
DISTRIBUTED SIMULATION OF MULTICOMPUTER ARCHITECTURES WITH MERMAID

A.D. Pimentel L.O. Hertzberger

Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

fandy,bobg@wins.uva.nl

In Proceedings of the SCS Symp. on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS ’98), Reno, USA, July, 1998, c�1998 SCS, reprinted with permission of the SCS

Keywords: Computer performance, simulators, distributed
simulation, multicomputers

ABSTRACT

This paper describes the parallelization of the Mermaid
multicomputer simulation environment. Due to our simula-
tion methodology, this parallelization is reasonably straight-
forward as it does not require any measures to guarantee
the causality within the simulated system. The resulting dis-
tributed simulator increases the simulation performance with-
out any loss of simulation accuracy. Furthermore, the par-
allel simulation environment is also more scalable than its
sequential counterpart with respect to the memory require-
ments. This gain in performance and scalability can be used
for simulating larger target architectures and more realis-
tic applications. Experiments with parallel Mermaid con-
firm that distributed simulation may lead to significant perfor-
mance improvements compared to sequential simulation. In
several cases, we even measured super-linear speedups.

1. INTRODUCTION

In order to explore the design space of multicomputer ar-
chitectures, we developed the Mermaid simulation
environment[Pimentel and Hertzberger, 1997b]. This envi-
ronment allows the performance evaluation of a wide range
of architectural design options by means of parameteriza-
tion: from processor parameters, such as the cache specifics,
to switching and routing techniques in the message-passing
communication network.

Mermaid differs from other simulation environments in
the way it addresses the tradeoff between accuracy and sim-
ulation efficiency. Presently, most multicomputer and multi-
processor simulators apply the direct execution technique to
obtain high simulation performance [Rosenblum et al., 1995,
Reinhardt et al., 1993, Boothe, 1993, Brewer et al., 1991,

Davis et al., 1991, Covington et al., 1991]. In this technique,
“uninteresting” instructions are not explicitly simulated but
are directly executed by the simulating host computer. This
requires, however, the instruction set of the host computer to
be similar to that of the modelled architecture.

Besides direct execution, some simulators, like SimOS
[Rosenblum et al., 1995], also provide multiple levels of sim-
ulation. This enables the architect to position the simulation
at an interesting state using a fast and abstract level of simu-
lation. Thereafter, the interesting section is studied using an
accurate, and thus less efficient, mode of simulation.

Mermaid does not perform direct execution. Until now,
it has applied two other techniques to address the accuracy-
efficiency tradeoff. First, we offer the ability to simulate at
different abstraction levels. But, unlike SimOS, the whole
simulation takes place at one abstraction level only. So, if the
research objective is fast prototyping, maximum accuracy is
not required and simulation can be performed at a high level
of abstraction. On the other hand, if accuracy is required, then
simulation is performed at a lower and more computationally
intensive abstraction level.

Second, at its lowest level of abstraction, Mermaid sim-
ulates abstract instructions rather than interpreting and sim-
ulating real machine instructions. For this purpose, we use
some kind of trace-driven simulation. Compared to traditional
instruction-level simulation, this approach typically results in
a higher simulation performance at the cost of a small loss
of accuracy. As a consequence, we obtain a simulation ef-
ficiency which is quite competitive with many direct execu-
tion simulators [Pimentel and Hertzberger, 1997a]. But, un-
like the direct execution simulators, our simulation approach
does not make demands upon the simulating host architecture
and is therefore more flexible.

An alternative approach to boost simulation performance
even more is followed by the Wisconsin Wind Tunnel (WWT)
[Reinhardt et al., 1993]. Besides using direct execution, this
simulator also exploits the inherent parallelism found in sim-
ulations of parallel computers. By performing distributed

1



simulation of the parallel architecture, it tries to gain per-
formance without sacrificing any simulation accuracy. The
WWT has shown that distributed simulation may improve the
simulation performance considerably. In fact, the WWT is
one of the fastest, if not the fastest, multiprocessor simula-
tor available. The performance gained by distributed simula-
tion allows for the study of larger target architecture configu-
rations and more realistic applications. As a side-effect, dis-
tributed simulation also improves the simulator’s scalability
with respect to the memory consumption. Because the mem-
ory requirements are spread over multiple host computers, it
is possible to simulate workloads that consume large amounts
of memory, which is common for multicomputer applications.

We strongly believe that the next logical step in improving
Mermaid’s efficiency and scalability is to extend it in order to
support the distributed simulation of multicomputer architec-
tures. For this reason, we implemented a prototype of parallel
Mermaid which allows the simulation to be distributed and ex-
ecuted on a cluster of workstations.

In this paper, we describe the parallel Mermaid prototype.
We show that the parallelization is quite straightforward due
to our modelling methodology. For example, the causality
constraint [Fujimoto, 1990], which is a common problem in
the field of parallel (discrete-event) simulation, is automati-
cally taken care of in our case. Moreover, we present perfor-
mance results which indicate that substantial speedups can be
obtained with our distributed simulator.

The next section gives a brief overview of the Mermaid
simulation environment. Section 3 describes how the multi-
computer simulations are parallelized to run on a cluster of
workstations. In Section 4, the performance results of a set of
benchmarks are presented. Finally, Section 5 concludes the
paper and mentions possible future work.

2. THE SIMULATION ENVIRONMENT

The multi-layered simulation environment of Mermaid is
shown in Figure 1. The lowest level, referred to as the ar-
chitecture level, contains the architecture simulation mod-
els. These models are implemented in a highly modular
fashion using the object-oriented simulation language Pearl
[Muller, 1993], which allows flexible evaluation by means of
parameterization. The simulators are driven by traces of ab-
stract instructions, called operations, representing processor
activity, memory I/O and message-passing communication.

Simulating at the level of operations has several conse-
quences. As the operations abstract from the processors’ in-
struction sets, the simulators do not have to be adapted each
time a processor with a different instruction set is simulated.
Furthermore, simulating operations rather than interpreting
real instructions allows for only modelling the timing conse-
quences of instruction execution. Most of the state transitions

Architecture level

Application level

Machine parameters

Architecture X

Architecture Y

Visualization and
analysis tools

Abstract
application model

generator

Architecture
independent

simulation models
Architecture

Operation-trace

Figure 1. The Mermaid simulation environment.

caused by the execution, such as the actual storing of a value in
a register, do not need to be modelled. Consequently, it is not
necessary to store large quantities of state information during
simulation runs. For example, register and memory contents
do not have to be modelled and simulated caches only need
to hold addresses (tags), not data. As a result, our approach
may yield higher simulation performance compared to the
more traditional instruction-level simulation techniques. On
the other hand, the strength of abstraction is also Mermaid’s
weakness. The loss of information at the level of operations
(e.g. registers are not specified in operations) prohibits an
accurate low-level simulation of, for example, the processor
pipelines. In [Pimentel and Hertzberger, 1997a], we demon-
strate that this small loss of accuracy still allows for accurately
simulating multicomputers. The average errors we measured
in that validation study do not exceed 5%.

To provide the architectural simulators with operation-
traces representing actual application behaviour, an abstract
application model and a trace generator reside on top of the
architecture level (see Figure 1). The trace generator pro-
duces a separate trace for each processor within the multi-
computer model. To produce these multiple operation-traces,
the trace generator mimics concurrent execution by means of
threads. Each thread accounts for the behaviour of one pro-
cessor within the parallel machine. In this scheme, the va-
lidity of the operation-traces is guaranteed by the fact that
the simulator can give feedback to the trace generator. Do-
ing so, the simulator may stall and resume the trace-generating
threads, thereby establishing execution-driven simulation
[Pimentel and Hertzberger, 1997b].

The abstract application model specifies workloads in an
architecture-independent manner. These workloads are ei-
ther based on real applications or they are synthetic. Realistic
workloads are obtained by tracing real programs, whereas the
synthetic ones are generated from probabilistic descriptions
of application behaviour [Pimentel and Hertzberger, 1997a].
Because the latter technique is flexible but only represents ap-
plication behaviour with modest accuracy, it is typically used
for fast prototyping. In this paper, we only focus on the real-
istic type of workloads generated by tracing real programs.



Communication

model
Communication

operations &

CPU

Bus

Mem

computational model

Caches

Node Node

Node Node

Instance of the

F
ee

db
ac

k

computational
tasks

Computational & communication operations

Figure 2. Multicomputer simulation using both the
computational and the communication models.

2.1. A Hybrid Architecture Model

Many applications, and especially scientific applications,
running on multicomputer platforms contain coarse-grained
computations alternated with periods of communication. Be-
cause these computation and communication phases typically
are distinct, Mermaid splits the simulation of multicomput-
ers into two different models: a single-node computational
model and a multi-node communication model. Each model
operates at a different level of detail, and thus defines its own
set of operations. The computational model simulates the ap-
plication’s computational behaviour. It models the incoming
computational operations at a level of abstract machine in-
structions. Communication operations are not simulated by
this model, but are directly forwarded to the communication
model. The communication model accounts for the applica-
tion’s message-passing behaviour. To address the issues of
synchronization and load-balancing properly, it models the
computational delays found between communication requests
at the task level. A parallel workload for this model there-
fore resembles a graph containing computational tasks and
communication operations. The computational tasks are de-
rived from the computational model, which constructs them
by measuring the simulated time between two consecutive
communication operations.

This approach results in a hybrid model which allows for
simulation at different abstraction levels. If accuracy is re-
quired, then the complete hybrid model can be used. In this
case, the single-node computational model is replicated for
each simulated node. Each instance of the single-node model

is then assigned to a node within the communication model in
order to feed it with the computational tasks and the commu-
nication operations. This is illustrated in Figure 2.

If there is only the need for fast prototyping, then just using
the communication model might be sufficient. In that case,
the task-level operation-traces must be directly produced by
the trace generator. In this study, however, we only consider
the whole hybrid simulation model for parallelization. We
believe that the exclusive parallelization of the communica-
tion model is not required since this model already simulates
workloads almost as fast as the target machine executes them
[Pimentel and Hertzberger, 1997a] and it does not consume
large amounts of memory. Furthermore, the communication
model only simulates communication in detail; computation
is modelled by simply advancing the simulation clock. As the
simulation of communication may exhibit poor locality and
generally is not computationally intensive (i.e. it is not coarse-
grained), parallelizing the communication model would intro-
duce large communication overheads.

3. PARALLEL MERMAID

Mermaid’s hybrid architecture model, as depicted in Fig-
ure 2, exhibits a lot of inherent parallelism, which simplifies
the parallelization. The instances of the computational model
perform computations which are local to a single node only.
So, these instances are independent of each other (i.e. their
synchronization and communication is simulated in the com-
munication model only). As a consequence, they can easily be
simulated in parallel on different hosts. Subsequently, when
the communication model is not parallelized and is still exe-
cuted on a single host computer, this scheme does not require
any measures to guarantee the causality in the simulated sys-
tem. In other words, using this approach, no communication
events will ever take place out of order. This is because all
communication is performed by the sequential communica-
tion model which has a global notion of simulation time. It
therefore correctly sequentializes the incoming communica-
tion requests and, as a result, still supplies the trace genera-
tor with consistent feedback. Hence, due to our simulation
methodology, there is no need for algorithms, like the ones
discussed in [Fujimoto, 1990], to synchronize the distributed
simulation clocks. This is in contrast to, for instance, the Wis-
consin Wind Tunnel which uses a conservative algorithm to
guarantee causality [Reinhardt et al., 1993].

When applying the above parallelization scheme, it seems
that the (sequential) communication model could become a
potential bottleneck. For two reasons, however, we think this
is unlikely to occur. First, the number of communication re-
quests typically is much smaller than the number of compu-
tational operations. This is especially true for the applica-
tion domain in which we are interested, namely that of (sci-



Sync

modelmodel modelmodel
Comp Comp Comp Comp

S S

Communication
model

= trace generator thread

Figure 3. Distributed simulation with Mermaid.

entific) computationally intensive applications. For applica-
tions which are constrained by communication (which will
probably not run very well on multicomputers anyway), the
communication model may indeed limit the parallel simula-
tion performance. Note that although communication is not
extremely dominant in our applications, the communication
model is still essential for correctly modelling the synchro-
nization behaviour of the applications. Second, many multi-
computer applications, and specifically the ones belonging to
the popular class of SPMD programs, contain fixed commu-
nication patterns. So, their communication behaviour is not
dependent on the underlying architecture. This type of appli-
cations allows for synchronizing the trace-generating threads
at the application level rather than synchronizing them with
simulator feedback, which will be discussed further on. As
a result, the simulation of communication does not need to be
execution-driven. Instead, the communicationmodel can now
operate in pure trace-driven mode, thereby not constraining
the execution of the threaded trace generator.

The question that remains is whether or not to parallelize
the trace generator. We decided to perform its paralleliza-
tion for reasons of scalability. By dividing the generator
threads over multiple workstations, the threads’ memory re-
quirements are spread over multiple machines as well. This
makes it possible to scale the simulation to larger and proba-
bly more realistic applications.

The distributed version of the hybrid simulation model
is shown in Figure 3. The trace-generating threads are, to-
gether with the instances of the computational model which

they feed, spread over multiple workstations. This division of
work can be performed according to any distribution scheme.
But, in this paper, we assume that the work is evenly shared
among all the hosts. As was mentioned before, the commu-
nication model is executed on a single host machine. When
necessary, the distributed threads of the trace generator are
synchronized by a process called SYNC. This synchronization
can be performed in two ways. If execution-driven simulation
of the communication model is required, then the SYNC pro-
cess provides the threaded trace generator with the feedback
from the architectural simulator. To send the simulator feed-
back to the appropriate thread, SYNC is connected to all par-
ticipating workstations. On the other hand, if the communi-
cation model does not need execution-driven simulation, then
SYNC can perform synchronizationsbetween trace-generating
threads directly. To do so, remote threads are able to receive
and send messages from/to each other via SYNC to synchro-
nize and to exchange data in order to keep their notion of lo-
cal data consistent. For example, if a processor sends a mes-
sage of size N to another processor, then the communication
model simulates this by sending an “empty” message of size
N . The actual data is transferred by SYNC. Of course, this
is more efficient than explicitly simulating the data transmis-
sion. Note that if the workload execution is not dependent on
the transferred data, then SYNC does not have to perform the
data transfers (nor any synchronizations) at all. In that case, it
does not matter when a thread’s local data is inconsistent.

To coordinate these types of control, each distributed part
of the trace generator has one extra thread, called the S-thread,
which takes care of the communication between the trace gen-
erator and SYNC. The S-thread will, for instance, signal (and
possibly wake up) a trace-generating thread when data for it
has arrived from another, distant thread.

Typically, the SYNC process is placed onto the same host as
the communication model. Communication between the dif-
ferent components within this distributed environment is per-
formed by either Unix sockets or shared memory, dependent
on the location of the communicating processes. For example,
the threaded trace generator communicates via shared mem-
ory with the computational model, whereas each instance of
the computational model uses a socket to talk to the commu-
nication model.

4. EXPERIMENTS

To evaluate the performance of parallel Mermaid, we use
a model which represents a multicomputer consisting of T805
transputers [Inmos, 1992] connected in a two-dimensional
mesh. For this architecture, we simulated the operation-traces
of three SPMD-type benchmark applications: gauss (a solver
of linear equations), pdmm (a matrix multiplication) and sort
(an integer sort). A more detailed description of the bench-



Benchmark Description Data sizes
Gauss A solver of linear Matrices of

equations using 64�64 and
Gaussian elimination 128�128

Pdmm A double-precision Matrices of
matrix multiplication 64�64 and

128�128
Sort An integer odd-even 32K and

transposition sort 64K of integers

Table 1. The benchmark applications used for the
performance evaluation of parallel Mermaid.

marks can be found in Table 1. Of these three benchmarks,
none requires execution-driven simulation (i.e. they all con-
tain fixed communication patterns) and only the execution of
sort is data dependent. The latter implies that, when simu-
lating sort, the SYNC process transfers data between remote
threads to keep their notion of local data consistent. So, in the
case of the other two benchmarks, SYNC is simply not used.

The experiments were performed using multicomputer
configurations of 16 processors (16p), 64 processors (64p)
and, where possible, 128 processors (128p). The cluster of
host workstations over which the simulation is distributed
consists of sixteen 110-Mhz Sun Sparc-4s connected by nor-
mal Ethernet. These are not particularly high-end machines,
but they form one of the few lightly loaded, homogeneous
clusters of workstations with acceptable performance at our
department.

Figure 4 shows the speedups of the parallel simulation en-
vironment for the set of benchmarks. These measurements
were performed using wallclock times. For the parallel sim-
ulations, this includes both the actual simulation time and the
time it takes to distribute the processes over the multiple hosts.
Note that both axis have a logarithmic scale.

Gauss

The graph at the top of Figure 4 presents the results for
gauss. These results clearly indicate that most of the obtained
speedups are substantial. For instance, the 128p configura-
tion with 128�128 matrices is simulated 14.2 times faster on
16 hosts than it is simulated on a single host. Moreover, for
nearly all simulations using two hosts we measured a super-
linear speedup. This is most probably due to caching effects.
Only the simulations using 64�64 matrices fail to obtain sig-
nificant speedups beyond 4 host platforms. Apparently, the
grainsize of these workloads is too small.

The fact that the multicomputer configurations containing
more processors perform better than those with fewer proces-

1

2

4

8

16

1 2 4 8 16

S
pe

ed
up

Number of hosts

Gauss

16p, 64x64
64p, 64x64

16p, 128x128
64p, 128x128

128p, 128x128
linear speedup

1

2

4

8

16

1 2 4 8 16
S

pe
ed

up

Number of hosts

Pdmm

16p, 64x64
64p, 64x64

16p, 128x128
64p, 128x128

128p, 128x128
linear speedup

1

2

4

8

16

1 2 4 8 16

S
pe

ed
up

Number of hosts

Sort

16p, 32K
64p, 32K

128p, 32K
16p, 64K
64p, 64K

128p, 64K
linear speedup

Figure 4. Performance results of parallel Mermaid.

sors is caused by the increased overheads in the simulations
of larger configurations. This will be elaborated upon when
discussing the results of pdmm.

Pdmm

For pdmm, of which the results are shown in the middle graph
of Figure 4, the parallel performance is even better. All sim-



2

4

6

8

10

12

14

16

48 16 32 64 128

S
im

ul
at

io
n 

tim
e 

(x
 1

00
0 

se
cs

)

Number of simulated processors

Gauss, 128x128
Pdmm, 128x128

Sort, 64K

Figure 5. Simulation time v.s. the size of the simu-
lated multicomputer on a single host.

ulations properly scale with the increasing number of hosts.
Using 16 hosts, for example, speedups of between 10.75 and
19.3 are obtained. Thus, again super-linear speedups were
measured. In fact, all parallel pdmm simulations of the 128p
configuration with matrices of 128�128 obtain super-linear
speedups. To explain this, consider Figure 5. For each bench-
mark, this graph shows the simulation time as a function of the
number of simulated processors on a single host. The graph
demonstrates that the simulation time of all benchmarks is at
least doubled when the multicomputer simulation is scaled up
from 4 to 128 processors. This is caused by the increase of cer-
tain overheads in the sequential simulation, such as the thread
overhead. Since the overheads per host within the distributed
simulation are smaller (i.e. the overheads are parallelized),
super-linear speedups might be obtained. In the case of pdmm,
the simulation time for a single host starts to increase signif-
icantly after 64 processors. This corresponds with the super-
linear speedup of 128p in Figure 4.

Sort

The graph at the bottom of Figure 4 shows the results of sort.
Again, substantial speedups are obtained. Although Figure 5
shows an impressive increase of simulation time for larger
multicomputer configurations, no super-linear speedups were
measured for sort. This is due to the synchronizations be-
tween the remote trace-generating threads, which cover up the
gain of parallelizing the overheads. To illustrate this, con-
sider Figure 6. This graph shows a breakdown of the average
overheads in the parallel instances of the trace generator and
the computational model. These results are for the 16p and
128p simulations of all three benchmarks on 16 hosts with the
largest data sizes. Three types of parallel overheads are dis-
tinguished: the time the computational model waits for op-
erations from the trace generator (white bars), the time the

Gauss
16p

Gauss
128p

Pdmm
16p

Pdmm
128p

Sort
16p

Sort
128p

0

10

20

30

40

50

%
 o

f e
xe

cu
tio

n 
tim

e

Waiting for TG

Comm. with CM

TG busy with SYNC

Figure 6. Breakdown of where the execution time
goes due to certain parallel overheads. The white
bar shows the average time the computational
model waits for the Trace Generator (TG), the grey
bar the average time the computational model com-
municates with the Communication Model (CM). Fi-
nally, the black bar represents the average time the
TG is busy transferring data via the SYNC process.
All numbers are percentages of the total execution
time. These experiments are for 128x128 matrices
and 64K of integers on a cluster of 16 hosts.

computational model communicates with the communication
model (grey bars) and the time the trace generator is busy with
transferring data via the SYNC process (black bars). The white
bars in Figure 6 demonstrate that, in the case of sort, the com-
putational model generally waits longer for the trace generator
compared to the other two benchmarks. This can be explained
by the fact that a trace-generating thread may be suspended
(i.e. waiting for remote data) for a quite a while before being
resumed by the remote thread. These synchronization over-
heads do not occur in the other two benchmarks, as they do not
perform remote data transfers. Nevertheless, it may seem that
the difference in overhead between the simulations of, for ex-
ample, pdmm’s and sort’s 128p configuration is only marginal.
Note, however, that the results are averages and we measured
a standard deviation (�) of 3.4% for sort, while pdmm’s� only
equals to 0.2%. The large � for sort is caused by a few par-
allel instances suffering from high synchronization overheads
of which the largest equals to 22% of the execution time.

Figure 6 shows that this synchronization overhead is ex-
tremely high for the 16p simulation of sort: the computational
model waits on the average for more than 40% of the exe-
cution time for the trace generator. So, this must the reason
for the poor parallel performance of the 16p simulations on
16 hosts (see Figure 4). It is, of course, not surprising that
this particular configuration suffers from these overheads as
there resides only one simulated processor on each host. Thus,
when suspending a thread, no other thread can take over and
the simulation on the host is entirely stalled.



Due to the higher, parallelizable overheads of sequential
simulation of larger configurations and the existence of mul-
tiple trace-generating threads per host, the performance of the
64p and 128p simulations does scale up after 8 host machines.

4.1. Discussion

For the simulated benchmarks, the results indicate that the
sequential communication model does not constrain the par-
allel simulation performance. As Figure 6 shows (grey bars),
the overhead of the communication between the computa-
tional model and the communication model is for all bench-
marks exceptionally small. Figure 6 also demonstrates that
the overhead of data transfers by SYNC is negligible (black
bars). Naturally, this overhead only exists for sort. Note
that, in this study, all necessary synchronizations within the
trace generator are performed at the application level (by the
SYNC process) rather than at the architecture level (by simu-
lator feedback). We still need to investigate how architectural
feedback affects the parallel simulation performance.

The performance improvements due to our extensions are
very promising. Whereas the original simulators obtain a typ-
ical slowdown of between 60 and 750 per processor compared
to the real machine [Pimentel and Hertzberger, 1997a], paral-
lel Mermaid may reduce these slowdowns by an order of mag-
nitude. Furthermore, the obtained super-linear speedups illus-
trate the improved scalability of parallel Mermaid with respect
to its sequential counterpart. Simulating large multicomputer
configurationson a single host machine may easily lead to per-
formance degradations due to increased overheads or is sim-
ply impossible due to the excessive memory consumption of
the workloads.

5. CONCLUSIONS

In this paper, we described the extension of the Mermaid
simulation environment to support the distributed simulation
of multicomputer architectures. Applying distributed simula-
tion may boost the performance without any loss of accuracy.
Furthermore, parallel simulations are more scalable than se-
quential ones as a single host platform may easily run out of
memory when simulating large parallel applications.

We demonstrated that Mermaid can be parallelized in a
straightforwardmanner. No measures were necessary to guar-
antee the causality within the simulated system. This is due to
our simulation methodology, in which a sequential commu-
nication model has a global notion of time and thus correctly
sequentializes all communication requests.

For a set of benchmarks, we showed that parallel Mermaid
obtains significant speedups. The average speedup, for in-
stance, for all performed simulations with 16 host comput-
ers is nearly 12. Moreover, in some cases, we even measured

super-linear speedups caused by caching effects and the par-
allelization of overheads.

5.1. Future Work

In this study, we used a rather limited set of benchmarks.
This benchmark suite should be extended in the future. With
respect to this, we should also investigate the impact of work-
loads that require execution-driven simulation. Furthermore,
the experiments were done using a homogeneous pool of 16
workstations. It would be interesting to investigate whether or
not parallel Mermaid scales up beyond these 16 hosts. More-
over, in practice, heterogeneous workstations with different
computational powers might be used. This would accentuate
the importance of load-balancing strategies to optimally di-
vide the computations over the hosts.

References

[Boothe, 1993] Boothe, B. 1993. Fast accurate simulation of large
shared memory multiprocessors. Tech. Report CSD 92/682,
Comp. Science Div., Univ. of California at Berkeley (June).

[Brewer et al., 1991] Brewer, E. A., Dellarocas, C. N., Colbrook,
A., and Weihl, W. E. 1991. PROTEUS: A high-performance
parallel-architecture simulator. Tech. Report MIT/LCS/TR-516,
MIT Laboratory for Computer Science (Sept.).

[Covington et al., 1991] Covington, R. G., Dwarkadas, S., Jump,
J. R., Sinclair, J. B., and Madala, S. 1991. The efficient simulation
of parallel computer systems. Int. Journal in Comp. Simulation,
1:31–58.

[Davis et al., 1991] Davis, H., Goldschmidt, S. R., and Hennessy,
J. 1991. Multiprocessor simulation and tracing using Tango.
In Proc. of the Int. Conf. in Parallel Processing, pages 99–107
(Aug.).

[Fujimoto, 1990] Fujimoto, R. M. 1990. Parallel discrete event sim-
ulation. Communications of the ACM, 33(10):30–53.

[Inmos, 1992] Inmos 1992. The Transputer Databook. Inmos Ltd.
[Muller, 1993] Muller, H. L. 1993. Simulating computer architec-

tures. PhD thesis, Comp. Sys. Dept., Univ. of Amsterdam (Feb.).
[Pimentel and Hertzberger, 1997a]

Pimentel, A. D. and Hertzberger, L. O. 1997a. Abstract workload
modelling in computer architecture simulation. In Proceedings of
the 3rd Workshop on Performance Analysis and its Impact on De-
sign (in conjunction with ISCA’97), pages 6–14 (June).

[Pimentel and Hertzberger, 1997b]
Pimentel, A. D. and Hertzberger, L. O. 1997b. An architecture
workbench for multicomputers. In Proc. of the 11th Int. Parallel
Processing Symposium, pages 94–99 (April).

[Reinhardt et al., 1993] Reinhardt, S. K., Hill, M. D., Larus, J. R.,
Lebeck, A. R., Lewis, J. C., and Wood, D. A. 1993. The Wiscon-
sin Wind Tunnel: Virtual prototyping of parallel computers. In
Proc. of the 1993 ACM SIGMETRICS Conf., pages 48–60 (May).

[Rosenblum et al., 1995] Rosenblum, M., Herrod, S. A., and Gupta,
A. 1995. Complete computer system simulation: The SimOS ap-
proach. IEEE Parallel & Distributed Technology, 3(4):34–43.


