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Abstract

This paper presents a technique for high-level power es-
timation of microprocessors. The technique, which is based
on abstract execution profiles called ’event signatures’, op-
erates at a higher level of abstraction than commonly-used
instruction-level power simulators and should thus be ca-
pable of achieving good evaluation performance. We have
compared our power estimation results to those from the
instruction-level simulator Wattch. In these experiments, we
demonstrate that with a good underlying power model, the
signature-based power modeling technique can yield accu-
rate estimations (a mean error of 5.5 percent compared to
Wattch in our experiments). At the same time, the power es-
timations based on our event signature technique are at least
an order of magnitude faster than with Wattch.

1 Introduction

The increasing complexity of modern embedded sys-
tems, which are more and more based on heterogeneous
MultiProcessor-SoC (MP-SoC) architectures, has led to the
emergence of system-level design. A key ingredient of
system-level design is the notion of high-level modeling and
simulation in which the models allow for capturing the be-
havior of system components and their interactions at a high
level of abstraction. As these high-level models minimize the
modeling effort and are optimized for execution speed, they
can be applied at the early design stages to perform, for ex-
ample, architectural Design Space Exploration (DSE). Such
early DSE is of eminent importance as early design choices
heavily influence the success or failure of the final product.

The Sesame modeling and simulation framework [9] pro-
vides efficient system-level design space exploration of em-
bedded multimedia systems, allowing rapid performance
evaluation of different architecture designs, application to
architecture mappings, and hardware/software partitionings.
Key to this flexibility is the separation of application and ar-
chitecture models, together with an explicit mapping step to

map an application model onto an architecture model.
Until now, the Sesame modeling and simulation frame-

work has purely focused on the performance analysis of mul-
timedia MP-SoC architectures. Evidently, to make good de-
sign trade-offs, also power consumption needs to be taken
into account during the process of DSE. Therefore, this paper
presents the first step towards including system-level power
models in Sesame. More specifically, we introduce the con-
cept of event signatures that allows for high-level power
modeling of microprocessors (and their local memory hi-
erarchy). As this signature-based power modeling operates
at an even higher level of abstraction than commonly-used
instruction-level power models, it is well suited for rapid
system-level DSE. Using several experiments, we compare
the results from our signature-based power modeling with
those from Wattch [4], which is a widely-used instruction-
level power analysis tool. In order to perform system-level
power modeling of an entire MP-SoC, the next step (not ad-
dressed in this paper) will be to extend the power model-
ing framework with models for the interconnect and possible
dedicated components in the MP-SoC.

In the next section, we briefly describe the Sesame frame-
work. Section 3 introduces the concept of event signatures
and explains how they can be used for high-level power
modeling of microprocessors. In Section 4, we describe the
power models used for modeling different aspects of micro-
processors. Section 5 presents a number of experiments in
which we compare the results from our models against those
from Wattch. In Section 6, we describe related work, after
which Section 7 concludes the paper.

2 The Sesame environment

To facilitate flexible performance analysis of embedded
(media) systems architectures, the Sesame modeling and
simulation environment [9] uses separate application and
architecture models. An application model describes the
functional behavior of an application while the architecture
model defines architecture resources and captures their per-
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Figure 1. Modeling an Motion-JPEG application on
a bus-based MP-SoC architecture in Sesame.

formance constraints. After explicitly mapping an applica-
tion model onto an architecture model, they are co-simulated
via trace-driven simulation. This allows for evaluation of
the system performance of a particular application, mapping,
and underlying architecture. Essential in this methodology
is that an application model is independent from architec-
tural specifics and assumptions on hardware/software parti-
tioning. As a result, a single application model can be used
to exercise different hardware/software partitionings and can
be mapped onto a range of architecture models, possibly rep-
resenting different architecture designs or modeling the same
architecture design at various levels of abstraction. The lay-
ered infrastructure of Sesame is illustrated in Figure 1.

For application modeling, Sesame uses the Kahn Process
Network (KPN) model of computation [6], which fits well
to the multimedia application domain. In a KPN, paral-
lel processes communicate with each other via unbounded
FIFO channels, where reading from these channels is block-
ing and writing is non-blocking. The computational behav-
ior of an application is captured by instrumenting the code of
each Kahn process with annotations that describe the appli-
cation’s computational actions. The reading from and writ-
ing to Kahn channels represent the communication behav-
ior of a process within the application model. By executing
the Kahn model, each process records its actions in order to
generate its own trace of application events, which is nec-
essary for driving an architecture model. These application
events typically are coarse grained, such as Execute(DCT) or
Read(channel id,pixel-block).

An architecture model simulates the performance conse-
quences of the computation and communication events gen-
erated by an application model. To this end, each architec-
ture model component is parameterized with an event table
containing operation latencies (illustrated for Processor 1 in
Figure 1). The event table entries could, for example, spec-

ify the latency of an Execute(DCT) event, or the latency of a
memory access in the case of a memory component. The la-
tency values are usually initialized using performance num-
bers from literature, and can be calibrated using measure-
ments on available hardware or via lower-level simulations
of architecture components.

To bind application tasks to resources in the architecture
model, Sesame provides an intermediate mapping layer. This
layer controls the mapping of Kahn processes (i.e. their
event traces) onto architecture model components by dis-
patching application events to the correct architecture model
component. The mapping also includes the mapping of Kahn
channels onto communication resources in the architecture
model.

Extending the Sesame framework to also support power
modeling can be done fairly easily by adding power con-
sumption numbers to the event table. So, this means that a
component in the architecture model not only accounts for
the timing consequences of an incoming application event,
but also accounts for the power that is consumed by the ex-
ecution of this application event (which is specified in the
event table now). The power numbers that need to be stored
in the event table can, of course, be retrieved from lower-
level power simulators or from (prototype) implementations
of components. However, simply adding fixed power num-
bers to the event table would be a rigid solution in terms
of design space exploration: these numbers would only be
valid for the specific implementation used for measuring the
power numbers. Therefore, we propose so-called event sig-
natures to allow for more flexible high-level power estima-
tion in the scope of system-level design space exploration1.

3 Event signatures

An event signature is an abstract execution profile of an
application event that describes the computational complex-
ity of an application event (in the case of computational
events) or provides information about the data that is com-
municated (in the case of communication events). Hence,
it can be considered as meta-data to an application event.
In this paper, we purely focus on signatures for computa-
tional application events (i.e., Execute() events). The sig-
natures for these events describe computational complex-
ity in a (micro-)architecture independent fashion using an
Abstract Instruction Set (AIS). Currently, our AIS consists
of a small set of instruction types such as ’Simple Integer
Arithmetic’, ’Simple Integer Arithmetic Immediate’, ’Inte-
ger Multiply’, ’Branch’, ’Load’, and ’Store’. To construct
the signatures, the real machine instructions that embody an
application event are first mapped onto the AIS, after which

1With respect to the rigidness of fixed numbers in the event table, the
same reasoning holds for the operation latencies in the table. For this reason,
we are also working on performance prediction using event signatures, but
this is out of the scope for this paper.
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Figure 2. Signature-based power modeling.

a compact execution profile is made. This means that the re-
sulting signature is a vector containing the instruction counts
of the different AIS instructions.

In Figure 2, signature-based power modeling is illus-
trated. The Kahn application process for which a power
estimation needs to be performed, is simulated using Sim-
Cache (which is part of the SimpleScalar suite [1]). Us-
ing this (relatively fast) simulator, the event signatures are
constructed – by mapping the executed machine instructions
onto the AIS as explained above – for every computational
application event that can be generated by the Kahn pro-
cess in question. The event signatures act as input to our
parameterized microprocessor power model, which will be
described in detail in the next section. For each signature,
Sim-Cache may also provide the power model with some ad-
ditional micro-architectural information, such as cache mis-
srates, branch misprediction rates, etc. In our case, only
instruction and data cache missrates are used. The micro-
processor power model also uses a micro-architecture de-
scription file in which the mapping of AIS instructions onto
microprocessor components is described. For example, for
the AIS instruction ’Load’, it specifies that the ALU is used
(to calculate the address), the data cache is accessed, and
that the integer register file is read and written. In addition,
the micro-architecture description file also contains the pa-
rameters for our power model, such as e.g. the dimensions
and organization of memory structures (caches, register file,
etc,.) in the microprocessor, clock frequency, and so on.
Clearly, this micro-architecture description allows for eas-
ily extending the AIS and facilitates the modeling of differ-
ent micro-architecture implementations. The above ingredi-
ents (the signatures, additional micro-architectural informa-
tion per signature, and the micro-architecture description of
the processor) allow the power model to produce power con-
sumption estimates for each computational event. Option-
ally, these power consumption estimates could be stored in
Sesame’s event tables for re-use purposes.

We note that the generation of event signatures can be
performed either statically or dynamically. In static signature
generation, Sim-Cache measures the average instruction exe-
cution behavior for code fragments that represent application
events and constructs the signature based on these averages.
So, in this case, the signature generation takes place entirely

Level 1
caches

files
Register

Register
Update 

Unit

Other
units

Cache misses
C

ache m
isses

Usage counts

Usage counts

Usage counts

Usage counts

M
apping

Power estimation
for appl. event

Signature
of appl. event

Level 2
caches

Load/
Store

Queue

Processor
bus

Clock

Execution time
of appl. event 

(cycles)

Figure 3. The different components in our micro-
processor power model.

off-line. In dynamic signature generation, the signatures
are constructed on-the-fly for every application event. This
means that the signatures of the same type of application
events may change over time due to e.g. data dependent exe-
cution behavior inside the code of these events. Another con-
sequence of dynamic signature generation is that Sim-Cache
must be co-simulated together with Sesame. The above rea-
soning also holds for the additional micro-architecture infor-
mation, like cache missrates, that can be provided by Sim-
Cache to the power model. This can also either be done stat-
ically (i.e., average based) or dynamically (i.e., exact based).

4 Microprocessor power model

The various components that constitute our microproces-
sor power model are shown in Figure 3. The power con-
sumption of an application event is calculated by accumu-
lating the power consumptions in each of these components.
More specifically, the first step to calculate an application
event’s power consumption is to map its signature (using the
micro-architecture description file, as explained in the previ-
ous section) to usage counts of the various processor com-
ponents. So, here it is determined how often e.g. the ALU
(in ’other units’ in Figure 3), the register file and the level-1
instruction and data caches are accessed during the execu-
tion of an application event. For the memory components
(level 1 and 2 caches, register file, etc.), we use Cacti 4.2
[14] to determine the power consumption of read and write
accesses to these structures. These power estimates include
leakage power. Moreover, we use the cache missrate infor-
mation provided by Sim-Cache to derive the access counts
for the level-2 cache, load/store queue and bus components.
Here, we note that we do not (yet) model the main memory
since Cacti 4.2 does not support the modeling of DRAMs2.

2As Cacti 5.0 becomes available, the modeling of DRAMs will be pos-
sible



The non-memory components in our power model (’other
units’, ’bus’ and ’clock’ components in Figure 3) are activity
based. That is, they estimate power using the common power
equation for CMOS technology:

P = αCV 2f (1)

where C specifies the capacitance, V the voltage, and f the
frequency. The activity, which is defined as the percentage
of transistors which make a switch on each clock cycle, is
represented by the parameter α. For the bus component, we
use a simple model which abstracts the bus to a set of wires,
without any logic, with input and output pins. Currently,
we use an I/O pin capacitance of 5 pF per pin and a wire
capacitance of 2.15 pF per inch. Further, we assume a wire
length of 3 inch and an activity α of 0.5 (half of the wires
perform a state switch). For the models of the ALU and
multiplier units (in the box ’other units’ in Figure 3), we use
the capacitance numbers from Wattch [4].

For the power model of the clock component, we base
ourselves on the models used in [13, 11]. The model recog-
nizes three sub-components: the clock distribution wiring,
the clock buffering and the clocked node capacitance. We
assume a H-tree based clock network using a distributed
driver scheme (i.e. applying clock buffers). To determine
the wiring capacitance, the following equation is used:

Cwiring = Cwire ×
√

Adie × 2Ntree−1 ×
Ntree∑
i=1

1
2bi/2c+1

(2)

where we retrieve the wire capacitance (Cwire ) and chip area
(Adie , determined by accumulating all cache areas) from
Cacti 4.2, and calculate the depth of the clock tree (Ntree )
using:

Ntree =
√

Adie
Rwire × Cwire

Skewclock
+ 1 (3)

where resistance Rwire is also retrieved from Cacti.
The capacitance consumed by the buffers is modeled to

be a fraction of the capacitance consumed by the wiring net-
work. This fraction is dependent on the number of buffers,
which is calculated by first taking the ratio of the capacitance
of the wiring network and the capacitance of a single buffer.
Over this the fourth root is taken, where the value four is ac-
tually a parameter, the optimal stage ratio, but this value is
fixed within our model.

buffers = 4

√
Cwiring

Csingle buffer
(4)

Cbuffers = Cwiring ×
1

1− ( 1
buffers )

(5)

For the clocked node capacitance, only memory components
are considered. Here, we use the number of read and write
ports and the blocksize to calculate the capacitance:

Cclocked = ports × blocksize × Ctrans (6)

The capacity for switching a port is acquired from Cacti, and
is equal to the capacitance of a transistor. The clocked node
capacitance of each memory structure is summed to the total
clocked node capacitance.

For several components in our power model, the execu-
tion time of an application event is needed in order to cal-
culate the activity parameter α. These event execution times
may be derived from the event tables in Sesame’s architec-
ture model (e.g. in the case signatures are generated stati-
cally), or they may be generated dynamically using e.g. our
trace calibration co-simulation technique [15].

5 Experiments

To evaluate our signature-based power estimation, we use
three benchmark applications from the MiBench benchmark
suite [5]: cjpeg (jpeg compression), susan (edge detection),
and string search. We compare our results to those from
Wattch [4], which is a widely-used instruction-level power
simulator. In these experiments, we use a (in-order issue)
PowerPC microprocessor model. Also, we assume a 180nm
technology, a voltage of 2.0V, and a frequency of 600MHz.

In the first experiment, we have varied the sizes of the
level-1 instruction (il1) and data (dl1) caches as well as of
the unified level-2 cache (ul2). This is done by increasing
the number of sets in the caches. In Figure 4(a), the power
estimation results from Wattch are shown, while Figure 4(b)
shows the results from our own power model. Clearly,
the absolute power predictions differ significantly between
Wattch and Sesame. As will be demonstrated later on, this is
mostly due to the differences in the underlying power mod-
els. In Wattch, the power consumption is dominated by the
level-1 instruction and data caches and, to a lesser extent, the
clock network. In Sesame, the power is mostly dominated
by the clock network, followed by the level-1 caches. The
large discrepancy in absolute power estimations is mainly
caused by two differences in the power models of Sesame
and Wattch: First, Wattch has a more extensive model of the
clocked node capacitance. For example, not only the clocked
node capacitance of memory components are modeled, but
also the datapath and other components are included. Sec-
ond, whereas Sesame (in line with Cacti) only models the
power consumption related to the critical path inside mem-
ory structures, Wattch directly relates the size of a mem-
ory structure to the power consumption. The latter can be
clearly seen in Figure 4(a) where the power consumption
of the level-1 caches rapidly increases when increasing the
number of cache sets.

Another observation that can be made is that the power
consumption of the clock network in Wattch does not appear
to increase for larger cache structures, while there is a sig-
nificant increase of power consumed by the clock in Sesame.
This is due to the fact that Sesame dynamically calculates the
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Figure 4. Power consumption estimation for Wattch (a) and Sesame (b) when varying the cache sizes.
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Figure 5. Comparing Sesame and Wattch when the
same underlying power models are applied.

die area (using Cacti) for the power modeling of the clock
network, while Wattch uses a fixed die area which evidently
does not scale with the cache size.

From the above, we learn that although Sesame shows the
total power consumption trend reasonably well, its power
model still needs to be improved considerably to better re-
flect the correct absolute power consumptions of the various
architectural components. Moreover, the current differences
in the underlying power models of Sesame and Wattch make
it impossible to actually evaluate the signature-based power
modeling technique and the consequences (no notion of sep-
arate instructions nor of the data that they use) that come with
it. For this reason, we also present an experiment in which
we use the access power consumptions from Wattch for the

various components in our power model. This way, we try
to align both power models such that we can actually mea-
sure the effects of the high abstraction level at which Sesame
operates. Figure 5 shows the power consumption estimates
for both Sesame and Wattch for all three benchmark appli-
cations. Here, we have executed cjpeg with three different
input pictures of varying complexity (Cats, Rain and Water).

Using these aligned power models, the mean difference
between Sesame and Wattch is only 5.5%, with a worst case
of 14.9%. Individual components which are data depen-
dent may have a larger mean error, such as 13% for the
instruction register file. This is however only a small frac-
tion of the total power consumption. More importantly, for
the caches — currently modeled with double-ended bitlines
in both Sesame and Wattch, making their access energies
largely data independent – the mean error is relative small:
2.1% for the level-1 instruction cache and 6.1% for the level-
1 data cache. From these numbers, we can conclude that
our high-level method may yield power estimations that are
fairly close to those from tools such as Wattch.

Since our initial aim was to speed up the power esti-
mations in comparison to traditional instruction-level power
simulators, we also measured the execution times of both the
Sesame and Wattch frameworks. Here, we should note that
for Sesame we used a set-up in which Sim-Cache was co-
simulated together with Sesame to provide our power model
with cache missrates (see Section 3). Decoupling Sesame
and Sim-Cache would result in even better performance of
our power estimations. For the studied benchmark applica-
tions, Sesame is on average 10.5 times faster than Wattch.
The largest speed-up we measured was 25. Given the fact
that – with an appropriate power model – good power esti-
mates can be achieved (see Figure 5), this is a very promising
result.



6 Related work

High-level microprocessor power modeling techniques
range from analytical methods [3, 8], based on e.g. statistical
or information-theoretic techniques, to micro-architecture
level instruction set simulators (ISSs) such as Wattch [4],
Sim-Panalyzer [2] and SimplePower [16]. Clearly, within
this range, there is a trade-off between accuracy and estima-
tion performance. A fair number of efforts also address mi-
croprocessor power estimation at a level that is in between
analytical and ISS-level models. Most of these efforts esti-
mate power based on a-priori knowledge about instructions
or segments of instructions. For example, the power con-
sumption of separate instructions (or instruction pairs [7])
can be measured (using a real processor or a low-level sim-
ulator) after which the power consumption of an entire ap-
plication involves the accumulation of these per-instruction
power consumptions [12]. Such measurement-based power
estimation can also be performed at a coarser granularity
such as at the level of entire functions [10].

In terms of abstraction level, our signature-based power
estimation technique is also in between analytical and ISS-
based models. But we abstract from single instructions
while still applying a micro-architecture level model (with
the possibility to perform micro-architectural DSE) to per-
form power estimation.

7 Conclusions

In this paper, we have presented a technique for high-
level power estimation of microprocessors. This tech-
nique, which is based on abstract execution profiles called
’event signatures’, operates at a higher level of abstraction
than commonly-used instruction-level power simulators and
should thus be capable of achieving good evaluation perfor-
mance. The signature-based power modeling technique has
been integrated in our Sesame system-level simulation and
design space exploration framework and will eventually be
extended to allow for system-level power modeling of an en-
tire MP-SoC (i.e., also support the power modeling of the
interconnect, shared memory, dedicated IP blocks, etc.).

We compared the results from our signature-based power
modeling to those from the instruction-level simulator
Wattch. Here, it was shown that although the underlying
power model we applied shows approximately the correct
overall trends, it needs to be improved considerably to show
the correct absolute power consumptions of the various ar-
chitectural components. However, we also demonstrated that
with a good underlying power model, the signature-based
power modeling technique can yield accurate estimations (a
mean error of 5.5 percent compared to Wattch in our experi-
ments). Important to note here is that the power estimations
based on our event signature technique are at least an order

of magnitude faster than with Wattch.
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