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Abstract—Scientific computing is a significant consumer of
supercomputing resources, and, as a consequence, performance
optimization has been a long-term goal of the high-performance
computing (HPC) community. However, as the complexity and
computational demands of modern scientific applications grow,
optimizing energy efficiency becomes critical to balance compu-
tational throughput with power constraints.

To address this challenge, we propose and evaluate a method-
ology to improve the energy efficiency of large-scale simulations
running on multi-node computing systems. Our approach is
based on a key observation: when load-imbalance during a large-
scale simulation is difficult to avoid or fix, it can at least be
exploited to reduce the energy consumption of the simulation.
This can be achieved by reducing the CPU frequency of light-
loaded nodes to reduce their energy consumption, while incurring
minimal overhead and no overall increase in execution time.

We demonstrate this approach in practice through a case-
study based on HemoCell, a large-scale scientific framework
for cell-resolved blood flow simulation. We show that reducing
the node frequency to match the workload proportion per node
does reduce the overall energy consumption of the simulation,
while only causing a negligible increase in its execution time.
For our case-study we observe energy reductions of up to 23%
and minimal performance loss compared to the same workloads
without frequency scaling.

I. INTRODUCTION

The large energy cost of computation at scale has emerged
as a critical challenge in high-performance computing (HPC)
[1]. The Green500, a list of the top 500 most powerful
supercomputers ranked by energy efficiency, demonstrates a
yearly improvement in the energy efficiency of HPC platforms.
However, efficient HPC platforms are only part of the solution:
the other part is energy efficient application development.

The energy consumption of a simulation is proportional to
its execution time, which in turn is a function of the parallel
efficiency for a given execution. One of the major sources
of decreased efficiency is workload imbalance, which leads
to the idling of underutilized processes, and ultimately to
increased execution time. Addressing this imbalance is not
trivial, especially in scenarios where it changes dynamically
during the execution. The necessary mitigation strategies typi-
cally incur additional computational and communication costs
(e.g., associated with check-pointing and workload redistribu-
tion). Instead, we hypothesize that throttling down the CPU
frequency in accordance to the estimated workload proportion

of the underutilized nodes will lead to substantial energy cost
reduction while not impacting runtime significantly.

One large-scale simulation affected by dynamic load imbal-
ance is HemoCell, a coupled large-scale scientific framework
for simulating cell-resolved blood flow [2], [3], [4]. Hemo-
Cell is capable of highly detailed simulations, that provide
valuable insights into several health-care related questions
where direct experimental methods are limited by current
technology [5], [6], [7]. Alowayyed et al. [8], [9] have already
shown that dynamic load-imbalance decreases performance in
HemoCell. This previous work demonstrated that traditional
load-balancing strategies require substantial engineering in-
vestments, and dynamic workload rebalancing can introduce
significant overhead and performance disruptions. Because of
this addressing the (dynamic) imbalance of HemoCell is non-
trivial and has not been pursued so far.

For the cases when rebalancing is not feasible, we propose
a method to improve the energy efficiency of imbalanced
(HemoCell) simulations without redistributing the workload
and without a significant increase in simulation wall-clock
time. Our method reduces the energy footprint of load im-
balance with the help of on-the-fly, load-specific frequency
scaling of the CPU cores across the compute nodes. Specifi-
cally, we reduce the frequencies of underutilized CPU cores,
thus reducing power consumption with minimal impact on the
total runtime, resulting in an overall improvement in energy
efficiency. Our method makes use of application insight to
decide when and how to apply dynamic frequency scaling.

We apply our method to simulations running on a 16-node
cluster, and measure the energy consumption with and without
our frequency scaling for the two types of imbalance scenarios
in HemoCell. Our results show up to 23% reduction in energy
cost using our method.

The remainder of the paper is structured as follows. In
Section II we provide a brief introduction to HemoCell. In
Sections III and IV we describe the energy-efficiency opti-
mization method, and introduce the experimental setup for the
evaluation process. The results are shown in Section V. In Sec-
tion VI we discuss our method’s usability and implementation
for HemoCell and feasible extensions to other computational
applications. Finally, we provide a brief overview of related
work in Section VII and conclude the paper in Section VIII.
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II. HEMOCELL

HemoCell is a simulation code used for cell resolved blood
flow modeling. In HemoCell blood is simulated as a dense
cellular suspension flow. Blood plasma is modeled as a fluid
using the Lattice Boltzman Method (LBM) with the Palabos
library [10]. The movement of particles, i.e., red blood cells
(RBCs), are modeled separately using a discrete element
method [2]. These two models are coupled together via the
immersed boundary method [2].

A. Parallelization

The HemoCell simulation domain is decomposed into N
subdomains, where N is the number of MPI processes.
Each MPI process computes its assigned subdomain, and all
particles that are located within that subdomain. The size
of a HemoCell domain is expressed in lattice units (LU),
the conversion from LU to µm is 1 LU = 0.5 µm. During
the simulation, neighboring processes communicate with each
other through MPI messages. The communication consists of
the outer layer of each subdomain, and the particles cross
subdomain.

B. Workload Imbalance and Quantification

HemoCell, as a coupled simulation code, contains two
separate numerical methods: the fluid computation, employing
regular (structured) spatial data structures, and the particle
computation, which relies on an unstructured numerical grid.
These numerical methods have different compute and com-
munication characteristics, and thus experience distinct com-
putational imbalances. In contrast to the particle workload, the
fluid workload will not change at runtime and is determined
by the details of the specific domain decomposition that is
chosen (see e.g. [9]). Alowayyed et al. [8], [9] have already
shown that the workload imbalance in the particle simulation
model both impacts performance and can increase at runtime.
Van Dijk et al. [11] have shown and modeled the impact of
static fluid imbalance on the performance of HemoCell.

To quantify the amount of workload imbalance in a sim-
ulation, we can use the fractional load imbalance model that
describes the amount of load imbalance as a fraction of the
average workload [12]. Alowayyed et al. [9] built on the
fractional imbalance model and applied it to HemoCell. We
briefly revisit the notation here.

The starting point of the fractional overhead model is that
the execution time Tp of a parallel application with p processes
can be expressed as:

Tp =
T1

p
+
∑
j

TOverhead
j (1)

where TOverhead
j is extra cost of performance overheads j,

e.g., communication or load imbalance, and
∑

j sums over all
overheads. The speedup, Sp, and efficiency, ϵp, this application
can be written as:

Sp =
T1

Tp
=

p

1 +
∑

j fj
(2)

ϵp =
Sp

p
=

1

1 +
∑

j fj
(3)

where fj are fractional overheads, which are written as:

fj =
TOverhead
j

(T1/p)
(4)

We can use the concept of fractional overheads to express
the amount of computational load imbalance fli in a parallel
application. We assume that the application has no communi-
cation cost and that the time it takes for process i to finish
its computation is ti. Because runtime is dominated by the
slowest processors, that is, the highest value of ti we can write
fli as:

fli =

(
tmax

⟨t⟩

)
− 1 (5)

where tmax and ⟨t⟩ are the highest and average value from
{t0, ...tp−1} respectively.

To interpret with other words, fractional load imbalance is
a quantification of the amount of imbalance in a workload. It
describes the relation between the most overutilised process
compared to the average workload in the system. A fractional
load imbalance of zero, i.e., fli = 0, indicates no variation in
the workload between processes, and thus a balanced system.

III. METHODOLOGY

In this section we discuss our method for improving the
energy efficiency of imbalanced HemoCell simulations (see
Section III-A) and the setup for evaluating its feasibility and
success (see Section III-B).

A. Energy Optimization

The proposed energy optimization method is based on
two observations: (1) In previous work, van Dijk et al. [11]
demonstrated that the overall performance of HemoCell is
constrained by the longest-running process. Consequently, the
total simulation runtime remains unchanged when modifying
the execution times of (other) processes with shorter runtimes,
provided that the duration of the longest-running process
remains unaltered. (2) Reducing the operational frequency
of a CPU core has a dual-effect: a proportional reduction
in computational throughput and a reduction in power con-
sumption [13]. Thus, by selectively lowering some CPU-cores’
frequencies, we increase the time spent on compute for the
selected processes, but reduce their energy footprint. At the
same time, the runtime of the longest-running process remains
unaltered, thus we effectively reduce the overall power costs
of the simulation without compromising the performance. In
other words, instead of lowering the runtime of the longest-
running process to match the average, we raise the average
to meet the maximum time, while saving energy due to lower
CPU core frequencies.
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B. HemoCell Imbalance Cases

As discussed in Section II, the case-study simulation has two
distinct forms of load imbalance: particle imbalance and fluid
imbalance. To comprehensively test our energy optimization
method, we define three test cases that systematically explore
the possible combinations of computational imbalance:

(a) C1: Fluid Imbalance (b) C2: Particle Imbalance

(c) C3: Fluid + Particle Imbalance

Fig. 1: Load imbalance overview in the test cases. Note: the
examples here represent a simplified visualization in two-
dimensions, the actual simulations run in three dimensions

C1 Fluid imbalance: The imbalance is generated by changing
the size of some of the subdomains, but keeping the
number of particles per subdomain the same (Figure 1a).

C2 Particle imbalance: The imbalance in this case is gener-
ated by changing the number of particles per subdomain,
while keeping the size of each subdomain the same
(Figure 1b).

C3 Fluid + Particle imbalance: The imbalance in this case is
generated by chancing the size of the subdomains, while
keeping the concentration of particles (also referred to as
hematocrit) of each subdomain the same (Figure 1c).

IV. EXPERIMENTAL SETUP

In this section we describe the details of the experiment
setup used to evaluate the energy optimization method. The
code used to run the simulations is split over two publicly
available GitHub repositories, one containing the HemoCell
case [14], the other contains all the results, scripts for artifact
generation, and setup for each scenario [15].

A. Platform

Our experiments are conducted on 16 nodes of a Tier-2
institute HPC cluster [16]. Each node is equipped with a 24-
core AMD EPYC 7402P processor and 128GB of memory. On
this platform we can control the CPU frequency using Likwid-
setFrequencies [17]. The platform supports three discrete
frequency levels: 1.5GHz, 2.4GHz, and 2.8GHz.

B. Performance and Energy Measurements

Hemocell is instrumented with ScoreP [18], [19] to obtain
fine-grained performance metrics. ScoreP instrumentation pro-
vides detailed timings of individual code sections, enabling
identification of performance bottlenecks and characterization
of computational patterns. For energy consumption measure-
ments, we utilize Likwid [17], which interfaces with Running
Average Power Limit (RAPL) to collect power draw and
energy consumption data at the package level for each node.
In our analysis, we ignore operations such as initialization and
I/O. As such, we restrict our time measurements exclusively to
the simulation phase. The corresponding energy consumption
is computed by multiplying the average power draw by the
measured simulation time. We report total runtime, compute
time per process, observed fractional load imbalance, and
energy consumption.

C. HemoCell Test cases

The total size of each simulation domain (600 × 400 ×
200 LU ), is decomposed in multiple ways to create load
imbalance. In Table I we list the decomposed domain sizes
and the hematocrit value for each scenario. To replicate
physiological conditions, the average hematocrit in each case
is 40%. To limit variation in the results, each simulation is
executed for 500 iterations, and is repeated 3 times.

For each test case, we aim for an imbalance of fli = 1, that
is, we aim for the maximal compute cost across all processes to
be twice as high as the average compute cost. Due to technical
limitations, we are unable to create an imbalance scenario C3
with fli = 1. Therefore, in this case we create fli < 1, and C3-
2 with fli > 1, apart from this, the two scenarios are identical.
We consistently assign high-workload processes to nodes 1 and
2, out of the 16 available nodes. Along with the imbalanced
scenarios, we also report the performance and energy of the
balanced version of each case, where each process is assigned
the same amount of work. The balanced scenario is similar
across all the cases, with the same domain size, decomposition,
and hematocrit.

TABLE I: Description of the imbalance decomposition for
each imbalance scenario. Largest (LD) and smallest (SD)
subdomain in lattice units (LU), average hematocrit (H),
and maximal (MH) and smallest (SH) hematocrit across the
domains

Case LD [LU] SD [LU] H [%] MH [%] LH [%]

C1 250x50x50 31x50x50 40 8 65
C2 50x50x50 50x50x50 40 99 33
C3 100x50x50 45x50x50 40 40 40
C3-2 150x50x50 40x50x50 40 40 40

D. Energy Optimization Strategies

Each scenario is run in six different configurations (see
Table II): (1) balanced with the default CPU frequencies, (2)
imbalanced with the default CPU frequencies, (3) imbalanced
at a fixed 2.8GHz, (4-6) with one of the three optimization
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TABLE II: Node Frequency Assignments. Balanced (B), im-
balanced (IB), imbalanced at 2.8 GHz (IB@2.8), and opti-
mization strategy 1-3.

Nodes

Strategy 1-2 3-16

Balanced 1.5 - 3.35GHz 1.5 - 3.35GHz
Imbalanced 1.5 - 3.35GHz 1.5 - 3.35GHz
Imbalanced@2.8GHz 2.8GHz 2.8GHz
Strategy 1 (S1) 2.8GHz 1.5GHz
Strategy 2 (S2) 2.8GHz 2.4GHz
Strategy 3 (S3) 2.4GHz 1.5GHz

strategies. With the optimization strategies, the goal is to get
the average compute time close to the maximal compute time,
without increasing this maximum. Because our experiments
are setup with a fractional computational imbalance of around
1, where the average amount of work is half that of the most
over-utilized processes. We expect that S1 shows the best
energy efficiency, because the difference between the lowest
and highest frequencies in S1 are closest to 2.

V. RESULTS

In this section we evaluate the energy optimization method
for the three imbalanced scenarios discussed in Section III-B.
For each case, we report the total runtime, the compute time
per process, the observed fractional imbalance, and the energy
cost. All results and code needed to reproduce the results are
publicly available [15].

C1: Fluid Imbalance

In Figure 2 we show the results for the fluid imbalance case
C1. The load imbalance has a clear impact on performance. A
fractional imbalance of 1.1, which means that the difference
between the average compute time and the maximal compute
time is 2.1, results in an almost 80% increase in total execution
time and energy cost. Out of the optimization strategies, S3
is the most effective and reduces the energy cost by 12.6%
compared to the optimized run.

In one case, the total runtime showed unexpected behavior.
We assumed that the total runtime would not be affected by the
frequency changes as long as the slowest process did not slow
down. Strategy S1 did not increase the compute time of the
slowest processes, but it did increase the overall runtime of the
simulation. This is a clear sign that the frequency changes had
some impact on communication costs. This effect will need to
be taken into account in the development of future strategies.

Even considering the slightly increased total runtime, each
strategy is able to reduce the energy cost of the imbalanced
simulation.

C2: Particle Imbalance

Figure 3 shows the results for the particle imbalance case
C2. The impact of particle imbalance on the execution time
and the energy cost is significantly smaller than the impact
of the same amount of fluid imbalance. A fractional particle
imbalance of 1.1 only increases the execution time by 23%, in
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Fig. 2: Results for C1. Min/max/mean of total runtime, dis-
tribution of compute, energy costs, and measured fractional
imbalance across different configurations: Balanced (B), Im-
balanced (IB), and Imbalanced at 2.8GHz, (IB@2.8), and the
strategies S1, S2, and S3

contrast to the 80% increase observed in C1. Analysis of the
performance reveals that this difference is mostly attributed to
a change in communication overheads, because we observe
that the computational times behave similar across all the
scenarios. The energy optimization strategies are still very
effective, achieving an energy reduction of 23% compared to
the imbalanced run with S1.

Similar to C1, we observe a slight increase in the total run-
time when applying the optimization strategies. However, still
all strategies perform better as compared to the imbalanced
run. Notably, S1 consumes approximately the same amount of
energy as the balanced run, even with a higher total runtime.

C3: Fluid + Particle Imbalance

In Figure 4 we show the results for C3. We again observe
that the imbalance impacts the performance of HemoCell.
However, C3 is the first situation where S1 does not reduce the
energy cost compared to the imbalanced run. The optimization
strategy is effective in removing the imbalance, as we can see
from the observed fractional imbalance. However, there is a
significant increase in the total runtime. The result is that only
S2 reduces the energy cost compared to the imbalanced situ-
ation. We expect that this is because the amount of fractional
imbalance we observe in C3 is less than 1, i.e., the highest
observed computation time is less than double of the mean
computation time per process. To verify this in Figure 5 we
show the results for case C3-2. C3-2 is set up similarly to C3,
but with more imbalance.
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Fig. 3: Results for C2. Min/max/mean of total runtime, dis-
tribution of compute, energy costs, and measured fractional
imbalance across different configurations: Balanced (B), Im-
balanced (IB), and Imbalanced at 2.8GHz, (IB@2.8), and the
strategies S1, S2, and S3

The results for C3-2 are similar to the results of C1 and
C2. All strategies reduce energy consumption compared to
the imbalanced situation. S3 again shows the largest impact
on energy consumption, with an energy cost reduction of 14%
compared to the imbalanced case.

VI. IMPACT CONSIDERATIONS

In this section, we discuss the strategy for the implementa-
tion of a generic modular framework that is able to detect and
address workload imbalance, and improve energy efficiency
on-the-fly. We then discuss how this framework could be
applicable beyond our use-case.

A. The Framework/Implementation

There are three core components to the framework, (1)
Detection, (2) Policies, and (3) Actuation. In this section we
describe each and their interaction, and outline the necessary
future work to implement this framework as a generic energy
optimization tool.

Detection: On-the-fly energy optimization requires real-
time detection of workload distribution across processes. In
this work, we use use process-level execution time mea-
surements as the detection mechanism. Although this direct
measurement approach is very accurate, in production it might
incur instrumentation overhead. Another detection approach is
modeling the workload imbalance. Previous work has shown
that modeling the per-process computational cost of HemoCell
is feasible with relatively high accuracy [11].
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Fig. 4: Results for C3. Min/max/mean of total runtime, dis-
tribution of compute, energy costs, and measured fractional
imbalance across different configurations: Balanced (B), Im-
balanced (IB), and Imbalanced at 2.8GHz, (IB@2.8), and the
strategies S1, S2, and S3

Policies: The policies are a set of rules that decide when
and which actions need to be taken. These decisions are made
based on both the input from the imbalance detection, and the
limitations of the HPC platform that is used.

The policy outputs a new desired frequency for each node
or process. The development of efficient policies will require
further effort beyond this work, including a better understand-
ing of the impact of frequency scaling on all overheads (e.g.,
communication overheads).

Actuation: The actuation component is responsible for
enforcing the policies. It is a layer between the abstract
policies and the underlying HPC platform-specific frequency
management interfaces. This layer ensures framework porta-
bility across diverse HPC environments while abstracting the
complexity of platform-dependent frequency control imple-
mentations from the policy layer.

B. Limitations

The evaluation done in this work indicates that the proposed
framework can be a powerful tool for energy optimization.
However, there are two notable limitations to consider.

First, the framework’s energy optimization capabilities are
constrained to computational scenarios where workload rebal-
ancing is not feasible. Our evaluation demonstrates that in
situations where load balancing is an option, our method does
not provide energy efficiency improvements.

Moreover, imbalance still increases the total runtime as
compared to a balanced run. Therefore, even with optimal
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energy optimization, the total runtime of an optimized run is
still longer compared to a perfectly balanced run.

Second, the framework is dependent on the permissions
and tools of the underlying HPC platform. Specifically, on
platforms that restrict user control of CPU frequencies, our
solution will not be practically feasible.

C. Beyond the use-case

While this work has focused on energy efficiency opti-
mization of HemoCell, the method could potentially be a
general-purpose optimization tool for a wide range of large-
scale applications across various HPC platforms. The proposed
architecture separates the application-specific detection, from
the abstract general policies, and the platform-specific policy
actuation. This method can be especially beneficial for com-
plex simulations, where the cost and complexity of rebalancing
functionality might be prohibitively high.

Our evaluation has shown that the method is robust across
multiple types of imbalance in HemoCell, suggesting the
potential of broader applicability to large-scale scientific ap-
plications. The frameworks modular design enables policy
portability, localizing application specificity to the detection
component. Further validation across diverse application do-
mains will be necessary to comprehensively evaluate the
framework’s portability, though initial results demonstrate
promising adaptability to varying computational patterns.

VII. RELATED WORK

In this section we provide an overview of existing methods
and tools that leverage frequency scaling for energy optimiza-

tion in HPC environments, highlighting how they differ from
our approach.

Dynamic Voltage and Frequency Scaling (DVFS) has long
been employed as an energy optimization strategy across
various computing domains, including cloud computing [20],
[21], networking [22], [23], and embedded systems [24], [25].

In the HPC domain, DVFS remains a widely used tech-
nique for reducing energy consumption. Existing DVFS-based
tools in HPC environments can be broadly categorized into
application-agnostic solutions and specialized approaches. A
good example of an application-agnostic solution is the Energy
Aware Runtime-system (EAR) [26], [27], a runtime system
that sits atop an HPC platform and enables automatic energy
optimization for any application using DVFS. EAR is capable
of intercepting MPI calls, allowing it to automatically detect it-
erations within an application. Based on one of two predefined
energy strategies, EAR optimizes either energy efficiency or
performance by sweeping through a range of frequencies and
observing the impact on performance and energy efficiency.

A few other examples of application-agnostic tools include
GEOPM [28], a framework for power management and op-
timization; Adagio [29], a runtime system for optimization
of scientific applications; and Cuttlefish [30], a C/C++ li-
brary/runtime for energy optimization on Intel processors. All
these tools observe the application from the outside, with-
out any prior application knowledge, and tweak frequencies
to achieve better energy efficiency and/or performance. Our
approach can also be included as a policy in such sys-
tems/libraries, but can also act within the application itself (our
current approach). However, in the latter case, our approach
has the ability to react immediately without the need to first
observe a reduction in performance.

Various examples of scheduling policies applicable for HPC
systems and applications are included in a detailed survey [31].
Also in this case, our approach can be regarded as an addi-
tional, finer-grain DVFS policy.

Although our approach is portable to other applications, it
is more akin to application-specific methods, since it utilizes
integration with the application through either detailed active
monitoring, or via a performance model. In the same class of
approaches, Freeh et al. [32] proposed DFVS based on specific
phases of the application, while Hsu et al. [33] detected
regions of an application and changed frequencies based on
the performance of these regions. However, their policies are
global rather than local. To our knowledge there is currently no
solution that focuses specifically on exploiting node-level load-
imbalance to improve energy efficiency of large-scale scientific
applications.

VIII. CONCLUSION AND FUTURE WORK

In this work we demonstrate the effectiveness of exploiting
load-imbalance to reduce the energy consumption of Hemo-
Cell, a representative scientific application, through frequency-
scaling simulations. Intuitively, our method enables light-
loaded nodes to reduce their frequency (and therefore slow-
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down execution) sufficiently to save energy, with minimal
effect to the overall application performance.

Our empirical analysis shows that, with sufficient compu-
tational imbalance (relative to the available frequency range),
our approach may lead to significant energy savings - as much
as 23% compared to the imbalanced, nominal frequency case.
The method proves robust across different types of computa-
tional imbalance, arising from computational components of
different characteristics in the complex use-case simulations
(i.e., fluid and particle computations). The amount of energy
saved relies only on quantification of the computational im-
balance and sufficient range for frequency down-scaling.

Our future work focuses on the design and development
of the complete framework around this method. The goal
is to observe load imbalance at runtime, use application-
independent policies to determine optimal frequencies, and
have a portability layer that is able to enact these policies
on a wide range of HPC platforms. When combined with
various runtime systems, such a framework can enhance
energy efficiency for a broad range of large-scale scientific
applications.
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J. Mikyška, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J.
Dongarra, and P. M. Sloot, Eds. Cham: Springer Nature Switzerland,
2023, pp. 323–336.

[7] C. J. Spieker, G. Závodszky, C. Mouriaux, P. H. Mangin, and A. G.
Hoekstra, “Initial platelet aggregation in the complex shear environment
of a punctured vessel model,” p. 2023.05.11.540363, Jun. 2023.

[8] S. A. Alowayyed, Patterns for Multiscale Computing, 2018, ISBN: 978-
94-6323-409-2.

[9] S. Alowayyed, G. Závodszky, V. Azizi, and A. G. Hoekstra, “Load
balancing of parallel cell-based blood flow simulations,” Journal of
Computational Science, vol. 24, pp. 1–7, Jan. 2018.

[10] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava,
F. Brogi, M. B. Belgacem, Y. Thorimbert, S. Leclaire, S. Li, F. Marson,
J. Lemus, C. Kotsalos, R. Conradin, C. Coreixas, R. Petkantchin, F. Ray-
naud, J. Beny, and B. Chopard, “Palabos: Parallel Lattice Boltzmann
Solver,” Computers & Mathematics with Applications, Apr. 2020.

[11] J. van Dijk, G. Zavodszky, A.-L. Varbanescu, A. D. Pimentel, and
A. Hoekstra, “Building a Fine-Grained Analytical Performance Model
for Complex Scientific Simulations,” in Parallel Process. Appl. Math.,
ser. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2023, pp. 183–196.

[12] L. Axner, J. Bernsdorf, T. Zeiser, P. Lammers, J. Linxweiler, and A. G.
Hoekstra, “Performance evaluation of a parallel sparse lattice Boltzmann
solver,” Journal of Computational Physics, vol. 227, no. 10, pp. 4895–
4911, May 2008.

[13] S. Hajiamini, B. Shirazi, A. Crandall, and H. Ghasemzadeh, “A Dy-
namic Programming Framework for DVFS-Based Energy-Efficiency in
Multicore Systems,” IEEE Trans. Sustain. Comput., vol. 5, no. 1, pp.
1–12, Jan. 2020.

[14] J. van Dijk, “UvaCsl/hemocell-performance-benchmarks: Release for
PDSEC 2025,” Zenodo, Mar. 2025, DOI: 10.5281/zenodo.15003102.

[15] ——, “Yelvd/PDSEC25-artifacts: PDSEC25 camera ready,” Zenodo,
Mar. 2025, DOI: 10.5281/zenodo.15022493.

[16] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A Medium-Scale Distributed System
for Computer Science Research: Infrastructure for the Long Term,”
Computer, vol. 49, no. 5, pp. 54–63, May 2016.

[17] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments,” in
2010 39th Int. Conf. Parallel Process. Workshop, Sep. 2010, pp. 207–
216.
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