
SAC 2001

Performance Evaluation of the LH*lh Scalable, Distributed
Data Structure for a Cluster of Workstations

Vinay Gupta Mohit Modi
Indian Institute of Technology

New Delhi, India
�
mau96419,mau96409� @ccsun50.iitd.ac.in

Andy D. Pimentel
Dept. of Computer Science

University of Amsterdam
The Netherlands

andy@science.uva.nl

Keywords
Scalable distributed data structures, performance evaluation, clus-
ter of workstations

ABSTRACT
Scalable, Distributed Data Structures (SDDSs) can provide fast ac-
cess to large volumes of data. They allow the data structure to grow
or shrink without suffering from a penalty with respect to the space
utilization or the average access time. In this paper, we present a
performance study of one particular SDDS, called LH*LH, which
has been implemented for a cluster of workstations. Our experi-
mental results demonstrate that our LH*LH implementation is truly
scalable and yields access-times that are of an order of magnitude
smaller than a typical disk access. Furthermore, we also show that
parallel access to the LH*LH data structure can speed up client ap-
plications quite significantly.

1. INTRODUCTION
Modern data intensive applications require fast access to large vol-
umes of data. Sometimes the amount of data is so large that it can-
not be efficiently stored or processed by a uni-processor system.
Therefore, adistributed data structure can be used that distributes
the data over a number of processors within a parallel or distributed
system. This is an attractive possibility because the achievements
in the field of communication networks for parallel and distributed
systems have made remote memory accesses faster than accesses to
the local disk. So, even when disregarding the additional process-
ing power of parallel platforms, it has become more efficient to use
the main memory of other processors than to use the local disk.

It is highly desirable for a distributed data structure to be scalable.
The data structure should not have a theoretical upper limit after
which performance degrades (i.e. the access time is independent of
the number of stored data elements) and it should grow and shrink
incrementally rather than reorganizing itself totally on a regular ba-
sis. For distributed memory parallel computers, a number of Scal-
able Distributed Data Structures (SDDSs) have been proposed [1, 8,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SAC 2001, Las Vegas, NV
c
�

2001 ACM 1-58113-324-3/01/02...$5.00

5]. In these distributed storage methods, the processing nodes are
divided into clients and servers. A client manipulates the SDDS
by inserting, removing or searching for data elements. A server
stores a part of the data, called abucket, and receives data-access
requests from clients. To realize a high degree of scalability, an
SDDS cannot be indexed using a central directory since this would
form a bottleneck. As a consequence, the clients have an image of
how data is distributed which is as accurate as possible. This image
should be improved each time a client makes an “addressing error”,
i.e. contacts a server which does not contain the required data. If a
client makes an addressing error, then the SDDS is responsible for
forwarding the client’s request to the correct server and for updat-
ing the client’s image.

For an efficient SDDS, it is essential that the network communica-
tion needed for data operations (retrieval, insertion, etc.) is mini-
mized while the amount of data residing at the servers (i.e. theload
factor) is well balanced. An example of an SDDS addressing these
issues isLH* [5]. This SDDS is a distributed variant of Linear
Hashing (LH) [4], which will be elaborated upon in the next sec-
tion. For LH*, insertions usually require one message (from client
to server) and three messages in the worst case. Data retrieval re-
quires one extra message as the requested data has to be returned.

In this paper, we present a performance evaluation of a variant
of the LH* SDDS, called LH*LH [3], for a cluster of worksta-
tions (COW). Previous studies already showed good performance
of LH* LH when targeting multicomputers. In [2], an actual im-
plementation for a Transputer-based machine has been evaluated,
while in [7] simulation was applied to investigate LH*LH’s per-
formance for a PowerPC-based multicomputer. In this study, we
try to gain insight into how today’s COWs with their commodity
networks affect LH*LH’s performance. Our final goal is to embed
LH* LH into a real-world distributed Web-cache application.

The next section briefly explains the concept of Linear Hashing.
In Section 3, we discuss the LH*LH SDDS and describe its im-
plementation for a cluster of workstations. Section 4 describes our
experimental setup and presents the performance results. Finally,
Section 5 concludes the paper.

2. LINEAR HASHING
Linear Hashing (LH) [4] is a method to dynamically manage a table
of data. More specifically, it allows the table to grow or shrink
in time without suffering from a penalty with respect to the space
utilization or the access time. The LH table is formed by�����	��
�
buckets, where� is the number of starting buckets (����� and

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-287-5/01/02…$5.00

544

SAC 2001

�������). Themeaningof � and � is explainedlateron. Thebuckets
in the� tableareaddressedby meansof apairof hashingfunctions� �
and � ����� , with ��� �"!#�$!%�'&(&(& Eachbucket cancontaina predefined
numberof dataelements.Thefunction � � hashesdatakeys to one
of thefirst �)�*� � bucketsin thetable.Thefunction � �+�,� is usedto
hashdatakeys to theremainingbuckets. In this paper, we assume
hashfunctionsof theform

� �
-
key .�/ key mod

- �0�1� � . (1)

The LH datastructuregrows by splitting a bucket into two buck-
etswhenever a certainloadthresholdis exceeded.Thebucket that
needsto besplit is determinedby aspecialpointer, referredto as � .
Theactualsplitting involvesthreesteps:creatinganew bucket,di-
viding thedataelementsover theold andthenewly createdbucket
andupdatingthe pointer � . Dividing the dataelementsover the
two buckets is doneby applying the function � ����� to eachele-
mentin thesplitting bucket. The � pointeris updatedby applying
�2� - ��
2�3.5476	89�:�;�	� . Indexing the LH datastructureis
performedusingboth � � and � �+�,� :

index <>=3?A@CBEDF��� �
-
key . (2)

if (index <G=3?A@HBED �I�J. thenindex <>=3?A@CBEDF��� �����
-
key .

As the buckets below the � pointer have beensplit, thesebuck-
etsshouldbe indexed using � �+�,� ratherthanwith � � . When the
� pointerwrapsaround(becauseof the modulo), � shouldbe in-
cremented.The processof shrinkingis similar to the growing of
theLH datastructure.In this study, we limit our discussionto the
splitting within SDDSs.

3. THE LH* LH SDDS
The LH* SDDS is a generalizationof Linear Hashing(LH) to a
distributed memoryparallel system[5]. In this paper, we focus
on a particularvariantof LH*, calledLH* LH [2, 3]. The LH* LH

datais storedover a numberof server processesand can be ac-
cessedthroughdedicatedclient processes.Theseclientsform the
interfacebetweenan applicationandLH* LH. For this study, we
assumethateachserver storesone LH* LH bucket of data. Glob-
ally, theserversapplytheLH* schemeto managetheir data,while
theserversusetraditionalsequentialLH for their localbucketman-
agement.Thus,a server’s LH* LH bucket is implementedasa col-
lectionof LH buckets.

As waspreviously explained,addressinga bucket in LH is done
using a key and the two variables � and � (seeEquation2). In
LH* LH, the clients addressthe servers in the samemanner. To
do so,eachclient hasits own image of the values� and � : �GK and
� K respectively. Becausethe images � K and � K may not be up to
date,clientscanaddressthe wrong server. Therefore,the servers
needto verify whetheror not incomingclient requestsarecorrectly
addressed.If a requestis incorrectly addressed,then the server
forwardstherequestto theserver thatis believedto becorrect.For
this purpose,theserver usesa forwardingalgorithm[5] for which
it hasbeenproventhata requestis forwardedat mosttwice before
the correctserver is found. Eachtime a requestis forwarded,the
forwardingserver sendsan ImageAdjustmentMessage(IAM) to
the requestingclient. This IAM containsthe server’s local notion
of � and � and is usedto adjustthe client’s � K and � K in order to
get themcloserto theglobal � and � values.Consequently, future
requestswill haveahigherprobabilityof beingaddressedcorrectly.

Thesplitting of an LH* LH bucket (a global split) is similar to the
splitting of LH buckets.Thepointer � is implementedby a special

tokenwhich is passedfrom server to server in thesamemanneras
� is updatedin LH: it is forwardedin a ring formedby theservers
0 to �L�M� � , where � is the numberof startingservers. When
a server holdsthe � token andits load factorexceedsa particular
threshold,the server splits its LH* LH bucket andforwardsthe �
token. We apply the thresholdproposedin [5], which hasshown
to beeffective. Splitting an LH* LH bucket is doneby initializing
a new server (by sendingit a specialmessage)andshippinghalf
of the LH buckets to the new server (rememberthat an LH* LH

bucket is implementedasa collectionof LH buckets). During a
global split, it is not requiredto separatelyvisit or rehashall data
elements.In LH* LH, theLH bucketswith anoddindex areshipped
to thenew serverwhile theevenbucketsarecompactedandremain
at thesplitting server. Thebucket shipmentscanbedonein a bulk
fashion(transferringa whole LH bucket in a single message)or
usingmessagescontainingoneto a few dataelementsonly. In the
next section,we will elaborateon the actualdesigndecisionswe
madefor our prototypeLH* LH implementation.

3.1 An implementation of LH* LH for a COW
We have developeda prototypeimplementationof LH* LH for a
clusterof workstations(COW) whichusesTCP/IPsocketsfor com-
munication[6]. Currently, it supportsonly insertandlookupoper-
ations. Insertionsarealwaysexplicitly acknowledgedby a server,
which allows for determiningwheninsertionshave actuallybeen
committedat theserver sideandarenot floatingaroundin thenet-
work anymore. At startup,a specifiednumberof client andserver
processesareplacedat theworkstationswithin thecluster. For our
prototypeimplementation,at most one client and server process
canbeplacedon a singlemachine.Clientsandserverscannotbe
dynamicallycreatedat run time. This meansthat in order to al-
low globalsplitting, server processescanassumeeitheroneof the
following two states:active anddormant. The active serversare
immediatelypartof theLH* LH SDDS,while thedormantservers
wait to beactivatedto join theSDDSwhena new server is needed
in thecaseof aglobalsplit. If therearenodormantserversleft, then
theglobalsplittingis deactivatedandthetotalnumberof serversre-
mainsconstantafterthatpoint.

Theserverprocessesarecomposedof two threadswhicheachhave
their own socket connectionto all theotherserver processes.The
first thread,which we refer to as the server thread, handlesthe
requestsfrom clientsaswell asthe forwardedrequestsfrom other
servers.It maintainsthelocalLH tableandtakescareof forwarding
arequestin thecaseof anaddressingerror. Themainresponsibility
of theotherthread,calledthesplitter thread, is theglobalsplitting.
Besidesthis, it also takescareof several other taskssuchas for-
wardingthe split token andactivating a (dormant)server whenit
needsto join theSDDS.Onceasplitterthreadreceivesthesplit to-
ken, it waits for a signalfrom theserver threadbeforeinitiating a
globalsplit. Theserver threadonly signalsthesplitterthreadwhen
the server becomesoverloadedandthereis still a dormantserver
available.

Becauseboththreadsin aserverprocesshaveaprivatesocketcom-
municationlink, concurrent splitting [2] is allowed. This implies
thatwhenthesplitterthreadshipshalf of thedatato anewly created
server, theserver threadcontinuesto handleincomingrequests.If
theserverthreadnoticesthatarequestedpieceof datahasbeenor is
beingshipped,thenit forwardstherequestto thenew server. The
advantageof concurrentsplitting is that it allows for overlapping
(partsof) thecommunicationoverheaddueto thesplittingbymean-
ingful computation. However, sinceboth the server and splitter

545

SAC 2001

threadsshareaccessto thesamelocal LH* LH bucket, mutualex-
clusionN needsto beenforcedto protecttheconsistency of theshared
data.It is imperative thatthesemaphorelocking schemeestablish-
ing themutualexclusionisefficientanddoesnotgreatlyhamperthe
parallelismbetweenthetwo threads.Our locking schemeoperates
at thegranularityof LH buckets,which providesenoughfreedom
for parallelaccessto theLH datastructure.A detaileddescription
of thelockingmethodsis beyondthescopeof thispaperbut canbe
foundin [6].

At a globalsplit, our prototypeimplementationcurrentlyperforms
theshipmentof LH bucketsatagranularityof singledataelements.
Thismeansthatfor everyshippeddataelementa separatemessage
is used.We decideduponthis approachasan initial implementa-
tion whichis easyto realizebut whichis probablyalsonotthemost
efficient one.Hence,we do not addresstheperformanceimpactof
differentshipmentstrategiesbut regardthisasfuturework.

4. EXPERIMENT AL RESULTS
To conducttheperformanceanalysisof our LH* LH prototypeim-
plementation,we usedan applicationwhich builds the SDDSby
insertinga largenumberof dataelements.Theapplicationusesa
Dutchdictionaryof roughly180,000wordsfor thedatakeys. At-
tachedto eachkey isadataelementwhichhasasizeof 1 Kb (unless
statedotherwise).If multiple clientsareusedto build the SDDS,
thenthey eachinserta differentpart of the dictionaryin parallel.
Due to spacerestrictions,this sectiononly presentsa selectionof
our experimentalresults.More results,includingfor exampledata
retrieval performance,canbefoundin [6].

Theplatformusedfor our experimentsis a clusterof workstations
consistingof eight nodeswith eachtwo 300MhzPentiumII pro-
cessorsand 512 Mb main memory. This makes a total of 4 Gb
of memorywhich we regardasthe upperlimit for LH* LH’s size
in our experiments. The workstationsareconnectedto both 100
Mb/s FastEthernetand1.28Gb/sMyrinet. Our prototypeimple-
mentationis capableof selectingbetweeneitheroneof thesetwo
networksbut it usesFastEthernetby default. For ourexperiments,
the clientsaremappedonto nodes1 up to 8 while the serversare
mappedontonodes8 down to 1. So,if theapplicationis executed
with 8 clientsandthe LH* LH SDDShasgrown to 8 servers,then
eachnodeeffectively is handlingbothaclientandaserverprocess.

Figure1(a)shows the time it takesto build theLH* LH SDDSfor
��!C�'!O&(&(&(!CP clients. In this experiment,the SDDS startswith one
server. The datapoints in Figure1(a) correspondto the points in
time whereglobalLH* LH splitstake place.Clearly, thesplitsstop
afterabout80K insertionsbecausetheSDDShasgrown to themax-
imumnumberof eightserversof ourexperimentalsetup.Notethat
this limit is no waya restrictionimposedby thedatastructure.

LH* LH’sperformancebehavior onaCOW, asshown in Figure1(a),
closelycorrespondsto its behavior on multicomputerarchitectures
[2, 7]. Figure1(a)demonstratesthatLH* LH is truly scalablesince
thebuild timescaleslinearlywith thenumberof insertions.Hence,
the insertionlatency doesnot deterioratefor large datastructure
sizesandis dominatedentirelyby themessageroundtriptime. In
addition,Figure1(a)showsthatthebuild-timedecreaseswhenmore
clientsareused. This is dueto the increasedparallelismaseach
client concurrentlyoperateson theLH* LH SDDS.Figure1(b)de-
pictshow theobtainedinsertionthroughputrelatesto theidealbe-
havior whenincreasingthenumberof clients.Theresultsshow that
theperformancescalesquitewell up to about5 clients,afterwhich

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180

T
im

e
(s

ec
s)

Q

Number of insertions (x 1000)

Build Time

1 client
2 clients
3 clients
4 clients
5 clients
6 clients
7 clients
8 clients

(a)

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8
T

hr
ou

gh
pu

t (
in

se
rt

s/
se

c)
Number of clients

 Ideal and actual throughput

Actual
Ideal

(b)

Figure1: SDDSbuild time whenusing1 starting server (a) and
speedupfor multiple clients (b).

network andservercontentionhaltstheperformanceimprovement.

In Figure2, the averageinsertiontime asexperiencedby the ap-
plication is plotted. Again, the datapoints refer to the moments
in time wheresplitsoccur. Thedifferentcurvescorrespondto the
performancewhen varying the numberof clients. From the top
downwards,thefirst curve depictstheaverageinsertiontime for a
singleclient, the next oneshows the performancefor two clients
andsoon. As expected(seeFigure1), theaverageinsertiontime
improveswhenincreasingthenumberof clients. The averagein-
sertiontime for oneclient (sequentialaccessto thedatastructure)
staysbelow 0.85ms,while 8 clientsyield anaverageinsertiontime
of about0.2ms. Thesenumbersarean orderof magnitudefaster
thanthetypical time to accessa disk. This clearly justifiestheuse
of a datastructurelike LH* LH.

At theoccurrenceof globalsplits,Figure2 shows small increases
of theaverageinsertiontime. This is dueto thecontentionbetween
theserver andsplitter threadsfor the local LH datastructure.An-
other phenomenonwe observed is that below 30K insertionsthe
configurationwith 8 clientsperformsslightly worsethanwhenus-
ing 6 or 7 clients. This canbe explainedby the fact that a larger
numberof clientsrequiresthecreationof enoughserversbeforethe
clientsareableto effectively exploit parallelism,i.e.allowing them
to concurrentlyaccesstheSDDSwith low server contention.Evi-
dently, afterabout30K insertions,theSDDShasgrown to enough
serversto support8 clients.

546

SAC 2001

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

T
im

e
(m

s)

Number of insertions (x 1000)

Average insertion time

Figure 2: Average insertion time measured fr om the applica-
tion’ s point of perspective (1 starting server).

In Figure3, a histogramis plottedof the insertiontimesmeasured
atasingleclient. Theresultsarefor 8 clientsand3 startingservers.
Mostaccesses(morethan70%)lie in anarrow bandbetween0.6ms
and0.8mswhich onceagainhighlightsthescalabilityanduniform
performanceof theSDDS.Thesmallclusternear0.25msis caused
by the way we mappedthe server and client processesonto the
availablenodes.Whena server andclient getmappedto thesame
node,accessesby theclient to the local server aremuchfasteras
opposedto remoteaccessessincethey donotrequirenetwork com-
munication. The small numberof relatively slow insertions(up
to about2.5ms)areagaincausedby server contention(both due
to multiple clients accessingthe sameserver and the two server
threadscontendingfor thesharedLH structure).

Sofar, all experimentsuseddataelementsof 1 Kb, therebybuilding
adatastructureof about175Mb. In Figure4, theresultsareshown
for anexperimentin whichweincreasedthedataelementsizeto re-
spectively 2, 4 and8 Kb. Usingdataelementsof 8 Kb, adatastruc-
tureof morethan1.4Gb is created.In this experiment,we used3
startingservers. Notethat thex-axis in Figure4 hasa logarithmic
scale.Thecurvesindicatethat theaverageinsertiontime is linear
to thedatasize.Of course,this is not surprising,knowing that the
insertionperformanceis dominatedby themessageroundtriptime.
Thedeteriorationof theinsertionperformancedueto largerdatael-
ementsbecomesslightly worsefor anincreasingnumberof clients.

0

250

500

750

1000

1250

1500

1750

2000

0 0.5 1 1.5 2 2.5

N
um

be
r

of
 in

se
rt

s

R

Time (ms)

Insertion performance histogram

Figure3: Histogram of insertion latenciesfor a singleclient. In
this experiment,weused8 clientsand 3 starting servers.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8

A
ve

ra
ge

 in
se

rt
io

n
tim

e
(m

s)

S

Data element size (Kbytes)

Performance with varying datasize

1 client
2 clients
4 clients
8 clients

Figure 4: Insertion performance when varying the data size
(with 3 starting servers).

Evidently, moreclientsgeneratehighernetwork contentionwhich
reducestheavailableparallelism.

ThepreviousexperimentsallowedLH* LH to grow upto 8 servers.
Figure5 depictstheSDDSbuild timeswhenvaryingthemaximum
numberof serversto 1, 2, 4 or 8. The resultsareshown for two
experiments,using4 clients(Figure5a)and8 clients(Figure5b).

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180

T
im

e
(s

ec
s)

Q

Number of insertions (x 1000)

Build time: varying number of total servers (4 clients)

1 server
2 servers
4 servers
8 servers

(a)

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

T
im

e
(s

ec
s)

Q

Number of insertions (x 1000)

Build time: varying number of total servers (8 clients)

1 server
2 servers
4 servers
8 servers

(b)

Figure 5: Insertion performance when varying the maximum
number of servers (with onestarting server), using4 clients (a)
or 8 clients (b).

547

SAC 2001

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180

T
im

e
(s

ec
s)

Q

Number of insertions (x 1000)

Fast Ethernet v.s. Myrinet

FE, 1 client
FE, 3 clients
FE, 6 clients

Myrinet, 1 client
Myrinet, 3 clients
Myrinet, 6 clients

Figure 6: Comparing the build times for Fast Ethernet (FE)
and Myrinet for several client configurations (with 3 starting
servers).

Both experimentsuseonestartingserver, and the datapoints on
the curvesagainrefer to global splits. The obtainedperformance
for 4 clientscan be orderedin decreasingorderas2, 4, 1 and8
servers(wherethe resultsof 2 and4 serversarenearlyidentical).
Interestingin thisrespectis thatallowing theSDDSto grow upto 8
serversgivestheworstperformance.This is becausetheoverhead
of theglobalsplitsoverwhelmstheimprovementin insertiontime
dueto enhancedparallelism.Notethatimproving ourdatashipping
schemefor globalsplits(usingbulk shipmentsinsteadof shipping
singledataelements)will affect theperformancetrade-off between
splitting penaltiesandenhancedparallelism.

When increasingthe numberof clients (seeFigure 5b), the per-
formanceorderafter180K insertionsfor thesameexperimentbe-
comes4, 2, 8 and1 (againin decreasingorder). We observe that
theperformancerankingof theconfigurationswith a highernum-
berof maximumservers(4 and8) hasimproved.Fromthis wecan
concludethatthe largernumberof clientsshifts thebalanceof the
trade-off betweenglobal split penaltiesandthe increaseof paral-
lelism asthey tendto favor a higherdegreeof parallelism. More
researchis neededto understandhow to optimizethisperformance
trade-off for differentnumbersof clients.

In Figure6, the LH* LH build timesareshown for both FastEth-
ernetand Myrinet with the default 1 Kb dataelements.The re-
sultsarefor threestartingserversanda maximumof eightservers.
We wereunableto performtheexperimentwith 8 clientsdueto a
faulty Myrinet network interface,which explainsthechosenclient
configurations(1, 3 and6 clients). ComparingFastEthernetand
Myrinet, we observed slightly betterperformancefor FastEther-
net. At first sight, this may be surprisingbecauseof Myrinet’s
higherbandwidth,but Myrinet alsosuffers from a highercommu-
nicationlatency thanFastEthernet.The resultsthereforesuggest
that themessageroundtriptime of insertionrequestsis dominated
by thenetwork latency ratherthanthenetwork bandwidth.Experi-
mentswith largerdatasizes(notshown here)indicatethatonly for
very largedataelements(in theorderof megabytes)Myrinet starts
to outperformFastEthernet. Of course,our shippingschemein
which every singledataelementseparatelyincurscommunication
latency, doesnot contribute to a goodperformancein the caseof
Myrinet.

5. CONCLUSIONS
In this paper, we presenteda performanceevaluationof a proto-
typeimplementationof theLH* LH distributeddatastructurefor a
clusterof workstations.Ourprototypehasdemonstratedto betruly
scalableas the time to insertdataelementsis independentof the
sizeof the datastructure. In the caseof sequentialaccessto the
datastructure,theaverageinsertiontime hasbeenfound to be an
orderof magnitudefasterthanatypicaldiskaccess.Insertiontimes
caneven bereducedby usingmultiple clientswhich concurrently
insertdatainto thedistributeddatastructure.Our resultsshow that
for a maximumof 8 servers the speedupof insertionsscalesrea-
sonablywell up to about5 clients.

We alsofoundthat the insertionperformanceof our prototypeim-
plementationis dominatedby the messageroundtrip time and in
particularby thenetwork latency. This explains,for example,why
our experimentson a Myrinet network only outperformtheexper-
imentson a Fast Ethernetnetwork for very large datasizes(as
Myrinet provideshigh bandwidthbut alsosuffersfrom highernet-
work latencies).

Futurework will extendour experimentsto includemoreaspects
of LH* LH’s functionality. An exampleis the optimizationof the
global-splitthresholdfunctionby studyingtheincorporationof pa-
rameterslike the availablememoryof the hosts(asclustersoften
areheterogeneous)andthenumberof clientsaccessingtheSDDS.
The latter hasshown to affect the performancetrade-off between
global split penaltiesand the increaseof parallelismby adding
servers.

6. REFERENCES
[1] R. Devine.Designandimplementationof DDH: A distributed

dynamichashingalgorithm.In Proc. of the 4th Int. Conference
on Foundations of Data Organization and Algorithms, 1993.

[2] J.S.Karlsson.A scalabledatastructurefor a paralleldata
server. Master’s thesis,Dept.of Comp.andInf. Science,
LinköpingUniversity, Feb. 1997.

[3] J.S.Karlsson,W. Litwin, andT. Risch.LH*lh: A scalable
highperformancedatastructurefor switchedmulticomputers.
In Advances in Database Technology, pages573–591,March
1996.

[4] W. Litwin. Linearhashing:A new tool for file andtable
addressing.In Proc. of VLDB, 1980.

[5] W. Litwin, M.-A. Neimat,andD. Schneider. LH*: A scalable,
distributeddatastructure.ACM Transactions on Database
Systems, 21(4):480–526,Dec.1996.

[6] M. Modi, V. Gupta,andA. D. Pimentel.LH*lh:
Implementationon a clusterof workstations.Technicalreport,
Dept.of ComputerScience,Universityof Amsterdam,July
2000.

[7] A. D. PimentelandL. O. Hertzberger. Evaluationof LH*lh
for a multicomputerarchitecture.In Proc. of the EuroPar
Conference, pages217–229,Sept.1999.

[8] R. Vingralek,Y. Breitbart,andG. Weikum.Distributedfile
organisationwith scalablecost/performance.In Proc. of
ACM-SIGMOD, May 1994.

548

