
3. Explicit concurrency
VLIW and embedded processors

Advances in Computer Architecture

Advances in Computer Architecture, Andy D. Pimentel

Summary of explicit concurrency (1)

Power dissipation is one of the major issues in obtaining
performance

particularly true with constraints on embedded systems

Concurrency can be used to reduce power and get
performance

reduce frequency which in turn allows a voltage reduction

does not apply to pipelined concurrency where more concurrency
increases power due to shared structures

Advances in Computer Architecture, Andy D. Pimentel

OoO not scalable – what else?
Out-of-order issue is not scalable

register file and issue logic scale as ILP3 and ILP2 respectively

A number of approaches have been followed to increase the utilisation of on-
chip concurrency

These include:

VLIW processors

Speculative VLIW processors - Intel’s IA64 - EPIC

multi-core and multi-threaded processors (later on)

Advances in Computer Architecture, Andy D. Pimentel

Summary of explicit concurrency (2)

VLIW is the simplest form of explicit concurrency  
it reduces hardware complexity, hence power requirements

drawbacks are code compatibility and intolerance to cache misses

EPIC attempts to resolve these problems in VLIW

this adds complexity and requires large caches to get good
performance

Multi-cores are scalable but need new programming models

the big question is - can we design general purpose multi-cores?

Very Large Instruction
Word (VLIW) processors

Explicit concurrency in hardware,
compiler in charge of scheduling

Advances in Computer Architecture, Andy D. Pimentel

Overview

VLIW was introduced as parallel micro-coded processors in the 1970s

it was originally called horizontal microprogramming

the principle was to explicitly control the operation of multiple functional units on a cycle-by-cycle manner

today VLIW puts several RISC-like operations into one wide instruction which is implemented with very short
and efficient pipelines

This approach puts the scheduling problem in the domain of the compiler, which needs to
know everything about the architecture

detailed timing is required as instructions are scheduled for issue every cycle by the compiler - new
processor, new code needed

1 RISC-like op 1 RISC-like op 1 RISC-like op ...

one instruction word

Advances in Computer Architecture, Andy D. Pimentel

Scalable instruction issue
VLIW: no logic required to schedule operations and find
dependencies

this scheduling is performed in the compiler or assembly programmer

concurrency is analyzed by the compiler;  
independent program operations are grouped into a single VLIW instruction

the compiler manages the scheduling of data dependencies

In contrast to OoOE, VLIW instruction issue is scalable;  
there is no adverse growth in complexity due to wider issue width

there are still scaling problems with the register file but the register file can be
partitioned with explicitly communication of data between partitions

Advances in Computer Architecture, Andy D. Pimentel

Register file scalability
The ideal VLIW architecture is shown below

it has a number of functional units, all accessing a single register file

this is NOT scalable due to the scaling of the register file with number of access ports

Alternative solutions divide units into clusters with their own register file

This complicates the scheduling as compiler must now schedule inter-cluster data movements

Advances in Computer Architecture, Andy D. Pimentel

Distributed/Shared Register files

Use explicit transfers between register files (RF) associated
with one or more functional units (FU)

Advances in Computer Architecture, Andy D. Pimentel

Advantages:

Simple pipelines with low latency

Greater levels of concurrency possible

compilers can expose more
concurrency (in theory) - no hardware
limits in the search window

more area on chip available for
functional units

Good performance in some applications

multimedia

other regular applications  

Drawbacks:

No binary code compatibility

Register file still not scalable

must cluster function units

more difficult to schedule

Branch prediction usually performed statically

Code is less compact due to padding

Cannot schedule for unknown delays in
executing instructions

a cache miss means stalling all
operations

VLIW Advantages & Drawbacks

Advances in Computer Architecture, Andy D. Pimentel

VLIW vs. binary compatibility
A major disadvantage of VLIW is the loss of binary code compatibility

every increase in concurrency means a new instruction format
and the source code must be recompiled

this is not an issue in embedded microprocessors but is an issue
in commodity microprocessors

Transmeta Crusoe/Efficeon uses VLIW to implement an Intel X86
“compatible” processor - using dynamic code translation
“Code Morphing” however this requires huge translation caches

Advances in Computer Architecture, Andy D. Pimentel

VLIW vs. code density
If the VLIW compiler can not find instructions to schedule, it must pad the instruction
words with no-ops

for long data dependencies this may mean many cycles with few or no active instructions

this increases code size relative to a sequential instruction stream

it is a big problem in the application domain where VLIW is used - embedded systems - here
small code memories are typical due to power and size constraints

The solution is to compress the code

no-ops give long runs of zeros in code which can easily be compressed

Decompression occurs during either  
I-cache fill (larger caches needed), or fetch (impacts the critical path)

Advances in Computer Architecture, Andy D. Pimentel

VLIW vs. the memory hierarchy
VLIW works best with no memory hierarchy

eliminates variable access access times in memory, with fixed latencies accesses scheduled
statically by the compiler

small embedded processors tend to use small cache-less SRAM memories,  
this is why VLIW is still common in these systems

Compilers for cache-based VLIW will normally schedule for a cache hit on each load instruction…

A cache miss would then…

stall all instruction issue until data was found in a lower level, or

cause an exception so that another processes can continue

Either way it gives a high overhead which becomes worse as issue width increases, i.e. more stalls

Advances in Computer Architecture, Andy D. Pimentel

Example: TM8800 Efficeon (2004)
1GHz 256-bit VLIW engine (8x 32 bit RISC instructions)

128KByte L1 I-cache, 64KByte L1 D-cache

1MByte L2 cache on chip

32MByte translation cache in main memory

Fabricated in the 90nm Fujitsu process

Code compatible with X86 through “code-morphing” software layer

dynamically translates X86 binary code into VLIW instructions:
this involves scheduling instructions in the VLIW instruction
words

similar to compiling Java with JIT (just in time) compilers  
except in the TM Efficeon there is some hardware support

translate and cache code as it is executed,  
repetitive code sequences get reused and give good efficiency
and performance

Advances in Computer Architecture, Andy D. Pimentel

Low-power – Transmeta runs cold

Uses low frequencies & high levels of concurrency

Uses dynamic frequency-voltage control

Claimed up to 10 hours run time on laptop battery

Advances in Computer Architecture, Andy D. Pimentel

Philips TriMedia TM 1000 (late 90’s)

32-bit VLIW media
processor

Five-op VLIW instruction  
(2 load/stores)

Predicated instructions

SIMD extensions

Co-processors for
common operations

RiP: TriMedia died in 2010

Advances in Computer Architecture, Andy D. Pimentel

TM 1000 Pipeline
220bit = 5 x 44-bit instruction words issued to 27
execution units

128 register file (15 read and 5 write ports) requires
complex register forwarding network across 32 files

32 Kbyte I-cache 8-way set associative 64 byte line

16KByte 8-way set associative non-blocking D-cache

8 banks, (pseudo) dual-ported

Streamed, critical-word-first, fetching

Programmer controlled prefetching + allocation

Advances in Computer Architecture, Andy D. Pimentel

HP/Intel IA 64 - Itanium 2
Problems with conventional VLIW:

cache misses break compile time schedule - not known at compile time so cannot be
factored into the schedules

control hazards

code compatibility across different generations of issue width

Only the latter has a real solution, yet impractical (recompile, or JIT translation)

IA 64 was designed to solve all three problems

a cross between speculative RISC and VLIW called EPIC

see http://www.cs.clemson.edu/~mark/epic.html for details and historical background

http://www.cs.clemson.edu/~mark/epic.html

Advances in Computer Architecture, Andy D. Pimentel

Spectrum - static vs dynamic

Static (in compiler) Dynamic (in processor)

more
gates
more
power

less
gates
less

power

Designs

Advances in Computer Architecture, Andy D. Pimentel

EPIC’s Instruction packets
VLIW compilers bind concurrency to resources via their position in the
wide instruction word

EPIC clusters groups of instructions which are free to execute together
but may be executed sequentially; many group patterns can be specified

VLIW EPIC

Advances in Computer Architecture, Andy D. Pimentel

EPIC’s instruction bundles
Instructions (syllables) are 41 bits wide

3 syllables are grouped into 128 bit
bundles including a 5-bit template code
(3*41+5=128)

Template specifies information about
the types of instructions contained in
the bundle

An instruction group is then a set of
bundles that may execute in parallel

Advances in Computer Architecture, Andy D. Pimentel

IA-64 Memory accesses
Prefetch is typically non-binding

i.e. can be bumped out of cache by conflict

IA 64 uses speculative or early loads

follow by check instruction to ensure the load has completed

IA 64 also provides control of caching

can specify not to allocate in cache if it is known it will be used
only once - e.g. streaming

can specify an appropriate cache level

Advances in Computer Architecture, Andy D. Pimentel

IA-64 Decoupled loads
Issuing loads as early as possible solves the long latency problem in memory, but …

There may be writes a compiler can not detect to the same address,  
which limit how high a load can be hoisted

IA-64 uses the LD.A instruction to speculatively load from memory - stores
the load address into a special buffer called the Advanced Load Address Table (ALAT).

Subsequent stores to memory are checked against this

Any match aborts the load or discards data if completed

Need to validate loads with a CHK.A instruction first before the data can safely be used  
- if not, branch and retry: expensive like mis-predictions in superscalar

Advances in Computer Architecture, Andy D. Pimentel

Itanium – Merced silicon

© Intel, HotChips 2000

Advances in Computer Architecture, Andy D. Pimentel

Merced parameters

Advances in Computer Architecture, Andy D. Pimentel

Itanium 2 – McKinley silicon

0.18 µm process

1GHz core clock

200MHz system bus

Core area 260mm2

Advances in Computer Architecture, Andy D. Pimentel

Itanium 2 - McKinley function

Executes legacy
code X86 by
translating it to
IA64 operatons

Contains L1, L2
and L3 cache all
on chip

Advances in Computer Architecture, Andy D. Pimentel

Itanium 2 characteristics
8-stage in-order pipeline

Uses predication and branch prediction

2-level BHT and BTB for branch prediction

target address registers for compiler hints

loop counter registers

Up to 3 branches can be issued in parallel

6-way instruction issue from instruction bundles

Support for loop unrolling using rotating register windows

A power intermezzo

Advances in Computer Architecture, Andy D. Pimentel

Power dissipation
Power can be described by the following equation

P = a∙C∙Vdd

2
∙f + a ∙t∙Vdd∙Ishort∙f + Vdd∙Ileak

1st term dominates (3rd will soon overtake it)

C is capacitance being charged by gates, Vdd is the suply voltage, f is frequency, a is gate
activity (rate of gates that switch)

2nd term is power dissipated when the power and ground rails are shorted for a brief period during switching

Ishort is the short circuit current, t the transition time

3rd term is power dissipated in leakage across gates

Ileak is the leakage current, Vdd the input voltage

Advances in Computer Architecture, Andy D. Pimentel

Power-related constraints
Problems caused by power dissipation (heat):

thermal runaway - the leakage currents of transistors increase with temperature

electro-migration diffusion – metal migration with current increases with temperature (fuse
effect)

electrical parameters shift - CMOS gates switch faster when cold  
(cf “to over-clock get some liquid nitrogen!”)

silicon interconnections fatigue (expand and contract with temp. swings)

package related failure

Power dissipation constraints (e.g. ≈100W per package) provide an upper limit on power usage,
and thus component frequency and input voltage

Advances in Computer Architecture, Andy D. Pimentel

Cooling costs

From: S.H. Gunther, Managing the impact of increasing microprocessor power consumption, Intel Technology Journal Q1, 2001

Advances in Computer Architecture, Andy D. Pimentel

Reducing power
Reducing Vdd effectively reduces power consumption (quadratic
relationship!)

But, reducing Vdd also limits the maximum frequency

fmax ∝(Vdd - Vthreshold)2/Vdd → fmax roughly linear to Vdd

Lessen the effect by reducing Vthreshold

Unfortunately, this increases leakage current

Ileak ∝ e-Vthreshold/35mV

Many processors use Dynamic Voltage / Frequency Scaling to
reduce power (controlled by OS)

Advances in Computer Architecture, Andy D. Pimentel

Reducing power - architecture level
Avoid speculation and issue instructions conservatively

any misspredicted speculation requires power dissipation for no tangible results

Organization of memory: multiple smaller banks

Avoid unnecessary operations

e.g. reading registers where data is bypassed

Reduce number of swings on data busses

e.g. use Gray codes to exploit locality

Only send bits that change - form of data compression

And, of course, exploit parallelism (i.e., reduce frequency)!

Advances in Computer Architecture, Andy D. Pimentel

Reducing power - logic/circuit level
Clock gating

avoid transitions in logic where no activity is taking place; can also
save on clock distribution to those areas

Double clocking with half rate clocks

use both edges of clock pulse to reduce power dissipation in clock
distribution - does not reduce logic transitions

Asynchronous logic design

only dissipate power on gate transitions that are required

Embedded processors

Advances in Computer Architecture, Andy D. Pimentel

Embedded processors

Advances in Computer Architecture, Andy D. Pimentel

Endless applications
To name some obvious ones

Smart phones

Car engine control systems

Microwave cookers

Washing machines

Surveillance cameras

Smart military ordinance

The list goes on…

Advances in Computer Architecture, Andy D. Pimentel

Embedded system characteristics
Real-time constraints

continuous data streams; must process samples as received

Low cost - e.g. cheap commodity items

Low power - battery operated devices, devices without active cooling
(e.g., TV) etc.

Small memory footprint - minimal memory available

Very reliable - think automotive/aerospace applications

Often have a short time to market

Advances in Computer Architecture, Andy D. Pimentel

Computational efficiency

1

10

100

1000

10000

0 . 1 1 10 100

B e t t e r

P o w e r E f f i c i e n c y

1 M o p s / m W

1 0 M o p s / m W 1 0 0 M o p s / m W
1 0 0 0 M o p s / m W

SODA
(65 nm)

SODA
(90 nm)

TI C 6 X

Imagine

VIRAM Pentium M

IBM Cell

P e
 r f o

 r m
 a n

 c e
 (G

 o p
 s)

Power (Watts)

3 G Wireless

4 G Wireless

Mobile HD
Video

Woh e.a., ISCA 2009

Advances in Computer Architecture, Andy D. Pimentel

Embedded processors
General purpose “processor cores”

E.g. ARM, MIPS, SPARC, PPC, M68000

Digital Signal Processors (DSPs)

E.g. Texas Instruments, Qualcomm

Media processors

E.g. Philips Trimedia, PS2 Emotion engine, IBM Cell

Advances in Computer Architecture, Andy D. Pimentel

Embedded processors
Embedded processors typically are

in-order execution engines (for non-performance-critical
workloads)

VLIW (for heterogeneous workloads)

SIMD processors (for regular workloads)

Often use low-precision fixed point arithmetic using integer
ops (instead of power-hungry FP)

Advances in Computer Architecture, Andy D. Pimentel

Harvard architecture often used in embedded processors

i.e. separate data and instruction memory

L1 caches do this, but it was pioneered in pre-cache designs and is still used in cacheless designs  
(e.g., code in ROM, data in RAM)

Embedded processors sometimes avoid caches completely

instead use fast SRAM memories with multiple banks

Combined instructions (e.g., multiply-accumulate) to minimize memory and/or register references

Embedded processors often support special addressing modes, for example:

modulo addressing for cyclic buffers

bit-reversed addressing for fast-Fourier transforms (FFT)

Embedded processors

Advances in Computer Architecture, Andy D. Pimentel

Embedded system architectures
Many embedded systems have a heterogeneous system architecture
that is increasingly integrated on a single chip: (Multi-Processor)
System-on-Chip

GP processor cores, DSPs, Application-Specific Instruction-set
Processors (ASIPs), Application-Specific Integrated Circuit (ASICs), etc.

Design space is large, many processors and processor types,
choice of software or hardware implementations

need to trade off power, performance, cost, reliability, flexibility, etc.

but these often are conflicting objectives

Advances in Computer Architecture, Andy D. Pimentel

Embedded systems design

If time permits

Advances in Computer Architecture, Andy D. Pimentel

Processor design roadmaps across market
segments

HPC / Business

Commodity GP Embedded

Parallel systems

HPC Multi-cores
SoCsGP Multi-cores

1960

1980

2000

2020Likely: heterogeneous MP chips, automated design
€€€ €€€

