
RAPID: RAPid Interpretation of Data

A.D. Pimentel L.O. Hertzberger

Dept. of Computer Science
University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam
The Netherlands

fandy,bobg@fwi.uva.nl

Abstract

The RAPID tool facilitates the analysis and the visu-
alization of data residing in arbitrary text files. It dif-
fers from other analysis applications in the way it se-
lects and operates on data. In RAPID, data elements
are directly retrieved from the unstructured text files
using pattern-matching. For this purpose, we use
the Perl language. This language was especially de-
signed for efficient text scanning and thus provides
powerful support for pattern-matching. Moreover,
the fact that Perl is an interpreted script language en-
hances our tool’s extensibility and portability signif-
icantly. In this paper, we describe the RAPID tool
and discuss some of its design and implementation
issues.

1 Introduction

Computer experiments, such as simulations, typi-
cally generate a vast amount of output. Since man-
ual interpretation of the data is generally not fea-
sible, it is important to have the disposal of good
analysis tools. Using all kinds of statistical methods
and visualization techniques, these tools are essential
for the successful interpretation of the experimental
data. During the past few decades, many analysis
applications, such as S [1], SPSS [5] and SAS [2],
have evolved. They all allow for a thorough, inter-
active, statistical analysis of data. Once these pro-
grams have read in the data, the user can “play” inter-
actively with it. For many purposes, this is a natural
and flexible approach.

Despite the existence and the power of these tools,
we felt the need for a less sophisticated tool that fa-
cilitates quick, batch-oriented, analysis of arbitrary
text-based data. This need originates from the com-
puter architecture simulation work that is being per-

formed within the Mermaid project [7, 6]. The out-
put of the Mermaid simulators is unstructured text
and is completely defined by the user. This implies
that every time a new simulation is constructed, a fil-
ter program has to be written in order to extract the
required numbers from the simulation output for fur-
ther analysis. Typically, these filters are shell scripts
utilizing the basic Unix tools such as grep, awk and
sed. Furthermore, the interpretation of the data can
often be performed using simple statistical methods
only. As a consequence, the powerful, but sophisti-
cated, analysis applications are often seen as overkill
and therefore not frequently used or not used at all.
Instead, the analysis is directly programmed into the
filters. This is undesirable because the writing of
such filter programs can be quite tedious, especially
when this has to be done every time the format of the
simulation output changes.

In this paper, we present the RAPID (RAPid In-
terpretation of Data) tool which allows for the auto-
matic generation of filter programs. A simple lan-
guage is provided in which the user specifies what
statistical methods should be used on which parts
of the simulation data. According to this specifi-
cation, RAPID generates the analysis filter. Since
the output format of the Mermaid simulators is not
formally defined and can thus assume any shape,
pattern-matching is used as a data selection mecha-
nism. As we will show, the use of pattern-matching
provides for a great amount of flexibility and expres-
siveness.

RAPID is not intended to be a competitor of the
previously listed analysis applications. It merely
is an alternative tool with which unstructured text-
based data can be analyzed swiftly in the cases where
using a more sophisticated application would require
too much effort. Here, the term effort relates both to
the learning cycle of a large software package and to

1



the work that should be done in order to supply the
application with data in the correct input format. Of
course, RAPID can always be used to just extract the
required data from the simulation output after which
an application like SPSS is used for a more extensive
analysis.

The next section gives an overview of the basic
framework of RAPID, emphasizing the portability
and the extensibility of the tool. Section 3 describes
how filters are specified and demonstrates the power
of pattern-matchingwithin the specifications. In sec-
tion 4, the available (statistical) operations and vi-
sualization techniques are discussed. Section 5 de-
scribes the optimization techniques applied to obtain
better analysis performance. Finally, Section 6 con-
cludes the paper.

2 The RAPID tool

The RAPID framework consists of a specification
language, a compiler and a function library. This is
illustrated in Figure 1. The specification language is
a simple rule-based language. It allows the user to
select areas of interest within the simulation output
and to specify (statistical) operations that should be
performed on the selected areas of the data. A more
detailed description of how this works is given in the
next section.

The compiler translates the specification into an
executable shell script. Both the compiler and the
generated script are written in Perl [8], which is an
interpreted language optimized for scanning arbi-
trary text files. Using this language has several con-
sequences. Perl programs do not need to be com-
piled; they can be readily executed (i.e. interpreted)

Unstructured
text-based
data Analysis

filter

library
Function

compiler
RAPID

Analysis
specification

of selected data areas
Statistical analysis

Repetitive analysis

Figure 1: The RAPID framework.

whenever Perl is available on the host system. So,
since Perl is available on many platforms, this makes
RAPID a highly portable tool. Moreover, Perl pro-
vides for a powerful support of pattern-matching.
This feature is transparently embedded into RAPID
as well. On the other hand, a disadvantage of using
Perl might be its inefficiency with respect to certain
computational functions. For instance, Perl scripts
are not really suited for matrix computations neces-
sary for some analysis techniques. We tolerate this
inefficiency however, since the occasions in which
we need this kind of computations are reasonably
scarce. Besides, if efficiency is the primary objec-
tive, then it is possible to implement the number-
crunching functions in a C library which is then
linked to the Perl analysis filter.

Since we want RAPID to be easily extensible, a
separate Perl library contains the functions that can
be applied to the data. New, user-defined, functions
can simply be added to the library. When this has
been done, the user only needs to add a prototype of
the new function specifying the number and the types
of its arguments after which the compiler is ready to
use it. Besides some basic functionality, the current
library mainly contains functions that are commonly
used in the performance analysis of computer sys-
tems [3].

The function library together with the compiler-
generated script form the analysis filter. Because
the quick, possibly repetitive, analysis of (multiple)
data files is a requirement, the filter operates in a
batch-oriented manner. This implies that the speci-
fied types of analysis are performed one after each
other. So, user interaction was not considered to be
a necessity.

3 Specifying the analysis

The language that specifies the required analysis
is a relatively straightforward rule-based language
which does not contain assignments, explicit� loop
constructs or recursion. There is a slight resem-
blance with the expressions of formulas that can be
constructed within spreadsheet applications. The
RAPID language is, however, directly referring to
data items within the text files and not to items in a
worksheet.

A specification consists of one or more rules
where the syntax of a single rule can be described as

�The language has a notion of implicit looping, as will be ex-
plained further on.

2



<desc> <output-format> [id] --> <expr> ;

Here, �desc� is a string describing the purpose
of the rule and�output-format� is a format specifier
like it is used in the C function printf. Thus, “%d”
means that the output should be an integer. The field
[id] is an optional string and is used as a tag when
the output contains more than one result. Each result
is tagged with [id] and a sequence number. Finally,
the�expr� field specifies what operations should be
performed on which data. To illustrate the above,
consider the following output of a simple network
simulation.

Elapsed time: 1667288 time units
Node 0: bytes sent: 99000922
Node 1: bytes sent: 90665112
Node 2: bytes sent: 97999003
Node 3: bytes sent: 87231230

The line “Elapsed time” indicates the simulated
time, whereas the remaining four lines refer to the
number of bytes each node has sent within the time
interval. This sample simulation output will be used
throughout this paper for illustrative purposes.

To calculate the total network throughput, the fol-
lowing rule could be used:

Network throughput %.2f -->
sum("bytes sent:#") / "Elapsed time:#";

In this example, the string “Network throughput”
is the description. It appears in front of the result
in the output. The result is specified to be a float-
ing point number having two digits after the comma.
At the right-hand side of the arrow the actual opera-
tion is given. The data file is first searched for num-
bers preceded by the string “bytes sent:”. Here, the #
stands for the required number, which may be in any
format (integer, floating point, etc.). Of the resulting
list of numbers the sum is taken. Subsequently, the
numbers with the preceding string “Elapsed time:”
are selected. In this case, we assume that only a sin-
gle number is matched. Dividing the total number
of bytes sent by the (simulated) time gives us the
throughput, which is the final result. After compila-
tion of this specification and using the above data file
as input for the generated analysis filter, the follow-
ing output is shown:

Network throughput = 224.85

From this example can be seen that pattern-
matching plays an essential role within RAPID spec-
ifications. It provides a natural and powerful inter-
face for selecting data items.

Because of the simplicity of the specification lan-
guage, it only contains two types of data to which
functions can be applied: numbers and lists of num-
bers. Single numbers can be immediately specified
within expressions or can be the result of a pattern-
match (like the "Elapsed time:#" in the previ-
ous example). A list of numbers can only be obtained
by a pattern-match. As a consequence of this simple
typing-scheme, functions can easily be type checked,
which improves the user-friendliness of the tool con-
siderably.

3.1 Data selection

Data can be selected on the basis of either their ap-
pearance or their contents. Selection on the basis
of appearance is done by pattern-matching, as was
already illustrated in the previous section. Patterns
must be specified between quotes and should con-
tain the “#” character indicating the location of the
required number. RAPID allows for a transparent
use of the complete pattern-matching functionality
of Perl. So, to get the number of bytes sent by the
nodes 0 and 1 from the network simulation output,
for instance, a pattern like

"Node [0-1].*sent:#"

could be used. In this pattern, the .* skips all char-
acters between the node number and the word “sent”.

Selecting data on the basis of their contents is per-
formed by special selection operations that are avail-
able within the language. For example, to select
transmission quantities of more than 90 Mbytes only,
the expression

gt("bytes sent:#", 90*1024*1024)

can be applied. As one would expect, the function
gt stands for “greater than”. In a complete rule, this
may look like

3



Nodes > 90Mb %d -->
count(gt("bytes sent:#", 90*1024*1024));

Clearly, this particular rule counts the number of
nodes having sent more than 90 Mbytes. A more de-
tailed overview of the available functions, including
the selection operations, is presented further on in
this paper.

3.2 Analyzing multiple data files

To analyze a data file, its filename is passed as an ar-
gument to the filter program. When examining mul-
tiple data files and thus passing more than one argu-
ment to the filter, operations are by default performed
globally. In other words, the multiple data files are
essentially seen as one large data file. It may occur,
however, that “local” operations must be performed
on a subset of the data files. For this purpose, a tag-
ging mechanism is used. A tag is either an integer
or a range of integers. It is glued together with a
(search-)patternusing a colon, thereby specifying the
data file(s) in which the search must be performed.
This means that the tag equals to the filter’s argu-
ment number(s) from which should be read. To illus-
trate this, consider the following example in which a
speedup is calculated:

Speedup in percents %.2f -->
100 * (1:"Elapsed time:#" /

2:"Elapsed time:#");

In this example, a tag numbered 1 is glued to the
first pattern and a tag numbered 2 to the second pat-
tern. Consequently, the rule computes the speedup
using the simulated times found in the data files re-
ferred to by the filter’s first and second argument.

As mentioned above, a tag can also be a range of
integers. Such a range tag is given by the tuple a�b

where a and b denote the lower and upper bounds re-
spectively. Here, a and b are either an integer or the
special $ character which stands for “last file”. Fur-
thermore, both a and bmust be in the domain of ���$�
with a � b. When using the a�b tag in a rule, the
rule is performed b�a�� times. In iteration i, with
� � i � b� a, the range-tagged patterns are applied
to the data file referred to by the filter’s a � ith ar-
gument. So, basically, these tags allow for implicit
looping of rules. For example, the rule

Selection Basic computational
functions functions
lt(pattern, number) sum(pattern)
gt(pattern, number) prod(pattern)
eq(pattern, number) max(pattern)
leq(pattern, number) min(pattern)
geq(pattern, number) count(pattern)

abs(pattern)
floor(pattern)
ceil(pattern)
log(pattern, base)
diff(pattern, pattern)

Statistical functions
fa,g,hgmean(pattern)
fa,g,hgstandev(pattern)
median(pattern)
variance(pattern)
correl(pattern, pattern)
quantile(pattern, fraction)
fit(pattern, pattern, function)
meanconf(pattern, confidence)
cmp [un]paired(pattern, pattern, confidence)
ml regres(pattern,...,pattern)

Table 1: An overview of the available analysis func-
tions.

Maximum sent %d -->
max(1.$:"bytes sent:#");

determines the maximum number of bytes sent by a
node for all data files mentioned as a filter argument.
So, if three filenames were passed as an argument,
then the result would consist of three maxima.

4 Function types

To give an impression of the functionality of the
RAPID specification language, this section presents
an overview of the available analysis and visualiza-
tion functions. The function library may seem rela-
tively limited, but it is sufficiently equipped for the
types of analysis required in the Mermaid project.
Besides, as was explained in Section 2, the library
can easily be extended with new functions when this
is needed.

Table 1 lists the analysis functions available in
the language. The parameters called pattern refer to
pattern-matching strings resulting in a list of one or
more numbers. The other parameters indicate single

4



numbers, unless specified otherwise. With a selec-
tion function, data can be selected on their contents.
In general, these functions compare the data to a spe-
cific number and return a list of numbers that satisfy
the given selector function.

As the name already suggests, a basic computa-
tional function performs a straightforward operation
on a list of numbers. The upper five functions in the
list of this category return a single number, whereas
the remaining five return a list of numbers. We will
not describe these functions in detail as they all are
more or less self-explanatory.

The category of statistical functions requires a lit-
tle bit more explanation. Calculating a mean can ei-
ther be done arithmetically (amean), geometrically
(gmean) or harmonically (hmean). The same holds
for computing of standard deviations. A regression
model for linear or curvilinear functions can be cal-
culated using the fit function. The first two parame-
ters of this function contain the observedx and y val-
ues while the third parameter specifies the function to
which the data should be fitted. The latter is a string
that equals to one of the strings in the left column of
Table 2. For example,

Cache-model %.2f -->
fit("cache size:#",

"hitrate:#", "y = a + bx");

computes a fit to the function y � a � bx for data
from a cache simulation. Here, the matched cache
sizes (x values) have a one-to-one correspondence
with the matched hit rates (y values). Besides calcu-
lating the regression parameters a and b, the good-
ness of the fit and some confidence intervals of the
computed parameters are calculated as well.

Using the function meanconf, confidence intervals
of averages are calculated. The associated confi-

Function string Meaning

y = a + bx y � a� bx

y = a + b/x y � a� b

x

y = 1 / (a+bx) y � �

a�bx

y = x / (a+bx) y � x

a�bx

y = abˆx y � abx

y = a + bxˆn y � a� bxn

y = bxˆa y � bxa

Table 2: Functions that may be used in the fit func-
tion. In this list, any integer may be substituted for
the character n.

Visualization functions

create graph(pattern, pattern, graph type)
add2graph(pattern, pattern, graph type)
hist(pattern, cell size)
add2hist(pattern, cell size)
quantnorm plot(pattern, average, stan dev)
quantexp plot(pattern, average)
drawgraph()

Table 3: An overview of the available visualization
functions.

dence parameter specifies the required level of con-
fidence in percents. Comparison of two alterna-
tive observations can be performed by either the
cmp paired or the cmp unpaired function. The first
one deals with paired observations, in which there
is a one-to-one correspondence between each pair
of observations selected by the two pattern-matching
strings. For instance, when comparing two computer
systems by measuring the run-time of differentwork-
loads, the nth workload executed on both systems
results in two paired observations. Evidently, when
there are no such correspondences, the cmp unpaired
function is used instead. This operation is formally
called the t-test. Finally, ml regres is similar to the fit
function as it computes a multiple linear regression
model. This means that multiple predictor variables
(x values) are allowed. The ml regres operation fits
data to the linear equation

y � b� � b�x� � b�x� � � � �� bkxk � e

Here, b�� b�� ���� bk are k � � regression parameters
to be computed and e is the error term. Like the
fit function, ml regres also returns several statistics
on the goodness of the fit and on the confidence
intervals of the regression parameters. Moreover,
a so-called Analysis Of Variance (ANOVA) is per-
formed as well. This analysis, which applies the
well-known F -test, essentially determines whether
or not the model is good enough to explain a signif-
icant fraction of the response variation (the y vari-
able).

4.1 Visualization functions

The functions which allow for drawing of graphs are
listed in Table 3. These functions generate a separate
data file (containing the data to be visualized) and a
plotfile. The latter is used as input for the widely-
used (interactive) plotting program Gnuplot [4]. Af-
ter generation of a graph, the user is free to adjust

5



the Gnuplot file to regenerate the graph or to start an
interactive visualization session with Gnuplot. So,
providing an interface towards Gnuplot enhances the
flexibility considerably.

Currently, RAPID only supports the construc-
tion of two-dimensional graphs, which suffices for
the Mermaid analysis work. The create graph and
add2graph functions allow for the generation of a
whole range of different graph-types. The first two
pattern parameters contain the observed x and y val-
ues respectively, whereas the third parameter spec-
ifies the required graph-type. This type is a string
which equals to one of the plot-styles of Gnuplot
(lines, points, linespoints, etc.). The create graph
operation initializes a new graph while add2graph
adds new curves to an existing graph, thereby allow-
ing multiple curves per graph. After applying one of
these functions, the ranges of the x and y axes are au-
tomatically (re-)computed. Furthermore, a graph is
said to be active in between calling the create graph
and the drawgraph functions. The latter operation
actually generates the Gnuplot file. So, all intermedi-
ate uses of add2graph are applied to the active graph.

To give an example, consider the following three
rules. They generate a graph consisting of multiple
curves, where each curve refers to a different data
file.

Graph %d -->
create_graph(1:"cache size:#",

1:"hit rate:#", points);
Graph cont’d %d -->

add2graph(2.$:"cache size:#",
2.$:"hit rate:#", points);

Draw graph %d --> drawgraph();

With the create graph function, the graph is ini-
tialized and the curve based on the first data file is
drawn. Subsequently, add2graph adds all the curves
from the remaining data files by using the “2.$” tag.
Finally, the graph is generated (i.e. the Gnuplot file
is produced) by means of the drawgraph operation.
The format %d found in all three rules specifies that
the data to be visualized should be handled as in-
tegers. Clearly, this example illustrates the conve-
nience of range tags: only three rules are needed to
draw a graph consisting of two or more curves.

The hist and add2hist functions are similar to cre-
ate graph and add2graph respectively, but they can
only produce one type of graph: a histogram. The
parameter called cell size determines the resolution
as it specifies the size, and inherently to this, the
number, of cells used in the histogram.

With quantnorm plot and quantexp plot quantile-
quantile scatter plots for the normal and exponen-
tial distributions respectively are generated. In these
plots, the quantiles of the observed data are shown
against the theoretical quantiles of the selected dis-
tribution. By doing this, the distribution of the ob-
served data can be determined. The average and
stan dev parameters specify the average and, if ap-
propriate, the standard deviation of the theoretical
distribution. A more comprehensive explanation of
the statistical methods mentioned in this section can
be found in [3].

5 Function and list caching

Although RAPID analyzes data files in a batch-
oriented manner, which may suggest that analysis ef-
ficiency is not of great importance, we applied sev-
eral optimizations to deliver good analysis perfor-
mance. To minimize file I/O, for instance, data files
are by default analyzed “from memory”. This means
that the generated filters read all the data at the start
of the analysis after which all operations are applied
to the data stored in memory. Clearly, this approach
trades efficiency for memory usage. However, anal-
ysis “from disk” is also provided in the case the data
files are too large to fit in memory.

A more sophisticated performance optimization
involves the removal of common subexpressions
within analysis specifications. It regularly happens
that certain data selections are performed multiple
times or, even worse, that identical functions are ap-
plied to the same data more than once. For instance,
the rules

Maximum sent %d --> max("bytes sent:#");
Average sent %d --> amean("bytes sent:#");
Standard deviation %.2f -->

astandev("bytes sent:#");

would perform overlapping work if no precautions
are taken. First, the number of transferred bytes is
extracted from the data file three times in a row.
Second, the function astandev needs to calculate
the mean before computing the standard deviation.
However, this has already been done in the previous
rule (containing the amean). So, to prevent the same
work being performed multiple times, the RAPID
filters cache the results of functions and pattern
matches whenever this is required. For the above
example this would mean that the pattern match is
only performed once, after which every succeeding

6



matching-request is serviced by the cache containing
the resulting list of numbers. Furthermore, the com-
puted mean of the second rule is also cached and di-
rectly used in the calculation of the standard devia-
tion in the third rule. The difference in precision of
the second and third rule, i.e. %d versus %.2f, is not
a problem here. The analysis filter always performs
calculations based on Perl’s number type, which is
internally represented as a double precision floating
point value.

The RAPID compiler has to find out which of the
(sub)expressions are used multiple times. Only these
expressions will be cached. Thus, there will never be
an entry within the cache that is not reused. More-
over, the entities allowed to be cached essentially in-
clude all the (sub)expressions appearing at the right-
hand side of the arrow in a specification rule. So, if
one, for instance, would specify two identical rules,
then only one rule is really computed while the other
is serviced entirely from the cache.

However, the use of regular expressions within
patterns may complicate the search for cacheable
pattern-matches considerably. For instance, the pat-
terns

"Node.*sent:#" and "bytes sent:#"

will extract the same data for the sample simulation
output presented in Section 3. But when both pat-
terns are used within a specification, the compiler
cannot see that they are identical. It is therefore the
user’s responsibility that such aliasing problems do
not occur.

Like the minimization of file I/O, caching also in-
volves a tradeoff between efficiency and memory us-
age. The caching may require large quantities of
buffer space, which can pose a problem when the
analysis filter runs out of memory. Therefore, cached
results can be removed from the cache whenever
they are not needed anymore. If this is not enough
to fit objects in the cache, caching may be turned off
entirely.

6 Conclusions

In this paper, we presented the RAPID tool which al-
lows for swift analysis of data residing in arbitrar-
ily structured text files. The analysis approach of
RAPID is rather different from other analysis appli-
cations as it directly operates on the unstructured text
files instead of reformatting the data first to a partic-
ular standard format, e.g. a spreadsheet-like format.
Moreover, the tool was kept as simple as possible to
allow easy utilization. For this reason, RAPID ana-

lyzes in a batch-oriented manner rather than it pro-
vides interactivity with the user. As a consequence,
we can quickly perform many, often straightforward,
types of analysis without requiring much effort.

Since RAPID operates on unstructured text, the
language Perl is used for efficient scanning of the
text data. Consequently, data items are selected by
means of pattern-matching. As we have shown, this
selection mechanism is natural and provides great
flexibility. Using the script language Perl also im-
plies that our tool is portable and easily extensible.
With respect to the latter, RAPID features a separate
function library which can simply be extended by the
user.

For the work being done within our department
involving the simulation of computer architectures,
RAPID proves to be a convenient tool. Its, seem-
ingly limited, analysis functionality has sufficed our
analysis requirements so far. Nevertheless, the tool
will undoubtedly be enhanced with new features in
the future.

References

[1] R. A. Becker and J. M. Chambers. Design of the
S system for data analysis. Communications of
the ACM, 27(4):486–495, May 1984.

[2] J. T. Helwig. SAS : Introductory Guide. Raleigh,
NC: SAS Institute Inc., 1978.

[3] R. Jain. The Art of Computer Systems Perfor-
mance Analysis. John Wiley & Sons, Inc., 1991.

[4] A. Liaw and D. Crawford. Gnuplot 3.5 User’s
Guide, Nov. 1994.

[5] P. Lovie. Statistical software for microcomput-
ers - SPSS/PC. Journal of Mathematical and
Statistical Psychology, 41(4):151–154, 1988.

[6] A. D. Pimentel and L. O. Hertzberger. An archi-
tecture workbench for multicomputers. In Proc.
of the International Parallel Processing Sympo-
sium. IEEE Computer Society Press, April 1997.

[7] A. D. Pimentel, J. van Brummen,
Th. Papathanassiadis, P. M. A. Sloot, and L. O.
Hertzberger. Mermaid: Modelling and Evalua-
tion Research in MIMD ArchItecture Design. In
Proc. of the High Performance Computing and
Networking Conference, LNCS, pages 335–340,
May 1995.

[8] L. Wall and R. L. Schwartz. Programming Perl.
O’Reilly & Associates, Inc., 1991.

7


