
2. Processor micro-architecture:
Implicit parallelism

Pipelining, scalar & superscalar execution

Advances in Computer Architecture

Advances in Computer Architecture, Andy D. Pimentel

Motivation
Pipeline-level parallelism is the weapon of architects  
to increase throughput  
and tolerate latencies of communication  
for individual instruction streams 
(i.e. sequential programs)  
without participation from the programmer  
(i.e. implicit)

We will cover true and explicit parallelism later in the course

Advances in Computer Architecture, Andy D. Pimentel

Processor performance

Latency: expressed as CPI = cycles per instruction 
divide by frequency to obtain absolute latency

Throughput: expressed as IPC = instructions per cycle 
multiply by frequency to obtain absolute throughput  

Pipelining objective: increase IPC, also decrease CPI  
As we will see ↘CPI and ↗IPC are conflicting requirements

Advances in Computer Architecture, Andy D. Pimentel

Types of pipeline concurrency
Pipelined: operations broken down in sub-tasks  
⇒ different sub-tasks from different operations run in parallel  

Scalar pipelined: multiply the functional units 
⇒ the same sub-task from different operations run in parallel

Superscalar pipelined: multiply the issue units  
⇒ multiple operations issued and completing simultaneously

Pipelining & hazards

Pipeline basics

Advances in Computer Architecture, Andy D. Pimentel

Pipelines
Each instruction / operation can be decomposed in sub-tasks:  
Op = A ; B ; C ; D  
 

Considering an instruction stream [Op1; Op2; ...]  
at each cycle n we can run in parallel: An+3 ∣∣ Bn+2 ∣∣ Cn+1 ∣∣ Dn 

 

 

 

A B C D

A B C D

input An+3 input Bn+2 input Cn+1at start of cycle n:

Advances in Computer Architecture, Andy D. Pimentel

Example: MIPS

Advances in Computer Architecture, Andy D. Pimentel

1 program, 5 operations:  
 
 
 
 
 
 
 

Dynamic behavior

4 sub-tasks, CPI = 4

(total execution time: 8 cycles)

Advances in Computer Architecture, Andy D. Pimentel

Pipeline performance
This pipeline has a length of 4 subtasks,  
assume each sub-task takes t seconds

for a single operation we get no speedup; it takes 4t seconds to
complete all of the subtasks

this is the same as performing each sub task in sequence on the
same hardware

In the general case – for n operations – it takes 4t seconds to produce
the first result and t seconds for each subsequent result

Advances in Computer Architecture, Andy D. Pimentel

Pipeline performance
For a pipeline of length L and cycle time t, the time T it takes
to process n operations is:  
T(n) = L·t + (n-1)·t = (L-1)·t + n·t

We can characterise all pipelines by two parameters:

startup time: S = (L-1)·t (unit: seconds)

maximum rate: r∞ = 1/t (unit: instructions
per second)

Advances in Computer Architecture, Andy D. Pimentel

Optimization strategies
Long instruction sequences suggest IPC = 1

However there are problems with this:

some instructions require less sub-tasks than others

hazards: dependencies and branches

long-latency operations: can’t fit the pipeline model

What to do about these? The rest of the lecture covers this...

Advances in Computer Architecture, Andy D. Pimentel

Trade-offs
Observations:

more complexity per sub-task requires more time per cycle

conversely, as the sub-tasks become simpler the cycle time can be reduced

so to increase the clock rate instructions must be  
broken down into smaller sub-tasks

…but operations have a fixed complexity

smaller sub-tasks mean deeper pipelines = more stages  
⇒ more instructions need to be executed to fill the pipeline

Control hazards

Advances in Computer Architecture, Andy D. Pimentel

Control hazards
Branches – in particular conditional branches – cause pipeline hazards

the outcome of a conditional branch is not known until the end of the EX stage,  
but is required at IF to load another instruction and keep the pipeline full

A simple solution:  
assume by default that the branch falls through – i.e. is not taken –  
then continue speculatively until the target of the branch is known

IF
beq ID Ex WBBranch not taken

IF ID Ex WB

Continue to fetch but stall ID
until branch target is known
– one cycle lost

IF
beq ID Ex WBBranch is taken

IF ID Ex WB

Need to refetch at new target
– two cycles lostIF

Wrong target

Advances in Computer Architecture, Andy D. Pimentel

How to overcome
Eliminate branches altogether via predication (most GPUs)

Expose the branch delay to the programmer / compiler:  
branch delay slots (MIPS, SPARC, PA-RISC)

Fetch from both targets, requires branch target address prediction

Predict whether the branch is taken or not: branch prediction 
(cf later part of the lecture)

Execute instructions from other threads: hardware multithreading  
(eg Niagara, cf next lecture)

Advances in Computer Architecture, Andy D. Pimentel

Predication
Control flow can (in some cases) be replaced by guarded or predicated instruction
execution…

a condition sets a predicate register (boolean)

instructions are predicated on that register

any state change (WB or Mem write) only occurs if the predicate is true

Useful in long pipelines where branch hazards can be costly,  
or to simplify the pipeline logic by not handling control hazards at all

it removes a control hazard at the expense of redundant instruction
execution

Advances in Computer Architecture, Andy D. Pimentel

Predication – example

Advances in Computer Architecture, Andy D. Pimentel

Branch delay slots
Specify in the ISA that a branch takes effect two instructions
later, then let the compiler / programmer fill the empty slot

L1:
 lw a x[i]
 add a a a
 sw a x[i]
 sub i i 4
 bne i 0 L1
 nop
L2: 1 cycle wasted at

each iteration

L1:
 lw a x[i]
 add a a a
 sw a x[i]
 bne i 4 L1
 sub i i 4
L2: no bubble, but one extra sub

at last iteration

Advances in Computer Architecture, Andy D. Pimentel

Fetch from both targets

Using an additional I-cache port, both taken and not-taken are fetched

Then at EX a choice is made as to which is decoded

When coupled with a branch delay slot this eliminates all wasted cycles, but…

longer pipelines, eg 20 stages, might contain several branches  
in the pipe prior to EX

multiple conditional branches will break this solution,

as every new branch doubles the number of paths fetched

Data hazards

Advances in Computer Architecture, Andy D. Pimentel

Data hazard
Occurs when the output of one operation is the input of a subsequent operation

The hazard occurs because of the latency in the pipeline

the result (output from one instruction) is not written back to the register file until the last stage of
the pipe

the operand (input of a subsequent instruction) is required at register read – some cycles prior to
writeback

the longer the RR to WB delay, the more cycles there must be between the writeback of the producer
instruction and the read from the consumer

Example:  
 
 

Advances in Computer Architecture, Andy D. Pimentel

How to overcome
Do nothing i.e. expose to the programmer, e.g. MIPS 1

Bypass buses:  
 
 
 
 
 

Also: reorder the instructions

The operand is
taken from the
pipeline register
and input directly
to the ALU on the
subsequent cycle

Structural hazards
and scalar ILP

Advances in Computer Architecture, Andy D. Pimentel

Scalar pipelines
In the simple pipeline, register-to-register operations have a wasted cycle

a memory access is not required, but this stage still requires a cycle to complete
the operations

Decoupling memory access and operation execution avoids this  
e.g. use an ALU plus a memory unit - this is scalar ILP  
 
 
 

… note: either we need two write ports to the register file or arbitration on a single port

Advances in Computer Architecture, Andy D. Pimentel

Structural hazard - registers
A structural hazard occurs when a resource in the pipeline is required
by more than one instruction

a resource may be an execution unit or a register port

Example: only one write port  
 lw a addr  
 add b c d

Advances in Computer Architecture, Andy D. Pimentel

Structural hazard - execution units
Some operations require more than one pipeline cycle

mult is more complex than add (often requires 2 cycles)

floating point still more complex still (~ 5 cycles)

Example: 2-cycle multiply 
mult c d e 
add f g h

Advances in Computer Architecture, Andy D. Pimentel

How to overcome
They result from contention  
⇒ they can be removed by adding more resources

register write hazard: add more write ports

execution unit: add more execution units

Example: CDC 6600 (1963)  
10 units, 4 write ports, only FP div not pipelined

Note:

more resources = more cost (area, power)

Superscalar processors
Introduction / overview

Advances in Computer Architecture, Andy D. Pimentel

Pipelining - summary
Depth of pipeline - Superpipelining

further dividing pipeline stages increases frequency

but introduces more scope for hazards

and higher frequency means more power dissipated

Number of functional units - Scalar pipelining - avoids waiting for long operations to complete

instructions fetched and decoded in sequence

multiple operations executed in parallel

Concurrent issue of instructions - Superscalar ILP

multiple instructions fetched and decoded concurrently

new ordering issues and new data hazards

Advances in Computer Architecture, Andy D. Pimentel

Scalar vs. superscalar

in-order issue

concurrent issue,
possibly out of order

Most “complex” general-purpose processors are superscalar

Advances in Computer Architecture, Andy D. Pimentel

Basic principle
Example based on simple 3-stage pipeline

1
2 1
3 2 1

3 24
35 4

5 4
Scalar pipeline, max IPC = 1

tim
e

stages
1+2

tim
e

stages

3+4 1+2

3+4 1+25

3+45
5

Superscalar, max IPC ≥ 1

Advances in Computer Architecture, Andy D. Pimentel

Instruction-level parallelism
ILP is the number of instructions issued per cycle (issue parallelism / issue width)

IPC the number of instructions executed per cycle is limited by:

the ILP

the number of true dependencies

the number of branches in relation to other instructions

the latency of operations in conjunction with dependencies

Current microprocessors: 4-8 max ILP, 12 functional units, however IPC of typically 2-3  
 
 
 
 

Advances in Computer Architecture, Andy D. Pimentel

Aspects of superscalar execution

parallel fetch decoding and issue

100s of instructions in-flight simultaneously

out-of-order execution and sequential consistency

Exceptions and false dependencies

finding parallelism and scheduling its execution

application specific engines, e.g. SIMD & prefetching

Instruction policies
& related hazards

Instruction issue vs completion, new data hazards

Advances in Computer Architecture, Andy D. Pimentel

Instruction issue basics
Just widening of the processor’s pipeline does not necessarily improve its performance

The processor’s policy in fetching, decoding and executing instructions
also has a significant effect on its performance

The instruction issue policy is determined by its look-ahead capability in the instruction
stream

For example, with no look-ahead, if a resource conflict halts instruction fetching the
processor is not able to find any further instructions until the conflict is resolved

If the processor is able to continue fetching instructions it may find an independent
instruction that can be executed on a free resource out of programmed order

Policies are characterized by issue order and completion order

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, in-order completion

Simplest, unusual with superscalar designs

Instructions issued in exact program order with results
written in the same order

This is shown here for comparison purposes only, as very
few pipelines use in-order completion

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, in-order completion

Assume a 3 stage execution in a pipeline that can issue two instructions, execute three instructions and write back
two results every cycle… assume:

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, out-of-order completion

Out-of-order completion, improves performance of instructions with
long latency operations, such as loads and floating point

The modifications made to execution are:

any number of instructions allowed in the execution stage up
to the total number of pipeline slots (stages × functional units)

instruction issue is not stalled when an instruction takes more
than one cycle to complete

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, out-of-order completion

Again assume a processor issues two instructions, executes three instructions and writes back two results every cycle

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

Advances in Computer Architecture, Andy D. Pimentel

In-order issue, out-of-order completion

In a processor with out-of-order completion, instruction issue is stalled when:

There is a conflict for a functional unit

An instruction depends on a result that is not yet computed - a data
dependency

can use register specifiers to detect dependencies between instructions and
logic to ensure synchronisation between producer and consumer instructions  
– e.g. scoreboard logic, cf CDC 6600

Also: a new type of dependency caused by out-of-order completion:  
the output dependency (Write-after-Write dependency)

Advances in Computer Architecture, Andy D. Pimentel

Output dependencies
Consider the code to the right:

the 1st instruction must be completed before the 3rd,
otherwise the 4th instruction may receive the wrong result!

this is a new type of dependency  
caused by allowing out-of-order completion

the result of the 3rd instruction has  
an output dependency on the 1st instruction

the 3rd instruction must be stalled if its result may be
overwritten by a previous instruction which takes longer to
complete

Advances in Computer Architecture, Andy D. Pimentel

Out-of-order issue, out-of-order completion

In-order issue stalls when the decoded instruction has:

a resource conflict, a true data dependency or an output dependency on an uncompleted instruction

this is true even if instructions after the stalled one can execute

to avoid stalling, decode must be decoupled from execution

Conceptually out-of-order issue decouples the decode/issue stage from instruction execution

it requires an instruction window between the decode and execute stages  
to buffer decoded or part pre-decoded instructions

this buffer serves as a pool of instructions giving the processor a look-ahead facility

instructions are issued from the buffer in any order,  
provided there are no resource conflicts or dependencies with executing instructions

Advances in Computer Architecture, Andy D. Pimentel

Out-of-order issue, out-of-order completion

Again assume a processor issues two instructions, executes three instructions and writes back two results every cycle
but now has a issue window of at least three instructions

I1 requires 2 cycles to execute

I3 and I4 are in conflict for a functional unit

I5 depends on the value produced by I4

I5 and I6 are in conflict for a functional unit

Advances in Computer Architecture, Andy D. Pimentel

Anti-dependencies
Out-of-order issue introduces yet another dependency - called an
anti-dependency (or Write-after-Read dependency)

the 3rd instruction can not be completed until the second
instruction has read its operands

otherwise the 3rd instruction may overwrite the operand
of the 2nd instruction

we say that the result of the 3rd instruction has an anti-
dependency on the 1st operand of the 2nd instruction

this is like a true dependency but reversed

Advances in Computer Architecture, Andy D. Pimentel

Summary of data hazards
We have now have seen three kinds of dependencies

True (data) dependencies … read after write (RAW)

Output dependencies … write after write (WAW) - out of order completion

Anti dependencies … write after read (WAR) - out of order issue

Only true dependencies reflect the flow of data in a program and should require the pipeline to stall

when instructions are issued and completed out of order,  
the one-to-one relationship between registers and values at any given time is lost

new dependencies arise because registers hold different values from independent computations at
different times – they are resource dependencies

Resource dependencies are really just storage conflicts and can be eliminated by
introducing new registers to re-establish the one-to-one relationship between registers and values at a given time

Register renaming
How resource dependencies are managed

in out-of-order issue or completion

Advances in Computer Architecture, Andy D. Pimentel

Renaming – example

Renaming dynamically rewrites  
the machine code using a larger register set

A renamed register is allocated
somehow and remains in force until
commit

Subsequent use of a register name as
an operand uses the latest rename of it

R3b := R3 op R5

R4 := R3b + 1

R3c := R5 + 1

R7 := R3c op R4

R3 -> R3b -> R3c

scope R3b

Advances in Computer Architecture, Andy D. Pimentel

Register renaming
Storage conflicts can be removed in out-of-order issue microprocessors  
by renaming registers

requires additional registers e.g. a rename buffer or extended register file, not visible to the program

mapping between logical name and physical location is maintained in hardware  
while the instructions are executing

Instructions are executed out of sequence from the instruction window using the renamed registers

new physical register allocated on multiple use of same target register name

mapping from instruction register to architectural register stored in hardware

instructions executing after a rename use the renamed register  
rather than instruction-specified register as an operand

A commit stage is used to preserve sequential machine state by  
storing values to architectural registers in program order

Advances in Computer Architecture, Andy D. Pimentel

Strategies renaming
Can either rename at instruction issue

explicit renaming maps architectural register to physical register used in
conjunction with a scoreboard to track dependencies

Can remap implicitly using reservation stations at the execute stage and a
reorder buffer on instruction completion

reservation stations use dataflow to manage true dependencies and implicitly
rename registers

the reorder buffer holds the data until all previous instructions have
completed then write it to the architectural register specified

Dynamic scheduling
In out-of-order issue pipelines

Advances in Computer Architecture, Andy D. Pimentel

Abstract problem

I-cache

Lw/Sw
Integer
Branch
Float

Instruction window
synchronization and scheduling

Execution units

Instruction
fetch &
decode

Waiting for data

Ready to execute

Writes resolve
dependencies
and allow new
instructions to be
scheduled

Parallel
Instruction
issue

Empty slot

When to issue the instructions?
How to preserve order of side effects?

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding
1 data structure - centralized approach

Scoreboard monitors ready instructions, registers and functional units

Issues instructions when source operands and functional units are available

Registers include bit indicating their validity

At issue, if destination reg. is valid, then mark it as invalid. Otherwise
block (WAW hazard). Validate bit at WB while checking for WAR hazard

If source reg. is invalid, then block (RAW hazard)

Explicit register renaming to avoid WAW and WAR hazards

Advances in Computer Architecture, Andy D. Pimentel

ScoreboardingUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Scoreboarding (cont’d)

An example

r0
r1
r2
r3
r4
r5

V

1
1

1

10
20

40

OP S1 V1 DS2 V2

EX
Unit

Instruction status

Register file
Instructions from

mul r3, r1, r2 0

mul r1 1 r2 1 r3

Decode/Dispatch stage

Andy Pimentel – p. 53/259

Advances in Computer Architecture, Andy D. Pimentel

ScoreboardingUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Scoreboarding example (cont’d)

r0
r1
r2
r3
r4
r5

V

1
1

1

10
20

40

OP S1 V1 DS2 V2

EX
Unit

Instruction status

Register file
Instructions from

0

mul r3, r1, r2

add r5,r2,r3

add r2 r3 0 r51

0

Decode/Dispatch stage

Andy Pimentel – p. 54/259

Advances in Computer Architecture, Andy D. Pimentel

ScoreboardingUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Scoreboarding example (cont’d)

r0
r1
r2
r3
r4
r5

V

1
1

1

10
20

40

OP S1 V1 DS2 V2

EX
Unit

Instruction status

Register file
Instructions from

add r1 r3 r01

0

1200

1

add r5,r2,r3

add r0,r1,r3

0

Decode/Dispatch stage

Andy Pimentel – p. 55/259

Advances in Computer Architecture, Andy D. Pimentel

Scoreboarding

More information:

http://www.cs.umd.edu/class/fall2001/cmsc411/
projects/dynamic/example1-2.html

H&P, Appendix A.7 - Dynamic Scheduling with a
Scoreboard

http://www.cs.umd.edu/class/fall2001/cmsc411/projects/dynamic/example1-2.html

Advances in Computer Architecture, Andy D. Pimentel

Reservation stations & Tomasulo

Basic idea: dataflow read-blocking, write-resume

Distributed control structure using reservation stations

implicit renaming of registers

if operand not available: pointer to producing reservation station (tag) is
stored instead of register ID

these tags are matched with result tags using a common data bus

results broadcast to all reservation stations for RAW

WAR and WAW hazards eliminated by register renaming

Advances in Computer Architecture, Andy D. Pimentel

Reservation stations
tag identifies the source of the data  
– i.e. which reservation station entry

v is a valid bit

Instructions can be issued before data is
available, but valid bit is set to 0

Only when an instruction has two valid
operands the functional unit is activated

Every result matches all l-r tags in every
reservation station and data is grabbed if a
match occurs

Fn unit

v data/tag

v data/tag

v data/tag

v data/tag

common data bus

Advances in Computer Architecture, Andy D. Pimentel

Tomasulo’s algorithm
University

of
Amsterdam

CSPCSP
Computer
Architecture

Tomasulo scheduling (cont’d)

The basic architecture
Instructions from

r0
r1
r2
r3
r4
r5

Register file Tag

S1 S2 S1 S2

EX
Unit

CDB

RS2 RS5
RS1

RS3

RS4

RS6

RS1

EX
Unit

add 10 20

add

5mul RS1

RS4

OPOP

Decode/Dispatch stage

Andy Pimentel – p. 58/259

Advances in Computer Architecture, Andy D. Pimentel

Tomasulo’s algorithm
Issue - get instruction from Op Queue

if reservation station is free (no structural hazard) control issues instruction and operands
(renames registers)

Execution - operate on operands (EX)

when both operands ready then execute; if not ready, watch Common Data Bus for result

Write result - finish execution (WB)

write on Common Data Bus to all awaiting reservation stations; free reservation station entry

Normal data bus = data + destination; Common data bus = data + source

e.g. 64 bits of data + 4 bits of reservation station ID

Advances in Computer Architecture, Andy D. Pimentel

More information

Demo using web applet University of Edinburgh

http://www.dcs.ed.ac.uk/home/hase/webhase/demo/
tomasulo.html

Another demo from University of Massachusetts

http://www.ecs.umass.edu/ece/koren/architecture/
Tomasulo/AppletTomasulo.html

http://www.dcs.ed.ac.uk/home/hase/webhase/demo/tomasulo.html
http://www.ecs.umass.edu/ece/koren/architecture/Tomasulo1/tomasulo.htm

Reordering
In out-of-order issue pipelines

Advances in Computer Architecture, Andy D. Pimentel

Machine state
Issuing instructions out of order: sequential-order machine state is lost

this can cause problems when exceptions occur

how can we define the machine state if many instructions are in flight - not necessarily
in program order?

To checkpoint the sequential state we must retire or commit instructions only when all
previous instructions have finished

only at this stage the result of an instruction can be written into the architectural register

This is managed in a reorder buffer (ROB) that provides sequential state at the end of
the pipeline

Advances in Computer Architecture, Andy D. Pimentel

Reorder buffer
The reorder buffer stores information about all instructions executing between issue and retire
stages

it can also store the results of those instructions pending a write to the architectural
register file, which is another implicit form of register renaming

The reorder buffer is a queue or FIFO (typically circular)

instructions are written to it at the tail in program order at the issue stage

instructions are removed from it at the head but only when they have completed
execution

at this stage, the results can be safely written to the architectural register file: the
instruction is then said to be retired or committed

Advances in Computer Architecture, Andy D. Pimentel

Reorder buffer

Advances in Computer Architecture, Andy D. Pimentel

Memory load/store reordering
Note that although a consistent register state may be identified using a reorder
buffer, the memory state is a different matter

this is because of memory delays, cache writeback strategies etc.

Modern microprocessors hold memory reads and writes in buffers similar to
reservation stations

these will match reads with writes, and also bypass data  
so that a read to a location in the buffer that has not yet been written can
provide its value to the memory read

This allows load/store re-ordering and can improve locality of memory accesses

Advances in Computer Architecture, Andy D. Pimentel

Memory load/store reordering
Can safely allow a load to bypass a store  
as long as the addresses of load and store are different

If addresses are not know then either

do not allow bypassing, or

speculatively bypass the store  
but squash the load if the address turns out to be the same

Can also allow loads to bypass loads on cache misses

This is called a lock-up free cache  
but it can complicate the cache coherence protocol

Branch prediction
Dealing with control hazards

Advances in Computer Architecture, Andy D. Pimentel

Control hazards revisited
Superscalar pipelines are typically super-pipelined and have many stages ≈ 10-20

They also have wide issue widths ≈ 4-8

we may therefore have 40-160 instructions in flight

The latency to resolve a branch condition is large

15 cycles for a conditional branch in Intel Core i7!

hence many pipeline slots will be filled with instructions from the wrong target

this has to be cleaned up when the wrong target is chosen  
including register renames

Advances in Computer Architecture, Andy D. Pimentel

Grohoski’s estimate

Advances in Computer Architecture, Andy D. Pimentel

Grohoski’s estimate

Good branch predictio
n algorith

ms are needed!

Advances in Computer Architecture, Andy D. Pimentel

Bimodal predictors
Use two bits to represent the last two attempts (≈ 90% accurate) … there are various
schemes

TT TN NT NN are the predictor states

E.g. change prediction only if miss-predict twice but return in one step  
- this is only one of several strategies

Advances in Computer Architecture, Andy D. Pimentel

Branch history buffers
Stores the prediction state in a table, either associatively addressed or indexed on
small number of address bits

Can also store branch target if it is associative

Get prediction at IF stage and update prediction when condition is resolved

Advances in Computer Architecture, Andy D. Pimentel

Correlated or global predictors
There may be correlation between different branches

Normally predictors are indexed on address bits of the branch instruction

Correlation can be tracked by so-called global predictors that maintain a register of the history of recent
branches taken and use this to address the prediction  

University
of

Amsterdam

CSPCSP
Computer
Architecture

Two-level (correlating) predictor

Include behaviour of other branches

3

Branch address
2-bit per branch prediction

2-bit global branch history

xx

Accuracy 95%

Andy Pimentel – p. 78/259

Example processors

Advances in Computer Architecture, Andy D. Pimentel

DEC Alpha 21264 (late 1990’s)
The EV6 was the last Alpha microprocessor to be manufactured

Alpha has a very clean RISC ISA that uses separate integer and floating-point register files

Alpha was unique in supporting a high clock rate and short pipeline through good ISA and
silicon design

EVA6 uses out-of-order issue in a 7 stage pipeline

4 instructions per cycle can be fetched (speculatively)  
and up to 6 instructions issued out of order

sophisticated branch predictor

uses scoreboarding and explicit renaming techniques to track dependencies and avoid false
dependencies

Advances in Computer Architecture, Andy D. Pimentel

Alpha 21264 pipeline

Advances in Computer Architecture, Andy D. Pimentel

Dual RF to save ports
Later we will see that the register file area grows quadratically with number of ports

number of ports proportional to the number of functional units allowed to write in one cycle

multiple issue processors requires two read and one write port per concurrent functional unit

Ports can be minimized by

separating floating point and integer operations as long as data can be moved between the
two

duplicating registers

The Alpha uses both techniques: 72 FP registers and 80 integer registers which are duplicated to
minimize ports

Advances in Computer Architecture, Andy D. Pimentel

Dual RF to save ports
Alpha groups 2 functional units with each of 2 register
files

4 read and 4 write ports

Area = 2∙c∙8
2
 =128c

Instead of having one file (8 read and 4 write ports)

Area = c∙12
2
 = 144c

Only a small saving in area,  
but this also aids locality of signals on the critical read-
to-functional unit path

c is a constant based on line width/spacing

Advances in Computer Architecture, Andy D. Pimentel

Alpha branch prediction
• Hybrid tournament branch predictor
•90-100% accuracy

Advances in Computer Architecture, Andy D. Pimentel

Alpha instruction fetch
I-cache is a 2-way set associative cache, 16 bytes cache lines

a cache block fetch is four instructions

it uses line and set prediction

it predicts where to fetch the next block from

accuracy of 85%

line miss-prediction cost typically 1 cycle bubble

Advances in Computer Architecture, Andy D. Pimentel

Intel Pentium 4 (early 2000’s)

This has a very deep pipeline and hence high clock rate - 4GHz

Problems exacerbated due to the X86 CISC instruction set, which
is not suitable for pipelining

X86 instructions are translated into µops

these are regular and uniform - like a traditional RISC ISA

trace cache caches translated µop sequences along program
execution paths

Advances in Computer Architecture, Andy D. Pimentel

Pentium 4 pipeline overview
Decode stage translates X86
instructions into µops

Trace cache stores µop traces

i.e. a cache of instructions as
executed rather than as stored in
memory

Branch history table + branch target
buffer + static prediction

Adopts simultaneous multi-threading -
hyperthreading (fetches instructions
simultaneously from 2 threads, cf later)

Advances in Computer Architecture, Andy D. Pimentel

Pentium 4’s trace caches
Cache actual instruction sequences rather than program sequences

i.e. the sequence of instructions executed rather than their order in memory

Advances in Computer Architecture, Andy D. Pimentel

Pentium 4’s pipeline stages
6-way out-of-order execution 20 stage pipeline

2 generations compared below (note the superpipelining)

126 entry reorder buffer (registers and result status)

Advances in Computer Architecture, Andy D. Pimentel

Intel moving to multi-core
Pentium 4D increased the pipeline length to 31 stages in an attempt to push clock speeds to
4GHz

Since then Intel has moved to multi-core - shorter pipelines - slower clocks

2006 Core 2 duo 2.93 GHz, 291M transistors, 65nm

2007 Quad core Xeon 2.66GHz, 582M transistors, 65nm

2007 Quad core Xeon Penryn >3GHz, 820M transistors, 45nm

2008 Core i7 Nehalem <3GHz, 731M transistors, 45nm

2011 Core i7 Sandy Bridge ≈3GHz, 995M transistors, 32nm

2012 Core i7 Ivy Bridge, >3GHz, 1.4B transistors, 22nm

Advances in Computer Architecture, Andy D. Pimentel

Intel Core i7 - Nehalem (’08-’10)

2 or 4 core up to 3GHz

14 stage pipeline with stream prefetching

Return of hyper-threading

32 KB L1 I-cache & 32 KB L1 D-cache (8-way set associative)

256 KB L2 cache per core (8-way set associative)

Shared 8 MB L3 cache (16-way set associative)

Advances in Computer Architecture, Andy D. Pimentel

Advances in Computer Architecture, Andy D. Pimentel

Advances in Computer Architecture, Andy D. Pimentel

IBM POWER8 (2014)
12 cores on a chip

Each core can execute up to
8 HW threads (SMT)

Fetch, decode, dispatch and
commit 8 instructions/cycle

Issue 10 instruction/cycle
to 16 execution units

© Copyright IBM Corporation 2014

POWER8 Processor

© Copyright IBM Corporation 2014

Caches
• 512 KB SRAM L2 / core
• 96 MB eDRAM shared L3
• Up to 128 MB eDRAM L4

(off-chip)

Memory
• Up to 230 GB/s
sustained bandwidth

Bus Interfaces
• Durable open memory

attach interface
• Integrated PCIe Gen3
• SMP Interconnect
• CAPI (Coherent
Accelerator Processor

Interface)

Cores
• 12 cores (SMT8)

• 8 dispatch, 10 issue,
16 exec pipe

• 2X internal data
flows/queues

• Enhanced prefetching
• 64K data cache,
32K instruction cache

Accelerators
• Crypto & memory

expansion
• Transactional Memory

• VMM assist
• Data Move / VM Mobility Energy Management

• On-chip Power Management Micro-controller
• Integrated Per-core VRM
• Critical Path Monitors

Technology
• 22nm SOI, eDRAM, 15 ML 650mm2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

L3 Cache & Chip Interconnect

8M L3
Region

Mem. Ctrl. Mem. Ctrl.

SMP Links
Accelerators

SMP Links
PCIe

POWER8 Processor

Advances in Computer Architecture, Andy D. Pimentel

IBM POWER8 (2014)
Can perform 4 loads (or 2 loads+2 stores) per cycle

Uses combination of reservation stations and ROB

 Max. 224 in-flight instructions after dispatch

HW-support for Transactional Memory (TM)

>2000 physical registers to support renaming and TM checkpointing

64KB L1 D-cache and 32KB L1 I-cache

512KB L2 cache, 96MB L3 cache

Up to 8 outstanding L1 cache misses

HW-initiated instruction and data prefetch

Uses hybrid branch predictor like Alpha

© Copyright IBM Corporation 2014

POWER8 Processor

© Copyright IBM Corporation 2014

Caches
• 512 KB SRAM L2 / core
• 96 MB eDRAM shared L3
• Up to 128 MB eDRAM L4

(off-chip)

Memory
• Up to 230 GB/s
sustained bandwidth

Bus Interfaces
• Durable open memory

attach interface
• Integrated PCIe Gen3
• SMP Interconnect
• CAPI (Coherent
Accelerator Processor

Interface)

Cores
• 12 cores (SMT8)

• 8 dispatch, 10 issue,
16 exec pipe

• 2X internal data
flows/queues

• Enhanced prefetching
• 64K data cache,
32K instruction cache

Accelerators
• Crypto & memory

expansion
• Transactional Memory

• VMM assist
• Data Move / VM Mobility Energy Management

• On-chip Power Management Micro-controller
• Integrated Per-core VRM
• Critical Path Monitors

Technology
• 22nm SOI, eDRAM, 15 ML 650mm2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

L3 Cache & Chip Interconnect

8M L3
Region

Mem. Ctrl. Mem. Ctrl.

SMP Links
Accelerators

SMP Links
PCIe

POWER8 Processor

Advances in Computer Architecture, Andy D. Pimentel

IBM POWER8 (2014)

running, the core can execute in ST mode. Similarly, as long
as only two threads are running, the core can execute in SMT2
mode, and it does not matter which hardware thread positions
those two threads are running. This makes the SMT mode
switch in the POWER8 core significantly easier and does
not require software to invoke an expensive thread move
operation to put the thread(s) in the right position to switch
into the desired SMT mode. In addition, the performance
difference of running one single thread on the core when
the core is in ST mode versus in any of the SMT modes is
significantly lower in the POWER8 processor than in the
POWER7 processor.
The POWER8 processor implements robust RAS

(reliability, availability, and serviceability) features. It
can detect most soft-errors that occur during instruction
execution. On soft-error detection, the core automatically
uses its out-of-order execution features to flush the
instructions in the pipeline and re-fetch and re-execute
them, so that there is no loss of data integrity.
Figure 2 shows the instruction flow in POWER8 processor

core. Instructions flow from the memory hierarchy through

various issue queues and then are sent to the functional units
for execution. Most instructions (except for branches and
condition register logical instructions) are processed through
the Unified Issue Queue (UniQueue), which consists of
two symmetric halves (UQ0 and UQ1). There are also two
copies (not shown) of the general-purpose (GPR0 and GPR1)
and vector-scalar (VSR0 and VSR1) physical register files.
One copy is used by instructions processed through UQ0
while the other copy is for instructions processed through
UQ1. The fixed-point, floating-point, vector, load and
load-store pipelines are similarly split into two sets
(FX0, FP0, VSX0, VMX0, L0, LS0 in one set, and FX1,
FP1, VSX1, VMX1, L1, LS1 in the other set) and each
set is associated with one UniQueue half.
Which issue queue, physical register file, and functional

unit are used by a given instruction depends on the
simultaneous multi-threading mode of the processor core
at run time. In ST mode, the two physical copies of the
GPR and VSR have identical contents. Instructions from
the thread can be dispatched to either one of the UniQueue
halves (UQ0 or UQ1). Load balance across the two

Figure 2

POWER8 processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.

2 : 4 B. SINHAROY ET AL. IBM J. RES. & DEV. VOL. 59 NO. 1 PAPER 2 JANUARY/FEBRUARY 2015

Advances in Computer Architecture, Andy D. Pimentel

Apple A7/A8 for iPhone (’13/’14)

Clock 1.4 GHz, dual-core

6 instruction-wide out-of-order execution core

12 execution units, 192-entry ROB

64KB L1 I/D-caches, 1MB L2 cache and 4MB L3 cache

Quad-core GPU on chip

Advances in Computer Architecture, Andy D. Pimentel

Apple A7/A8 for iPhone (’13/’14)

Summary

Advances in Computer Architecture, Andy D. Pimentel

Summary
Out-of-order issue exploits instruction-level concurrency from a sequential instruction
stream (implicit concurrency)

it attempts to achieve a large number of instructions executing simultaneously in multiple functional
units

instructions are dynamically scheduled at the issue by executing out of order
while honouring dependencies

dependencies introduced by completing and issuing instructions out of order are removed by
register renaming

Out-of-order issue can be

costly and only appropriate for low levels of concurrency

inefficient on irregularly branching code

Difficult to get an IPC of much more than 2 even for 8-way issue

