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Summary of explicit concurrency (1)

Power dissipation is one of the major issues in obtaining 
performance 

particularly true with constraints on embedded systems 

Concurrency can be used to reduce power and get 
performance 

reduce frequency which in turn allows a voltage reduction 

does not apply to pipelined concurrency where more concurrency  
increases power due to shared structures
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OoO not scalable – what else?
Out-of-order issue is not scalable 

register file and issue logic scale as ILP3  and ILP2 respectively 

A number of approaches have been followed to  increase the utilisation of on-
chip concurrency 

These include: 

VLIW processors 

Speculative VLIW processors - Intel’s IA64 - EPIC 

multi-core and multi-threaded processors (later on)
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Summary of explicit concurrency (2)

VLIW is the simplest form of explicit concurrency  
it reduces hardware complexity, hence power requirements 

drawbacks are code compatibility and intolerance to cache misses 

EPIC attempts to resolve these problems in VLIW 

this adds complexity and requires large caches to get good 
performance 

Multi-cores are scalable but need new programming models 

the big question is - can we design general purpose multi-cores?



Very Large Instruction 
Word (VLIW) processors

Explicit concurrency in hardware,  
compiler in charge of scheduling
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Overview

VLIW was introduced as parallel micro-coded processors in the 1970s 

it was originally called horizontal microprogramming 

the principle was to explicitly control the operation of multiple functional units on a cycle-by-cycle manner 

today VLIW puts several RISC-like operations into one wide instruction which is implemented with very short 
and efficient pipelines  

This approach puts the scheduling problem in the domain of the compiler, which needs to 
know everything about the architecture 

detailed timing is required as instructions are scheduled for issue every cycle by the compiler - new 
processor, new code needed

1 RISC-like op 1 RISC-like op 1 RISC-like op ...

one instruction word
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Scalable instruction issue
VLIW: no logic required to schedule operations and find 
dependencies 

this scheduling is performed in the compiler or assembly programmer 

concurrency is analyzed by the compiler;  
independent program operations are grouped into a single VLIW instruction 

the compiler manages the scheduling of data dependencies 

In contrast to OoOE, VLIW instruction issue is scalable;  
there is no adverse growth in complexity due to wider issue width 

there are still scaling problems with the register file but the register file can be 
partitioned with explicitly communication of data between partitions
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Register file scalability
The ideal VLIW architecture  is shown below 

it has a number of functional units, all accessing a single register file 

this is NOT scalable due to the scaling of the register file with number of access ports 

Alternative solutions divide units into clusters with their own register file 

This complicates the scheduling as compiler must now schedule inter-cluster data movements
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Distributed/Shared Register files

Use explicit transfers between register files (RF)  associated 
with one or more functional units (FU)
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Advantages: 

Simple pipelines with low latency 

Greater levels of concurrency possible 

compilers can expose more 
concurrency (in theory) - no hardware 
limits in the search window 

more area on chip available for 
functional units 

Good performance in some applications 

multimedia 

other regular applications  

Drawbacks: 

No binary code compatibility 

Register file still not scalable 

must cluster function units 

more difficult to schedule 

Branch prediction usually performed statically 

Code is less compact due to padding 

Cannot schedule for unknown delays in 
executing instructions 

a cache miss means stalling all 
operations

VLIW Advantages & Drawbacks
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VLIW vs. binary compatibility
A major disadvantage of VLIW is the loss of binary code compatibility 

every increase in concurrency means a new instruction format 
and the source code must be recompiled 

this is not an issue in embedded microprocessors but is an issue 
in commodity microprocessors 

Transmeta Crusoe/Efficeon uses VLIW to implement an Intel X86 
“compatible” processor - using dynamic code translation 
“Code Morphing” however this requires huge translation caches
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VLIW vs. code density
If the VLIW compiler can not find instructions to schedule, it must pad the instruction 
words with no-ops 

for long data dependencies this may mean many cycles with few or no active instructions 

this increases code size relative to a sequential instruction stream 

it is a big problem in the application domain where VLIW is used - embedded systems - here 
small code memories are typical due to power and size constraints 

The solution is to compress the code 

no-ops give long runs of zeros in code which can easily be compressed 

Decompression occurs during either  
I-cache fill (larger caches needed), or fetch (impacts the critical path)
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VLIW vs. the memory hierarchy
VLIW works best with no memory hierarchy 

eliminates variable access access times in memory, with fixed latencies accesses scheduled 
statically by the compiler 

small embedded processors tend to use small cache-less SRAM memories,  
this is why VLIW is still common in these systems 

Compilers for cache-based VLIW will normally schedule for a cache hit on each load instruction…  

A cache miss would then… 

stall all instruction issue until data was found in a lower level, or 

cause an exception so that another processes can continue 

Either way it gives a high overhead which becomes worse as issue width increases, i.e. more stalls
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Example: TM8800 Efficeon (2004)
1GHz 256-bit VLIW engine (8x 32 bit RISC instructions) 

128KByte L1 I-cache, 64KByte L1 D-cache 

1MByte L2 cache on chip 

32MByte translation cache in main memory 

Fabricated in the 90nm Fujitsu process 

Code compatible with X86 through “code-morphing” software layer 

dynamically translates X86 binary code into VLIW instructions: 
this involves scheduling instructions in the VLIW instruction 
words 

similar to compiling Java with JIT (just in time) compilers  
except in the TM Efficeon there is some hardware support 

translate and cache code as it is executed,  
repetitive code sequences get reused and give good efficiency 
and performance
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Low-power – Transmeta runs cold

Uses low frequencies & high levels of concurrency 

Uses dynamic frequency-voltage control 

Claimed up to 10 hours run time on laptop battery 
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Philips TriMedia TM 1000 (late 90’s)

32-bit VLIW media 
processor 

Five-op VLIW instruction  
(2 load/stores) 

Predicated instructions 

SIMD extensions 

Co-processors for 
common operations

RiP: TriMedia died in 2010
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TM 1000 Pipeline
220bit = 5 x 44-bit instruction words issued to 27 
execution units 

128 register file (15 read and 5 write ports) requires 
complex register forwarding network across 32 files 

32 Kbyte I-cache 8-way set associative 64 byte line 

16KByte 8-way set associative non-blocking D-cache 

8 banks, (pseudo) dual-ported 

Streamed, critical-word-first, fetching 

Programmer controlled prefetching + allocation
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HP/Intel IA 64 - Itanium 2
Problems with conventional VLIW: 

cache misses break compile time schedule - not known at compile time so cannot be 
factored into the schedules 

control hazards 

code compatibility across different generations of issue width 

Only the latter has a real solution, yet impractical (recompile, or JIT translation) 

IA 64 was designed to solve all three problems 

a cross between speculative RISC and VLIW called EPIC 

see http://www.cs.clemson.edu/~mark/epic.html for details and historical background

http://www.cs.clemson.edu/~mark/epic.html
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Spectrum - static vs dynamic

Static (in compiler) Dynamic (in processor)

more 
gates 
more 
power

less 
gates 
less 

power

Designs
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EPIC’s Instruction packets
VLIW compilers bind concurrency to resources via their position in the 
wide instruction word 

EPIC clusters groups of instructions which are free to execute together 
but may be executed sequentially; many group patterns can be specified

VLIW EPIC
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EPIC’s instruction bundles
Instructions (syllables) are 41 bits wide   

3 syllables are grouped into 128 bit 
bundles including a 5-bit template code 
(3*41+5=128) 

Template specifies information about 
the types of instructions contained in 
the bundle 

An instruction group is then a set of 
bundles that may execute in parallel



Advances in Computer Architecture,  Andy D. Pimentel 

IA-64 Memory accesses
Prefetch is typically non-binding 

i.e. can be bumped out of cache by conflict 

IA 64 uses speculative or early loads 

follow by check instruction to ensure the load has completed 

IA 64 also provides control of caching 

can specify not to allocate in cache if it is known it will be used 
only once - e.g. streaming 

can specify an appropriate cache level
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IA-64 Decoupled loads
Issuing loads as early as possible solves the long  latency problem in memory, but … 

There may be writes a compiler can not detect to the same address,  
which limit how high a load can be hoisted 

IA-64 uses the LD.A instruction to speculatively load from memory - stores 
the load address into a special buffer called the Advanced Load Address Table (ALAT). 

Subsequent stores to memory are checked against this 

Any match aborts the load or discards data if completed 

Need to validate loads with a CHK.A instruction first before the data can safely be used  
- if not, branch and retry: expensive like mis-predictions in superscalar
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Itanium – Merced silicon

©  Intel, HotChips 2000
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Merced parameters
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Itanium 2 – McKinley silicon

0.18 µm process 

1GHz core clock 

200MHz system bus 

Core area 260mm2
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Itanium 2 - McKinley function

Executes legacy 
code X86 by 
translating it to 
IA64 operatons 

Contains L1, L2 
and L3 cache all 
on chip
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Itanium 2 characteristics
8-stage in-order pipeline 

Uses predication and branch prediction 

2-level BHT and BTB for branch prediction 

target address registers for compiler hints 

loop counter registers 

Up to 3 branches can be issued in parallel 

6-way instruction issue from instruction bundles 

Support for loop unrolling using rotating register windows



A power intermezzo
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Power dissipation
Power can be described by the following equation 

P = a∙C∙Vdd

2
∙f + a ∙t∙Vdd∙Ishort∙f + Vdd∙Ileak



1st term dominates (3rd will soon overtake it) 

C is capacitance being charged by gates, Vdd is the suply voltage, f is frequency, a is gate 
activity (rate of gates that switch) 

2nd term is power dissipated when the power and ground rails are shorted for a brief period during switching 

Ishort is the short circuit current, t the transition time 

3rd term is power dissipated in leakage across gates 

Ileak is the leakage current, Vdd the input voltage
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Power-related constraints
Problems caused by power dissipation (heat):   

thermal runaway - the leakage currents of transistors  increase with temperature 

electro-migration diffusion – metal migration with current increases with temperature (fuse 
effect) 

electrical parameters shift - CMOS gates switch faster when cold  
(cf “to over-clock get some liquid nitrogen!”) 

silicon interconnections fatigue (expand and contract with temp. swings) 

package related failure 

Power dissipation constraints (e.g. ≈100W per package) provide an upper limit on power usage, 
and thus component frequency and input voltage
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Cooling costs

From: S.H. Gunther, Managing the impact of increasing microprocessor power consumption, Intel Technology Journal Q1, 2001 
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Reducing power
Reducing Vdd effectively reduces power consumption (quadratic 
relationship!) 

But, reducing Vdd also limits the maximum frequency 

fmax ∝(Vdd - Vthreshold)2/Vdd → fmax roughly linear to Vdd 

Lessen the effect by reducing Vthreshold 

Unfortunately, this increases leakage current 

Ileak ∝ e-Vthreshold/35mV 

Many processors use Dynamic Voltage / Frequency Scaling to 
reduce power (controlled by OS)
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Reducing power - architecture level
Avoid speculation and issue instructions conservatively 

any misspredicted speculation requires power dissipation for no tangible results 

Organization of memory: multiple smaller banks 

Avoid unnecessary operations 

e.g. reading registers where data is bypassed 

Reduce number of swings on data busses 

e.g. use Gray codes to exploit locality 

Only send bits that change - form of data compression 

And, of course, exploit parallelism (i.e., reduce frequency)!
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Reducing power - logic/circuit level
Clock gating 

avoid transitions in logic where no activity is taking place; can also 
save on clock distribution to those areas 

Double clocking with half rate clocks 

use both edges of clock pulse to reduce power dissipation in clock 
distribution - does not reduce logic transitions 

Asynchronous logic design 

only dissipate power on gate transitions that are required



Embedded processors
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Embedded processors
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Endless applications
To name some obvious ones 

Smart phones 

Car engine control systems 

Microwave cookers 

Washing machines 

Surveillance cameras 

Smart military ordinance 

The list goes on…
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Embedded system characteristics
Real-time constraints 

continuous data streams; must process samples as received 

Low cost - e.g. cheap commodity items 

Low power - battery operated devices, devices without active cooling 
(e.g., TV) etc. 

Small memory footprint - minimal memory available 

Very reliable - think automotive/aerospace applications 

Often have a short time to market
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Computational efficiency
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Embedded processors
General purpose “processor cores” 

E.g. ARM, MIPS, SPARC, PPC, M68000 

Digital Signal Processors (DSPs) 

E.g. Texas Instruments, Qualcomm 

Media processors 

E.g. Philips Trimedia, PS2 Emotion engine, IBM Cell
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Embedded processors
Embedded processors typically are 

in-order execution engines (for non-performance-critical 
workloads) 

VLIW (for heterogeneous workloads) 

SIMD processors (for regular workloads) 

Often use low-precision fixed point arithmetic using integer 
ops (instead of power-hungry FP)
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Harvard architecture often used in embedded processors 

i.e. separate data and instruction memory 

L1 caches do this, but it was pioneered in pre-cache designs and is still used in cacheless designs  
(e.g., code in ROM, data in RAM) 

Embedded processors sometimes avoid caches completely 

instead use fast SRAM memories with multiple banks 

Combined instructions (e.g., multiply-accumulate) to minimize memory and/or register references 

Embedded processors often support special addressing modes, for example: 

modulo addressing for cyclic buffers 

bit-reversed addressing for fast-Fourier transforms (FFT)

Embedded processors
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Embedded system architectures
Many embedded systems have a heterogeneous system architecture 
that is increasingly integrated on a single chip: (Multi-Processor) 
System-on-Chip 

GP processor cores, DSPs, Application-Specific Instruction-set 
Processors (ASIPs), Application-Specific Integrated Circuit (ASICs), etc. 

Design space is large, many processors and processor types, 
choice of  software or hardware implementations 

need to trade off power, performance, cost, reliability, flexibility, etc. 

but these often are conflicting objectives
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Embedded systems design

If time permits
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Processor design roadmaps across market 
segments

HPC / Business

Commodity GP Embedded

Parallel systems

HPC Multi-cores
SoCsGP Multi-cores

1960

1980

2000

2020Likely: heterogeneous MP chips, automated design
€€€ €€€


