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Abstract—Shared caches in multicore processors introduce
serious difficulties in providing guarantees on the real-time
properties of embedded software due to the interaction and
the resulting contention in the shared caches. To address this
problem, we develop a new schedulability analysis for real-
time multicore systems with shared caches. To the best of our
knowledge, this is the first work that addresses the schedulability
problem with inter-core cache interference. We construct an
integer programming formulation, which can be transformed to
an integer linear programming formulation, to calculate an upper
bound on cache interference exhibited by a task within a given
execution window. Using the integer programming formulation,
an iterative algorithm is presented to obtain the upper bound on
cache interference a task may exhibit during one job execution.
The upper bound on cache interference is subsequently integrated
into the schedulability analysis to derive a new schedulability
condition. A range of experiments is performed to investigate
how the schedulability is degraded by shared cache interference.

I. INTRODUCTION

Multicore architectures are increasingly used in both the
desktop and the embedded markets. Modern multicore proces-
sors incorporate shared resources between cores to improve
performance and efficiency. Shared caches are among the most
critical shared resources on multicore systems as they can
efficiently bridge the performance gap between memory and
processor speeds by backing up small private caches. However,
this brings major difficulties in providing guarantees on real-
time properties of embedded software due to the interaction
and the resulting contention in a shared cache.

In a multicore processor with shared caches, a real-time task
may suffer from two different kinds of cache interferences [13],
which severely degrade the timing predictability of multicore
systems. The first is called intra-core cache interference, which
occurs within a core, when a task is preempted and its
data is evicted from the cache by other real-time tasks. The
second is inter-core cache interference, which happens when
tasks executing on different cores access the shared cache
simultaneously. Inter-core cache interference may cause several
types of cache misses including capacity misses, conflict misses
and so on [4].

It is challenging to design real-time applications executing
on multicore platforms with shared caches, which cannot afford
to miss deadlines and hence demand timing predictability. Any

schedulability analysis requires knowledge about the Worst-
Case Execution Time (WCET) of real-time tasks. With a
multicore system, the WCETs are strongly dependent on the
amount of inter-core interference on shared hardware resources
such as main memory, shared caches and interconnects. In this
paper, we shall only focus on the shared cache interferences
and study the schedulability analysis problem for hard real-time
tasks that exhibit shared cache interferences.

A major obstacle is to predict the cache behavior to
accurately obtain the WCET of a real-time task considering
inter-core cache interference since different cache behaviors
(cache hit or miss) will result in different execution times of
each instruction. In [19], it was even pointed out that ”it will
be extremely difficult, if not impossible, to develop analysis
methods that can accurately capture the contention among
multiple cores in a shared cache”.

In this paper, task’s WCET does not account for shared
cache interference. [12] presents such an approach to derive a
task’s WCET without considering shared cache interference.
We propose a novel schedulability analysis of non-preemptive
real-time scheduling for multicore systems with shared caches.
Intra-core cache interference is avoided since no preemption is
possible during task execution. We therefore focus on inter-core
cache interference and specially conflict misses that caused
by limited cache associativity. The main contributions of this
work are:

• An integer programming formulation is constructed to
calculate the upper bound on the cache interference
exhibited by a task within a given execution window;

• An iterative algorithm is presented to obtain the upper
bound on inter-core cache interference a task may exhibit
during its job executions;

• A new schedulability condition is derived by integrating
the upper bound on inter-core cache interference into the
schedulability analysis;

• A set of experiments are performed using the proposed
schedulability analysis to investigate the effects of inter-
core cache interference for a range of different tasksets.

The rest of the paper is organized as follows. Section II gives
an overview of the related work. The system model is described
in Section III. Section IV describes the proposed schedulability
analysis, where we also detail the computation of processor-



contention and inter-core cache interferences applied in the
analysis. Section V presents an iterative computation to obtain
the upper bound of inter-core cache interferences. Section VI
presents the experimental results, after which Section VII
concludes the paper.

II. RELATED WORK

For hard real-time systems, it is essential to obtain each
real-time task’s WCET, which provides the basis for the
schedulability analysis. WCET analysis has been actively
investigated in the last two decades, of which an excellent
overview can be found in [21]. There are well-developed
techniques to estimate real-time tasks’ WCET for single
processor systems. Unfortunately, the existing techniques for
single processor platforms are not applicable to multicores
with shared caches. Only a few methods have been developed
to estimate task WCETs for multicore systems with shared
caches [23], [11], [15]. In almost all those works, due to
the assumption that cache interferences can occur at any
program point, WCET analysis will be extremely pessimistic,
especially when the system contains many cores and tasks.
An overestimated WCET is not useful as it degrades system
schedulability.

Since shared caches introduce the difficulty into accurately
estimating the WCET, many researchers in the real-time
systems community have recognized and studied the problem
of cache interference in order to use shared caches in a pre-
dictable manner. Cache partitioning, which isolates application
workloads that interfere with each other by assigning separate
shared cache partitions to individual tasks, is a successful
and widely-used approach to address contention for shared
caches in (real-time) multicore applications. There are two
cache partitioning methods: software-based and hardware-
based techniques [8]. The most common software-based cache
partitioning technique is page coloring [16], [20]. By exploiting
the virtual to physical page address translations present in
virtual memory systems at OS-level, page addresses are mapped
to pre-defined cache regions to avoid the overlap of cache
spaces. Hardware-based cache partitioning is achieved using
a cache locking mechanism [6], [19], [17], which prevents
cache lines from being evicted during program execution. The
main drawback of cache locking is that it requires specific
hardware support that is not available in many commercial
processors. With shared cache partitioning techniques, one can
apply existing analyses to derive the upper bounds of a task’s
WCET assuming that no cache interference can occur between
tasks simultaneously running on different cores. In that case, it
is safe to use the derived WCETs in the schedulability analysis.

Although the schedulability analysis of global multiprocessor
scheduling has been intensively studied [14], [5], [3], few
works addressing schedulability analysis for multicores with
shared caches are [9], [22], where cache space isolation is
deployed. In addition to regular temporal constraints, cache
constraints due to cache space isolation are added in the
schedulability analysis. They propose a linear programming
formulation to perform the schedulability test and an over

approximation of this formulation to improve the scalability
of the test. However, this solution is not applicable to our
problem since our system architecture does not deploy any
cache isolation techniques.

Our work also differs from other approaches to the timing
verification of multicore systems [1] in that all other sources
of interferences are assumed to be included within the WCET.
We analyze the effect of shared cache interference on the
schedulability. To the best of our knowledge, this is the
first work that integrates inter-core cache interferences into
schedulability analysis.

III. SYSTEM MODEL

A. Task Model

We consider a set τ of n periodic or sporadic real-time tasks
τ1, τ2, ... τn to be scheduled on a multicore processor. Each
task τk = (Ck, Dk, Tk) ∈ τ is characterized by a worst-case
computation time Ck, a period or minimum inter-arrival time
Tk, and a relative deadline Dk. All tasks are considered to be
deadline constrained, i.e. the task relative deadline is less or
equal to task period: Dk ≤ Tk.

We further assume that all those tasks are independent, i.e.
they have no shared variables, no precedence constraints, and
so on. Moreover, jobs of any task cannot be executed at the
same time on more than one core. A task τk is a sequence
of jobs Jjk , where j is the job index. We denote the arrival
time, starting time, finishing time and absolute deadline of a
job j as rjk, sjk, f jk and djk, respectively. Note that the goal of
a real-time scheduling algorithm is to guarantee that each job
will complete before its absolute deadline: f jk ≤ d

j
k = rjk+Dk.

As explained, it is difficult to accurately estimate Ck consid-
ering cache interference of other tasks executing concurrently.
It should be pointed out that Ck in this paper refers to the
WCET of task k, assuming task k is the only task executing
on the multicore processor platform, i.e. any cache interference
delays are not included in Ck.

Since time measurement cannot be more precise than one
tick of the system clock, all timing parameters and variables
in this paper are assumed to be non-negative integer values.

B. Architecture Model

Our system architecture consists of a multicore processor
with m identical cores onto which the individual tasks are
scheduled. Most multicore processors have different indepen-
dent caches, including instruction and data caches. Caches are
organized as a hierarchy of multiple cache levels to address
the tradeoff between cache latency and hit rate. The low level
caches (L1) in our considered multicore processor are assumed
to be private, while the last level caches (LLC, for example
L2) are shared between all cores. Furthermore, we assume
that the LLC cache is noninclusive with respect to the private
caches (L1), and that LLC caches are direct-mapped caches.
We believe this work can be extended to set-associative LRU
caches, and we plan to do so as future work.



In this work, we only consider instruction caches since we
adopt the approach in [12], which only accounts for instruction
cache, to derive WCET.

C. NP-FP Scheduler

In this paper, we focus on non-preemptive global scheduling,
thus we do not have to consider intra-core cache interference.
If not explicitly stated, cache interference will therefore refer
to inter-core cache interference in the following discussion.
For simplicity reasons, we will take the Non-Preemptive Fixed
Priority (NP-FP) global scheduling as the example in this paper.
We will extend our work to other non-preemptive schedulers
such as a global Non-Preemptive Earliest Deadline First (NP-
EDF) scheduler.

To use NP-FP scheduling, a priority Pk is assigned to each
task τk (k = 1, 2, ...n). As each task has a unique priority,
we use hp(k) to denote the set of tasks with higher priorities
than τk, and hep(k) = hp(k) ∪ {τk} the set of tasks whose
priorities are not lower than τk. Similarly, lp(k) is the set of
tasks with lower priorities than τk and lep(k) = lp(k) ∪ {τk}
the set of tasks whose priorities are not higher than τk.

The NP-FP scheduling algorithm is work-conserving, ac-
cording to the following definition.

Definition 1. A scheduling algorithm is work-conserving if
there are no idle cores when a ready task is waiting for
execution.

IV. SCHEDULABILITY ANALYSIS

In this section, we give an overview of the new schedulability
analysis that accounts for cache interference. We also present
the approaches to derive the upper bound on the parameters
used in the schedulability condition.

A. Overview

We first analyze the execution of one job Jjk of a task τk.
The time interval [rjk, d

j
k] is called a problem window [3].

Figure 1: Overview of the new schedulability analysis that accounts
for cache interference.

As shown in Figure 1, a task τk exhibits two kinds of
interferences during the execution of a job. The first interference
is Iprek (rjk, d

j
k), denoting the cumulative length of all intervals

over the problem window in which τk is ready to execute

but cannot proceed due to unavailability of cores as they are
executing other jobs. We define the interference Iprei,k (rjk, d

j
k) of

a task τi on a task τk over the interval [rjk, d
j
k) as the cumulative

length of all intervals in which τk is ready to execute, and τi
is executing while τk is not. The second type of interference
is the cumulative length of all extra execution delays caused
by shared cache interference due to conflict accesses from
all other tasks running concurrently on other cores, denoted
as Isck (rjk, d

j
k). We also define the interference Isci,k(rjk, d

j
k) as

the cumulative length of all extra execution delays of τk over
the problem window caused by conflict shared cache accesses
between task τi and task τk.

It is clear that for a job to meet its deadline, the sum of
the two interferences a task exhibits in the problem window
plus the task’s WCET Ck must be less than the length of the
problem window, which is Dk. For a task to be schedulable,
this condition must hold for all its jobs.

We define the worst-case interference for task τk as:

Īk = max
j

(Iprek (rjk, d
j
k) + Isck (rjk, d

j
k))

= Iprek (rp∗k , d
p∗
k ) + Isck (rp∗k , d

p∗
k )

where p∗ is the job instance in which the sum of the two
interferences is maximal.

By construction, we have the first schedulability test for τ .

Theorem 1. A task set τ is schedulable with a NP-FP
scheduling policy on a multicore processor composed of m
identical cores with shared caches if and only if for each task
τk ∈ τ

Īk + Ck < Dk

The necessary and sufficient schedulability condition ex-
pressed by Theorem 1 cannot be used to check if a task set is
schedulable without knowing how to compute the interference
terms Īk. Unfortunately, we are not aware of any method
to compute Īk starting from the given task parameters. To
sidestep this problem, we will use an upper bound on each of
the interferences.

We define the worst-case processor-contention interfer-
ence Īprek (rjk, d

j
k) and worst-case shared cache interference

Īsck (rjk, d
j
k) for task τk as:

Īprek = max
j

(Iprek (rjk, d
j
k)) = Iprek (rq∗k , d

q∗
k )

where q∗ is the job instance in which the processor-contention
interference is maximal and

Īsck = max
j

(Isck (rjk, d
j
k)) = Isck (rs∗k , d

s∗
k )

where s∗ is the job instance in which the cache interference is
maximal, respectively.

Theorem 2. A task set τ is schedulable with a NP-FP
scheduling policy on a multicore processor composed of m
identical cores with shared caches if for each task τk ∈ τ

Īprek + Ck + Īsck < Dk



Proof.

Īk = max
j

(Iprek (rjk, d
j
k) + Isck (rjk, d

j
k))

≤ max
j

(Iprek (rjk, d
j
k)) + max

j
(Isck (rjk, d

j
k))

= Īprek + Īsck

if Īprek +Ck+ Īsck < Dk, then Īk+Ck < Dk. The Theorem
follows from Theorem 1.

B. Computing an upper bound of Īprek

The workload Wi(Dk) of a task τi in the problem window
[rjk, d

j
k) of length Dk is the time task τi executes during interval

[rjk, d
j
k), according to a given scheduling policy.

Lemma 1. The processor-contention interference that a task
τi causes on a task τk in the problem window of τk is never
greater than the workload of τi in the problem window.

∀i, k, j Iprei,k (rjk, d
j
k) ≤Wi(Dk)

Lemma 1 is obvious, since Wi(Dk) is an upper bound on
the execution of τi in the problem window.

Since it is difficult to compute the exact value of Īprek , we
will compute the upper bound of the worst-case workload by
each task in the problem window, and use the sum of each
task’s workload to derive an upper bound on Īprek .

As shown in Figure 2, the upper bound of the worst-case
workload can be calculated by categorizing each job of τi in
the problem window into one of the three types [2]:

carry-in job: a job with its release time earlier than rjk, but
with its deadline in the problem window;

body job: a job with both its release time and its deadline
in the problem window;

carry-out job: a job with its release time in the problem
window, but with its deadline later than djk.

τi : (a)

τi : (b)

τk

carry-in job carry-out jobbody job

rjk djk

Di

Dk

Ti

Figure 2: Three types of contribution jobs and problem window. Case
(a) and (b) shows the densest possible packing of jobs of τi if τi has
a carry-in job and has no carry-in jobs, respectively.

The worst-case workload of τi occurs when a carry-in job (if
τi has a carry-in job) finishes execution as late as possible and
a carry-out job starts its execution as early as possible. We use
Wnc
i (Dk) to denote an upper bound of τi’s workload in the

problem window if τi has no carry-in job, and use W ci
i (Dk)

to denote an upper bound of τi’s workload if τi has a carry-in

job. Following the approach in [10], we compute Wnc
i (Dk)

and W ci
i (Dk) as follows:

• Computing Wnc
i (Dk)

For τi ∈ hp(k), the worst-case workload of task τi occurs
when a job of τi arrives at exactly the start of the problem
window, as shown in case (b) in Figure 2. The next jobs
of τi are then released periodically every Ti time units.
Therefore the number of body jobs of τi that contribute
with Ci to the workload in the problem window is at most⌊
Dk

Ti

⌋
. The contribution of the carry-out job can then be

bounded by min(Dk mod Ti, Ci).
τi’s workload in the problem window is 0 for τi ∈ lep(k).
We can compute Wnc

i (Dk) by:

Wnc
i (Dk) =

{⌊
Dk

Ti

⌋
Ci + ωnc τi ∈ hp(k)

0 τi ∈ lep(k)
(2.1)

where ωnc = min(Dk mod Ti, Ci)
• Computing W ci

i (Dk)
If τi ∈ hp(k), the worst-case workload of τi is generated
when rjk coincides with the starting time of the carry-in
job of τi: moving the problem window backwards, the
contribution of carry-in cannot increase and the carry-out
can only decrease; while advancing the problem window,
the carry-in will decrease and the carry-out can increase
by at most the same amount. Such a situation is depicted
as case (a) in Figure 2. The contribution of the carry-in
job is bounded by Ci. Note that the first body job of
τi after the carry-in jobs, is released at time rjk + Ci +
Ti − Di. The number of body jobs that contribute to
τi’s workload is Ni(Dk) =

⌊
max(0,Dk−Ci−Ti+Di)

Ti

⌋
. The

contribution of the carry-out job can then be bounded by
min(Ci,max (0, Dk − Ci − Ti +Di) mod Ti).
For τi ∈ lep(k), only the carry in job of τi starting
execution before rjk can contribute to the workload in the
problem window.
Thus, we compute W ci

i (Dk) by:

W ci
i (Dk) =

{
(1 +Ni(Dk))Ci + ωci τi ∈ hp(k)

min(Dk, Ci) τi ∈ lep(k)
(2.2)

where

ωci = min(Ci,max (0, Dk − Ci − Ti +Di) mod Ti).

Lemma 2. If tasks are scheduled with a NP-FP scheduling
policy on a multicore processor composed of m identical cores,
at most m tasks have carry-in jobs.

Proof. See Lemma 5.2. in [10].

The task set τ can be partitioned into two subsets τnc and
τ ci that include tasks with carry-in jobs and tasks without
carry-in jobs in the problem window, respectively. According
to Lemma 2, τ ci has at most m tasks. Now we define Ωk as
the maximal value of the sum of all tasks’ workloads (other



than τk’ workload) in the problem window of τk among all
possible cases:

Ωk = max
∑
i 6=k

Wi(Dk)

= max
(τnc,τci)∈τ

(
∑
τi∈τnc

Wnc
i (Dk) +

∑
τi∈τci

W ci
i (Dk))

(2.3)

where τnc and τ ci satisfy τnc ∪ τ ci = τ\{τk}, τnc ∩ τ ci = ∅
and |τ ci| ≤ m.

By taking the maximum over the task set, Ωk describes an
upper bound on the total worst-case workload (other than τk’
workload) in the problem window of τk. The complexity to
compute Ωk is O(n), as explained in [3].

Replacing Ci. The computation of Wnc
i (Dk), W ci

i (Dk),
Ωk depends on Ci. We denote the value Ωk as Ωk(C) when
Ci is used in Equation (2.1) and (2.2). Fixing parameters other
than Ci in Equation (2.1) and (2.2), Wnc

i (Dk), W ci
i (Dk) and

the resulting Ωk are non-decreasing with respect to Ci. In the
following discussion, we will show that the actual execution
time of τi including cache interference could be larger than
Ci. Since cache interference could also contribute to the task
workload, we will use C∗i which is the sum of Ci and the upper
bound on cache interference exhibited by τi to replace Ci in
Equation (2.1) and (2.2) in order to get the correct upper bound
on the worst-case workload. We denote Ωk(C∗) as resulting
value if C∗i is used in the computation.

We are now ready to compute an upper bound of Īprek .

Lemma 3. If tasks are scheduled with a NP-FP scheduling
policy on a multicore processor composed of m identical cores
with shared cache,

Īprek ≤ Ωk(C∗)

m
Proof. Since the scheduling algorithm NP-FP is work-
conserving, in the time instants in which a job of τk is ready but
not executing, each core must be occupied by a job of another
task. As Iprek,k (rq∗k , d

q∗
k ) = 0, we can exclude the contribution

of τk to the interference. So

Īprek ≤
∑
i 6=k I

pre
i,k (rq∗k , d

q∗
k )

m
.

By Lemma 1, the interference that a task τi causes on a task
τk in the problem window is bounded its workload,

Iprei,k (rq∗k , d
q∗
k ) ≤Wi(Dk).

So, we have

Īprek ≤
∑
i6=k I

pre
i,k (rq∗k , d

q∗
k )

m
≤

max
∑
i 6=kWi(Dk)

m

=
Ωk(C∗)

m

C. Computing an upper bound of Īsck
We first identify the maximum cache interference between

two tasks and then we construct an integer programming
formulation to calculate the upper bound on the shared cache
interference exhibited by a task within an execution window.

1) Cache interference between two tasks: We first analyze
the cache interference during one job execution between τk
and τi. Let τk be the interfered and τi be the interfering task.

Following the approach in [12], we can obtain the WCET
of a task by performing a Cache Access Classification (CAC)
and Cache Hit/Miss Classification (CHMC) analysis for each
instruction memory access at the private caches and the shared
LLC cache separately. The CAC determines the possibility
that an instruction being fetched from memory will access a
certain cache level, and the access to a certain cache level can
be Always (A), Uncertain (U ) or Never (N ). CHMC assigns
a cache lookup result to each memory reference according to
the cache states. As a result, a reference to a memory block
of instructions can be classified as Always Hit (AH), Always
Miss (AM ) or Uncertain (U ).

Since we consider noninclusive caches, accesses to the
private caches cannot be affected by tasks executing on other
cores. Accesses classified as AM or U at the shared LLC
cache will also not be affected by shared cache interferences,
since they are already counted as misses in the WCET analysis.

We start the cache interference analysis by defining two
concepts for cache blocks.

Definition 2. A Hit Block (HB) is a memory block whose
access is classified as AH at the shared LLC cache.

Definition 3. A Conflicting Block (CB) is a memory block
whose access is classified as A or U at the shared LLC cache.

HB and CB can be identified by the approach proposed
in [12].

We use HBk = {mk,1,mk,2, ...,mk,p} to represent the set
of HB for task τk and use nk,x (x = 1, 2, ..., p) to denote the
number of mk,x’s accesses that are classified as a AH at the
LLC cache. Similarly, we define CBi = {mi,1,mi,2, ...,mi,q}
as the set of CB for task τi and denote ni,x as the number
of mi,x’s accesses that are classified as a A or U at the LLC
cache. Note that HBk and CBi includes the memory blocks
that meet the requirement in every program path that may be
taken by the task.

In our system architecture, cache interference occurs only
at the shared LLC cache when a cache line used by τk is
evicted by τi and consequently causing reload overhead for τk.
A cache line that may cause cache interference for τk needs
to satisfy at least two conditions:

(i) access to that cache line will result in a cache hit at the
LLC cache in WCET analysis of τk,

(ii) the cache line may be used by τi.
From the above two conditions, we can analyze memory

block accessing that may cause interference. The first con-
dition implies that only accessing to HBk may cause cache
interference for τk, while the second condition indicates that
accessing to CBi by τi may interfere with τk. Furthermore,
cache interference occurs only if τk accesses memory blocks
in HBk and τi accesses memory blocks in CBi concurrently,
and those memory blocks have the same cache index.



We use Isci,k to represent the upper bound on the shared
cache interference imposed on τk by only one job execution
of τi.

Suppose the indices of the LLC cache range from 0 to
N − 1, we can derive N subsets of HBk according to the
mapping function idx that maps a memory address to the cache
line index at the LLC cache as follows,

m̂k,u = {mk,x ∈ HBk|idx(mk,x) = u} , (0 ≤ u < N, u ∈ N).

We define the characteristic function of a set A which
indicates membership of an element x in A as:

χA(x) =

{
1 x ∈ A
0 otherwise

.

Let Nk,u represent the number of hit accesses to the u-th
cache line by τk without cache interference. Nk,u equals to
the total number of access to the HBs mapping to the k-th
cache line,

Nk,u =

p∑
x=1

nk,xχm̂k,u
(mk,x).

Similarly, we divide CBi into N subsets by

êi,u = {mi,x ∈ CBi|idx(mi,x) = u} , (0 ≤ u < N, u ∈ N).

The number of accesses to the k-th cache line by τi is
bounded by

Ni,u =

q∑
x=1

ni,xχêi,u(mi,x),

Cache interference can only happen among memory blocks
that are in the same subset that maps to the same cache line.
For the u-th cache line, τk can be interfered at most Nk,u
times and τi can interfere at most Ni,u times. The following
formula gives an upper bound on the number of cache miss
by accessing the HBs for task τk.

S(τi, τk) =

N−1∑
u=0

min(Ni,u, Nk,u)

Suppose the penalty for an LLC cache miss is a constant,
Cmiss, then Isci,k satisties:

Isci,k = S(τi, τk)Cmiss.

The computation only takes the memory accesses of τk and
τi as input, so Isci,k only depends on memory accesses of τk
and τi.

Lemma 4. Isci,k = S(τi, τk)Cmiss.

Proof. The lemma holds as discussed above.

Given a taskset, Isci,k can be computed, as shown in the proof
of Lemma 4. In the following discussion, we assume Isci,k is
known.

Lemma 4 gives an upper bound on cache interference for τk
imposed by only one job of τi. It is possible that more than
one jobs of τi interfere with τk. We denote the number of jobs
of τi that interfere with τk as Ni,k.

Lemma 5. The total cache interference τk exhibited from Ni,k
jobs of τi is bounded by Ni,kIsci,k.

Proof. For Ni,k jobs of τi, the total number of accesses to
each memory block mi,x is bounded by Ni,kni,x. Thus, the
execution of Ni,k jobs of τi accesses the k-th cache line also at
most Ni,kNi,u times. From the proof of Lemma 4, the upper
bound of the total cache interference exhibited by τk from
Ni,k jobs of τi is

∑N−1
u=0 min(Ni,kNi,u, Nk,u)Cmiss.

Ni,kI
sc
i,k = Ni,k

N−1∑
u=0

min(Ni,u, Nk,u)Cmiss

=

N−1∑
u=0

min(Ni,kNi,u, Ni,kNk,u)Cmiss

≥
N−1∑
u=0

min(Ni,kNi,u, Nk,u)Cmiss

2) IP formulation: We can compute an upper bound of
the maximum cache interference a task may exhibit during
an execution window by introducing an Integer Programming
(IP ) formulation, which can be transformed to an integer linear
programming formulation.

It is necessary to check the schedulability of the task-set
without considering cache interference. If the task-set does not
pass the initial schedulabity test, there is no need to calculate
the cache interference. Only if all tasks (including τi) pass the
schedulability test (without considering cache interference), the
IP is solved to compute the upper bound on cache interference.
Therefore, the IP formulation is based on the assumption that
τi is schedulable without cache interference.

If Ni,k jobs of τi executing concurrently with τk, the cache
interference that τi causes on τk is bounded by Ni,kI

sc
i,k

according to Lemma 5. As a task may exhibit cache interference
from more than one task during a job execution, the total cache
interference for one job execution of τk is bounded by the sum
of the contributions of all other tasks τi(i 6= k) in the task set
τ . Thus, the objective function of the IP formulation is:

max
∑
i 6=k

Ni,kI
sc
i,k. (2.4)

The IP formulation will have an unbounded solution without
further constraints to the variable Ni,k. To get a bounded
solution, we analyze the constraints on Ni,k. First, we define
the concept of the execution window of a job.

Definition 4. The Execution Window (EW ) of the j-th job
of τk (Jjk) is time interval [sjk, f

j
k ] from the staring time to the

finishing time of Jjk .

Note that the length of an execution window may be larger
than Ck, since the EW includes the cache interference. We
use C ′k as the length of the EW because of the iterative
computation which will be described later on.



Ni,k reaches its minimal value when a job of τi starts to
execute as soon as it is released and the execution finishes
just before the start of the EW , as shown the case (a) in
Figure 3. Denoting Cmini as the smallest execution time of τi,
often called Best-Case Execution Time (BCET), we have the
following constraint:

∀i 6= k,

⌊
max(0, C ′k − Ti + Cmini )

Ti

⌋
+ ξi ≤ Ni,k (2.5)

where ξi =

{
1 ((C ′k + Cmini ) mod Ti)−Di + Cmini > 0

0 otherwise
.

The term ξi indicates whether the last job of τi released
within the EW that interferes with τk since the last released
job should start its execution Cmini before its relative deadline
if the task is schedulable.

τi : (a)

τi : (b)

τk

sjk f jk

Cmini

Execution window: C ′k

Figure 3: Situations where τi interferes τk with the most and least
number of jobs.

The maximum value of Ni,k is taken when the first
interfering job of τi finishes just after the start of the EW
and the last interfering job of τi starts to execute at the time
when it is released. Such a situation is depicted as case (b) in
Figure 3. Thus, we have the second constraint on Ni,k:

∀i 6= k, Ni,k ≤ 1 +

⌈
max(0, C ′k − Ti +Di)

Ti

⌉
(2.6)

If Ni,k > 2, the first and last interfering jobs of τi may
occupy almost 0 computation capacity in the EW . Let Jji be
such a job among the remaining Ni,k− 2 interfering jobs of τi
between the first and the last ones. Both release time rji and
deadline dji of Jji are within the EW of τk.

Lemma 6. If τi is schedulable without considering cache
interference, Ci computation capacity of the processing core is
reserved for the execution of Jji during [rji , d

j
i ]. If Jji executes

for Cacti < Ci, the processing core will be accumulatively idle
(executing nothing, simply wasting the processing capacity for
τi) for at least Ci − Cacti during [rji , d

j
i ].

Proof. If τi satisfies the schedulability condition without
considering cache interference (shown in Pseudocode 1):
Ωi(C)
m + Ci < Di, the core on which Jji is executed spends

at most Di − Ci in total for the execution of other interfering
tasks during [rji , d

j
i ]. J

j
i is guaranteed to have Ci computation

capacity during [rji , d
j
i ].

The remaining computation capacity of a multicore processor
with m cores is (m− 1)C ′k since one core is dedicated to the
execution of τk. Due to the limited computation capacity of
the processor, the total execution of the tasks that may interfere
with τk within the EW can not exceed (m − 1)C ′k. Hence,
we have the third constraint:∑

i 6=k

max(0, Ni,k − 2)Ci ≤ (m− 1) C ′k. (2.7)

The objective function (2.4) together with three constraints
on Ni,k i.e. inequalities (2.5), (2.6) and (2.7) form our IP
problem. Since Cmini is a relatively small number, we take
the extreme case: Cmini = 0. As task parameters such as Ci,
Di, Ti is known, the optimal solution of the IP only depends
on the length of EW . Thus, we use Isc(C ′k) to denote the
optimal value of the IP problem if C ′k is used as the length
of the EW in the IP .

Note that Inequalities (2.5) and (2.7) are based on the
assumption that τi is schedulable. Thus, before solving the IP ,
we have to check the schedulability of the taskset assuming
no cache interference between tasks, i.e. Īsci = 0.

Computation complexity of the IP . The original IP can
be easily transformed to an Integer Linear Programming (ILP )
problem by introducing a new integer variable yi,j for each Ni,j
with two additional constraints: yi,j ≥ 0 and yi,j ≥ Ni,k − 2.
Inequality (2.7) can be replaced by

∑
i 6=k yi,kCi ≤ (m−1) C ′k.

In the transformed ILP problem, we have totally 2(n − 1)
variables and 4(n− 1) + 1 constraints. The complexity of the
IP is the same as the complexity of solving the transformed
ILP problem, which is O(4n64n ln 4n) [7].

V. ITERATIVE COMPUTATION

Due to the presence of cache interference, a job may execute
longer than Ck on a multicore platform with shared caches.
However, a larger execution time may introduce more cache
interference, as illustrated in Figure 4.

In Figure 4 (a), if the job of τk executes for C ′k, only one
job of τi interferes with τk. In Figure 4(b), if the job of τk
executes for a larger execution time, say C ′k+Isc(C ′k), two jobs
of τi could possibly interfere with τk, which potentially may
increase the cache interference exhibited by τk. This example
suggests an iterative method to find an upper bound on the
cache interference.

Figure 4: More cache interference if τk executes for a longer time.



Lemma 7. Isc(C ′k) is non-decreasing with respect to C ′k

Lemma 7 is explained by the above example.
We give a sufficient condition for a certain value that can

be used as an upper bound on cache interference.

Lemma 8. if ∃ C∗k ≥ Ck such that C∗k = Ck + Isc(C∗k), then
Isc(C∗k) is the upper bound on cache interference exhibited
by τk.

Proof. If C∗k = Ck + Isc(C∗k), then Isc(C∗k) = Isc(Ck +
Isc(C∗k)). According to Lemma 7, given an execution window
of τk that is no more than Ck+Isc(C∗k), the cache interference
exhibited by τk is not larger than Isc(C∗k). Therefore, Isc(C∗k)
is the upper bound on cache interference for τk.

We now derive the iterative algorithm, called
CacheInterference(τ) which takes taskset τ as input,
to compute an upper bound on cache interference for each
task τk ∈ τ :

• Since the constraints of IP assume the taskset is schedu-
lable, we first check the schedulability of the taskset
assuming no cache interference between each task. Only
if all tasks pass schedulability test, the following steps
will be taken.

• C ′k is initialized with Ck and an upper bound value on the
cache interference Isc(C ′k) is created which is initially
set to zero

• By solving the IP, we compute a new upper bound of the
cache interference Isc(C ′k).

• If the new upper bound of cache interference is the same
as the old upper bound, the Isc(C ′k) is the final upper
bound of τk. Otherwise, another round of computing the
upper bound on cache interference is performed using
the upper bound derived at the previous iteration. The
iteration for τk stops either if no update on Isc(C ′k) is
possible anymore or if the computed Isc(C ′k) is large
enough to make τk unschedulable.

• The previous steps are repeated for every task in τ .

A more formal version of the CacheInterference(τ,m)
algorithm is given by Pseudocode 1. The algorithm returns I∗

which includes the upper bounds on cache interference Isc(C∗k)
for each task τk and C∗ which includes the upper bounds on
the execution length C∗k for each τk. If I∗ and C∗ are empty,
the taskset is not schedulable. Since the solution of the IP is
non-decreasing with respect to C ′k according to Lemma 7 and
one termination condition is C ′k ≥ Dk, the termination of the
algorithm is guaranteed.

We propose the following Theorem to check the schedula-
bility of the task set.

Theorem 3. A task set τ is schedulable with the NP-FP
scheduling policy on a multicore platform composed of m
identical cores with shared caches if for each task τk ∈ τ

(1) ∃ C∗k ≥ Ck such that C∗k = Ck + Isc(C∗k),
(2) Ωk(C∗)

m + C∗k < Dk.

Pseudocode 1: CacheInterference(τ , m)
1: Input: Task parameters, number of cores: m
2: I∗ ← empty list, used to store Isc(C∗k) for each task
3: C∗ ← empty list, used to store C∗k for each task
4: pass ← true
5: for all τk ∈ τ do
6: Ωk(C) ← calculation of Equation (2.3) using C
7: if Ωk(C)

m + Ck ≥ Dk then
8: pass ← false
9: break

10: end if
11: end for
12: if pass then
13: for all τk ∈ τ do
14: update ← true, Ioldk ← 0, Inewk ← 0
15: C ′k ← Ck
16: while update do
17: Ioldk ← Inewk

18: Inewk ← Solution of IP with C ′k as the EW
19: C ′k = Ck + Inewk

20: if Inewk == Ioldk or C ′k ≥ Dk then
21: update ← false
22: end if
23: end while
24: Add Inewk to I∗

25: Add C ′k to C∗

26: end for
27: end if
28: return I∗, C∗

Proof. From (1), Isc(C∗k) is the upper bound on cache
interference exhibited by τk according to Lemma 8. So,
Isc(C∗k) ≥ Īsck .

From Lemma 3, Ωk(C∗)
m ≥ Īprek .

If Ωk(C∗)
m + C∗k = Ωk(C∗)

m + Ck + Isc(C∗k) < Dk then
Īprek +Ck+Īsck < Dk. Theorem 3 follows from Theorem 2.

Finally, we give the procedure CheckSchedulability(τ,m)
to perform the schedulability test, as illustrated by Pseu-
docode 2.
Pseudocode 2: CheckSchedulability(τ , m)

1: Input: Task parameters, number of cores: m
2: I∗, C∗ ← CacheInterference(τ,m)
3: if I∗ == null then
4: return Unschedulable
5: else
6: for all τk ∈ τ do
7: Ωk(C∗) ← calculation of Equation (2.3) using C∗

8: if Ωk(C∗)
m + C∗k ≥ Dk then

9: return Unschedulable
10: end if
11: end for
12: end if
13: return Schedulable



Computational complexity: Let n represent the number
of tasks in the task-set. For τk, let Imink be the smallest
difference between cache interference caused by one job
of τi and τj , i.e. Imink = min

i,j
(Isci,k − Iscj,k), the while

loop in CacheInterference(τ,m) takes at most γ =

max
k

(Dk−Ck)
Imin
k

times since C ′k either stays the same or increases

at least with Imink in each iteration. Thus, the complexity of
CacheInterference(τ) is O(γ4n264nln4n). The computa-
tional complexity of Ωk(C∗) is O(n). Therefore, the complex-
ity of CheckSchedulability(τ,m) is O(γ4n464nln4n).

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
schedulability test in terms of acceptance ratio. More specifi-
cally, we will quantify the effects of cache interference on the
schedulablity of the generated tasksets.

The experiments have been performed varying i) the number
of cores m (m = 2, 4 or 8), ii) the number of tasks n (n =
10, 20, or 30) in the taskset, iii) total task utilization Utot
(Utot from 0 to m with steps of 0.2), iv) the cache interference
factor IF (IF = 0, 0.3, 0.6 or 0.9), and v) the probability
of two tasks having cache interference on each other: P (P =
0.1, 0.2, 0.3 or 0.4). Given those five parameters, we have
generated 200000 tasksets in each experiment. As the task
generation policies may significantly affect experimental results,
we give the policies used in the experiments as follows.

Task utilization generation policy. We use Randfixed-
sum [18] to generate vectors that consist of N elements and
whose components sum to the Utot. Each element in the vector
is assigned an individual task utilization Uk in the taskset.

Task period and WCET generation policy. For each
task τk, Tk is uniformly distributed over the interval
[100000, 200000]. The WCET of τk is derived by Ck =
Tk ×Uk. We consider an implicit deadline task system, which
implies that Di = Ti.

Cache interference generation policy. The probability of
two task having cache interference is P . If two tasks τk and
τi interfere with each other, Isci,k is generated as Isci,k = IF ×
min(0.5Ci, 0.5Ck).

In each experiment, we measure the number of schedulable
tasksets that pass the proposed schedulability test. The accep-
tance ratio is the number of schedulable tasksets devided by
the total number of tasksets (200000).

Figure 5 shows the acceptance ratio for the case IF =
0, 0.3, 0.6, 0.9, when fixing m = 8, n = 10, P = 0.1. The
red line with IF = 0 represents the acceptance ratio when
tasks have no cache interference. Evidently, the acceptance
ratios with a lower IF are better than those with a larger
IF . As we increase IF with the same amount, the average
acceptance ratio decreases in a slower fashion. However, it
does not indicate that a lower bound on the average acceptance
ratio is possible since the cache interference gets larger as IF
increases, eventually making the interfered tasks unschedulable.

Figure 6 compares the acceptance ratio with different P ,
fixing m = 8, n = 10, IF = 0.3. With the same Utot, the

acceptance ratio decreases as P increases because a larger
P indicates more tasks in the taskset could interference with
each other, which may potentially increase the upper bound
on cache interference for each task.

Figure 5: Acceptance ratio with different IF when m = 8, n =
10, P = 0.1.

Figure 6: Acceptance ratio with different P when m = 8, n =
10, IF = 0.3.

Figure 7 illustrates the acceptance ratio with respect to the
number of cores. The acceptance ratio for task having no cache
interference is also plotted in Figure 7. Instead of using Utot
as horizontal axis, we scale the horizontal axis with Utot×8

m
for m = 2, 4. It is worth noting that an execution platform
with fewer cores is more efficient in terms of acceptance ratio
than those with more cores. However, for processors with
different cores, the difference in the acceptance ratio between
the baseline (tasks having no cache interference, IF = 0) and
tasks having cache interference is almost similar.

A set of experiments are performed to investigate the impact
of the number of tasks in the taskset on the acceptance ratio.
Figure 8 shows the acceptance ratio for different n in the
taskset. It is interesting to note that when Utot is less than
2, the acceptance ratio of tasksets with less tasks is slightly
worse than those with more tasks. When Utot is very small,
Uk and Ck in a taskset with more tasks are on average smaller
than those with more tasks, thus Isci,k is also smaller. While
as Utot increases, the acceptance ratio for tasksets with fewer
tasks becomes better than those with more tasks. This may be
due to the fact that more tasks in the taskset results in more
tasks having cache interference as P is fixed.

In order to compute the average running time of the proposed



Figure 7: Acceptance ratio with different m when IF = 0 or
0.3, P = 0.1, n = 10.

Figure 8: Acceptance ratio with different n when IF = 0.3, P =
0.1, m = 8.

schedulability test with different task-set scales, we measured
the execution time of the schedulability test for the task-sets
used in the previous experiment. The executions are conducted
on a server with an 48-core AMD processor (2.1GHz). On
average, it takes 0.2026 seconds to check the schedulability of
the task-set consisting of 10 tasks, 0.4925 seconds for task-set
with 20 tasks, while 1.0117 seconds for task-set with 30 tasks.

VII. CONCLUSIONS

In this paper, we developed a new schedulability analysis of
non-preemptive real-time scheduling for multicore processors
with shared caches. We constructed an integer programming
formulation that can be transformed to an integer linear
programming formulation to calculate the upper bound on
cache interference exhibited by a task during a given execution
window. Using this integer formulation, we subsequently
proposed an iterative algorithm to obtain an upper bound
on the shared cache interference a task may exhibit during
one job execution. We derive a new schedulability condition
by integrating the upper bound on the cache interference
into the schedulability analysis. A set of experiments has
been performed using our proposed schedulability analysis
to demonstrate the effects of cache interference for a range
of different tasksets. As for future work, we plan to extend
our schedulability analysis to real-time multicore systems with
shared caches that use preemptive task scheduling.
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