
3. Explicit concurrency
Multi-cores - hardware multi-threading

Advances in Computer Architecture

The shift towards
multi-cores

Advances in Computer Architecture, Andy D. Pimentel

Trends

During the mid 2000’s, Intel (and previously DEC, Compaq)
cancelled wide superscaler projects

eg. pentium Netburst and Alpha 21464

The current trend is to develop independent microprocessors
on chip – multi-cores

But why is this?

Advances in Computer Architecture, Andy D. Pimentel

We have hit several walls...

Advances in Computer Architecture, Andy D. Pimentel

We have hit several walls...

Advances in Computer Architecture, Andy D. Pimentel

The frequency wall

 (CMU 15-418, Spring 2012)

End of frequency scaling

Advances in Computer Architecture, Andy D. Pimentel

The power wall

Power dissipated is a silicon CMOS circuit comprises several components
and the major component has been dynamic power

Dynamic power = a⋅C⋅V2⋅f

a is activity, C is capacitance,  
V is voltage, and f is frequency

Higher frequency requires higher  
voltages

Advances in Computer Architecture, Andy D. Pimentel

The power wall

Ronan et. al. Coming Challenges in Microarchitecture and
Architecture, Proc IEEE, 89 (3) pp. 325-340, 2001

Advances in Computer Architecture, Andy D. Pimentel

So, what happened around 2004?

Moore’s Law: 2 times as many transistors every new technology
generation, growth per dimension k = √2 (=1.4)

Scaling factor for transistors: 1/k = 0.7

Area scales with (1/k)2
= 0.5

Voltage scales with 1/k = 0.7

Capacitance scales with 1/k = 0.7

Transistor delay scales with 1/k

Frequency scales with 1/(1/k)=k=1.4

1/√2

1/
√

2Dennard Scaling

Advances in Computer Architecture, Andy D. Pimentel

Area (A) scales with 0.5

Voltage (V) scales with 0.7

Capacitance (C) scales with 0.7

Frequency scales (F) with 1.4

Dennard Scaling

Powerdensity ∼ C⋅V2⋅f

Powerdensity ratio ∼ (0.7⋅0.72⋅1.4) / 0.5 = 1 (!)

So, what happened around 2004?

A

Advances in Computer Architecture, Andy D. Pimentel

Voltage (Vdd) does not scale anymore

Vthreshold cannot decrease because of leakage power

Dennard Scaling stopped around 2004!

So, what happened around 2004?
But L3 energy scaling ended in 2005

Moore, ISSCC Keynote, 2003 Moore, ISSCC Keynote, 2003

Advances in Computer Architecture, Andy D. Pimentel

Dennard Scaling stopped around 2004!

Powerdensity ∼ C⋅V2⋅f

Powerdensity ratio ∼ (0.7⋅12⋅1.4) / 0.5 = 2

So, what happened around 2004?

A

Area (A) scales with 0.5

Voltage (V) does not scale

Capacitance (C) scales with 0.7

Frequency scales (F) with 1.4

more general: Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2

Advances in Computer Architecture, Andy D. Pimentel

The end of Dennard Scaling
Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2

Keep f constant: Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k)2 = k

Keep f constant and use k (= 1.4) times more area:  
 Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k) = 1

Scale f and use k2 (= 2) times more area:  
 Powerdensity ratio ∼ ((1/k)⋅12⋅k) / 1 = 1

Advances in Computer Architecture, Andy D. Pimentel

The end of Dennard Scaling
Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2

Keep f constant: Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k)2 = k

Keep f constant and use k (= 1.4) times more area:  
 Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k) = 1

Scale f and use k2 (= 2) times more area:  
 Powerdensity ratio ∼ ((1/k)⋅12⋅k) / 1 = 1

This extra, ‘unused’ area is called Dark Silicon

Advances in Computer Architecture, Andy D. Pimentel

Some other walls we’ve hit...

Advances in Computer Architecture, Andy D. Pimentel

Some other walls we’ve hit...

Advances in Computer Architecture, Andy D. Pimentel

Signal propagation

130 nm

100 nm

70 nm

35 nm

20 mm chip edge250 180 130 100 70 50 35
Technology (nm)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

hi
p

R
ea

ch
ed

f
f
f

16
8
SIA

Figure 4: Fraction of total chip area reachable in one cycle.

will be infeasible.

While transistor speeds are scaling approximately linearly with fea-
ture size, wires are getting slower with each new technology. Even
assuming low-resistivity conductors, low-permittivity dielectrics,
and higher aspect ratios, the absolute delay for a fixed-length wire
in top-level metal with optimally placed repeaters is increasing with
each generation. Only when the wire width and spacing is increased
substantially can the wire delay be kept constant. Due to increasing
clock frequencies, wire delays are increasing at an even higher rate.
As a result, chip performance will no longer be determined solely
by the number of transistors that can be fabricated on a single in-
tegrated circuit (capacity bound), but instead will depend upon the
amount of state and logic that can be reached in a sufficiently small
number of clock cycles (communication bound).
The argument made by Sylvester and Keutzer [27] that wire

delays will not affect future chip performance holds only if wire
lengths are reduced along with gate lengths in future technologies.
Traditional microprocessor microarchitectures have grown in com-
plexity with each technology generation, using all of the silicon
area for a single monolithic core. Current trends in microarchitures
have increased the sizes of all of the structures, and added more ex-
ecution units. With future wire delays, structure size will be limited
and the time to bypass results between pipeline stages will grow.
If clock rates increase at their projected rates, both of these effects
will have substantial impact on instruction throughput.

In addition to reducing the chip area reachable in a clock cycle,
both the widening gap between wire and gate delays and superlin-
ear clock scaling has a direct impact on the scaling of microarchi-
tectural structures in future microprocessors. Clock scaling is more
significant than wire delay for small structures, while both wire de-
lay and clock scaling are significant in larger structures. The large
memory-oriented elements, such as the caches, register files, in-
struction windows, and reorder buffers, will be unable to continue
increasing in size while remaining accessible within one clock cy-
cle. In this section, we use analytical models to examine the ac-
cess time of different structures from 250nm to 35nm technologies
based on the structure organization and capacity. We demonstrate

the trade-offs between access time and capacity that are necessary
for the various structures across the technology generations.

To model the various storage-oriented components of a modern mi-
croprocessor, we started with ECacti [19], an extended version of
the original Cacti cache modeling tool [30]. Given the capacity,
associativity, number ports, and number of data and address bits,
ECacti considers a number of alternative cache organizations and
computes the minimum access time. ECacti automatically splits
the cache into banks and chooses the number and layout of banks
that incurs the lowest delay. When modeling large memory arrays,
ECacti presumes multiple decoders, with each decoder serving a
small number of banks. For example with a 4MB array, ECacti
produces 16 banks and four decoders in a 35nm technology. Note
that this model is optimistic, because it does not account for driving
the address from a central point to each of the distributed decoders.
We extended ECacti to include technology scaling, using the

projected parameters from the SIA roadmap. SRAM cell sizes
and transistor parasitics, such as source and drain capacitances, are
scaled according to their anticipated reduction in area for future
technologies. We assume that the word-lines are run from a de-
coder across its neighboring banks in mid-level metal, and that the
bit-rline in mid-level metal does not increase the size of the SRAM
cell. Unlike Amrutur and Horowitz [3] we further make the op-
timistic assumption that the sense-amplifier threshold voltage will
decrease linearly with technology. The access times from the an-
alytical model were verified against those obtained from a SPICE
simulation of the critical path, and matched within 15% for all tech-
nologies. This level of accuracy is comparable to the accuracy of
the original CACTI model. A full description of the modeling and
validation can be found in [1].
Apart from modeling direct-mapped and set associative caches,

we used our extended version of ECacti to explore other microar-
chitectural structures. For example, a register file is essentially a
direct mapped cache with more ports, but fewer address and data
bits than a typical L1 data cache. We use a similar methodology to
examine issue windows, reorder buffers, branch prediction tables,
and TLBs.

Using our extended ECacti, we measured the memory structure ac-
cess time, while varying cache capacity, block size, associativity,
number of ports, and process technology. While cache organization
characteristics do affect access time, the most critical characteristic
is capacity. In Figure 5, we plot the access time versus capacity for
a dual-ported, two-way set associative cache. The maximum cache
capacities that can be reached in 3 cycles for the , and
clocks are also plotted as “isobars”. Note that the capacity for a
three cycle access cache decreases moderately for and , but
falls off the graph for .
We compared our analytical model to other models and related

implementations. In a 250nm technology, we compute the access
time for a 64KB L1 data cache to be 2.4ns. This access time is
comparable to that of the 700MHz Alpha 21264 L1 data cache.
Furthermore, for a 4Mb cache in a 70nm technology, our model
predicts an access time of 33 FO4 delays which matches the 33

5

Advances in Computer Architecture, Andy D. Pimentel

The design complexity wall

Logic Tr./Chip

Tr./S.M.
Source:
SEMATECH

.001

.01

.1

1

10

100

1,000

10,000

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

 58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

19
81

19

83

19
85

19

87

19
89

19
91

19
93

19

95

19
97

19
99

20
03

20
01

20
05

20
07

20

09

x x
x

x x
x

x

2.5µ!

.10µ!

.35µ!

Transistors per Chip (M) Productivity Trans./Staff - Mo.

x

Advances in Computer Architecture, Andy D. Pimentel

The design complexity wall

Chip Area and Power Consumption

0

500

1000

1500

90nm 65nm 45nm 32nm 22nm 16nm

P
o
w

e
r

D
e
n
s
it
y
 (

W
a
tt

s
/c

m
2
)

Active Power

Leakage Power

power envelope to remain constant

Source: Shekhar Borkar (Intel)

1

10

100

1000

1 10 100 1000 10000 100000

Processor Area

I
n

te
g

e
r
 P

e
r
fo

r
m

a
n

c
e

Source: Shekhar Borkar (Intel)

With leakage power dominating,
power consumption roughly

proportional to transistor count

Pollack’s Law:
Processor performance grows

with sqrt of area

Tuesday, April 24, 12

Pollack’s law: single processor performance grows with the
square root of area

Advances in Computer Architecture, Andy D. Pimentel

The ILP wall

 (CMU 15-418, Spring 2012)

ILP scaling

0

1

2

3

0 4 8 12 16

Instruction Issue Capability

Sp
ee

du
p

Advances in Computer Architecture, Andy D. Pimentel

Single core performance scaling
The improvement rate of single core
performance has decreased
(essentially to 0)

Frequency scaling limited by power  
(end of Dennard Scaling)

ILP scaling tapped out

Design complexity wall

No more free lunch for software
developers!

 (CMU 15-418, Spring 2012)

End of frequency scaling

Advances in Computer Architecture, Andy D. Pimentel

The shift to multi-core

Performance 1
Power 1

Advances in Computer Architecture, Andy D. Pimentel

The shift to multi-core

Performance 1
Power 1

Performance 2
Power 4

Advances in Computer Architecture, Andy D. Pimentel

The shift to multi-core

Performance 1
Power 1

Performance 2
Power 4

Performance 4
Power 4

Advances in Computer Architecture, Andy D. Pimentel

The shift to multi-core

Performance 1
Power 1

Performance 2
Power 4

Performance 2
Power ≈1

Or: halving frequency

1 core at f proportional to: f∙V12, 4 cores at f/2 proportional to: 4∙(f/2)∙V22 = 2f∙V22

Advances in Computer Architecture, Andy D. Pimentel

The shift to multi-core

Performance 1
Power 1

Performance 2
Power 4

Performance 2
Power ≈1

Or: halving frequency

1 core at f proportional to: f∙V12, 4 cores at f/2 proportional to: 4∙(f/2)∙V22 = 2f∙V22

V1 > V2!!

Advances in Computer Architecture, Andy D. Pimentel

Multi-core and Dark Silicon

silicon that is not used all the time, or at its
full frequency. Even during the best days of
CMOS scaling, microprocessor and other
circuits were chock full of ‘‘dark logic’’
used infrequently or for only some applica-
tions—for instance, caches are inherently
dark because the average cache transistor is
switched for far less than one percent of
cycles, and FPUs remain dark in integer
codes.

Soon, the exponential growth of dark sil-
icon area will push us beyond logic targeted
for direct performance benefits toward
swaths of low-duty cycle logic that exists,
not for direct performance benefit, but for
improving energy efficiency. This improved

energy efficiency can then allow an indirect
performance improvement because it frees
up more of the fixed power budget to be
used for even more computation.

The four horsemen
Recently, researchers proposed a taxon-

omy—the four horsemen—that identifies
four promising directions for dealing with
dark silicon that have emerged as promising
potential approaches as we transition beyond
the initial multicore stop-gap solution. These
responses originally appeared to be unlikely
candidates, carrying unwelcome burdens in
design, manufacturing, or programming.
None is ideal from an aesthetic engineering

4 cores at 1.8 GHz

4 cores at 2×1.8 GHz
(12 cores dark)

2×4 cores at 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s choice)

75% dark after two generations;
93% dark after four generations

65 nm 32 nm

Spectrum of trade-offs
between no. of cores and
frequency

Example:
65 nm → 32 nm (S = 2)

....

....

....

Figure 1. Multicore scaling leads to large amounts of dark silicon.3 Across two process gen-

erations, there is a spectrum of trade-offs between frequency and core count; these include

increasing core count by 2! but leaving frequency constant (top), and increasing frequency

by 2! but leaving core count constant (bottom). Any of these trade-off points will have

large amounts of dark silicon.

...

Is Dark Silicon Real? A Reality Check
A quick survey of recent designs from multicore outfits such as Tilera,

Intel, and AMD indicates that industry has pursued core count and fre-

quency combinations consistent with the utilization wall. For instance,

Intel’s 90-nm single-core Prescott chip ran at 3.8 GHz in 2004. Dennard

scaling would suggest that a 22-nm multicore version should run at 15.5

GHz, and contain 17 superscalar cores, for a total improvement of 69! in

instruction throughput. Instead, the upcoming 2013 22-nm Intel Core i7

4960X runs at 3.6 GHz and has six superscalar cores, a 5.7! peak serial

instruction throughput improvement. The darkness ratio is thus 91.74 per-

cent versus the 93.75 percent predicted by the utilization wall. The latest

2012 International Technology Roadmap for Semiconductors also shows

that scaling has proceeded consistently with post-Dennard predictions.

...

10 IEEE MICRO

...
DARK SILICON

Here, S = k

Multi-core processors
and hw multithreading

Explicit concurrency in hardware,
explicit concurrency in low-level software

Advances in Computer Architecture, Andy D. Pimentel

Multi-cores main players
Sun (now Oracle) was the forerunner in this field with its Niagara chips

Intel have moved to multi-core without significantly changing their architecture

i7 is a 4-6 core with 14 stage speculative pipeline, Poulson IA-64 with 8
cores

Intel launched an experimental 48 core Single-Chip Cloud (SCC) chip

In 2012, Intel introduced the Xeon Phi: up to 61 cores on a chip

IBM moved to multicore used in both games consoles & supercomputers  
e.g. Cell = 1 PPC + 8 vector cores

Advances in Computer Architecture, Andy D. Pimentel

Multi-core organization
Most multi-cores typically are symmetric, i.e. have an UMA
organization

Advances in Computer Architecture, Andy D. Pimentel

Multi-core often implies multi-threading per core

Larger number of cores implies larger average distance, hence
latency, between cores and cores/memory

In turn, this implies larger mandatory off-core communication overheads for
single threads

To maximize utilization and throughput, cores should fetch instructions
from independent threads to tolerate latencies

This must be possible at the finest grain (individual loads and stores), hence
the need for hardware thread scheduling in the fetch/issue stage

Advances in Computer Architecture, Andy D. Pimentel

Hardware multi-threading
Requires replication of hardware resources

Each thread uses its own PC and often its own register file

Interleaved (or temporal) multi-threading

Each clock, core chooses from which thread one or more instructions are
issued

Simultaneous multi-threading (SMT)

Each clock, core chooses instructions from multiple threads (extension of
superscalar design)

Advances in Computer Architecture, Andy D. Pimentel

Two types of multi-threadingUniversity
of

Amsterdam

CSPCSP
Computer
Architecture

Simultaneous MultiThreading (SMT) (cont’d)

Thread 0

Thread 2

Thread 4

Thread 1

Superscalar Fine-grained
(vertical) multithreading

Simultaneous
multithreading

Ti
m

e

Issue slots

Andy Pimentel – p. 252/259

Superscalar! Interleaved!
multi-threading!

Simultaneous!
multi-threading!

Advances in Computer Architecture, Andy D. Pimentel

Multi-thread main players
Sun/Oracle again with Niagara chips - 8 threads/core

Intel recycled the SMT plans of 21464 as “HyperThreading”,
found in P4 and again in Core i7 Nehalem, 2 threads/core

Also found again in Itanium 2, 2 threads/core

IBM POWER8: 8 threads/core

Two main strategies for scheduling hw threads: control
flow scheduling and dataflow scheduling

Advances in Computer Architecture, Andy D. Pimentel

Control flow scheduling
In control flow scheduling threads are identified for scheduling using
control flow triggers

e.g. cache miss on a load

branches

Threads are selected for execution from ready threads (e.g. round robin
scheduling)

On a trigger, e.g. branch or cache miss, the thread is suspended until
resolution – e.g. Niagara, Itanium 2

Advances in Computer Architecture, Andy D. Pimentel

Dataflow scheduling
In dataflow scheduling threads are scheduled when data
to complete the instruction is available

Need a mechanism to suspend a thread on reading data
(called “matching store,” e.g. registers or memory)

Dataflow i-structure does this: it includes synchronisation bits
and holds either data or a handle to suspended thread(s)

e.g. Transputer and Delencor HEP

Advances in Computer Architecture, Andy D. Pimentel

Programming issues
Multiple cores and multiple threads per core appear as
different processors to software, each with their own
instruction stream (program counter sequence)

Major departure from the “simple” Turing/Von Neumann model,
convergence with parallel programming of HPC

Explicit hardware concurrency requires parallel machine
models to abstract the hardware, which in turn entail
concurrent programming models

Advances in Computer Architecture, Andy D. Pimentel

Programming models

3 phases to program an explicit concurrent chip:

decompose problem into concurrent sub-problems

express sub-problems as communicating threads

map threads onto chip components

Different programming environments automate these tasks
in different ways

Advances in Computer Architecture, Andy D. Pimentel

Who’s in charge of explicit concurrency?

Programming styles

Task of programmer Task of software stack
(compiler + run-time system)

Find dependencies

Decompose in threads

Map threads

Find dependencies

Decompose in threads

Specify problem
HIGH-LEVEL, FUNCTIONAL

VECTORED / ANNOTATED

EXPLICIT THREADS,
IMPLICIT PLACEMENT

(eg. SQL, Haskell, SDF)

(eg. OpenMP, FORTRAN)

(eg. Cilk, TBB, pthreads)
Map threads

Schedule instructions

EXPLICIT THREADS
EXPLICIT PLACEMENT

(eg. MPI, GrandCentral Dispatch)

Advances in Computer Architecture, Andy D. Pimentel

Programming issues (revisited)

Parallel programming models at each level of abstraction come
in two flavors: implicit vs. explicit communication

Implicit communication based on shared memory or
distributed software cache protocols, which do not scale

Explicit communication leaves the program in charge of
scalability, but is more difficult to program

These issues are revisited in the Concurrent Programming course

Example  
multi- and many-cores

Advances in Computer Architecture, Andy D. Pimentel

IBM PowerXCell 8i

Advances in Computer Architecture, Andy D. Pimentel

IBM PowerXCell 8i
1 Power Processor Element (PPE)

Derived from IBM Power5 architecture

8 Synergistic Processor Elements (SPEs)– SIMD processors

128 bit vector unit supporting variable precision integer & double precision FP

1 Element Interconnect Bus (EIB) - a fast multiple ring network

Direct Memory Access controller

DDR-2 memory interface (originally Rambus XDR)

65nm technology 3.2 GHz frequency

Advances in Computer Architecture, Andy D. Pimentel

IBM PowerXCell 8i

Advances in Computer Architecture, Andy D. Pimentel

Cell’s PPE
64 bit RISC processor, PowerPC ISA

32/32 KByte L1 I- and D-caches

512KB L2 cache

64GB/s load-store bandwidth

In-order execution, 2-way issue - 2 hardware threads

Optionally equipped with AltiVec SIMD extensions

Advances in Computer Architecture, Andy D. Pimentel

Cell’s SPE
Independent processors each runs an application thread

has its own 256KB private local store

has DMA access to coherent shared memory of PPE

It is a SIMD vector processor with an Altivec-like ISA

128 by 128 bit registers used as 16 x 8 bit, 8 x 16 bit, 4 x 32bit, 2 x 64bit

4 single precision FP units (latest version supports 2 x DP)

4 integer units

Dual issue - 8 x 32 bit operations per cycle

max 25.6 GFLOP/s with single precision FP

Advances in Computer Architecture, Andy D. Pimentel

Cell’s SPE

point and load instructions take six cycles. Two-way

SIMD double-precision floating point is also supported,

but the maximum issue rate is one SIMD instruction per

seven cycles. All other instructions are fully pipelined.

To limit hardware overhead for branch speculation,

branches can be ‘‘hinted’’ by the programmer or compiler.

The branch hint instruction notifies the hardware of an

upcoming branch address and branch target, and the

hardware responds (assuming that local store slots are

available) by pre-fetching at least seventeen instructions

at the branch target address. A three-source bitwise select

instruction can be used to further eliminate branches

from the code.

The control area makes up only 10–15% of the area

of the 10-mm2 SPE core, and yet several applications

achieve near-peak performance on this processor. The

entire SPE is only 14.5 mm2 and dissipates only a few

watts even when operating at multi-GHz frequencies.

High-bandwidth on-chip coherent fabric and
high-bandwidth memory
With the architectural improvements that remove the

latency-induced limitation on bandwidth, the next

challenge is to make significant improvements in

delivering bandwidth to main memory and bandwidth

between the processing elements and interfaces within the

Figure 3

Synergistic processor element (a) organization and (b) pipeline diagram. Central to the synergistic processor is the 256-KB local store SRAM.
The local store supports both 128-byte access from direct memory access (DMA) read and write, as well as instruction fetch, and a 16-byte
interface for load and store operations. The instruction issue unit buffers and pre-fetches instructions and issues up to two instructions per
cycle. A 6-read, 2-write port register file provides both execution pipes with 128-bit operands and stores the results. Instruction execution
latency is two cycles for simple fixed-point instructions and six cycles for both load and single-precision floating-point instructions. Instruc-
tions are staged in an operand-forwarding network for up to six additional cycles; all execution units write their results in the register file in
the same stage. The penalty for mispredicted branches is 18 cycles.

Fixed-point instruction

Floating-point instruction

Branch instruction

Load/store instruction

Permute instruction

IF Instruction fetch
IB Instruction buffer
ID Instruction decode
IS Instruction issue
RF Register file access
EX Execution
WB Write back

ID2 IS1IF1 IF2 IF3 ID1 IS2IB2IB1 ID3IF4

EX4EX1 EX2 EX3

EX4 EX5EX1 EX2 EX3

EX1 EX2

IF5

RF1 RF2

EX1 EX2 EX3 EX4 EX6EX4

SPE pipeline back end

(a)

(b)

SPE pipeline front end

WB

WB

WB

WBEX6

Permute unit
Load/store unit

Floating-point unit

Fixed-point unit
Branch unit

Channel unit

Result forwarding and staging

Register file

Local store
(256 KB)

Single-port SRAM

128B read 128B write

DMA unit

Instruction issue unit/instruction line buffer

8 bytes per cycle
16 bytes per cycle
64 bytes per cycle

128 bytes per cycle

On-chip coherent bus

J. A. KAHLE ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

596

Advances in Computer Architecture, Andy D. Pimentel

Intel Single-Chip Cloud

48 P54C cores (Pentium I), mesh interconnect,
no cache coherency in hardware

Advances in Computer Architecture, Andy D. Pimentel

Intel Single-Chip Cloud

8 voltage islands

28 frequency
islands

Independent V/F
for I/O and
memory

Advances in Computer Architecture, Andy D. Pimentel

Intel Xeon Phi

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Xeon Phi™ Architecture
Overview

Reliability Features
 Parity on L1 Cache, ECC on memory

CRC on memory IO, CAP on memory IO

High-speed bi-directional
ring interconnect

Fully Coherent L2 Cache

8 memory controllers
16 Channel GDDR5 MC

PCIe GEN2

Cores: 61 cores, at 1.1 GHz
in-order, support 4 threads

512 bit Vector Processing Unit
32 native registers

7/11/2013

18 PRACE MIC Summer School, July 2013, CINECA

Advances in Computer Architecture, Andy D. Pimentel

Intel Xeon Phi core
Two pipelines

Scalar unit based on Pentium

Dual issue with scalar instructions

SIMD Vector processing unit

4 HW threads per core

Cannot issue instructions back-to-back
from same thread

Need minimum of 2 threads to keep
pipeline filled

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Core Architecture Overview
60+ in-order, low power IA cores in a ring
interconnect

Two pipelines
• Scalar Unit based on Pentium® processors
• Dual issue with scalar instructions
• Pipelined one-per-clock scalar throughput

SIMD Vector Processing Engine

4 hardware threads per core
• 4 clock latency, hidden by round-robin

scheduling of threads
• Cannot issue back to back inst in same

thread: Means minimum two threads per
core to achieve full compute potential

Coherent 512KB L2 Cache per core

Ring

Scalar
Registers

Vector
Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Instruction Decode

Vector
Unit

Scalar
Unit

7/11/2013

20 PRACE MIC Summer School, July 2013, CINECA

Advances in Computer Architecture, Andy D. Pimentel

IA-64 Montecito... Poulson
Both multi-core McKinley (Itanium 2)

Montecito (2006) Poulson (2012)
1.72 billion transistors 3.1 billion transistors

90nm - 596mm2 32nm - 544mm2

75-104W 15-170W
2 cores, 1.4-1.6GHz core clock 8 cores, 1.6-1.85GHz core clock

6-way issue per core, 12-way total 6-way issue per core, 48-way total
6-24MB L3 on chip (2 x 3-12MB) 32MB L3 on chip (8 x 4MB)

16/16 KB L1, 1MB/256KB L2 16/16 KB L1, 512KB / 256KB L2
21GB/s FSB bandwidth 700GB/s system bandwidth (est.)

Advances in Computer Architecture, Andy D. Pimentel

IA-64 Poulson

Advances in Computer Architecture, Andy D. Pimentel

IA-64 Poulson

core

core

core

core

core

core

core

core 4MB L3 4MB L3

4MB L34MB L3

4MB L3 4MB L3

4MB L34MB L3

cache dir cache dir

QPI QPI QPI QPI

QPI QPI QPI QPI

SPARC Niagara
T1/2/3/4/5

Advances in Computer Architecture, Andy D. Pimentel

Niagara in a nutshell

Departure from the beaten road of sequential performance:  
focus on multi-cores and multi-threading

Niagara T1 (2005): 8 cores, 4 threads/core, 1-1.4GHz

Niagara T2 (2007): 8 cores, 8 threads/core, 1.2-1.6GHz

Niagara T3 (2009): 16 cores, 8 threads/core, 1.67GHz

2 single-issue in-order pipelines / core, 4 threads per pipeline

Advances in Computer Architecture, Andy D. Pimentel

Niagara T3 floorplan

Advances in Computer Architecture, Andy D. Pimentel

Niagara landmarks
Single shared L2 cache, cross-bar for full coherency  
Scalability problems with larger number of cores / larger cache  
(see next chapter)

Explicit concurrency:

each core can issue 2 instructions per cycle to 2 pipelines (from T2 onward)  
which share IF, load/store and FPU

with 16 cores, ILP = 32 instructions per cycle

virtual concurrency 4 threads per pipeline

this allows for flexibility in instruction scheduling,  
select stage issues from available threads

Advances in Computer Architecture, Andy D. Pimentel

Niagara T1 pipeline

Source: RealWorldTech

Advances in Computer Architecture, Andy D. Pimentel

Niagara T2 pipeline

Source: RealWorldTech

Advances in Computer Architecture, Andy D. Pimentel

Niagara register files
SPARC ISA supports register windows

for n overlapping windows register file comprises  
16 + n*16 registers, where each window has 8 global,  
8 local, 8 input and 8 output registers

output of one window is the input to the next

Niagara provides 4 independent thread contexts per pipeline

8 per core in two groups (strands 0..3 and 4..7), each file has 8 register windows – 160
registers per thread giving a total of 1152 registers per core

Each register file has 5 ports, uses “3D addressing” to exploit the fact that only one window
per thread is active at a time - this design is scalable

LOCAL[7:0]=R[23:16]

RESTORE SAVE

IN[7:0] = R[31:24]

OUT[7:0] = R[15:8]

W0

W4

W
1

W2

W6

W3

W
5

W7

GLOBAL[7:1] = R[7:1]

R0 = 0

WIM

PSR

PC

RY

TBR

Supervisor access only

(integer multiply/divide)

(processor status)

(trap base address)

(window valid mask)

nPC
(program counter)
(next program counter)

F[31:0]

32 single /
16 double

FSR (FPU state)

Floating point Unit

CTPR
CR (MMU control)

(MMU Context table pointer)
CXR (MMU Context)
FSR (MMU fault status)
FAR (MMU fault address)

Memory Management Unit

32bits

32bits

Advances in Computer Architecture, Andy D. Pimentel

Niagara thread scheduling
How are SPARC threads defined?

threads are defined by OS call setting up a thread, its stack and its PC using a system mode instr.

How scheduled?

Active threads are scheduled on an LRU basis for fairness  
threads become inactive on branch instructions and when stalled waiting for memory

Thread scheduling assumes an L1 cache hit

Thread management costs:

creation – performed in software, so relatively high cost but can be reduced using thread pooling

scheduling – zero cycle thread switching: new threads are selected for execution on every cycle

synchronisation – depends on where test and set address resides in memory hierarchy

Advances in Computer Architecture, Andy D. Pimentel

Niagara memory (T3)
L1 shared between 2 pipelines

L2 shared between all cores

It has 16 banks with two X-bar switches between groups of 8 cores

Switch is approximately 5% of core area

Reads at 180 Gbytes/s, writes at 90 Gbytes/s

L2 cache 6 MByte, 64 Byte lines - 16-way set associative

Memory interfaces 4 x DDR 3, fully buffered

Memory system designed for throughput

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4 - yet different
Departure from the T1/T2/T3: focuses again on sequential
performance

Introduces OoO issue and branch prediction

The extra logic per core is compensated by fewer cores (8)

T5 brings the number of cores back to 16

Introduces a “Work Register File” for storage after register
renaming

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4 pipeline

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4 pipeline

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4 pipeline
Before pick:  
only 1 thread per
stage

Pick to commit:  
multiple threads per
stage

Commit:  
1 thread per stage

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4
Telltale signs that
sequential performance
matters again:

new 128KB L2 cache
per core, shared L3

OoO/BP logic

Higher frequency
(up to 3GHz)

Advances in Computer Architecture, Andy D. Pimentel

Niagara T4 sequential performance

Advances in Computer Architecture, Andy D. Pimentel

Niagara power usage
Chip TDP Nominal Technology Parallelism

T1 72W 378 mm2, 90nm 8 cores,  
32 threads

T2 123W 95W 342mm2, 65nm 8 cores,  
64 threads

T3 139W 75W 371mm2, 40nm 16 cores,  
128 threads

T4 240W 103W 403mm2, 40nm 8 cores,  
64 threads

T5 ? ? 478mm2, 28nm 16 cores,
128 threads

