
1. Memory technology
& Hierarchy
Caching and Virtual Memory

Parallel System Architectures
Andy D. Pimentel

Caches and their design
cf. Henessy & Patterson, Chap. 5

Parallel System Architectures, Andy D. Pimentel

Caching - summary
Caches are small fast memories that store recently used data close to the
processor (usually on-chip)

As the memory wall has grown, the number of levels of cache between main
memory and the processor has increased

from 0 to 1 to 2 and now many systems use 3 levels

Caches are largely transparent to the programmer

but programmers must be aware of the cache while
designing code to ensure regular access patterns

Parallel System Architectures, Andy D. Pimentel

The processor’s memory hierarchy

Registers - on-chip SRAM

L1 cache - on-chip SRAM

L2 cache - on-chip SRAM

	 	 off-chip SRAM

L3 cache - off-chip SRAM

Main memory - DRAM

Distributed memory
Size

1/cycle time
(bandwidth)

< 1
1-2
2-6
4-8
≃10
≥10
≥100

< 1
1-6
≃10
≥10
≥100
≥1000
≥10000

100MHz
clocks

GHz
clocks

Parallel System Architectures, Andy D. Pimentel

Cache operation at multiple levels

Caches contain copies of blocks of data from main memory - cache lines

Reads to memory go down the memory hierarchy 
- at each level a check is made to determine if the data is present at that level

Cache hit - the required data is in the cache: the data is taken from that level and
propagated up the hierarchy

Cache miss - the required data is not in the cache: request goes down a level until found

A cache miss at any level may overwrite old data when the requested new data is propagated
up the hierarchy - “thrashing” occurs when the old data is needed shortly

When data is written to the cache, it is written back to main memory either immediately, when
space is required in the cache, or, in a multi-processor system, when another processor requires it

Parallel System Architectures, Andy D. Pimentel

Caching principles
Caches provide reuse of recently fetched data transparently to the programmer or compiler

Shorter delay of access to same data after the first access to a
longer delay memory

Caches rely on the principle of locality:

Temporal locality - information that has just been used is likely to be used again in the
future

Spatial locality - because a cache line contains more than one word of data, words close to
the original miss will now be resident in the cache and may be accessed without further penalty

The former requires frequent access to the same data,  
the latter requires regular access patterns to memory  
e.g. regular small strides through memory – e.g. consecutive words

Parallel System Architectures, Andy D. Pimentel

Cache design issues
Caches can be:

Unified or separate w.r.t. data and instructions

L1 cache normally separate and L2/L3 normally unified

Write through - data is written to cache and also sent to the lower level

Write around (no-write-allocate) - data is sent to lower level but not written to cache

Write/Copy back - data is written to cache but not sent down the hierarchy: the lower level memories
may become inconsistent with respect to program state

Copy back is used in multi-processor systems: a write around/through strategy can consume a large
amount of bus or network bandwidth

How to maintain coherence between multiple copies?

Higher levels of cache are normally write around/through

Parallel System Architectures, Andy D. Pimentel

Mapping from memory to cache
The line or block size is the unit of data managed by the cache, typically 32-256 bytes

each line has a tag (from its address) stored in the cache and used to determine which memory
block is mapped to the cache line

A cache mapping determines which line(s) in a cache an address in memory can mapped to:

Direct mapped (simplest) yields a unique line in cache for any given block in memory -
based on its address

Fully associative (most complex) allows any memory block to be mapped to any cache line

Set-associative cache gives a compromise between these extremes

for example, a “4-way set associative” cache has sets of 4 lines where a line may be mapped to

Associative mapping requires concurrent tag matching to find a line in a single memory cycle

Parallel System Architectures, Andy D. Pimentel

Cache lines

The tag comprises enough address information to identify which block of
memory the cache line holds

The bits required depend on the mapping strategy

State used in algorithm to replace lines e.g. valid/invalid

tag Datastate

Parallel System Architectures, Andy D. Pimentel

Cache mapping - example

Block no 1 2 3 4 5 6 7 8 Block no 1 2 3 4 5 6 7 8 Block no 1 2 3 4 5 6 7 8

Set
0

Set
1

Set
2

Set
3

Fully
associative

Direct
mapped

2-way
set associative

For the memory address 386, 32-byte cache lines and an 8 line cache:  
<block addr> = floor(<mem addr> / <cache line size>) = floor(386 / 32) = 12
	 Direct mapped: line = <block addr> mod <nr. of lines> = 12 mod 8 = 4
	 2-way set associative: <nr. of sets> = <nr. of lines> / <set associativity>  
 set = <block addr> mod <nr. of sets> = 12 mod 8/2 = 0
	 Fully associative: one set of 8 lines, so anywhere in cache

Parallel System Architectures, Andy D. Pimentel

Direct mapped caches

000 001 010 011 100 101 110 111

...00001 ...00101 ...01001 ...01101 ...10001 ...10101 ...11001 ...11101 ...00001 ...00101

Cache line number

Cache line size

Memory address

Parallel System Architectures, Andy D. Pimentel

Direct-mapped caches

A direct mapped cache is simple and fast

…but has problems from its inflexibility in mapping

Address strides (differences between consecutive addresses) of a multiple of the
cache line size map subsequent accesses (to different memory blocks) all to the
same cache line – even though other lines may be empty!

This is called a pathological access pattern

Direct mapped cache is often used as 2nd or 3rd level cache which is much larger and
hence has less contention but the programmer must still be aware of this restriction

Parallel System Architectures, Andy D. Pimentel

Direct-mapped cache addressing

E.g. a 32-bit byte address into a direct-mapped cache of size of 512KBytes and a line size of 32
Bytes (i.e. 16K lines) the address fields above comprise:

5 bits of byte address (0..4) gives the byte offset in the cache line

14 bits of cache line address (5..18) give cache line (16K direct mapped)

the remaining 13 bits (19..31) determine which block from the 8K possible memory blocks
is mapped to the cache line

tags stored in cache line, matched with the address from the processor to check hits

13-bit tag 0 .. 320 .. 214-1
031... 5 4...19 18...

tag line address byte
in line

Parallel System Architectures, Andy D. Pimentel

2 1 031... 5 419 18...

Valid tag

line data

0
1
.
.
.
.
.
.

16382
16383

=

cache hit Data

Address

Cache-hit logic

Address line

Address word

Example 4-byte access in DM cache

Parallel System Architectures, Andy D. Pimentel

8-way set associative cache addressing

E.g. a 32-bit byte address into an 8-way set associative cache of size of 512KBytes and a line size
of 32 Bytes (i.e. 16K lines):

5 bits of address (0..4) gives the byte offset in the cache line

11 bits (5..15) address 2K sets of 8 cache lines (16K lines total)

16 bit tag (16..31) determines which block from the 64K possible memory blocks is
mapped to one of the cache lines in that set

stored as tag in the cache line and matched with the address from the processor

16-bit tag 0 .. 320 .. 211-1
031... 5 4...19 18...

tag set address byte
in line

Parallel System Architectures, Andy D. Pimentel

4-byte access in 8-way set associative cache

2 1 031... 5 416 15...

Valid tag data

0
1
.
.
.
.
.
.
.
2046
2047

cache hit

Data

Address

Address set

set of lines

Parallel System Architectures, Andy D. Pimentel

Line sets in associative caches

=
=
=
=
=
=
=
=

+

hit

Tag from address Data put on bus by matching line

8 tags compared in parallel

Parallel System Architectures, Andy D. Pimentel

Fully associative cache addressing

E.g. a 32-bit byte address into an fully associative cache of size of 16KBytes and a line
size of 32 Bytes (i.e. 512 lines - fully associative means each line requires a comparator):

5 bits of address (0..4) gives the byte offset in the cache line

27 bits (5..31) determine which block from the 128M possible memory blocks is
mapped to one of the cache line in that set

stored as tag in the cache line and matched with the address from the processor

27-bit tag 0 .. 32
031... 5 4...

tag byte
in line

Parallel System Architectures, Andy D. Pimentel

Access to fully associative cache

=

=
=
=
=
=
=
=

+

hit

Data put on bus by matching line

Tag
 031... 5 4

Address

…
0
.
.
.
.
.
.
.
.
.
.

510

511

Virtual Memory
cf. Henessy & Patterson, App. C4

Parallel System Architectures, Andy D. Pimentel

Virtual Memory
It is easier for the programmer to have a large virtual memory than to program
explicit I/O due to memory limitations

Also in multi-programming memory is shared between many programs, some
suspended or inactive for a while

only a small fraction of virtual memory is used at any
one time in a multi-programming environment

Virtual memory uses main memory to store only part of the larger virtual memory
space and the remainder is held on external storage, e.g. discs

The unit exchanged between memory and disc is called a page

Parallel System Architectures, Andy D. Pimentel

Virtual memory mapping

Virtual
address space

Pages
stored

externally

Pages
in main
memory

Parallel System Architectures, Andy D. Pimentel

VM Terminology
The address produced by the processor is called a virtual address

This gets translated by a MMU via a page table  
into a physical address (PT hit) or page fault (PT miss)

The page table is in main memory but has a special cache called a TLB
(translation look-aside buffer)

Page faults usually managed by a software trap to an operating
system

This mapping process is called address translation

Parallel System Architectures, Andy D. Pimentel

VM Address translation

This shows address mapping from a 4 GiB virtual address space onto in
a 1 GiB physical address space using 4KiB memory pages

The translation is performed using a 1M entries (3MiB) table in
memory, addressed by the virtual page number

Virtual page number Page offset

31... 12 11 ... 0

Translation

Physical page number Page offset

29... 12 11 ... 0

Parallel System Architectures, Andy D. Pimentel

Virtual memory issues
Need flexibility in page placement to avoid costly page misses

Unlike cache mapping, VM mapping is implemented as a table in main memory - allows arbitrary
mapping

indexed by virtual address

that yields the physical address

Page misses are handled by software and incur a large penalty

Pages must be sufficiently large to amortize this large overhead  
and to minimize the mapping table size

4 to 64KByte is a typical page size 
with variable size pages can be as large as 1MByte

Parallel System Architectures, Andy D. Pimentel

Replacement, processes and protection

Sophisticated algorithms for placement can be coded in software

pages known to be often required can be locked down

Each process has its own virtual address space and page translation

this means programs can not interfere (read/write) the memory of any other

To achieve protection, user code must be prevented from altering the page tables

This is normally achieved by having different modes of operation  
(eg. user mode vs. kernel mode)

alternatively, using security capabilities on the page table data

Parallel System Architectures, Andy D. Pimentel

Page table

Valid
bit Physical page number

Virtual page number Page offset

31... 12 11 ... 2 1 0

Physical page number Page offset

29... 12 11 ... 2 1 0Page fault
logic

Page table register

Note: the page table,
the PC and the state of
the registers all
contribute to the state
of a program

Parallel System Architectures, Andy D. Pimentel

Translation Look-aside buffers
Translation Look-aside buffers (TLB) cache the page table in small fast memory

NB: The page table is too large to be held entirely in fast memory

Without the TLB, access to memory would be twice as slow

One access to the page table for address translation

One to the data itself

Address translation and L1 cache access can be performed in one or two processor cycles  
(as long as we get a cache hit)

Big question: which memory space do we cache:  
Virtual or Physical?

Parallel System Architectures, Andy D. Pimentel

Physically addressed caches
Addresses translated by memory management unit (MMU) before
cache lookup

Sequential - even with a TLB and cache hit,  
access can be slow as it requires sequential memory accesses

Processor Cache Main memory

MMU

Parallel System Architectures, Andy D. Pimentel

Virtually addressed caches
Addresses translated by MMU in parallel with cache lookup

Aliasing – is where the same virtual address in different processes maps to the same
location in cache

Context switching therefore requires a full cache invalidation (time expensive)  
or a process identifier in the tag (space expensive)

Aliasing is averted if all processes share the same virtual address space

Processor Cache Main memory

MMU

Parallel System Architectures, Andy D. Pimentel

Virtually-indexed, physically tagged cache

Cache indexing during address translation

Page offset bits in virtual address used for cache index

Number of sets in cache limited (dependent on page size)

Solutions: larger sets or page coloring (OS support)  

University
of

Amsterdam

CSPCSP
Computer
Architecture

Virtually vs physically addressed cache (cont’d)

Virtually-indexed, physically tagged cache
Cache indexing during translation
Page offset bits in VA used as cache index
Number of sets in cache limited (dependent on page
size)!
Solutions: large cache sets or page colouring (OS
support)

VA

Page offset
bitsidentical bits

for VA and PA

Use as cache index

Andy Pimentel – p. 25/259

Parallel System Architectures, Andy D. Pimentel

Page table size
The example earlier was for 32-bit addresses and yielded a 3MiB table

For a 64-bit architecture and say a 48-bit virtual address and 4KiB pages we get:

table size = 248/212 = 236 entries = 239 bytes = 512GiB!!

and this is replicated for each process (!!)

Solution is to grow page table as required

keep limit and check limit on each access

increase (e.g. double size) on each overflow

Parallel System Architectures, Andy D. Pimentel

Page table size

Address usage may be sparse

Another solution is to use a multi-level page table
as this takes advantage of sparseness

e.g. use very large pages and keep a table of these

within a large page keep a table of smaller pages  
(e.g. 4KiB)

Parallel System Architectures, Andy D. Pimentel

Multi-level page table

Summary

Parallel System Architectures, Andy D. Pimentel

Memory system summary
The memory hierarchy is a critical component of both computer and algorithm design in
determining performance

A major problem is the rapidly increasing on-chip or processor clock rates and the relatively slow
change in memory cycle times

DRAMs are designed for density not speed

Caching works well with regular accesses to memory, but some applications do not possess this
property - in this case we see the performance of the main memory system which may be 10-100
times slower than the processor performance!

New architectures will be needed, as the memory wall gets taller,  
that exploit latency tolerance to avoid memory-limited performance

