-architecture:

1CI'O

2. Processor m

ICl

Impl

A e e o o
D NIRRT RSO

L ¥ IR VRSO
SN IRSN R T NRPI R P S IO R C MR M,

SRS o A L AR AL S B s b e e e e
8 DA AO O AR O PN AN A e P AT AR T A S R SN

R L RS M e
SR OIS AT PSRN

e

[3E o 8 54

...........

s -3 FoIT
WSRYERAIT SRS S -
R AL SRS ST LS SR IRy

RAE SN R et MRS L
AR OO SR NN S R AT O DN IS Al

S Y AN T O M RO A A R TR R MY I SR
DR LS RO NS SN N RSN N A

Motivation

| Pipeline-level parallelism is the weapon of architects
to increase throughput
and tolerate latencies of communication

for individual instruction streams

(i.e. sequential programs)
without participation from the programmer

(i.e. implicit)

~ We will cover true and explicit parallelism later in the course

X
Advances in Computer Architecture, Andy D. Pimentel

Processor performance

' Latency: expressed as CPI = cycles per instruction
divide by frequency to obtain absolute latency

 Throughput: expressed as IPC = instructions per cycle
multiply by frequency to obtain absolute throughput

 Pipelining objective: increase IPC, also decrease CPI
As we will see (Pl and . IPC are conflicting requirements

X
Advances in Computer Architecture, Andy D. Pimentel

Types of pipeline concurrency

" Pipelined: operations broken down in sub-tasks
= different sub-tasks from different operations run in parallel

" Scalar pipelined: multiply the functional units
= the same sub-task from different operations run in parallel

- Superscalar pipelined: multiply the issue units
=> multiple operations issued and completing simultaneously

X
Advances in Computer Architecture, Andy D. Pimentel

Pipelining & hazards

Pipeline basics

Pipelines

' Each instruction / operation can be decomposed in sub-asks:

Op=A:B;C:D

> — —> —> >

'~ Considering an instruction stream [Op;; Opy; ...]
at each cycle n we can run in parallel: Ans 11 Byeg 11 Gour 11Dy

af start of cycle n: input A3 input B+ input Co+1

Advances in Computer Architecture, Andy D. Pimentel

Example: MIPS

Instruction ! Instr. Decode : Execute ; Memory * Write
Fetch * Reg. Fetch * Addr. Calc ; Access i Back
Next PC |__NextSEQPC | NextSEQPC L
RS1
R
& o
Q — L il
— ®
5 = Z
=1, = R &
O m = ~
> 8 Z 3
Q
— 1 ’
§ Imm
4 2
@
A 5
]
] > > > — B

Advances in Computer Architecture, Andy D. Pimentel

Dynamic behavior

1 program, 5 operations:

B

C

D

nlhlwinp[—=|>

Al IN|—

AN

v

bW IN -

A WO =

time

5

(total execution fime: 8 cycles)

Advances in Computer Architecture, Andy D. Pimentel

"~ 4 subtasks, CPI = 4

Only when
pipeline is full is
there maximal
concurrency

Pipeline performance

 This pipeline has a length of 4 subtasks,
assume each sub-task takes t seconds

— tor a single operation we get no speedup; it takes 4t seconds to
complete all of the subtasks

— this is the same as performing each sub task in sequence on the
same hardware

" In the general case - for n operafions - it takes 4t seconds to produce
the first result and t seconds for each subsequent result

Advances in Computer Architecture, Andy D. Pimentel

Pipeline performance

' For a pipeline of length L and cycle fime t, the time T it fakes

fo process n operations Is:
Tn)=L-t+(n-1)-t=(L-1)-t+n-t

~ We can characterise all pipelines by two parameters:

— startup time:S=(L-1)-t (unit: seconds)

— maximum rate: r. = 1/t (unit: instructions
per second)

X
Advances in Computer Architecture, Andy D. Pimentel

Optimization strategies

Long instruction sequences suggest |PC = |

f
L
* However there are problems with this:

— some instructions require less sub-tasks than others
— hazards: dependencies and branches

— |ong-latency operations: can't fit the pipeline model

~ What to do about these? The rest of the lecture covers this...

X
Advances in Computer Architecture, Andy D. Pimentel

Trade-offs

" Observations:

— more complexity per sub-task requires more time per cyde

— conversely, as the sub-tasks become simpler the cycle time can be reduced

— o to increase the cdock rate instructions must be
broken down into smaller sub-tasks

— ...but operations have a fixed complexity

— smaller sub-tasks mean deeper pipelines = more stages
= more instructions need to be executed to fill the pipeline

Advances in Computer Architecture, Andy D. Pimentel

Control hazards

Control hazards

—— Branches - in particular conditional branches - cause pipeline hazards

——— the outcome of a conditional branch is not known unfil the end of the EX stage,
but is required at IF to load another instruction and keep the pipeline full

— A simple solution:
assume by default that the branch falls through - i.e. is not taken -
then continue speculatively until the target of the branch is known

1 p| ex|ws
Branch not taken beq X Continue to fetch but stall ID
IE D | Ex | ws until branch target is known

— one cycle lost

IF
Branch is taken beq D | Ex| WB Need to refetch at new target

13 ID | Ex | wB — two CyCIGS lost

Wrong target

Advances in Computer Architecture, Andy D. Pimentel

How to overcome

' Eliminate branches altogether via predication (most GPUs)

" Expose the branch delay to the programmer / compiler:
branch delay slots (MIPS, SPARC, PA-RISC)

 Fetch from both targets, requires branch target address prediction

 Predict whether the branch is taken or not: branch prediction
(cf later part of the lecture)

' Execute instructions from other threads: hardware multithreading
(eg Niagara, cf next lecture)

X
Advances in Computer Architecture, Andy D. Pimentel

Predication

——— Control flow can (in some cases) be replaced by guarded or predicated instruction
execution...

— a condition sets a predicate register (boolean)
— instructions are predicated on that register
— any state change (WB or Mem write) only occurs if the predicate is true

——| Useful in long pipelines where branch hazards can be costly,
or fo simplify the pipeline logic by not handling control hazards ot all

—— it removes a control hazard at the expense of redundant instruction
execution

Advances in Computer Architecture, Andy D. Pimentel

Predication - example

Branching code Predicated code
Instr: i Instr: i
dicat
i+1 cond branch predicates \ Set C
fa'i/w‘ IC i+2
i+2 [+5 IC I+3
' ‘ .
i+3 i+6 C o2
l C i+6
branch
I+7
i+7

No hazards but redundant execution

Advances in Computer Architecture, Andy D. Pimentel

Branch delay slofs

- Specify in the ISA that a branch takes effect two instructions
later, then let the compiler / programmer fill the empty slot

Hiltx
lw a x[1]
add a a a
sw a x[1]
sub 1 1 4
bne 1 0 L1

hop <
17

_

X
Advances in Computer Architecture, Andy D. Pimentel

Ll
lw a x[1]
add a a a
sw a x[1]
bne 1 4 L1
subiii i

"

Fetch from both targets

' Using an additional I-cache port, both taken and not-taken are fetched

— Then at EX a choice is made as o which is decoded

~ When coupled with a branch delay slot this eliminates all wasted cycles, but...

— longer pipelines, eg 20 stages, might contain several branches
in the pipe prior fo EX

— multiple conditional branches will brealk this solution,

— as every new branch doubles the number of paths fetched

Advances in Computer Architecture, Andy D. Pimentel

Data hazard

—— Occurs when the output of one operation is the input of a subsequent operation

——— The hazard occurs because of the latency in the pipeline

— the result (output from one instruction) is not written back to the register file until the last stage of

the pipe

— the operand (input of a subsequent instruction) is required at register read - some cycles prior to

writeback

— the longer the RR to WB delay, the more cycles there must be between the writeback of the producer
instruction and the read from the consumer

—— Example:

multe\?c
add daf

Advances in Computer Architecture, Andy D. Pimentel

IF
mult

ependency

Ex

WB

Two bubbles

n.b. register read
Is in the ID stage

How to overcome

' Bypass buses:

Bypass buses

R

~4registers >
|

- one cycle delay
- two cycles delay
......... - three + CycleS delay

' Also: reorder the instructions

X
L,’:J Advances in Computer Architecture, Andy D. Pimentel

' Do nothingi.c. expose to the programmer, e.g. MIPS 1

The operand is
taken from the
pipeline register
and input directly

fo the ALU on the
subsequent cycle

Structural hazards

and scalar ILP

Scalar pipelines

——1 Inthe simple pipeline, register-fo-register operations have a wasted cycle

— a memory access is not required, but this stage still requires a cycle fo complete
the operations

—— Decoupling memory access and operafion execution avoids this
e.g. use an ALU plus a memory unit - this is scalar ILP

l Ex | WB Performs R-to-R ops
IF | ID

|

—— ... note: either we need two write ports to the register file or arbitration on a single port

Ad |l M |wB Performs loads and stores

X
L,’:J Advances in Computer Architecture, Andy D. Pimentel

Structural hazard - registers

—— Astructural hazard occurs when @ resource in the pipeline is required
by more than one instruction

—— aresource may e an execution unit or a register port

— Example: only one write port

|W u uddr Resolved by stalling the pipeline

Gdd b (d Ex | WB stall or bubble

IF
B ID

Ad | M

Ex | WB hazard

ID Ex
ID

IF

WB

Ad [M |WB

F o *
Ex | wB
add Ad | M |wB FT o
add Ad | M |ws

Advances in Computer Architecture, Andy D. Pimentel

Structural hazard - execution units

—— Some operations require more than one pipeline cycle
— mult is more complex than add (often requires 2 cycles)

— floating point still more complex still (™ 5 cycles)

—— Example: 2-cycle multiply

mUh Cde Resolved again by stalling the
pipeline
add fgh -
D | Ex | Ex [we o | Ex | Ex [we
alcli:d ID al('i:d ID WB
bubble

Advances in Computer Architecture, Andy D. Pimentel

How to overcome

—— They result from contention
=> they can be removed by adding more resources

— register write hazard: add more write ports

— execution unit: add more execution units raalwe

— Example: (DC 6600 (1963) F | 1D :'Mt :'“t F:UT FV'VBt i
10 units, 4 write ports, only FP div not pipelined VR P

—— Note:

— more resources = more cost (area, power)

Advances in Computer Architecture, Andy D. Pimentel

Superscalar processors

Introduction / overview

Pipelining - summary

———1 Depth of pipeline - Superpipelining
— further dividing pipeline stages increases frequency
— hut introduces more scope for hazards

— and higher frequency means more power dissipated
—— Number of functional units - Scalar pipelining - avoids waiting for long operations to complete
— instructions fetched and decoded in sequence
— multiple operations executed in parallel
—— Concurrent issue of instructions - Superscalar ILP
— multiple instructions fetched and decoded concurrently

— new ordering issues and new data hazards

Advances in Computer Architecture, Andy D. Pimentel

Scalar vs. superscalar

Q

EX1\

IF —= ID \EX2/ Scalar ILP pipeline in-OI‘der iSSUB
EX3

EX1
. \ « | concurrent 1ssue,
IF —= ID EX2 —= WB Superscalar ILP pipeline i
2= possibly out of order
EX3

Most “complex” general-purpose processors are superscalar

X
Advances in Computer Architecture, Andy D. Pimentel

Basic principle

Example based on simple 3-stage pipeline
stages

stages

Scalar pipeline, max IPC = 1

X
Advances in Computer Architecture, Andy D. Pimentel

time

= tfime

VSupersculur, max [PC = |

Instruction-level parallelism

— ILP is the number of instructions issued per cycle (issue parallelism / issue width)

—— IPC the number of insiructions executed per cycle is limited by:
— the ILP
— the number of true dependencies

— the number of branches in relation to other instructions

— the latency of operations in conjunction with dependencies

——— Current microprocessors: 4-8 max ILP, 12 functional units, however IPC of typically 2-3

Long execution time with resource Long execution time with a
dependency (pipelined fn. unit) true data dependency
f | dlel|e2|e3 |ed f | dlel |e2|e3|ed

f |l d el ez_ea‘ﬂ f | d Ie1I ez‘ ga‘ﬁ

Advances in Computer Architecture, Andy D. Pimentel

Aspects of superscalar execution

' parallel fetch decoding and issue

— 100s of instructions in-flight simultaneously

' out-of-order execution and sequential consistency

— Exceptions and false dependencies

finding parallelism and scheduling its execution

f
|
' application specific engines, e.g. SIMD & prefetching

X
Advances in Computer Architecture, Andy D. Pimentel

Instruction policies

& related hazards

Instruction issue vs completion, new data hazards

Instruction issue basics

—— Just widening of the processor’s pipeline does not necessarily improve its performance

—:T
a

4['[
N

e processor’s policy
s0 has a significant ef

in fetching, decoding and executing instructions
ect on its performance

1e instruction issue po

ream

icy is determined by its look-ahead capability in the instruction

— For example, with no look-uhead, if a resource conflict halts instruction fetching the
processor is not able to find any further instructions until the conflict is resolved

— |f the processor is able to continue fetching instructions it may find an independent
instruction that can be executed on a free resource out of programmed order

——— Policies are characterized by issue order and completion order

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, in-order completion

' Simplest, unusual with superscalar designs

' Instructions issued in exact program order with results
written in the same order

- This is shown here for comparison purposes only, as very
few pipelines use in-order completion

X
Advances in Computer Architecture, Andy D. Pimentel

In-order issue, in-order completion

—— Assume a 3 stage execution in a pipeline that can issue two instructions, execute three instructions and write back
two results every cycle... assume:

— |1 requires 2 cycles to execute
— 13 and 14 are in conflict for a functional unit

— 15 depends on the value produced by 14

— |5 and 16 are in conflict for a functional unit

Time Decode Execute Writeback

11 12
13 14 I 12 6 instructions
13 14 11 :

a 3 T > require 8 cycles
15 16 14

16 15 13 14 IPC =6/8 =0.75

v 6
15 16

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, out-of-order completion

'~ Out-of-order completion, improves performance of instructions with
long latency operations, such as loads and floating point

" The modifications made to execution are:

— any number of instructions allowed in the execution stage up
to the total number of pipeline slots (stages * functional units)

— instruction issue is not stalled when an instruction takes more
than one cycle fo complete

X
Advances in Computer Architecture, Andy D. Pimentel

In-order issue, out-of-order completion

——— Again assume a processor issues two instructions, executes three instructions and writes back two results every cycle
— 1 requires 2 cycles fo execute
— 13 and 14 are in conflict for a functional unit
— |5 depends on the value produced by 14

— |5 and 16 are in conflict for a functional unit

Advances in Computer Architecture, Andy D. Pimentel

Time Decode Execute Writeback
11 12
13 14 1 12 6 instructions
13 14 11 13 12 :
i m a ¥ 3 require 7 cycles
16 15 14
16 15 IPC =6/7 =0.86
16

In-order issue, out-of-order completion

——1 In a processor with out-of-order completion, instruction issue is stalled when:

— There is a conflict for a functional unit

— An instruction depends on a result that is not yet computed - o date
dependency

— can use register specifiers to detect dependencies between instructions and

logic to ensure synchronisation between producer and consumer instructions
- e.0. scoreboard logic, cf (DC 6600

— Also: a new type of dependency caused by out-of-order completion:
the output dependency (Write-after-Write dependency)

Advances in Computer Architecture, Andy D. Pimentel

Output dependencies

——— Consider the code to the right:

— the st instruction must be completed before the 3rd,
otherwise the 4th instruction may receive the wrong resul!

— this is a new type of dependency
caused by allowing out-of-order completion

— the result of the 3rd instruction has
an output dependency on the Ist instruction

— the 3rd instruction must be stalled if its result may be
overwritten by a previous instruction which takes longer to
complete

X
L,’:J Advances in Computer Architecture, Andy D. Pimentel

= IO DS
R4 :=R3 + 1
R3 :=R5 + 1
R7 := R3 op R4

Out-of-order issue, out-of-order completion

—— In-order issue stalls when the decoded instruction has:

— a resource conflict, a true data dependency or an output dependency on an uncompleted instruction

— this is true even if instructions after the stalled one can execute

— fto avoid stalling, decode must be decoupled from execution

—— Conceptually out-of-order issue decouples the decode/issue stage from instruction execufion

— it requires an instruction

window between the decode and execute stages

to buffer decoded or part pre-decoded instructions

— this buffer serves as a pool 0

— instructions are issued from t

instructions giving the processor a look-uhead facility

e buffer in any order,

provided there are no resource conflicts or dependencies with executing instructions

Advances in Computer Architecture, Andy D. Pimentel

Out-of-order issue, out-of-order completion

—— Again assume a processor issues two instructions, executes three instructions and writes back two results every cycle
but now has a issue window of at least three instructions

— |1 requires 2 cycles to execute
— 13 and 14 are in conflict for a functional unit

— |5 depends on the value produced by 14

— |5 and 16 are in conflict for a functional unit

Time Decode . Window Execute Writeback
11 12
13 14 11,12 1 12 6 instructions
15 6 13, 14 1 I3 12 require 6 cycles
14, 15, 16 16 14 11 13
15 15 14 16 IPC = 1
15

Advances in Computer Architecture, Andy D. Pimentel

Anti-dependencies

——— Out-of-order issue introduces yet another dependency - called an
anti-dependency (or Write-after-Read dependency)

— the 3rd instruction can not be completed until the second
instruction has read its operands

— otherwise the 3rd instruction may overwrite the operand
of the 2nd instruction

— we say that the result of the 3rd instruction has an anti-
dependency on the 1st operand of the 2nd instruction

— this is like a frue dependency but reversed

Advances in Computer Architecture, Andy D. Pimentel

B3=IRSIODIRS

R4 :=R3 + 1
el

R3 :=R5 + 1

R7 := R3 op R4

Summary of data hazards

——— We have now have seen three kinds of dependencies
— True (data) dependencies ... read after write (RAW)

— Output dependencies ... write after write (WAW) - out of order completion

— Anti dependencies ... write after read (WAR) - out of orc

—— Only true dependencies reflect the flow of data in a program and shoule

— when instructions are issued and completed out of order,

er issue

require the pipeline to stall

the one-to-one relationship between registers and values at any given time is lost

— new dependencies arise because registers hold different values
different times - they are resource dependencies

from independent computations at

——| Resource dependencies are really just storage conflicts and can be eliminated by
introducing new registers to re-establish the one-to-one relationship between registers and values at a given fime

Advances in Computer Architecture, Andy D. Pimentel

Register renaming

How resource dependencies are managed
in out-of-order issue or completion

Renaming - example

" Renaming dynamically rewrites
the machine code using a larger register sef

— A renamed register is allocated
somehow and remains in force until
commit

— Subsequent use of a register name as
an operand uses the latest rename of it

Advances in Computer Architecture, Andy D. Pimentel

R; -> R, > Rj,
scope Ry,
R3, :=R3 op R5
R4 :=R3, + 1
R3.=R5 +1
R7 :=R3, op R4

Register renaming

——| Storage conflicts can be removed in out-of-order issue microprocessors
by renaming registers

— requires additional registers e.g. a rename butter or extended register file, not visible to the program

— mapping between logical name and physical location is maintained in hardware
while the instructions are executing

—— Instructions are executed out of sequence from the instruction window using the renamed registers
— new physical register allocated on multiple use of same target register name
— mapping from instruction register fo architectural register stored in hardware

— instructions executing after a rename use the renamed register
rather than instruction-specified register as an operand

——| Acommit stage is used to preserve sequential machine state by
storing values fo architectural registers in program order

Advances in Computer Architecture, Andy D. Pimentel

Strategies renaming

——— (Can either rename aof instruction issue

— explicit renaming maps architectural register to physical register used in
conjunction with a scoreboard fo track dependencies

—— (Can remap implicitly using reservation stations af the execute stage and a
reorder buffer on instruction completion

— reservation stations use dataflow fo manage true dependencies and implicitly
rename registers

— the reorder buffer holds the data unfil all previous instructions have
completed then write it to the architectural register specified

Advances in Computer Architecture, Andy D. Pimentel

Dynamic scheduling

In out-of-order issue pipelines

Abstract problem

Instruction window
synchronization and scheduling

Execution units
Lw/Sw
i Integer
Float
Instruction
fetch & Parallel Writes resolve
decode Instruction dependencies
1ssue and allow new
.Waiting for data { ;
Instructions to be
Ready to execute Stheduled
Empty slot

When to issue the instructions?
How to preserve order of side effects?

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

—— 1 data structure - centralized approach

—— Scoreboard monitors ready instructions, registers and functional units
— Issues instructions when source operands and functional units are available

— Registers include bit indicating their validity

— Atissue, if destination reg. is valid, then mark it as invalid. Otherwise
block (WAW hazard). Validate bit ot WB while checking for WAR hazard

— |f source reg. is invalid, then block (RAW hazard)
— Explicit register renaming to avoid WAW and WAR hazards

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

Instructions from
Decode/Dispatch stage

Register file \Y

ro

r1 10

r2 20 1
mul r3, r1, r2 r3 -

r4 40 1

rs

OP S1 V1yS2 V2 D

Y

Instruction status

EX
Unit

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

Instructions from
Decode/Dispatch stage

Reqister file Vv

ro

r1 10 1

r2 20 1]
add r5,r2,r3 r3 0

r4 40 1

5 [0]

OP S1 Vi,S2 V2 D

y

Instruction status

EX

mul r3, r1, r2 Unit

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

Instructions from
Decode/Dispatch stage

Register file \Y
r0 [0]
r1 10 1
r2 20 1
add r0,r1,r3 3 200 1
r4 40 1
rs 0

OP S1 V1,82 V2 D

y

Instruction status
add r5,r2,r3

Y

EX
Unit

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

'~ More information:

— hitp://www.cs.umd.edu/class/tall2001 /cmsc411/
projects/dynamic/examplel-2.himl

— H&P Appendix A.7 - Dynamic Scheduling with a
Scoreboard

X
Advances in Computer Architecture, Andy D. Pimentel

http://www.cs.umd.edu/class/fall2001/cmsc411/projects/dynamic/example1-2.html

Reservation stations & Tomasulo

——1 Basic idea: dataflow read-blocking, write-resume

 Distributed control structure using reservation stations
—— implicit renaming of registers

— if operand not available: pointer to producing reservation station (tag) is
stored instead of register ID

— these tags are matched with result tags using a common data bus

— results broadcast to all reservation stations for RAW

' WAR and WAW hazards eliminated by register renaming

Advances in Computer Architecture, Andy D. Pimentel

Reservation stations

—— tag identifies the source of the data < common data bus A>

- i.e. which reservation stafion entry l l

—— vis a valid bit

—— Instructions can be issued before data is

available, but valid bit is set to 0 i /

——{ Only when an instruction has two valid
operands the functional unit is activated

—— Every result matches all |-+ tags in every
reservation station and data is grabbed if
match occurs

Advances in Computer Architecture, Andy D. Pimentel

omasulo’s algorithm

Instructions from

Decode/Dispatch stage ﬁ Register file Tag
r0 RS1
r1 RS4
r2 -
r3
r4
r5

lOP Slyy S2 y OP Slyy S2
RS3 — RS6 —
RS2 — ° oo RS5 —
RS1 | add 10 20 RS4 | mul RS1 5 —
EX EX
add |y [Unit [
CDB

Advances in Computer Architecture, Andy D. Pimentel

Tomasulo’s algorithm

—— lssue - get instruction from Op Queue

— if reservation stafion is free (no structural hazard) control issues instruction and operands
(renames registers)

—— Execution - operate on operands (EX)

— when

—— Write result -

noth operands ready then execute; if not ready, watch Common Data Bus for result

finish execution (WB)

— write on Common Data Bus to all awaiting reservation stations; free reservation stafion entry

——— Normal data bus = data + destination; Common data bus = data + source

— e.g. 64 bits of data + 4 bits of reservation station ID

Advances in Computer Architecture, Andy D. Pimentel

More information

" Demo using web applet University of Edinburgh
— http://www.dcs.ed.ac.uk/home /hase /webhase/demo/

tomasulo.himl

'~ Another demo from University of Massachusetts

— hitp://www.ecs.umass.edu/ece/koren/architecture/
Tomasulo/AppletTomasulo.html

X
Advances in Computer Architecture, Andy D. Pimentel

http://www.dcs.ed.ac.uk/home/hase/webhase/demo/tomasulo.html
http://www.ecs.umass.edu/ece/koren/architecture/Tomasulo1/tomasulo.htm

In out-of-order issue pipelines

Machine state

—— Issuing instructions out of order: sequenfial-order machine state is lost

— this can cause

— how can we de

In program orc

roblems when exce

ations occur

ine the machine staf

er?

e it many instructions are in flight - not necessarily

— To checkpoint the sequential state we must retire or commit instructions only when all
previous instructions have finished

— only af this stage the result of an instruction can be written info the architectural register

—— This is managed in o reorder buffer (ROB) that provides sequential state at the end of

the pipeline

Advances in Computer Architecture, Andy

D. Pimentel

Reorder butfer

—— The reorder buffer stores informafion about all instructions executing between issue and retire
stages

— it can also store the results of those instructions pending a write to the architectural
register file, which is another implicit form of register renaming

—— The reorder buffer is « queue or FIFO (typically circular)
— instructions are written to it at the tail in program order at the issue stage

— instructions are removed from it at the head but only when they have completed
execution

— ot this stage, the results can be safely written to the architectural register file: the
instruction is then said to be retired or committed

Advances in Computer Architecture, Andy D. Pimentel

Reorder butfer

. Results available for
tail head

bypassing or forwarding
AN
\) . /

Ins. i+2 |Ins. i+1 [Ins. i+2 |Ins. i+1 |Ins. i+2 |Ins. i+1 | Ins. i
v=0 v=1 V=1 v=1 v=0 v=1 V=

\ J
Y

Unable to commit these Can commit these

Flag v determines whether result has been written or not

Advances in Computer Architecture, Andy D. Pimentel

Memory load/store reordering

——1 Note that although a consistent register state may be identified using a reorder
butter, the memory state is a different matter

— this is because of memory delays, cache writeback strategies etc.

——| Modern microprocessors hold memory reads and writes in buffers similar to
reservation stations

— these will match reads with writes, and also bypass data
so that a read to a location in the buffer that has not yet been written can
provide its value to the memory read

—— This allows load/store re-ordering and can improve locality of memory accesses

Advances in Computer Architecture, Andy D. Pimentel

Memory load/store reordering

—— (an safely allow a load to bypass a store
as long as the addresses of load and store are different

—— If addresses are not know then either
— do not allow bypassing, or

— speculatively bypass the store
but squash the load if the address turns out to be the same

1 (an also allow loads to bypass loads on cache misses

— This is called a lock-up free cache
but it can complicate the cache coherence protocol

Advances in Computer Architecture, Andy D. Pimentel

Branch prediction

Dealing with control hazards

Control hazards revisited

—— Superscalar pipelines are typically super-pipelined and have many stages = 10-20

—— They also have wide issue widths = 4-8
— we may therefore have 40-160 instructions in flight
—— The latency to resolve a branch condition is large
— 15 cycles for a conditional branch in Intel Core i7!
— hence many pipeline slots will be filled with instructions from the wrong target

— this has to be cleaned up when the wrong target is chosen
including register renames

Advances in Computer Architecture, Andy D. Pimentel

Grohoski's estimate

Branches
/ \
Unconditional Conditional
_—/ PN

Jump Branch to Return from Loop-closing Other cond.

subroutine subroutine branch branch
| | || |

1/3 1/3 1/3

o) (oraio™ 1/6

Y
Taken

Untaken

5/6 1/6

Advances in Computer Architecture, Andy D. Pimentel

Grohoski's estimate

Branches
Unconditional Conditional “Qe
Jump Branch to Return from Loca)‘“ g Other cond.
subroutine subroutine ‘b‘ pbranch

o)

Advances in Computer Architecture, Andy D. Pimentel

Bimodal predictors

———1 Use two bits to represent the last two attempts (= 90% accurate) ... there are various
schemes

— TTTN NT NN are the predictor stafes

— E.g. change prediction only if miss-predict twice but return in one step
- this is only one of several strategies

Predict taken Predict taken

Predict not taken Predict not taken

X
L,’:J Advances in Computer Architecture, Andy D. Pimentel

Branch history buffers

—— Stores the prediction state in a table, either associatively addressed or indexed on
small number of address bits

— (an also store branch target if it is associative

— Get prediction at IF stage and update prediction when condition is resolved

N.b. in a loop, on every
PC conditional branch, the

same address is
calculated

» address |TT| target

Prediction/target

Advances in Computer Architecture, Andy D. Pimentel

Correlated or global predictors

' There may be correlation between different branches

" Normally predictors are indexed on address bits of the branch instruction

" Correlation can he tracked by so-called global predictors that maintain a register of the history of recent

branches taken and use this to address the prediction

Advances in Computer Architecture, Andy D. Pimentel

2-bit per branch prediction

Branch address

3

> XX

2-bit global branch history

Example processors

DEC Alpha 21264 (late 1990's)

——— The EV6 was the last Alpha microprocessor fo be manufactured

— Alpha has a very clean RISC ISA that uses separate integer and floating-point register files

— Alpha was unique in supporting a high clock rate and short pipeline through good ISA and
silicon design

———| EVAG uses out-of-order issue in a 7 stage pipeline

— 4 instructions per cycle can be fetched (speculatively)
and up o 6 instructions issued out of order

— sophisticated branch predictor

— uses scoreboarding and explicit renaming techniques to track dependencies and avoid false
dependencies

Advances in Computer Architecture, Andy D. Pimentel

Alpha 21264 pipeline

Fetch Rename Issue
Branch Integer Integer
Prediction - :

Reqister - |ssue
Rename Queue
(20 entries)
line/set
~ prediction

64 KB

2-way FP FP

lcache Register ~ Issue

=Rename Queue

(15)

X
Advances in Computer Architecture, Andy D. Pimentel

Reg. Read

-~

-

L

\

Integer | _

Reg.
File
(80)

Integer
Reg.
File
(80)

i

\
FP

Reg.
File
(72)

-

Execute Memory
'
= Integer
Execution
_ Integer | Addr.
Execution 64 KB
2-way
Integer Dcache
Execution

-

Integer Addr._
Execution

-
-

_ FP Multiply Execution

-

FP Add Execution

-

-

L2 cache
and

System

Interface

Dual RF to save ports

—— Later we wil

— num

see

that the register file area grows quadratically with num

Der o

 ports proportional fo the number of functional units al

ver of ports

owed fo write in one cycle

— multiple issue processors requires two read and one write port per concurrent functional unit
—— Ports can be minimized by

— separating floating point and integer operations as long as data can be moved between the

two

— duplicating registers

—— The Alpha uses both techniques: 72 FP registers and 80 integer registers which are duplicated to
minimize ports

Advances in Computer Architecture, Andy D. Pimentel

Dual RF to save ports

—— Alpha groups 2 functional units with each of 2 register
files

— 4 read and 4 write ports
— Area=2¢8 =128

—— Instead of having one file (8 read and 4 write poris)
— Area =c-122= 144c

—— Only a small saving in area,
but this also aids locality of signals on the critical read-
to-functional unit path

——— cis a constant based on line width/spacing

Advances in Computer Architecture, Andy D. Pimentel

'
functional
1 80 unit
Integer
| registers functional
unit
1
|
N functional
80 unit
Integer
—* registers functional
unit
1

Alpha branch prediction

® Hybrid tournament branch predictor

0
® 90-100% accuracy
A4

Choice
i Local | | Giobal Prediction [+
F!(lst'()?ry - »prediction prediction 4096x2
aple
1024x10 1024x3 | | 1024x2

i 1T
<L 1

23 Kbits in total I
prediction

Advances in Computer Architecture, Andy D. Pimentel

Alpha instruction fetch

 |cache is a 2-way set associative cache, 16 bytes cache lines

— 0 cache block fetch is four instructions
— it uses line and set prediction

— it predicts where to fetch the next block from
— accuracy of 85%

— line miss-prediction cost typically 1 cycle bubble

X
Advances in Computer Architecture, Andy D. Pimentel

Intel Pentium 4 (early 2000's)

' This has a very deep pipeline and hence high clock rate - 4GHz

" Problems exacerbated due to the X86 CISC instruction set, which
is not suitable for pipelining

X806 instructions are translated info pops
— these are reqular and uniform - like a traditional RISC ISA

— trace cache caches translated pop sequences along program
execution paths

X
Advances in Computer Architecture, Andy D. Pimentel

Pentium 4 pipeline overview

—— Decode stage translates X86
instructions into pops

——1 Trace cache stores pop fraces

— i.e. a cache of instructions as
executed rather than as stored in
memory

——| Branch history table + branch target
butter + stafic prediction

—— Adopts simultaneous mulfithreading -
hyperthreading (fetches instructions
simultaneously from 2 threads, cf later)

Advances in Computer Architecture, Andy D. Pimentel

Front End

Instruction Fetch

Translate x86/Decode

L2 Instruction
Cache
L1 Instruction Cache 3
(Trace Cache)

Trace Cache Fetch

ﬁ.lloatou‘Regmer Renamer
Execution Engine ‘*’ \&
Mem Queue IntegenFP Queue
Mem Scheduler INVFP Scheduler

-

AGU AGU
(Load) | | (Store)

v

Load/Store
- - Slow
2xALU B 2x ALL ALU

Write-Back and
Retire

L1 Data Cache

Pentium 4's trace caches

——— (ache actual instruction sequences rather than program sequences

— i.e. the sequence of instructions executed rather than their order in memory

trace(A?then,taken) trace(A,taken.taken)
later... - ;
o 1 | }2 - o 1 | [/
A A A A A A
| t t ; t t
fill new trace from I$ Lookup A with predictions (i,t)
v .
t t t t
- ‘
A I A] |
Trace Cache Trace Cache
v

to decoder

Advances in Computer Architecture, Andy D. Pimentel

Pentium 4's pipeline stages

 6-way out-of-order execution 20 stage pipeline

— 2 generations compared below (note the superpipelining)

126 entry reorder buffer (registers and result status)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Basic Pentium?® lIl Processor Misprediction Pipeline

1 2 3 a | s & 7 8 9 10 |
Fetch Fetch lDecode Decode Decode Rename ROB Rd Rdy/Sch Dispatch Exec |

Basic Pentium® 4 Processor Misprediction Pipeline

1| 2] 3 4] s 6] 7 8] 9 10 11 12 13 14 15 16 17 18 19 | 20
TCNxtIP | TCFetch DriveAlloc Rename Que Sch Sch Sch Disp Disp RF RF Ex Figs BrCk Drive

Advances in Computer Architecture, Andy D. Pimentel

Intel moving fo multi-core

—— Pentium 4D increased the pipeline length fo 31 stages in an attempt to push clock speeds to
4GHz

—— Since then Intel has moved to multi-core - shorter pipelines - slower clocks
— 2006 Core 2 duo 2.93 GHz, 291M transistors, 65nm
— 2007 Quad core Xeon 2.66GHz, 582M transistors, 65nm
— 2007 Quad core Xeon Penryn >3GHz, 820M transistors, 45nm
— 2008 Core i7 Nehalem <3GHz, 731M transistors, 45nm
— 2011 Core i7 Sandy Bridge =3GHz, 995M transistors, 32nm
— 2012 Core i7 Ivy Bridge, >3GHz, 1.4B transistors, 22nm

Advances in Computer Architecture, Andy D. Pimentel

Intel Core i7 - Nehalem ('08-'10)

2 or 4 core up to 3GHz

14 stage pipeline with stream prefetching

Return of hyper-threading
32 KB L1 l-cache & 32 KB L1 D-cache (8-way set associative)

256 KB L2 cache per core (8-way set associative)

oxmamonl [romtacem—] eacroencusaoml | R e | PR |

Shared 8 MB L3 cache (16-way set associative)

X
Advances in Computer Architecture, Andy D. Pimentel

128 Entry
Inst. TLB
(4-way)

Instruction
Fetch

32KB Inst. Cache (4-way associative)

16Byte Pre-Decode + Macro-Op
Fusion, Fetch Buffer

18 Entry Instruction Queue

Hardware

>

Micro d
-Code

Macro-Op
Decoder

Simple
Macro-Op
Decoder

Simple
Macro-Op
Decoder

Simple
Macro-Op
Decoder

Complex

28 Entry Micro-Op Loop Stream Detect Buffer

Cache

Macro-Op Handling

and Loop Stream
Detect

Execution Engine
including Out of
Order Hardware

Retirement
Register File

ALU
Shift

SSE
Shuffle
ALU

128-bit
FMUL
FDIV

Register Alias Table and Allocator
128 Entry Reorder Buffer

36 Entry Reservation Station

Load
Address

ALU
Shift

Store
Address

SSE
Shuffle
ALU

Memory Order Buffer

128-bit
FMUL
FDIV

ALU
Shift

SSE
Shuffle
ALU

128-bit
FMUL
FDIV

512 Entry Unified
L2 TLB (4-way)

64 Entry Data TLB
BN (4-way associative)

New or Improved
For Nehalem

32KB Dual Ported Data
Cache (8-way associative)

PNGLNGUN
BT LR

v
MR TRYR I T RTINS
SUDNGINGLNAYN

PR

h.’- .
-

-'.. 1
b'é :

T

| B
.
e

3 s

-
=

c- . . a
e} tEaic])
4§ SIS0y
T VR pied) - (Sael)
33 SIS U FRis)

R il

[
(O
O
(9]
-
O
o
) -
Yy O
=
U)

Andy D. Pimentel

!

FRUSTV ey 785 Fajidony)

L Y .09, N o— e Ao ." :
LSS (S) (el (Bl
- . . . _
PRRSIVGEIRG 7S PP Y/

3l B
- a4 4A
- e - n..l. P'ﬂ‘hc sl..
1 el T
:) .'M.. Tos
STeERIne 2o IRLLI8S)

el e

dvances in Computer Architecture

BM POWERS (2014)

" 12 cores on a chip

momens nm
ge i b g dugl

Each core can execute up to
8 HW threads (SMT)

Fetch, decode, dispatch and
commit 8 instructions/cycle

e

[Frmreacaeane)

Sw
o=
® o
S
S
= 0
(72

[

Issue 10 instruction/cycle
to 16 execution units

90d
SHUIT dINS

Core | Core | Core Core | Core | Core

X

‘<l Advances in Computer Architecture, Andy D. Pimentel

BM POWERS (2014)

Fenensi SR . «
w2 Faobamalesds 080 80EES

Can perform 4 loads (or 2 loads+2 stores) per cycle

Uses combination of reservation stations and ROB
—— Max. 224 in-flight instructions after dispatch

HW-support for Transactional Memory (TM)

>2000 physical registers to support renaming and TM checkpointing

64KB L1 D-cache and 32KB L1 I-cache

Core | Core | Core

512KB L2 cache, 96MB L3 cache Core i

$10)eI3[99IY :
SHUIT dINS

Up to 8 outstanding L1 cache misses

HW-initiated instruction and data prefeich

e D e F sl

Core | Core | Core

Uses hybrid branch predictor like Alpha Rt kR LS

90d
SHUIT dINS

Advances in Computer Architecture, Andy D. Pimentel

BM POWERS (2014)

2 subgroups 2 subgroups 2 x (3+1) instructions 8 QW-aligned instructions
Global . .) < 5
Completion [«— Insfructlon Instruction | | TInstruction v Instruction
R Dispatch Decode Fetch Buffer 2 : Cache
able : Branch HlstoryH “—Predecode
. Table 32KB
Effective Address | Roturn 8-way assoc. A
Table Stack Instruction
o Count Translation 1
l Cache ' Elgh't
‘ — Branch Prediction A A
Branch Condition
Tssue Register FP/VMX/FX/LSU 32-ent 2048-ent
Issue Unified Issue Queue “entry “entry
Queue Queue Q Load | Store || Store Segment |[Translation|
Reorder||Reorder|| Data Lookaside || Lookaside
i l I { i v Queue || Queue || Queue Buffer Buffer
LS/FX [* L T 1 T f T
Branch CR FP/VSX FP/VSX FX : 16B (SLB) (TLB)
. Execution
Execution | Execution || Execution| [|Execution|Execution) 15t & 294 Level
Unit Unit Unit Unit Unit Unit Data Translation Third Level Translation
A
: « o
v v v vy LS/FX ¥ Data Cache| 16B store data :
S . | Execution Translation
rypto . VMX VMX FX Unit 16B| 64KB 64B cache sector Data
Unit Unit Execution|Execution || Execution [* Mt |« 8-way assoc.)
Unit Unit Unit 3
L/FX |* y v
. Advanced .
> Exgtll.ttIOIl %] Data Prefetch <> Unified L2 Cache
ni .
Engine
g 512 KB
m— Load Miss > 8-way assoc.
— Execution | | Queue
Unit Memory subsystem

Advances in Computer Architecture, Andy D. Pimentel

Apple A7 /A8 tor iPhone ('13/'14)

Clock 1.4 GHz, dual-core

6 instruction-wide out-of-order execution core

64KB L1 |/D-caches, 1MB L2 cache and 4MB L3 cache
Quad-core GPU on chip

|
|
|
|
12 execution units, 192-entry ROB
|
|
|
|

X
Advances in Computer Architecture, Andy D. Pimentel

Apple A7 /A8 for iPhone ('13/'14)

Apple Cyclone

Decoder

192-entry Reorder Buffer

48 entries 28 enftries 48 entries

Integer Integer Integer Integer ’ FP/NEON FP/NEON FP/NEON
ALU ALU ALU ALU ALUMUL ALUMUL DIV/isgn
CyUnitFlo

Branch Branch Shift Shift

aliDiv
Indirect Integer CyUnitFlo
Branch DIV aiDiv

Integer
MUL

Advances in Computer Architecture, Andy D. Pimentel

Summary

—— Out-of-order issue exploits instruction-level concurrency from a sequential instruction
stream (implicit concurrency)

— it attempts to achieve a large number of instructions executing simultaneously in multiple functional
units

— instructions are dynamically scheduled at the issue by executing out of order
while honouring dependencies

— dependencies introduced by completing and issuing instructions out of order are removed by
register renaming

——— Qut-of-order issue can be
— c¢ostly and only appropriate for low levels of concurrency
— inefficient on irregularly branching code

—— Difficult to get an IPC of much more than 2 even for 8-way issue

Advances in Computer Architecture, Andy D. Pimentel

