
Energy-Efficient QoS-Aware Scheduling for
S-NUCA Many-Cores

Sudam M. Wasala∗, Jurre Wolff∗, Yixian Shen∗, Anuj Pathania∗, Clemens Grelck∗†, and Andy D. Pimentel∗
∗Informatics Institute, University of Amsterdam, The Netherlands

†Institute for Informatics, Friedrich Schiller University, Jena, Germany
Email: s.m.wasala@uva.nl, jurre.wolff@student.uva.nl, {y.shen, a.pathania, a.d.pimentel}@uva.nl, clemens.grelck@uni-jena.de

Abstract—Optimizing performance and energy efficiency in
many-core processors, especially within Non-Uniform Cache
Access (NUCA) architectures, remains a critical challenge. The
performance heterogeneity inherent in S-NUCA systems compli-
cates task scheduling due to varying cache access latencies across
cores. This paper introduces a novel QoS management policy
to maintain application execution within predefined Quality of
Service (QoS) targets, measured using the Application Heartbeats
framework. QoS metrics like Heartbeats ensure predictable
application performance in dynamic computing environments.
The proposed policy dynamically controls QoS by orchestrating
task migrations within the S-NUCA many-core system and
adjusting the clock frequency of cores. After satisfying the QoS
objectives, the policy optimizes energy efficiency, reducing overall
system energy consumption without compromising performance
constraints. Our work leverages the state-of-the-art multi-/many-
core simulator HotSniper. We have extended it with two key
components: an integrated heartbeat framework for precise,
application-specific performance monitoring, and our QoS man-
agement policy that maintains application QoS requirements
while minimizing the system’s energy consumption. Experimental
evaluations demonstrate that our approach effectively maintains
desired QoS levels and achieves 18.7% energy savings compared
to state-of-the-art scheduling methods.

Index Terms—Efficient Computing, Computer Systems

I. INTRODUCTION

Ensuring Quality of Service (QoS) in many-core systems is
a non-trivial task, exacerbated by resource contention among
multiple applications. Traditional metrics used as a proxy for
monitoring QoS, such as using Instructions Per Second (IPS),
often fail to accurately reflect application-specific performance
needs. This inadequacy is particularly evident in contexts like
video gaming, where the rendering of each frame constitutes
a distinct unit of work. The variability in complexity between
frames means that a consistent IPS metric does not necessarily
equate to stable frame rates. This disconnect can lead to either
inefficient utilization of computing resources or an inability
to meet the desired frame rate. Moreover, instruction count-
based metrics can be misleading, skewed by idle operations
like spin locks. Consequently, there is a growing need for
more application-specific performance metrics. Application
Heartbeats [1], enabling applications to transparently relay
their real-time and target performance, emerge as a compelling

This work has received funding from the European Union’s Horizon 2020
research and innovation program for the APROPOS project under the Marie
Skłodowska-Curie grant agreement No. 95609.

alternative, setting the stage for more effective QoS manage-
ment in many-core systems.

S-NUCA (Static Non-Uniform Cache Access) many-
cores [2], characterized by their physically distributed yet
logically shared last-level cache (LLC), introduce inherent
heterogeneity in core access latency. Their LLC access latency
varies with the core’s proximity to the center of the chip. Cores
located closer to the center have, on average, a lower access
latency than those cores located at the border.

In S-NUCA systems, there are two main ’knobs’ with
which QoS can be managed, namely thread migration and
DVFS. Thread migration serves to reallocate threads to, e.g., a
location closer or further away from the chip’s center, whereas
DVFS dynamically tailors the cores’ voltage and frequency to
the performance and power needs. The functionality of these
strategies, however, is intimately linked to the individualized
demands and behaviors of distinct applications, with generic
methodologies potentially leading to suboptimal performance.
Thread migration, if performed without an understanding of
each application’s requirements and the possible contention for
resources with other threads, can negatively influence the QoS.
Moreover, the diverse ways in which applications respond to
DVFS call for a tailored approach to ensure a strategy that
is driven by QoS requirements. Previous works [3], [4] have
studied performance optimizations that utilize thread-level
performance metrics such as IPS on S-NUCA many-cores;
however, they have not studied the effects of an application-
level metric such as application heartbeats.

We propose a management policy that optimizes an appli-
cation’s QoS. It leverages the inherent heterogeneity of an
S-NUCA many-core processor. Application-level metrics like
Application Heartbeats are important when the application
requires execution at a predefined performance rate, such as
a stable frame rate. This contrasts with generic applications
typically optimized for maximum performance. Therefore,
our policy’s primary objective is to maintain the Heart Rate
(HR) within a predefined target range. We employ a reactive
strategy, using DVFS and thread migrations to control the HR.
Once the HR stabilizes within the target range, we focus on
minimizing the application’s energy consumption.

We leverage the open-source and widely-used thermal and
performance simulator HotSniper [5] to test and verify our
QoS management policy. The heterogeneity of an S-NUCA

many-core strongly depends on the processor chip’s physical
floorplan. Using a simulator like HotSniper allows us to easily
experiment with different floorplans. Moreover, it enables us
to extend our policy to support thermal management in the
future. We extend HotSniper by introducing a new module that
provides heartbeats as a performance metric to its scheduling
infrastructure. We use this infrastructure to perform experi-
ments with our QoS management policy.

Novel contributions of this paper:
• We extend the HotSniper thermal and performance sim-

ulator by integrating a new module that can be used to
simulate applications with integrated Application Heart-
beats. This allows us to perform simulations of QoS-
aware scheduling algorithms using Heart Rate (HR) as
a metric.

• We develop a reactive QoS management policy that can
maintain the HR of an application within a predefined
target range, and minimize the energy consumption of
the system once the target HR is reached.

• We conduct benchmarking against state-of-the-art tech-
niques, demonstrating that our policy surpasses existing
methods in terms of QoS maintenance and energy con-
sumption, confirming its capabilities and potential as a
new standard for QoS management in S-NUCA many-
cores.

II. HEARTBEAT SIMULATION USING HOTSNIPER

This section details the simulation infrastructure associated
with the HotSniper toolchain that is used to simulate S-
NUCA architectures. Moreover, we discuss the integration
of the Application Heartbeats framework into this toolchain.
Fig. 1 shows an overview of the HotSniper toolchain and the
heartbeat integration. HotSniper employs the Sniper Perfor-
mance Simulator [6] (1 in Fig. 1) for intricate simulations,
monitoring the interactions among critical components such
as execution units, caches, and register files. Concurrently, the
McPat [7] (2 in Fig. 1) tool provides a quantitative analysis
of the power consumption by processor cores and memory
controllers. The thermal simulator, HotSpot [8] (3 in Fig. 1),
uses this data to periodically ascertain the temperatures of each
thermal component, all under the guidance of the power model
and floorplan configuration. Before discussing the integration
of the heartbeats framework into HotSniper, we first provide
some background on S-NUCA architectures.

A. Static Non-Unifrom Cache Access (S-NUCA) Architecture

A Non-Unifrom Cache Access (NUCA) many-core architec-
ture has a physically distributed but logically shared Last Level
Cache (LLC). [9] Several memory-to-cache address mapping
policies have been proposed for many-cores [10], including
Static-NUCA (S-NUCA), which statically interleaves memory
addresses across NUCA cache banks at design time. This
approach is less flexible at run-time than operating system
managed policies like Dynamic-NUCA (D-NUCA). However
S-NUCA can be implemented in hardware with minimal
overhead. [11] For example, if we consider a many-core with

64 cores laid out on an 8x8 grid, the LLC would also consist
of 64 banks, each bank co-located with a core. To access
data in the LLC, a thread must reach the appropriate LLC
bank associated with the requested memory address via the
Network-on-a-Chip (NoC). The Sniper simulator (1 in Fig.
1) can be configured to simulate the performance of a many-
core with a S-NUCA architecture.

The latency of LLC accesses depends on the number of hops
required on the NoC, quantified by the Manhattan Distance
between the core and the LLC bank. Since the interleaving
of memory addresses causes threads to access all LLC banks
with roughly equal probability, the average LLC access latency
for a core is determined by its Average Manhattan Distance
(AMD) [12] to all LLC banks. Cores situated near the center of
the chip have lower AMD values, resulting in shorter average
cache access latencies, while cores towards the edges or
corners exhibit higher AMDs and, therefore, longer latencies.

B. Heartbeat Integration in HotSniper

Optimal Quality of Service (QoS) in complex applications
is crucially tied to real-time, application-specific performance
measurement, with the heartbeat framework emerging as a
vital tool. A heartbeat-enabled application produces a heartbeat
every time an iteration of the main loop of the application is
executed. The Heartbeat framework (4 in Fig. 1), encapsu-
lated as a dynamically linked C library, captures these heart-
beats and logs the heart rate of the application. HotSniper’s
scheduler (7 in Fig. 1) uses these logs, alongside with other
performance data to make scheduling decisions.

The successful integration of the Heartbeat framework
within the HotSniper toolchain requires overcoming the chal-
lenge of accurately representing time due to the discrepancies
between real time and the simulator’s time. The Heartbeat
library, which is crucial for capturing precise timestamps
with each heartbeat, encounters a conflict within the Sniper
simulator’s framework. Sniper runs threads on the native
hardware in real time. This causes system calls for timestamps
to return the host CPU’s clock time, which does not match
the slower, simulated timeline Sniper maintains. To solve this,
we have developed a so-called Magic Timestamp module
(6 in Fig. 1), which utilizes a callback function (5 in
Fig. 1) to fetch the correct simulation time from Sniper’s
internal (simulation) clock. Integration with Sniper’s magic
marker system through a specific C header enables processes
and applications to acquire timestamps that accurately reflect
the simulated environment’s timeline, ensuring accuracy and
temporal consistency throughout the simulation’s duration.

III. RELATED WORK

Effective performance management can be a useful tool for
multi- and many-core processors where applications demand
specific performance requirements. Thread scheduling policies
for energy and performance optimization on S-NUCA pro-
cessors have been explored in recent research. Pathania and
Henkel [12] proposed a scheduler that exploits the unique

The Sniper Multi-Many-Core Simulator

Heartbeat-Enabled Applications

McPaT

HotSpot

Instantaneous Logs of Power,Temperature per Core, Heartbeat per Application etc.

 Scheduler
 HBintlibrary

Heartbeat
Framework

4

Floorplan

Core
 V/f

System
States

Magic
TimeStamp Inst. Core

Power

Register
Callback

Register
Callback

Invoking
Callback

QoS-Aware Scheduling

hb_init();

heartbeat();

hb_finish();

Instantaneous
Scheduler
Decisions

System
Statistics

Instantaneous
Logs

Inst. Core
Temp.

1

2

3

5
6 7

Fig. 1. HotSniper tool-flow with heartbeat extensions in blue.

topology-based performance heterogeneity of S-NUCA, im-
proving performance by 9.93% compared to generic sched-
ulers. Rapp et al. [3] developed a neural network-based task
migration scheduler, optimizing both the timing and location
for task migration to enhance performance. Eyerman et al. [13]
introduced a nuanced 3D fine-DVFS algorithm designed to
regulate the frequency and voltage of individual cores, thereby
minimizing thermal interference among neighboring cores.
Noltsis et al. [14] implemented a PID controller to continu-
ously monitor chip temperature and dynamically adjust DVFS
in response to temperature fluctuations. Furthermore, Iranfar et
al. [15] crafted a dynamic thermal management (DTM) policy
using reinforcement learning, taking into account variables
such as fan speed, DVFS settings, and task distribution to
optimize overall performance. Shen et al. [16] proposes a
heuristic based thread migrations policy for thermal manage-
ment in S-NUCA processors. Rapp [4] explores the use of
neural network-based inductive learning for temperature con-
trol under QoS constraints, providing nearly optimal decisions
with minimal runtime overhead.

These advancements notwithstanding, there remains a gap
in performance management research concerning QoS-aware
scheduling that focuses on application level performance
metrics such as Application Hearbeats. Hoffmann et al. [1]
proposed an Application Heartbeat framework that enables
applications to report real-time performance data, facilitating
accurate QoS tracking. The authors of [17]–[19] suggested
a scheduling policy for heterogeneous CPUs that leverages
program heartbeat data to modulate CPU power consumption
and computational accuracy, yielding a more effective bal-
ance between power, thermal constraints, and performance,
especially when compared to existing methods. This work
highlights the continual evolution of performance management
strategies, especially in maintaining QoS objectives. However,
previous studies focus on big.LITTLE architectures with only
two levels of heterogeneity, whereas our proposed QoS man-
agement policy targets application-level QoS management on

S-NUCA platforms with higher levels of heterogeneity.

IV. QOS MANAGEMENT ALGORITHM

In this section, we discuss the functionality and design of
our QoS management policy. The policy aims to optimize
application performance and energy efficiency by dynamically
adjusting system resources in response to the application’s
needs. Specifically, it targets three main objectives:

1) achieving the desired Quality of Service (QoS) by main-
taining the performance within a predefined target heart
rate (HR);

2) minimizing jitter characterized by fluctuations of HR
outside the target range and reducing the overall oscil-
latory behavior of the HR;

3) reducing energy consumption once the HR stabilizes
within the desired range.

The policy uses clock frequency scaling and thread migra-
tions across the S-NUCA many-core as the knobs to control
the performance of the application. By migrating threads to
cores with lower AMDs—typically those near the center of the
many-core processor—we can reduce the average cache access
latency experienced by these threads. This strategic placement
minimizes overall LLC latency, which can enhance the HR
of applications. Thread migration thus serves as a means to
exploit the spatial heterogeneity of S-NUCA architectures,
balancing the workload and mitigating resource contention that
arises due to non-uniform cache access times.

Clock frequency changes, achieved through dynamic volt-
age and frequency scaling (DVFS), directly influence the
processing speed and power consumption of the cores, offering
a more immediate impact on application performance metrics
such as HR. Empirical observations have shown that frequency
adjustments have a more pronounced effect on HR compared
to thread migrations. This insight guides the policy to prioritize
frequency scaling when rapid HR adjustments are needed,
while still utilizing thread migration to address the longer-term
effects of cache access latencies in the S-NUCA architecture.

Designing an effective QoS management policy in this
context involves navigating several constraints. The HR metric
is inherently application-specific; different applications ex-
hibit widely varying heart rates based on their computational
characteristics and workload patterns. Moreover, the HR can
change significantly with the number of active threads, adding
another layer of complexity to resource management. These
factors make it challenging to develop a predictive algorithm
that can anticipate HR changes accurately. Therefore, our
policy adopts a reactive approach, adjusting resources in
response to real-time HR measurements rather than relying
on predictive models.

Most applications have application Heartbeats integrated in
a way that the main loop of the application consists of a single
heart beat for each iteration [1]. These applications often use
multi-threading to execute these loops, where a number of
iterations are assigned to each thread. This means that it is
important to measure HR values using a window of a size
that is greater than the number of threads. For example, if
we assume that there are two threads executing iterations of
the same loop in parallel at the same frequency, there is a
likelihood of both threads emitting a heart beat ping at roughly
the same time. This will result in a long interval where most
of the work is executed, followed by a quick burst of two
heartbeats from both threads. Therefore, a window size smaller
than the number of threads would result in HR measurements
that appear to have large oscillations. Furthermore, if the
two threads run at different frequencies it would also create
oscillations, which is generally undesirable in this context. As
such, to simplify the problem, we maintain a unified frequency
for all the cores that run threads from the same application.

Energy consumption is a critical consideration, influenced
by both the execution time of applications and the power usage
of the cores. Once the HR is within the target range, our policy
shifts focus toward minimizing energy consumption without
compromising QoS. It carefully manages the trade-off between
performance and energy efficiency, ensuring that applications
run optimally while conserving power whenever possible.

Fig. 2 shows an overview of the QoS management policy.
At every scheduling epoch, the policy obtains the current Heart
Rate (HR) and compares it to the target HR range to determine
how close the current HR is to the target. We classify this
proximity as a state (Fig. 3). Then, the policy adjusts its
parameters to prevent overshoot by comparing the current state
with the state at the previous epoch. Based on the current
state, the policy takes action to bring the HR to the desired
range. This action can be thread migration, a large frequency
change (macro step), or a small frequency change (micro step).
A hierarchical decision-making process determines which of
these actions to take, assigning a primary or secondary action
based on system conditions. The rest of this section describes
this process in more detail.

We characterize the system using five states based on the
current Heart Rate (HR) relative to a soft target range. Initially,
the soft target range is equivalent to the application’s prede-
fined hard target range. However, the policy may later shrink

the soft target range to accommodate oscillatory behavior in
certain applications. The soft target range always remains
within the hard target range. Fig. 3 shows these five states.
States A and E represent a situation where the HR is further
away from the target HR range. The policy should attempt to
change the heart rate quickly while in these states. States D and
B represent a situation wherein the HR is within a pre-defined
distance (10% in this paper) of the target HR range. Lastly,
state C is a situation in which the HR is within the target range,
and the policy attempts to minimize energy consumption while
ensuring the HR does not go out of the range.

As we have two control knobs, clock frequency and thread
migrations, that can be used to alter the performance, we
use a hierarchical approach to decide which knob to use.
Table I shows which approach the policy uses as the primary
and secondary action for each state. The QoS management
policy tries to use the secondary action only when the primary
action is not possible, i.e. when the frequency has reached
the maximum or minimum or when all the threads are at the
center or at the corner. For example, if the HR was at state
A, the primary action would be to increase the frequency with
a macro step, however if the frequency is at the maximum
frequency already, the policy will opt for the secondary action,
which is to migrate threads towards the center of the many-
core.

Due to frequency adjustments by the policy or due to the
oscillatory nature of the application, the HR can sometimes
overshoot the target range. When this occurs the policy reac-
tively adjusts several parameters to stabilize the HR, as shown
in Table II. One of the key objectives of the policy is to get the
system to state C as quickly as possible. The policy does this
primarily by changing the frequency, by a macro step, when
the system is in state A or E. However, the main issue with
this is that the heart rate can overshoot, potentially causing
the system to oscillate between states A and E. To prevent
this, we reduce the step size of the frequency change, if such
a state change happens. Once inside the target range (state
C), the policy needs to ensure that the HR does not wander
out of the target range. As discussed above, the HR could
show oscillatory behavior with multi-threaded applications.
Once inside state C, if the HR value is closer to the target
minimum or maximum, this could create situations where the
inherent oscillation in the HR could take the HR in and out of

Obtain
current HR

Adjust
Parameters

(Table II)

if Primary
Action

possible

Take
Secondary

Action
 (Table I)

Take Primary
Action

(Table I)

Yes

No

Fig. 2. Control flow of the Qos management policy

Target Range

minTarget

maxTarget

minTarget - (Target Range x 10%)

maxTarget + (Target Range x 10%)

STATE A

STATE B

STATE C

STATE D

STATE E

Heart
Rate

Time

Fig. 3. States of the System characterized based on the current HR with
respect to the target range.

the target range. To avoid this, the policy counts the number of
times the HR goes out of range and if it exceeds a predefined
limit, either the soft minimum target is increased or the soft
maximum target is reduced. For the experiments in this paper,
we set the predefined limit to 5.

When the HR is within the target, the policy moves to the
energy optimization policy. The energy optimization policy
is responsible for finding the optimum frequency for energy
consumption, while ensuring that the HR does not go out of
the soft target range. The issue with energy optimization is
that it is difficult to predict at which frequency the energy
will be optimal. As the frequency is lowered, less power
is consumed, but it takes longer for the same workload to
execute, and as such the overall energy consumption is not
necessarily reduced. However, as the HR gives an indication
of the rate at which the workload is executed, we can use
this to predict the effect on overall energy consumption when
any frequency change is made. To do this, we increase the
frequency by a small amount and observe the change in power
consumed compared to the change of HR. If the power and HR
ratios, as shown in (1), are almost equal, then the change in
frequency has no effect on the overall energy consumption and
the energy consumption is at the minimum. If the HR ratio is
greater than the power ratio, more work is done compared
to the power increase caused by an increase in frequency.
This means that we should keep on increasing the frequency
to get better energy performance. If the HR ratio is smaller
than the power ratio, the opposite happens and the increase
in frequency yields worse energy performance. So we should
reduce the frequency to get better energy performance. This
reactive approach assumes that the workload is fairly linear so
that the power consumption does not vary drastically within a
scheduling epoch.

HRcurrent

HRprevious
≈ Powercurrent

Powerprevious
(1)

When changing the frequency, while the HR is inside the

TABLE I
ACTIONS TO BE TAKEN TO CONTROL THE HR

State Primary action Secondary action
A Increase frequency by

macro step
Migrate towards center

B Migrate towards center Increase frequency by mi-
cro step

C Energy optimization pol-
icy

-

D Migrate away from center Decrease frequency by
micro step

E Decrease frequency by
macro step

Migrate away from center

TABLE II
PARAMETER ADJUSTMENT TO PREVENT OVERSHOOTS

Prev
State

Curr
State

Adjustment

A D or E Reduce Macro and Micro stepsize
B D or E Reduce Macro and Micro stepsize
C A or B mincount +=1; if mincount > 5, increase

softMinTarget
C D or E maxcount +=1; if maxcount > 5, decrease

softMaxTarget
D A or B Reduce Macro and Micro stepsize
E A or B Reduce Macro and Micro stepsize

target range, we have to be careful not to let the HR go out of
range. We use a variable step size where the step size decreases
as the HR approaches the minimum/maximum. Equation (2)
shows the variable step size when increasing the frequency f .

Stepf = MacroStepf × MaxTarget−HR

MaxTarget−MinTarget
(2)

V. EVALUATION

This section presents the empirical analysis to evaluate the
performance of our QoS management policy. We use the heart-
beat integrated HotSniper simulator to perform experiments
on the proposed QoS management policy. We have selected
the blackscholes, canneal, and dedup applications from the
PARSEC [20] benchmark suite (using simsmall inputs) for
our experiments as they are representative for processor-
intensive (blackscholes), memory intensive (canneal) and mod-
erate (dedup) workloads. We assigned a target range for each
benchmark and thread count. For each case we simulated
their maximum and minimum possible performance conditions
to identify the highest and lowest possible HR values. The
maximum performance scenario used the highest frequency
with threads at the center, while the minimum performance
scenario used the lowest frequency with threads at the edges.
We then randomly selected two values within this HR range,
ensuring they were at least 10% of the total range apart. These
two values constituted the target range for each case. We
simulate a 64-core out-of-order S-NUCA architecture, with
an 8x8 grid-based Network-on-Chip (NoC). Both the L1 data
(L1-D) and instruction (L1-I) caches have a capacity of 16
KB each. The 8 MB last-level cache (LLC) is divided into 64

0.6 0.7 0.8 0.9 1

·108

2

4

6
·103

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

·107

0.6

0.8

1

1.2

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

2.66 2.68 2.7 2.72 2.74

·109

0.5

1

1.5

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68

·109

0.6

0.8

1

1.2

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

1.34 1.36 1.38 1.4 1.42 1.44

·109

0

0.5

1

1.5

2
·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

1.34 1.35 1.36 1.37 1.38 1.39 1.4

·109

0

0.5

1

1.5

2
·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

Our Policy HPM PCMIG Target Range

Fig. 4. Performance of our policy compared to HPM and PCMiG. (top left: blackscholes (3 threads), top right: blackscholes (15 threads) middle left: canneal
(3 threads), middle right: canneal (16 threads), bottom left: dedup (2 threads), bottom right: dedup (10 threads))

banks of 128 KB each. The NoC latency is 1.5 ns per hop,
equivalent to 6 CPU cycles at a frequency of 4.0 GHz. The
NoC link width is 256 bits.

We use the Hierarchical Power Management (HPM) [18]
and PCMig [3] scheduling policies to compare the perfor-
mance of our QoS management policy with the state of the
art. HPM uses a PID controller to adjust the performance
to a predefined target HR. We use an implementation of
the HPM policy where the heterogeneity is assigned to a
NUCA architecture instead of the big.LITTLE architecture
in the original work. PCMig uses a machine learning based
approach to predict the performance after a thread migration
or frequency change in a NUCA architecture. It optimizes for
response time and is not heartbeat aware as it uses IPS as the

performance metric.

A. Evaluation of Performance

The main objective of the policy is to bring the HR within
the predefined target range. Figure 4 shows the performance
(HR) of the three scheduling policies. For each of the blacksc-
holes, canneal and dedup benchmarks, two executions – one
with a low degree of parallelism (0-5 threads) and one with
a high degree of parallelism (10-15 threads) – are shown.
Our approach, reaches the target range in all cases and does
not move out of it until the execution ends. As the PCMig
algorithm is not aware of the target HR range, it does not
produce HRs within the range as expected in most cases.
For dedup, PCMig does appear to be in the target HR range,

3.8 4.0 4.2 4.4 4.6 4.8
·107

0.5

1

1.5

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75
·107

0.5

1

1.5

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

5.2 5.4 5.6 5.8 6.0 6.2
·107

0.5

1

1.5

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8
·107

0.5

1

1.5

·105

Time (ns)

H
ea

rt
R

at
e

(H
B

/s
)

HR Target Range

Fig. 5. Four parallel blackscholes (12 threads) applications with different
target ranges

but this is likely by coincidence. The HPM policy gets the
HR within the target range sooner than our approach for
blackscholes. However, for canneal, HPM appears to overshoot
the target range. This may be due to a tuning issue as the
PID algorithm’s tuning requirements may vary depending on
the workload. Our approach shows a more stable HR that
remains within the target range compared to HPM. In all cases,
our approach shows a significant reduction in oscillations
compared to both PCMig and HPM.

In Figure 5, we show the performance when concurrently
launching four blackscholes applications with 12 threads each.
This showcases the policy’s capability of handling multiple

bla
ck

sch
ole

s

(3) bla
ck

sch
ole

s

(15
) ca

nn
ea

l

(3) ca
nn

ea
l

(16
) de

du
p

(2) de
du

p

(10
)

0

0.5

1

1.5

·10−5

E
ne

rg
y

(J
)

Our Policy
HPM
PCMig

Fig. 6. Energy consumption of different policies (number of threads are in
brackets). PCMig has the best energy performance, however it does not stay
within the QoS constraints. HPM for canneal also does not stay within the
target range.

applications with multiple target HRs.

B. Evaluation of Energy Consumption

Optimization of the energy consumption is the secondary
objective of our QoS management policy, besides the primary
objective of maintaining the HR within the required range.
Figure 6 shows the energy consumption of the three policies.
In all cases, PCMig outperforms our approach. PCMig com-
pletes the execution of the application in a shorter time, which
provides better energy values. However, as discussed above,
PCMig is not able to (consistently) keep the application’s HR
in the required range. In fact, in most cases, the HR of the
entire execution is well above the upper limit of the required
range. Our approach produces better energy consumption than
HPM in almost all cases, except for canneal where HPM is
not within the accepted HR range.

VI. CONCLUSION

We presented a reactive QoS management policy for S-
NUCA many-core processors, focusing on optimizing per-
formance and energy efficiency. The policy dynamically ad-
justs system resources to achieve the desired Quality of
Service (QoS), measured by application Heart Rate (HR),
while minimizing HR fluctuations outside the target range
and reducing energy consumption once the HR stabilizes.
Using thread migration and dynamic frequency scaling, we
exploit spatial heterogeneity by moving threads to optimal
cores and adjust processing speeds to control HR effectively.
Our reactive approach addresses the inherent challenges posed
by the variability of HR across different applications and
thread counts. By relying on real-time HR measurements

rather than predictive models, our policy adapts swiftly to
changing workload characteristics, ensuring that performance
targets are met promptly.

Future work includes implementing and testing the QoS
management policy on a real system instead of simulations.
This will also involve experimenting with benchmarks that had
prohibitively long execution times in simulations. Furthermore,
our policy currently does not consider thermal constraints. We
will explore integrating thermal management strategies into
our QoS management policy as future work.

REFERENCES

[1] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal, “Application heartbeats: a generic interface for specifying program
performance and goals in autonomous computing environments,” in
ICAC, 2010, pp. 79–88.

[2] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
nuca substrate for flexible cmp cache sharing,” in ACM International
Conference on Supercomputing 25th Anniversary Volume, 2005, pp.
380–389.

[3] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural network-based
performance prediction for task migration on s-nuca many-cores,” IEEE
Transactions on Computers, 2020.

[4] M. Rapp, H. Khdr, N. Krohmer, and J. Henkel, “Npu-accelerated imita-
tion learning for thermal optimizationof qos-constrained heterogeneous
multi-cores,” TODAES, 2018.

[5] A. Pathania and J. Henkel, “Hotsniper: Sniper-based toolchain for many-
core thermal simulations in open systems,” IEEE Embedded Systems
Letters, vol. 11, no. 2, pp. 54–57, 2018.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[7] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd annual ieee/acm international symposium on microarchitecture,
2009, pp. 469–480.

[8] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: A compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on very large scale
integration (VLSI) systems, vol. 14, no. 5, pp. 501–513, 2006.

[9] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, Multi-core
cache hierarchies. Morgan & Claypool Publishers, 2011.

[10] S. Das and H. K. Kapoor, “Exploration of migration and replacement
policies for dynamic nuca over tiled cmps,” in 2015 28th International
Conference on VLSI Design. IEEE, 2015, pp. 141–146.

[11] H. Kim, P. Ghoshal, B. Grot, P. V. Gratz, and D. A. Jiménez, “Reducing
network-on-chip energy consumption through spatial locality specula-
tion,” in Proceedings of the Fifth ACM/IEEE International Symposium
on Networks-on-Chip, 2011, pp. 233–240.

[12] A. Pathania and J. Henkel, “Task scheduling for many-cores with s-nuca
caches,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2018, pp. 557–562.

[13] S. Eyerman and L. Eeckhout, “Fine-grained dvfs using on-chip regula-
tors,” TACO, 2011.

[14] M. Noltsis, N. Zambelis, F. Catthoor, and D. Soudris, “A closed-
loop controller to ensure performance and temperature constraints for
dynamic applications,” TECS, 2019.

[15] A. Iranfar, F. Terraneo, G. Csordas, M. Zapater, W. Fornaciari, and
D. Atienza, “Dynamic thermal management with proactive fan speed
control through reinforcement learning,” in DATE, 2020.

[16] Y. Shen, S. Niknam, A. Pathania, and A. D. Pimentel, “Thermal
management for s-nuca many-cores via synchronous thread rotations,”
in 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2023.

[17] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini,
and N. Dutt, “Approximation-aware coordinated power/performance
management for heterogeneous multi-cores,” in DAC, 2018.

[18] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-
core in dark silicon era,” in Proceedings of the 50th Annual Design
Automation Conference, 2013, pp. 1–9.

[19] E. Shamsa, A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and
N. Dutt, “Goal-driven autonomy for efficient on-chip resource manage-
ment: Transforming objectives to goals,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1397–1402.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

