. of the IEEE Int. Phoenix Conf. on Computers and
Communications, pages 213–219, 1994.

[62] D. Joseph and D. Grunwald. Prefetching using Markov predictors. In 24th Int. Sym-
posium on Computer Architecture, pages 252–263, June 1997.

[63] A. G. P. Joubert. SPAM: A multiprocessor execution driven simulation kernel. Tech-
nical Report 708, IRISA research laboratory, Mar. 1993.

[64] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In The 17th Int. Symposium on Com-
puter Architecture, pages 364–373, May 1990.

[65] T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim. Controlled
room-temperature positioning of individual molecules: Molecular flexure and mo-
tion. Science, 271(5246), Jan. 1996.

[66] J. S. Karlsson. A scalable data structure for a parallel data server. Master’s thesis,
Dept. of Comp. and Inf. Science, Linköping University, Feb. 1997.

[67] J. S. Karlsson, W. Litwin, and T. Risch. LH*lh: A scalable high performance data
structure for switched multicomputers. In Advances in Database Technology —
EDBT ’96, pages 573–591, March 1996.

[68] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communication
switching technique. Computer Networks, 3(4):267–286, 1979.

[69] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1978.

[70] H. C. Kok. Visualizing computer architecture simulations — graphical user interface
support for Pearl. Master’s thesis, Dept. of Comp. Sys, Univ. of Amsterdam, Aug.
1996.

[71] H. C. Kok, A. D. Pimentel, and L. O. Hertzberger. Runtime visualization of com-
puter architecture simulations. In Proc. of the Workshop on Performance Analysis
and its Impact on Design (in conjunction with the 24th Int. Symposium on Computer
Architecture), pages 15–24, June 1997.

[72] KSR. KSR technical summary, 1992.

[73] H.T. Kung. Why systolic architectures? IEEE Computer, 15(1):37–46, 1982.

156 Bibliography

[74] S. Laha, J. Patel, and R. Lyer. Accurate low-cost methods for performance evaluation
of cache memory systems. IEEE Transactions on Computers, 37(11):1325–1336,
1988.

[75] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munication of the ACM, 21(7):558–565, July 1978.

[76] J. R. Larus. Abstract execution: A technique for efficiently tracing programs. Soft-
ware Practice & Experience, 20(12):1241–1258, Dec. 1990.

[77] J. R. Larus. SPIM S20: A MIPS R2000 simulator. Technical Report , Revision 9,
University of Wisconsin-Madison, 1991.

[78] J. R. Larus. Efficient program tracing. IEEE Computer, pages 52–60, May 1993.

[79] J. R. Larus and T. Ball. Rewriting executable files to measure program behaviour.
Software Practice & Experience, 24(2):197–218, Feb. 1994.

[80] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server. In
Proc. of the 24th Int. Symposium on Computer Architecture, pages 241–251, June
1997.

[81] E. Lazowska, J. Zahorja, G. Graham, and K. Sevcik. Quantitative System Perfor-
mance: Computer System Analysis Using Queueing Network Models. Prentice-Hall,
1984.

[82] A. R. Lebeck and D. A. Wood. Active memory: A new abstraction for memory sys-
tem simulation. ACM Transactions on Modeling and Simulation, 7(1):42–77, Jan.
1997.

[83] W. Litwin. Linear hashing: A new tool for file and table addressing. In Proc. of
VLDB, 1980.

[84] W. Litwin. Linear hashing: A new tool for file and table addressing. In M. Stone-
braker, editor, Readings in DATABASE SYSTEMS, pages 96–107. Morgan Kauf-
mann, 1995.

[85] W. Litwin, M-A. Neimat, and D. Schneider. LH*: A scalable, distributed data struc-
ture. ACM Transactions on Database Systems, 21(4):480–526, Dec. 1996.

[86] T. Lovett and R. Clapp. STiNG: A ccNUMA compute system for the commercial
marketplace. In Proc. of the 23rd Int. Symposium on Computer Architecture, pages
308–317, May 1996.

[87] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In Proc. of 25th
International Symposium on Microarchitecture, pages 45–54, Dec. 1992.

Bibliography 157

[88] P. K. McKinley and C. Trefftz. MultiSim: A simulation tool for the study of large-
scale multiprocessors. In Proceedings of the 1993 International Workshop on Model-
ing, Analysis, and Simulation of Computer and Telecommunications Networks (MAS-
COTS), pages 57–62, Jan. 1993.

[89] F. H. McMahon. Llnl fortran kernels: Mflops. Technical report, Lawrence Livermore
Laboratories, CA, March 1984.

[90] L. F. Menabrea. A sketch of the Analytical Engine invented by Charles Babbage,
Bibiotheque Universelle de Geneve, Oct. 1842.

[91] J. Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(1):39–
65, March 1986.

[92] B. Monien, R. Lüling, and F. Langhammer. A realizable efficient parallel architec-
ture. In Proc. of the 1st Int. Heinz Nixdorf Symposium, LNCS, volume 678, pages
93–109, 1992.

[93] W. G. P. Mooij. Packet Switched Communication Networks for Multi-Processor Sys-
tems. PhD thesis, Dept. of Comp. Sys, Univ. of Amsterdam, Dec 1989.

[94] Motorola. PowerPC 601 RISC Microprocessor User’s Manual. Motorola Inc., 1993.

[95] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algo-
rithm for prefetching. In Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 62–73, October 1992.

[96] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-Lederman, M. D.
Hill, J. R. Larus, and D. A. Wood. Wisconsin Wind Tunnel II: A fast and portable
parallel architecture simulator. In Proc. of the Workshop on Performance Analysis
and its Impact on Design (in conjunction with the 24th Int. Symposium on Computer
Architecture), June 1997.

[97] H. L. Muller. Simulating computer architectures. PhD thesis, Dept. of Comp. Sys,
Univ. of Amsterdam, Feb. 1993.

[98] H. L. Muller, K. G. Langendoen, and L. O. Hertzberger. MiG: Simulating parallel
functional programs on hierarchical cache architectures. Technical Report CS-92-04,
Dept. of Comp. Sys, Univ. of Amsterdam, June 1992.

[99] SPEC Newsletter, 3(4), 1991.

[100] L. M. Ni and P. K. McKinley. A survey of routing techniques in wormhole networks.
Technical Report MSU-CPS-ACS-46, Dept. of Comp. Sc., Michigan State Univer-
sity, Oct. 1991.

[101] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct
networks. IEEE Computer, 26:62–76, Feb. 1993.

158 Bibliography

[102] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar proces-
sors. In Proc. of the 24th Int. Symposium on Computer Architecture, pages 206–218,
June 1997.

[103] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary cache re-
placement. In Proc. of the 21th Int. Symposium on Computer Architecture, pages
24–33, April 1994.

[104] F. Petrini. Personal communication, Feb. 1998.

[105] F. Petrini and M. Vanneschi. SMART: a Simulator of Massive ARchitectures and
Topologies. In Proceedings of the Int. Conference on Parallel and Distributed Sys-
tems Euro-PDS’97, June 1997.

[106] G. Pfister and V. Norton. Hot spot contention and combining in multistage intercon-
nection netw orks. IEEE Transactions on Computers, 34(10):943–948, Oct. 1985.

[107] A. D. Pimentel and L. O. Hertzberger. Evaluation of a Mesh of Clos wormhole net-
work. In Proc. of the 3rd Int. Conference on High Performance Computing, pages
158–164. IEEE Computer Society Press, Dec. 1996.

[108] A. D. Pimentel and L. O. Hertzberger. Abstract workload modelling in computer
architecture simulation. In Proc. of the Workshop on Performance Analysis and its
Impact on Design (in conjunction with the 24th Int. Symposium on Computer Archi-
tecture), pages 6–14, June 1997.

[109] A. D. Pimentel and L. O. Hertzberger. An architecture workbench for multicomput-
ers. In Proc. of the 11th Int. Parallel Processing Symposium, pages 94–99. IEEE
Computer Society Press, April 1997.

[110] A. D. Pimentel and L. O. Hertzberger. RAPID: RAPid Interpretation of Data. Tech-
nical Report CS-97-01, Dept. of Comp. Sys, Univ. of Amsterdam, Jan. 1997.

[111] A. D. Pimentel and L. O. Hertzberger. Distributed simulation of multicomputer archi-
tectures with Mermaid. In Proc. of the SCS Symposium on Performance Evaluation
of Computer and Telecommunication Systems, pages 73–79, July 1998.

[112] A. D. Pimentel, P. Struik, and P. van der Wolf. Evaluation of hardware-based and hy-
brid prefetching techniques for the TM1. Technical Report PROMMPT-175, Philips
Research Laboratories, Nov. 1997.

[113] A. D. Pimentel, P. Struik, and P. van der Wolf. Scalar versus stream data prefetching
for the TriMedia. Technical Report PROMMPT-191, Philips Research Laboratories,
March 1998.

[114] A. D. Pimentel, J. van Brummen, Th. Papathanassiadis, P. M. A. Sloot, and L. O.
Hertzberger. Mermaid: Modelling and Evaluation Research in MIMD ArchItecture
Design. In Proc. of the High Performance Computing and Networking Conference,
LNCS, pages 335–340, May 1995.

Bibliography 159

[115] L. F. Pollacia. A survey of discrete event simulation and state-of-the-art discrete
event languages. Simulation Digest, 20(3):8–25, 1989.

[116] T. Puzak. Analysis of cache replacement algorithms. PhD thesis, University of Mas-
sachusetts, 1985.

[117] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood.
The Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. In Proc. of
the 1993 ACM SIGMETRICS Conference, pages 48–60, May 1993.

[118] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the SimOS machine
simulator to study complex computer systems. ACM Transactions on Modelling and
Computer Simulation, 7(1):78–103, Jan. 1997.

[119] M. Rosenblum, S. A. Herrod, and A. Gupta. Complete computer system simulation:
The SimOS approach. IEEE Parallel & Distributed Technology, 3(4):34–43, 1995.

[120] M. Röttger, U. Schroeder, and J. Simon. Virtual topology library for PARIX. Tech-
nical Report TR-005-93, Paderborn Center for Parallel Computing (à�á u

), Dept. of
Mathematics and Computer Science, University of Paderborn, Germany, 1993.

[121] A. D. Samples. Mach: No-loss trace compaction. In Proc. of the 1989 ACM SIG-
METRICS Conference on Measurement and Modelling of Computer Systems, pages
89–97, May 1989.

[122] V. Santhanam, E. H. Gornish, and W. Hsu. Data prefetching on the HP PA-8000. In
24th Int. Symposium on Computer Architecture, pages 264–273, June 1997.

[123] C. L. Seitz. The cosmic cube. Communications of the ACM, 28:22–33, Jan. 1985.

[124] F. Sijstermans, E. Pol, B. Riemens, K. Vissers, S. Rathnam, and G. A. Slavenburg.
Design space exploration for future TriMedia CPUs. In Proc. of the 23rd Int. Conf.
on Acoustics, Speech and Signal Processing, May 1998.

[125] D. Sima, T. Fountain, and P. Kacsuk. Advanced Computer Architecture, A Design
Space Approach. Addison Wesley, 1997.

[126] A. Sivasubramaniam, A. Singla, U. Ramachandran, and H. Venkateswaran. A
simulation-based scalability study of parallel systems. Journal of Parallel and Dis-
tributed Computing, 22:411–426, 1994.

[127] G. A. Slavenburg, S. Rathnam, and H. Dijkstra. The TriMedia TM-1 PCI VLIW
media processor. In Proc. of Hot Chips 8, pages 171–177, Aug. 1996.

[128] P. M. A. Sloot. Modelling and simulation. In Proceedings of the 1994 CERN School
of Computing, pages 177–226, Sopron, Hungary, Sept. 1994.

[129] P. M. A. Sloot, A. D. Pimentel, and L. O. Hertzberger. Design issues for high perfor-
mance simulation. Simulation Practice and Theory, 6(3):221–242, 1998.

160 Bibliography

[130] A. J. Smith. Two methods for the efficient analysis of memory address trace data.
IEEE Transactions on Software Engineering, 3(1):94–101, 1977.

[131] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, 1982.

[132] A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. In Proc. of the SIGPLAN ’94 Conference on Programming Language
Design and Implementation, pages 196–205, June 1994.

[133] P. Stenström. A survey of cache coherence schemes for multiprocessors. IEEE Com-
puter, pages 12–24, June 1990.

[134] P. Struik, P. van der Wolf, and A. D. Pimentel. A combined hardware/software solu-
tion for stream prefetching in multimedia applications. In Proc. of the 10th Annual
Symposium on Electronic Imaging, pages 120–130, Jan. 1998.

[135] C. B. Stunkel, B. Janssens, and W. K. Fuchs. Address tracing for parallel machines.
IEEE Computer, 24(1):31–38, Jan. 1991.

[136] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency: Practice and Experience, 2(4):315–339, 1990.

[137] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest. Trap-driven memory simulation with
Tapeworm II. ACM Transactions on Modeling and Simulation, 7(1):7–41, Jan. 1997.

[138] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: A survey. ACM
Computing Surveys, 29(2):128–170, 1997.

[139] C. A. J. van Eijk. Formal Methods for the Verification of Digital Circuits. PhD thesis,
Eindhoven University of Technology, Sept. 1997.

[140] A. J. C. van Gemund. Performance Modeling of Parallel Systems. PhD thesis, Delft
University of Technology, Apr. 1996.

[141] D. H. D. Warren and S. Haridi. The Data Diffusion Machine – a scalable shared
virtual memory multiprocessor. In Proc. of 1988 Int. Conference on Fifth Generation
Computer Systems, pages 943–952, Dec. 1988.

[142] M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, T. Sterling, and G. S. Winck-
elmans. Pentium Pro inside: I. a treecode at 430 gigaflops on ASCI Red, II.
price/performance $50/Mflop on Loki and Hyglac. In Proc. of Supercomputing ’97,
Nov. 1997.

[143] K. Whang. Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility. McGraw-Hill, Inc., 1993.

[144] B. P. Zeigler. Multifaceted Modeling and Discrete Event Simulation. Academic Press,
London, 1984.

[145] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23:75–81, 1967.

Bibliography 161

[146] D. F. Zucker, M. J. Flynn, and R. B. Lee. A comparison of hardware prefetching
techniques for multimedia benchmarks. In Proc. of Int. Conference on Multimedia
Computing and Systems, pages 236–244, June 1996.

[147] D. F. Zucker, R. B. Lee, and M. J. Flynn. An automated method for software con-
trolled cache prefetching. In Proc. of the Thirty-first Hawaii International Confer-
ence on System Sciences, Jan. 1998.

162 Bibliography

Dutch summary /
Nederlandse samenvatting

Het ontwerpen van computer architecturen is een moeilijke taak door het grote aantal keuzes
en ontwerp-afwegingen waarmee een architect te maken heeft. Daarom vormt de prestatie
analyse door middel van simulatie een essentieel onderdeel van de ontwerp cyclus. Het in
software simuleren van een computer architectuur stelt de architect in staat om verschillende
ontwerp-afwegingen nauwkeurig te evalueren en zodoende de prestatie van het uiteindelijke
ontwerp te optimaliseren.

Dit proefschrift handelt over de simulatie-gebaseerde prestatie analyse van parallelle
computer architecturen. Deze parallelle computers bevatten meerdere processoren waar-
over het rekenwerk verdeeld kan worden, met als doel om de totale rekentijd van een pro-
gramma te reduceren. Het onderzoek richt zich specifiek op machines met gedistribueerd
geheugen, oftewel de zogenaamde multicomputers. De processoren in deze multicompu-
ters bezitten allemaal een eigen geheugen en communiceren met elkaar door middel van
het versturen van boodschappen.

In hoofdstuk 2 van dit proefschrift wordt de lezer bekend gemaakt met een aantal alge-
mene simulatie methoden en technieken die veel gebruikt worden in de prestatie analyse van
computer architecturen. Aan het einde van dit hoofdstuk worden de technieken besproken
die specifiek geschikt zijn voor het simuleren van parallelle computers. Hier concludeerde
wij dat de huidige parallelle architectuur simulatoren vaak flexibiliteit inleveren om hogere
simulatie snelheden te bereiken. Zo gaan bijvoorbeeld sommige simulatie methoden er van
uit dat de instructie sets van de gastheer computer (waarop de simulatie executeert) en van de
te evalueren computer architectuur identiek zijn. Dit soort architectuur afhankelijke aanna-
mes zijn in onze ogen ongewenst. Ze ondermijnen het gemak waarmee simulatie modellen
geconstrueerd worden of, nog erger, beperken de vrijheid van modelleren. Flexibiliteit in
computer architectuur modellering is echter een noodzaak. Dit wordt onderstreept door de
diversiteit van de drie case studies die in dit proefschrift worden beschreven.

In dit proefschrift introduceren we een nieuwe simulatie methodologie waarmee zowel
goede simulatie snelheden als een hoge mate van flexibiliteit verkregen wordt. Deze simu-
latie methodologie, operatie-gedreven simulatie genaamd, is een combinatie van twee po-
pulaire simulatie methoden: stroom-gedreven simulatie en executie-gedreven simulatie. In
operatie-gedreven simulatie maken we gebruik van een stroom van simulatie stimuli, ope-
raties genaamd, die het applicatie gedrag weergeeft en de architectuur simulator aandrijft.
De operaties kunnen zo worden gedefinieerd dat hun abstractie nivo goed aansluit op de
architectuur onderdelen waarin de architect specifiek is geı̈nteresseerd. Ze kunnen bijvoor-
beeld (abstracte) machine instructies representeren om de prestatie analyse met een hoge

164 Dutch summary / Nederlandse samenvatting

mate van nauwkeurigheid uit te voeren, of de operaties kunnen computatie en communi-
catie op een veel hoger abstractie nivo (bijvoorbeeld op het nivo van grofkorrelige taken)
weergeven om een minder nauwkeurige maar snellere simulatie te bewerkstelligen. Met be-
hulp van de laatste optie zouden we snel een ruw inzicht kunnen krijgen in de prestaties van
een nieuwe computer architectuur. In operatie-gedreven simulatie wordt de toepassing van
verschillende abstractie nivo’s dus als instrument gebruikt om de snelheid (respons-tijd) en
nauwkeurigheid van de simulatie te controleren.

Operatie-gedreven simulatie biedt een hoge mate van modelleer flexibiliteit. Hiervoor
zijn twee redenen. Allereerst kunnen de operaties zo gekozen worden dat ze onafhanke-
lijk zijn van zowel de architectuur van de gastheer computer als van de te modelleren ar-
chitectuur. Dit houdt in dat er bijvoorbeeld meerdere processor-typen (met verschillende
instructie sets) gesimuleerd kunnen worden zonder de architectuur simulator aan te passen.
Ten tweede is het mogelijk om het modelleren van applicatie gedrag (het genereren van de
operaties) los te koppelen van de architectuur modellering. Hierdoor kunnen de operaties
op verschillende abstractie nivo’s en met verschillende maten van nauwkeurigheid gege-
nereerd worden. We kunnen bijvoorbeeld het gedrag van een echte applicatie volgen om
zodoende een realistische stroom van operaties te genereren. Of we kunnen de operaties
simpelweg door een stochastisch proces laten genereren. Dit laatste is flexibel (het applica-
tie gedrag kan makkelijk worden aangepast) maar is tevens onnauwkeurig (het representeert
vaak geen realistisch applicatie gedrag).

In hoofdstuk 3 wordt de Mermaid simulatie omgeving besproken waarin we de operatie-
gedreven simulatie methode hebben toegepast. Deze omgeving biedt een simulatie raam-
werk voor het uitvoeren van prestatie analyses van multicomputer architecturen. Hoofd-
stuk 4 toont aan dat de flexibiliteit van Mermaid, verkregen door de operatie-gedreven si-
mulatie, de snelheid en nauwkeurigheid van de simulatie niet in gevaar brengt. Validatie
experimenten hebben aangetoond dat er, ondanks het tamelijk hoge abstractie nivo van de
simulatie modellen, nauwkeurige prestatie voorspellingen worden gedaan. Ook hebben we
laten zien dat Mermaid op het gebied van simulatie snelheid goed kan concurreren met an-
dere moderne simulatoren. Om Mermaid’s simulatie snelheid nog verder te verbeteren, heb-
ben we functionaliteit toegevoegd om de simulatie in meerdere deeltaken op te delen en deze
taken over een cluster van werkstations te distribueren zodat ze in parallel kunnen worden
uitgevoerd. We hebben door middel van experimenten laten zien dat deze gedistribueerde
simulator sneller is dan bijna alle andere beschikbare parallelle architectuur simulatoren.

Hoofdstukken 5 tot en met 7 beschrijven drie case studies waarin we Mermaid hebben
toegepast. In de eerste studie wordt een zogenaamd “wormhole-routed Mesh of Clos” net-
werk geëvalueerd met behulp van een synthetische communicatie last. De tweede studie
zoemt in op het prestatie gedrag van één enkele processor. Hierin onderzoeken we een aan-
tal methoden om gegevens zo vroeg mogelijk (voordat ze werkelijk nodig zijn) in de data
cache van een VLIW processor te laden. Dit wordt “prefetching” genoemd. In de laatste
case studie wordt het prestatie gedrag van een schaalbare, gedistribueerde data structuur
voor een multicomputer architectuur onderzocht.

De diversiteit van de case studies tezamen met het feit dat we Mermaid eenvoudig heb-
ben kunnen toepassen in alle drie de studies illustreert de flexibiliteit van onze simulatie
methodologie. Het laat tevens zien dat het met Mermaid mogelijk is om een prestatie ana-
lyse uit te voeren op zowel het architectuur nivo (hoofdstukken 5 en 6) als op het applicatie
nivo (hoofdstuk 7).

Dutch summary / Nederlandse samenvatting 165

In het geval van twee case studies waren we in staat om onze simulatie resultaten te
valideren met de resultaten afkomstig van een echte machine of van een zeer nauwkeurige
simulator. Deze validatie experimenten bevestigen de belangrijke conclusie uit hoofdstuk
4, namelijk dat een redelijk abstract model toch een goede simulatie nauwkeurigheid kan
opleveren.

Index

active memory, 25
application modelling, see workload mod-

elling

bucket, see distributed data structure

cache, 55
compulsory miss, 101
penalty, 101
temporal locality, 101
write-validate policy, 111

Clos topology, 85
computer architectures

SISD, 9
design, 1
parallel architectures, 8

MIMD, 9
MISD, 9
SIMD, 9
array processors, 9
cache coherency, 11
Cache Only Memory Architecture (COMA),

12
distributed memory, 10
Flynn’s classification, 9
Massively Parallel Processor (MPP),

10
message-passing machines, 10
multicomputers, 10
multiprocessors, 10
Non-Uniform Memory Access (NUMA),

11
shared memory, 10
Symmetric MultiProcessor (SMP),

10
Uniform Memory Access (UMA), 10
vector computers, 9
virtual shared memory machines, 11

superscalar processors, 5, 10

VLIW processors, 5, 10, 102

direct execution, see execution-driven sim-
ulation

distributed data structure, 129
bucket, 130
client, 130
LH*, 130, 132
LH*lh, 130, 132–134

addressing, 133
blobsize, 137
cascading splits, 138
forwarding, 133
Image Adjustment Message (IAM),

133
processor allocation, 137, 142
splitting, 133

Linear Hashing (LH), 130–132
addressing, 131
bucket-level, 131
collision, 131
controlled splitting, 132
splitting, 131
splitting threshold, 132, 133
uncontrolled splitting, 132

load factor, 130
scalability, 130
Scalable Distributed Data Structures (SDDSs),

130
server, 130
striping, 129

distributed simulation, 32, 63, 70, 71

emulation, 22, 28
evaluation, 1

of cost and physical requirements, 3
of functionality, 1
of performance, 2

analytical modelling, 2

166

Index 167

simulation, 2
what-if questions, 2

execution-driven simulation, 28–31
direct execution, 30–31
instruction-level simulation, 28–30

instruction predecoding, 28
translation, 29

FAST, 32, 71

global event, 27
global trace problem, 27

IMPACT project, 13, 130
Instruction Set Architecture (ISA), 22
instruction-level simulation, see execution-

driven simulation

LH*, see distributed data structure
LH*lh, see distributed data structure
Linear Hashing (LH), see distributed data

structure

Memory CPI (MCPI), 114
Mermaid, 35–62

abstract machine instructions, 40
annotations, 37
application level, 37
application-level synchronisation, 39
architecture level, 37
architecture modelling, 53–57
architecture workbench, 35
communication model, 40, 56
communication operations, 42
computational model, 40, 55
computational operations, 41
hybrid model, 40, 73
operation-driven simulation, 38
operations, 36
output analysis, 58

GUI support, 58
value conversion, 59–60
visuals, 60

Pearl, 53–55
performance, 68–78
simulation environment, 37
simulator feedback, 36, 38, 73

thread scheduling, 38
trace generator, 46
validation, 63–68
workload modelling, 45–52

reality based, 45–49
stochastic, 49–52

Mesh of Clos topology, 85–88
characteristics, 87
number of routers, 86
routing, 88

modelling error, 35
multimedia applications, 101, 102, 104

networks
bisection bandwidth, 83
diameter, 83
direct network, 83
hotspot, 91
indirect network, 83
router, 83
routing, 83
saturation, 92
store-and-forward switching, 84
switching, 83
topology, 83
wormhole routing, 83–85

efficient simulation of, 89
flit, 84
flitbuffer, 84
latency, 84
tree-saturation, 84
virtual channels, 84

normalised error, 64

operation-driven simulation, see Mermaid

parallel computing, 3–8
SPMD program, 5, 39, 91
High Performance Fortran (HPF), 8
MPI, 8
parallelism, 4

coarse-grained, 5
data parallelism, 5
fine-grained, 5
functional parallelism, 5
Instruction Level Parallelism (ILP),

5

168 Index

medium-grained, 5
PVM, 8
scalability, 5

Amdahl’s law, 6
Gustafson’s law, 7

speedup, 5
synchronisation, 6
vector processing, 8

Parallel Mermaid, 72–78
synchronisation, 73

Pearl, see Mermaid
Philips TriMedia, see TriMedia
prefetching, 101, 104–110

binding, 101
classification, 104
early-prefetch, 112
hybrid hardware/software prefetching,

108–110
Prefetch Information Table (PIT), 109

issuing prefetches, 104
non-binding, 101
prefetch distance, 105, 109, 112
prefetch prologue, 105
Prefetch Queue (PQ), 111
pure hardware prefetching, 106–108

shifted SPT, 115
slotted SPT, 115
split SPT, 115
Stride Prediction Table (SPT), 106

pure software prefetching, 105
runahead, see prefetch distance
scalar prefetch, 105
stream detection, 104
stream prefetching, 104
stride, 106
synchronisation, 106, 108

data address-based, 109–110
PC-based, 109
time interval, 108

trashing, 102, 113
PROMMPT project, 13, 23
Proteus, 32, 71

Rice Parallel Processing Testbed (RPPT),
32

Scalable Distributed Data Structures (SDDSs),
see distributed data structure

SimOS, 22, 32, 41, 70
simulation flexibility, 34
simulation principles

abstraction level, 18, 36
discrete-event simulation, 19
event-driven simulation, 18
model development, 17
time-driven simulation, 18
validation, 17

slowdown, 68
SMART, 32, 49, 53, 57
SPAM, 32, 71
SPASM, 32

Talisman, 33, 70
Tango, 32, 71
Tango Lite, 71
trace-driven simulation, 19–28

on-the-fly tracing, 23
trace, 19
trace collection, 20–22

code annotation, 22
hardware probing, 21
instruction-level simulation, see execution-

driven simulation
microcode modification, 21
trace completeness, 20
trace detail, 20
trace distortion, 20

trace reduction, 23–25
compression, 23
relative trace, 23
significant-event trace, 24
trace filtering, 24

trap-driven simulation, 25
TriMedia, 102–103

instruction slots, 102
TM-1, 102
TM-1 data cache, 103

Wisconsin Wind Tunnel (WWT), 32, 70,
72, 78

workload, 36
workload modelling, see Mermaid

