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Abstract—The energy consumption of digital services has
become a concern for stakeholders committed to sustainability.
Raising awareness of this consumption is essential to improve
the energy efficiency of digital services. However, expressing the
energy usage of digital services in an easily understandable and
actionable way remains a challenge.

We address this challenge by proposing a first operational
energy labeling method for digital services in the computing
continuum. Our approach enables stakeholders, including cloud
and network providers, application developers, researchers, and
end-users of digital services, to better understand and improve
the energy efficiency of their applications.

Focusing on video surveillance digital services, and using the
enhanced iFogSim framework, we propose an energy labeling
scheme, and demonstrate its merits with extensive scenario anal-
ysis and simulation. We further discuss how our approach can
help reduce energy consumption and/or improve performance,
all without modifying the application’s functional parameters or
system architecture.

Index Terms—Application Energy Labels, Sustainable Digital
Services, Computing Continuum, Energy Consumption

I. INTRODUCTION

Digital services have become indispensable in our daily
lives, driving advancements in communication, entertainment,
healthcare, and online shopping. However, their growing en-
ergy demands raise sustainability concerns, given the fast-
paced digitization processes and their significant contribution
to global energy consumption and carbon emissions [1].

To address these concerns, detailed data collection and
analysis are needed to accurately assess the energy consump-
tion of digital services. However, the distributed nature of
such services and the complex, heterogeneous, multi-tenant
infrastructure they use make it difficult to measure and at-
tribute energy consumption. The lack of widely accepted
energy measurement frameworks for complex applications
and systems further limits awareness and hinders informed
decision-making for better energy consumption optimization.
Finally, the limited understanding of the specialized data and
metrics that various frameworks provide (e.g., FLOPS/Watt)
further hinders the ability of stakeholders to understand when
and how they can afford to reduce energy consumption.

Raising awareness of the energy consumption of digital
services in a meaningful and action-ready way is crucial for

sustainability in the Information and Communication Tech-
nology (ICT) sector. We argue that effectively expressing the
current energy usage of digital services can benefit stake-
holders, including cloud providers, application developers, and
end-users, but remains a challenge. Thus, we investigate the
merits of energy labels for digital services based on the idea
that energy labeling, standardized for many appliances, helps
consumers make informed choices with a better understanding
of the trade-offs such choices imply. Adopting such a scheme
in ICT is limited to a couple of attempts, for machine learning
models and data centers [2]–[4], however, it holds promise to
raise awareness and empower various stakeholders in making
choices for more sustainable deployment and operation.

In this work, we propose a first transparent energy labeling
system for digital services in the computing continuum. We
demonstrate our energy labeling using a configurable video
surveillance application, a workload with high data processing
and energy demands. We construct the energy labels using
energy consumption data from simulations conducted using
an enhanced iFogSim framework on a four-tier computing
continuum architecture, demonstrating how our the labeling
scheme can differentiate and classify the simulated scenarios
based on their energy consumption. Finally, we briefly discuss
how these labels could reduce energy consumption.

Our work makes two major contributions: (1) we demon-
strate how to use simulation models to characterize the energy
consumption of digital services across deployment scenarios
and application-specific parameters, and (2) we propose an
operational framework that converts an application’s energy
profile into energy labels. The source code for this work is
available at https://github.com/saeedehbaneshi/IFogSim.

II. BACKGROUND

This section presents the simulation environment, the se-
lected configurable workload (i.e., the case-study application),
and the continuum architecture.

A. The Enhanced iFogSim Framework

Simulation frameworks such as CloudSim [5], NS-3 [6], and
iFogSim [7], assess energy consumption in fog computing.
However, they often lack end-to-end energy analysis for the
computing continuum, as they focus on either computation

https://github.com/saeedehbaneshi/IFogSim
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Fig. 1: Surveillance Application Architecture [7].

or networking energy consumption. Moreover, current en-
ergy models are often limited to device level, failing to
account for multi-tenancy, device-sharing, or requiring low-
level inputs [8], [9]. Among these tools, iFogSim models
fog environments by placing application modules across con-
tinuum devices [7], [10]. However, out-of-the-box, it only
reports computing energy consumption, ignoring networking
and thus limiting end-to-end energy estimation for distributed
applications, and reports only coarse, per-device data.

Recent work introduced an enhanced iFogSim that inte-
grates computational and networking energy for end-to-end
estimations in multi-application fog environments [9]. This
enhanced iFogSim features a time-based model for estimating
Network Interface Card (NIC) energy in end-user devices and
a flow-based model for shared devices (fog nodes and cloud
data centers), along with fine-grained energy reporting and
per Virtual Machine (VM) calculations. These improvements
enable detailed energy analysis and optimizations. Therefore,
we use the enhanced iFogSim to collect our digital service
energy consumption data.

B. Workload: Surveillance Application(s)

Our workload of choice for energy labeling is a surveil-
lance application, a well-known case study in edge, fog, and
cloud computing [7], [8]. The application consists of six
interconnected modules: (1) Cameras continuously capture
and transmit video frames; (2) the Motion Detector analyses
the video streams and identifies moving objects; (3) the Object
Detector extracts moving objects, calculating their coordinates
for subsequent tracking; (4) the Object Tracker calculates op-
timal configurations for Pan-Tilt-Zoom (PTZ) cameras, which
adjust via (5) a PTZ Control module in smart cameras; finally,
(6) the User Interface module aggregates processed video
feeds, including tracked objects, for the end-users.

Figure 1 presents the surveillance application architec-
ture [7], showing data flow and module interactions. Applica-
tion parameters such as input frame rate or deployment, sig-
nificantly impact energy consumption, as seen in Section IV.

C. System: continuum architecture

The computing continuum architecture proposes a hierar-
chical view of the distributed system for surveillance data
processing. In this work we employ a four-layer architecture,
where cameras (end-user equipment and sensors) connect
through a router and a proxy server to the cloud. Figure 2
illustrates this architecture and specifies device latencies.

The system configuration can be modified to assess the
performance and energy footprint across various scenarios, as
demonstrated in Section IV.
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Fig. 2: Continuum architecture including links latencies.

III. RELATED WORK

There have been a few proposals for applying energy labels
in ICT. For example, Kern et al. [2] introduced a sustainability
labeling system for software products and websites, assess-
ing ”Efficiency, Feasibility, and Perdurability”. They propose
various label formats, including energy footprint declarations.
However, their framework is theoretical, with limited practical
application. Castano et al. [4] analyzed the carbon footprint
of Machine Learning (ML) models on the Hugging Face
platform, identifying carbon emissions patterns and labeling
models from A (most efficient) to E (least efficient) to promote
transparency. In a separate study, Duran et al. [3] introduced
GAISSALabel, a web-based tool for evaluating ML energy
efficiency using weighted metrics like CO2 emissions, power
draw, and model size. Both studies are ML-specific. Moreover,
although these studies demonstrate that labels incentivize
sustainable computing, they overlook device diversity and
deployment environments, which impact energy consumption.

Beyond labeling, many studies examine software environ-
mental impacts. Tools like CodeCarbon [11] and Carbon-
tracker [12] estimate software CO2 emissions, while cloud
platforms (AWS, GCP, and Azure) provide ML-specific emis-
sion tracking [3]. However, these approaches often overlook
deployment scenarios and device diversity in the computing
continuum. A prior study also using the enhanced iFogSim [9],
demonstrated how deployment impacts energy consumption in
video surveillance applications; however, we are taking the
next step to introduce energy labeling as a simpler communi-
cation and incentives tool.

Building on this foundation, our work explores a broad
range of deployment scenarios and establishes an energy
labeling system to qualify consumption. The labels facilitate
data analysis and enhance stakeholder understanding and par-
ticipation in promoting sustainability within the ICT sector.

IV. ENERGY LABELING METHODOLOGY

This section presents our energy labeling approach and
demonstrates its feasibility for a surveillance application run-
ning in the computing continuum. Intuitively, the labeling pro-
cess involves two steps: establishing the application’s energy
consumption range using the enhanced iFogSim framework
and categorizing it into energy classes.



TABLE I: Application inter-module parameters [7]
Tuple type CPU load [MI] Data Size [B]
RAW VIDEO STREAM 1000 20000
MOTION VIDEO STREAM 2000 2000
DETECTED OBJECT 500 2000
OBJECT LOCATION 1000 100
PTZ PARAMS 100 28

TABLE II: Fog devices for our continuum architecture [7].
Device Computational RAM Power [W]
type Capacity [MIPS] [GB] Max Idle
Cloud 44800 40 1648.0 1332.0
Proxy server 2800 4 107.3 83.4
Router 2800 4 107.3 83.4
Smart camera 500 1 87.5 82.4

A. Energy consumption range

We define a scenario as a deployment mapping, i.e., a
placement of modules to system components. To define the
application’s energy consumption range, we identify the best
and worst application scenarios. We considered three main
options: (1) a generic min/max definition (roughly based
only on the system architecture), (2) an application-specific
range, and (3) a workload-specific range. The main trade-
off between these approaches is generality (one range for
all applications) versus scenario-specific differentiation (one
range per workload configuration). We adopt the application-
aware options ((2) and (3)), thus defining a unified range for
multiple configurations.

Studies show that energy consumption decreases when
processes run on devices closer to the user and increases
when they are moved to the cloud [9]. Therefore, we assume
that the Cloud-based scenario (all modules on the cloud) is
the worst case, and the Edge-based, (all modules except the
user interface on smart cameras) is the best case. We use
the enhanced iFogSim framework to simulate these scenar-
ios, using the application base configuration (i.e., data sizes
and processing requirements) in Table I, and the processing
capacities in Table II. The camera emission interval is set to
20 ms, directly impacting the application workload.

Because Quality of Experience (QoE) is crucial for digital
services, we evaluate all deployment scenarios where the total
delay meets QoE requirements and placement restrictions (i.e.,
user-interface on the cloud), as presented in Table III. The
energy consumption results for all these scenarios confirm
that the Cloud-based scenario is the worst case. However,
the Router-based scenario, where all modules except the user
interface run on the router, consumes the least energy, making
it the new best case. Thus, we adjust the application’s energy
range based on these minimum and maximum values.

B. Energy classes and labels

Once the range is defined, we employ Equal-Width Bin-
ning [13] to classify energy consumption into seven classes (A-
G), with every bin width calculated by dividing the application
energy range by seven. Each scenario is assigned a label based
on the corresponding consumption interval. Class A contains
the most energy-efficient scenarios, while Class G includes
the least efficient ones. For example, our base application

TABLE III: Application Deployment Scenarios
Scenario Application Module Target Device

Router Based motion detector, object detector, object tracker Router
user interface Cloud

Router Router Proxy motion detector, object detector Router
object tracker Proxy
user interface Cloud

Router Router Cloud motion detector, object detector Router
object tracker, user interface Cloud

Router Proxy Proxy motion detector Router
object detector, object tracker Proxy
user interface Cloud

Router Only motion detector Camera
object detector, object tracker Router
user interface Cloud

Router Proxy motion detector Camera
object detector Router
object tracker Proxy
user interface Cloud

Router Cloud motion detector Camera
object detector Router
object tracker, user interface Cloud

Router Cloud Cloud motion detector Router
object detector, object tracker, user interface Cloud

Proxy Only motion detector Camera
object detector, object tracker Proxy
user interface Cloud

Proxy Cloud motion detector Camera
object detector Proxy
object tracker, user interface Cloud

Cloud Only motion detector Camera
object detector, object tracker, user interface Cloud

Edge Edge Router motion detector, object detector Camera
object tracker Router
user interface Cloud

Edge Edge Proxy motion detector, object detector Camera
object tracker Proxy
user interface Cloud

Edge Edge Cloud motion detector, object detector Camera
object tracker, user interface Cloud

Edge Based motion detector, object detector, object tracker Camera
user interface Cloud

Proxy Based motion detector, object detector, object tracker Proxy
user interface Cloud

Proxy Proxy Cloud motion detector, object detector Proxy
object tracker, user interface Cloud

Proxy Cloud Cloud motion detector Proxy
object detector, object tracker, user interface Cloud

Cloud Based motion detector, object detector, object tracker, user interface Cloud

scenarios range from Class A (46.07-95.96 J/s) to G (345.41-
395.27 J/s).
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Fig. 3: Labeling scenarios with Equal-Width Binning.
Figure 3 illustrates the labeling scheme for the base ap-

plication, based on the total energy consumption (computing
and networking) for 20,000ms simulation time. Scenarios are
sorted by average power and classified using a color-coded
approach from green (A) to red (G). The labels facilitate
energy-consumption assessment, as users can quickly see
how switching from Proxy-Based to Router-Based reduces
consumption, because labels change from class D to A.

C. From Workload to Application

We extend our labeling system from workload-specific to
application-specific by incorporating multiple workloads (i.e.,
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Fig. 4: Integrated Representation of Labeling Energy Consumption of Deployment Scenarios with different Workload Intensities

different application configurations). This expansion broadens
the energy range and accounts for workload variation across
scenarios, adjusting label boundaries as needed.

We analyze the impact of workload variation by adjusting
the camera emission intervals to 15 and 25 milliseconds.
Figure 4 shows the updated energy labeling system, based on
the extended energy range and revised energy classes for all
scenarios and different emission intervals. We observe that
increasing the camera emission interval from 15 to 25 ms
reduces workload intensity and, in some scenarios (e.g., Proxy-
Based), may lead to a transition from D to C, i.e., lower
energy consumption. Conversely, higher processing workloads
increase energy consumption, pushing scenarios into higher
energy classes. These observations highlight the effect of
application specification on energy consumption and the need
for a flexible and comprehensive labeling system.

D. Use and limitations

Energy labels provide a quick grasp of the different energy
classes, and incentivize users to aim for a greener class
for their application deployment. To allow for action toward
energy reduction, we envision a framework that assists the user
in selecting the acceptable trade-off - between energy class and
QoE - for their deployment. This approach is feasible due to
our rapid, simulation-based scheme, where QoE metrics such
as latency and delay are also reported for each scenario.

Although we only showed the method is effective for
surveillance applications, the labeling approach is applicable to
other services, e.g. in online shopping or personalized health-
care, only requiring energy-consumption range calibration
for each application(-domain). We currently explore the pros
and cons of generalization beyond application-aware labeling,
which will accommodate more applications, but may lead
to unacceptably coarse energy classes. We further note that
hardware-specific variations, although not included here, can
also be considered, with the same caveat: range recalibration.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we proposed an energy labeling method for
digital services deployed in the computing continuum. Our
scheme classifies deployment scenarios into energy classes

(A to G) using Equal-Width Binning. This labeling system
increases awareness, helping stakeholders assess energy effi-
ciency across different applications and system configurations.
Standardizing the approach across diverse digital services can
further enhance energy transparency and sustainability.

Beyond energy analysis, this labeling system can support
energy-efficient scheduling and optimization strategies. For
future work, we aim to extend the system to broader appli-
cation domains and account for hardware diversity to improve
accuracy; we also explore integrating the labeling method into
energy-efficient scheduling and optimization strategies.
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APPENDIX

ARTIFACT DOCUMENTATION

Abstract—This document provides an overview of the artifacts
accompanying our paper. Our research introduces an energy
labeling framework for digital services in the computing con-
tinuum using an enhanced iFogSim simulation framework. To
facilitate reproducibility, we provide our modified iFogSim code,
sample workloads, execution scripts, and dataset, all archived in
a persistent repository.

Our submission applies for the Open Research Objects
(ORO) and Reusable/Research Objects Reviewed (ROR)
badges for our work on ”Empowering Sustainability: Energy
Labeling of Digital Services Using Simulation”1.

The provided artifacts (Zenodo Repository) include:

• Pre-compiled JAR: LabellingDCNS.jar for direct
execution of scenarios.

• Source Code: Enhanced iFogSim framework with a
provided Java archive (JAR) file for execution.

• Dependencies: All required JARs are included in the
‘jars/‘ folder.

• Datasets: Energy consumption data used for validation
and comparison.

• Execution Instructions: A detailed guide on running
simulations, reproducing results, and generating energy
labels.

• Python Script: Scripts for automating simulation ex-
ecution, parsing results, normalizing energy data, and
generating labeled outputs.

A. Software and Data Repository

• Permanent Repository: Zenodo Repository
• GitHub (Development):

https://github.com/saeedehbaneshi/IFogSim
• License: Apache 2.0

B. Software Details

• Programming Language: Java, Python
• Simulation Framework: iFogSim (based on CloudSim)
• Execution Environment: Linux/Ubuntu 22.04.5
• Expected Runtime: 5 minutes per scenario

C. Dependencies:

• Java Version: OpenJDK 17 (required).
• Python Version: Python 3.10 (required).
• Jupyter Notebook: Required for running automated sce-

nario execution
• Required Python Packages:

$ pip install numpy pandas matplotlib seaborn
scipy networkx jupyterlab

1For convenience, we append the short paper draft for submission #97 at
the end of this document.

D. Data Description

• Dataset Format: Excel files.
• Dataset Structure: Includes total energy consumption

per scenario (Computation + Networking) for each three
workload intensities (15ms, 20ms, and 25ms).

• Data for Figure 3: The required data for the energy
labeling of the base application with an interval of
20ms is available in Path: /Report_Saeedeh/Defining_

labels_data_after_fixing_simulator_CCGRID/Final/Rate_

20_normalized_total_energy_per_scenario.xlsx

• Data for Figure 4: The file containing normalized
energy of all scenarios with different workload
intensities (extended labeling) is available in Path:
/Report_Saeedeh/Defining_labels_data_after_fixing_

simulator_CCGRID/Final/merged_normalized_energy_with_

equal_width_classes_sorted.xlsx

E. Running a Single Scenario with Pre-compiled JAR

1) Download the Zenodo package and extract it:
$ wget https://zenodo.org/record/14969629/
files/IFogSim-EnergyLabelling-v2.zip

$ unzip IFogSim-EnergyLabelling-v2.zip
$ cd IFogSim-EnergyLabelling-v2

2) Run simulation for a single scenario:
java -jar LabellingDCNS.jar <Scenario_name>

This executes the simulation for the specified scenario.
A list of valid scenario names and their definitions can
be found in Table 3 of the paper.

F. Running a Single Scenario with Python

We also provide the simulation using the Python note-
book LabellingResultParser.ipynb. In the first code box A
run command is defined to explicitly specify the dependencies
required for running the application via the system command
line. The user must update the Java path and dependency
directories in this command based on the main directory of
the iFogSim on their machine.

The following code box contains the run function, which
utilizes this command to execute the target application (”La-
bellingDCNS”) with the specified scenario and store the
output report log in report path. The remainder of the script
automates execution for all scenarios, as described in the next
section.

For energy labeling, we run the simulation for three dif-
ferent camera emission intervals: 15ms, 20ms, and 25ms. The
emission interval is set in line 530 of the file src/org/fog/test/

perfeval/LabellingDCNS.java, within the add camera function.
The default emission interval is 20ms that is used for base
application labeling.

G. Labeling Base Application: [Figure 3 of The Paper]

For each emission interval, we execute the simulation
for all possible scenarios listed in Table 3 of the paper.
To automate this process and organize the output results

https://doi.org/10.5281/zenodo.14969629
https://doi.org/10.5281/zenodo.14969629
https://github.com/saeedehbaneshi/IFogSim


into a structured CSV file, we provide the Python notebook
LabellingResultParser.ipynb.

The script automatically classifies energy consumption us-
ing an equal-width binning approach (this script also has
another labeling approach and plotting delay data, which is
for more analysis and is not used in the paper).

Steps to Run All Scenarios

1) Open the Jupyter Notebook:
$ jupyter notebook LabellingResultParser.ipynb

2) Run the script to:
• Iterate over scenarios_list and call the run

function for each scenario:
for scenario in scenarios_list:

run("LabellingDCNS", scenario)

• Parse energy and delay data from simulation output
log for all scenarios using the parse function to
prepare the data for labeling analysis.

• Apply energy labeling: Scenarios are classified into
energy efficiency classes (A-G) based on total en-
ergy consumption using an equal-width binning
approach and generate a labeled figure:
plt.title(’Normalized Energy per Scenario by
Energy Class (Equal-Width Binning)’, fontsize=14)

This corresponds to Figure 3 in the paper. This
Figure is for emission interval of 20ms.

• Store parsed energy data for all simulated scenar-
ios of the selected emission interval in:

Report_Saeedeh/Labelling_Results

We renamed each output Excel file to include the
emission interval in its filename and moved it to
the following directory: Report_Saeedeh/Defining_

labels_data_after_fixing_simulator_CCGRID/Final/

Rate_20_normalized_total_energy_per_scenario.xlsx

Repeat the process for other emission intervals. After
running the notebook for each emission interval, we obtain
the complete energy dataset needed for extended analysis and
labeling. It saves the energy results of each workload intensity
across all scenarios into a excel file.

H. Extended Energy Labeling: [Figure 4 of The Paper]

To generate the extended Energy Labeling,
across workload intensities, we merge their results
data, sort them and apply energy labeling. For
this purpose we provide another Python notebook:
Merging_different_rate_results_labelling.ipynb.

This Python notebook:
• Merge Results for Different Intervals: it loads and

merges energy data from three workload intensity (15ms,
20ms, 25ms) into a single DataFrame:
rate_15_df = pd.read_excel(
’Rate_15_normalized_energy_per_scenario.xlsx’)

rate_20_df = pd.read_excel(
’Rate_20_normalized_total_energy_per_scenario.xlsx’)

rate_25_df = pd.read_excel(
’Rate_25_normalized_energy_per_scenario.xlsx’)

• Sorting and Normalizing Energy: The script sorts
scenarios based on their normalized energy:
merged_df = merged_df.sort_values(by=
’normalized_energy_per_sec’).reset_index(drop=True)

• Applying Energy Labeling: The equal-width binning
approach is applied to classify each scenario into energy
labels A-G:

• Generating Figure 4: The energy class distribution is
visualized using a color-coded bar chart titled: ’combined_
energy_performance_charts_equal_width_fixed.png’

• Saving the Processed Data: The dataset is saved as:
merged_df.to_excel(’merged_normalized_energy_with_
equal_width_classes_sorted_fixed.xlsx’, index=False)

This artifact provides the necessary code, data, and instruc-
tions to reproduce our energy labeling framework. By follow-
ing the provided steps, reviewers and researchers can validate
our claims, explore different configurations, and extend our
work. We believe this submission supports open, transparent,
and reproducible research in sustainable computing.
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