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Trends

During the mid 2000’s, Intel (and previously DEC, Compaq) 
cancelled wide superscaler projects 

eg. pentium Netburst and Alpha 21464 

The current trend is to develop independent microprocessors 
on chip – multi-cores 

But why is this?
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We have hit several walls...
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We have hit several walls...
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The frequency wall

 (CMU 15-418, Spring 2012)

End of frequency scaling
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The power wall

Power dissipated is a silicon CMOS circuit comprises several components 
and the major component has been dynamic power 

Dynamic power = a⋅C⋅V2⋅f 

a is activity, C is capacitance,  
V is voltage, and f is frequency 

Higher frequency requires higher  
voltages
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The power wall

Ronan et. al. Coming Challenges in Microarchitecture and 
Architecture, Proc IEEE, 89 (3) pp. 325-340, 2001
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So, what happened around 2004?

Moore’s Law: 2 times as many transistors every new technology 
generation, growth per dimension k = √2 (=1.4) 

Scaling factor for transistors: 1/k = 0.7 

Area scales with (1/k)2
= 0.5

 

Voltage scales with 1/k = 0.7 

Capacitance scales with 1/k = 0.7 

Transistor delay scales with 1/k  

Frequency scales with 1/(1/k)=k=1.4

1/√2

1/
√

2Dennard Scaling
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Area (A) scales with 0.5 

Voltage (V) scales with 0.7 

Capacitance (C) scales with 0.7 

Frequency scales (F) with 1.4

Dennard Scaling

Powerdensity ∼ C⋅V2⋅f

Powerdensity ratio ∼ (0.7⋅0.72⋅1.4) / 0.5 = 1 (!)

So, what happened around 2004?

A
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Voltage (Vdd) does not scale anymore 

Vthreshold cannot decrease because of leakage power

Dennard Scaling stopped around 2004!

So, what happened around 2004?
But L3 energy scaling ended in 2005 

Moore, ISSCC Keynote, 2003 Moore, ISSCC Keynote, 2003
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Dennard Scaling stopped around 2004!

Powerdensity ∼ C⋅V2⋅f

Powerdensity ratio ∼ (0.7⋅12⋅1.4) / 0.5 = 2 

So, what happened around 2004?

A

Area (A) scales with 0.5 

Voltage (V) does not scale 

Capacitance (C) scales with 0.7 

Frequency scales (F) with 1.4

more general: Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2
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The end of Dennard Scaling
Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2

Keep f constant: Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k)2 = k

Keep f constant and use k (= 1.4) times more area:  
           Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k) = 1

Scale f and use k2 (= 2) times more area:  
           Powerdensity ratio ∼ ((1/k)⋅12⋅k) / 1 = 1
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The end of Dennard Scaling
Powerdensity ratio ∼ ((1/k)⋅12⋅k) / (1/k)2 = k2

Keep f constant: Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k)2 = k

Keep f constant and use k (= 1.4) times more area:  
           Powerdensity ratio ∼ ((1/k)⋅12⋅1) / (1/k) = 1

Scale f and use k2 (= 2) times more area:  
           Powerdensity ratio ∼ ((1/k)⋅12⋅k) / 1 = 1

This extra, ‘unused’ area is called Dark Silicon
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Some other walls we’ve hit...
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Some other walls we’ve hit...
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Signal propagation
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Figure 4: Fraction of total chip area reachable in one cycle.

will be infeasible.

While transistor speeds are scaling approximately linearly with fea-
ture size, wires are getting slower with each new technology. Even
assuming low-resistivity conductors, low-permittivity dielectrics,
and higher aspect ratios, the absolute delay for a fixed-length wire
in top-level metal with optimally placed repeaters is increasing with
each generation. Only when the wire width and spacing is increased
substantially can the wire delay be kept constant. Due to increasing
clock frequencies, wire delays are increasing at an even higher rate.
As a result, chip performance will no longer be determined solely
by the number of transistors that can be fabricated on a single in-
tegrated circuit (capacity bound), but instead will depend upon the
amount of state and logic that can be reached in a sufficiently small
number of clock cycles (communication bound).
The argument made by Sylvester and Keutzer [27] that wire

delays will not affect future chip performance holds only if wire
lengths are reduced along with gate lengths in future technologies.
Traditional microprocessor microarchitectures have grown in com-
plexity with each technology generation, using all of the silicon
area for a single monolithic core. Current trends in microarchitures
have increased the sizes of all of the structures, and added more ex-
ecution units. With future wire delays, structure size will be limited
and the time to bypass results between pipeline stages will grow.
If clock rates increase at their projected rates, both of these effects
will have substantial impact on instruction throughput.

In addition to reducing the chip area reachable in a clock cycle,
both the widening gap between wire and gate delays and superlin-
ear clock scaling has a direct impact on the scaling of microarchi-
tectural structures in future microprocessors. Clock scaling is more
significant than wire delay for small structures, while both wire de-
lay and clock scaling are significant in larger structures. The large
memory-oriented elements, such as the caches, register files, in-
struction windows, and reorder buffers, will be unable to continue
increasing in size while remaining accessible within one clock cy-
cle. In this section, we use analytical models to examine the ac-
cess time of different structures from 250nm to 35nm technologies
based on the structure organization and capacity. We demonstrate

the trade-offs between access time and capacity that are necessary
for the various structures across the technology generations.

To model the various storage-oriented components of a modern mi-
croprocessor, we started with ECacti [19], an extended version of
the original Cacti cache modeling tool [30]. Given the capacity,
associativity, number ports, and number of data and address bits,
ECacti considers a number of alternative cache organizations and
computes the minimum access time. ECacti automatically splits
the cache into banks and chooses the number and layout of banks
that incurs the lowest delay. When modeling large memory arrays,
ECacti presumes multiple decoders, with each decoder serving a
small number of banks. For example with a 4MB array, ECacti
produces 16 banks and four decoders in a 35nm technology. Note
that this model is optimistic, because it does not account for driving
the address from a central point to each of the distributed decoders.
We extended ECacti to include technology scaling, using the

projected parameters from the SIA roadmap. SRAM cell sizes
and transistor parasitics, such as source and drain capacitances, are
scaled according to their anticipated reduction in area for future
technologies. We assume that the word-lines are run from a de-
coder across its neighboring banks in mid-level metal, and that the
bit-rline in mid-level metal does not increase the size of the SRAM
cell. Unlike Amrutur and Horowitz [3] we further make the op-
timistic assumption that the sense-amplifier threshold voltage will
decrease linearly with technology. The access times from the an-
alytical model were verified against those obtained from a SPICE
simulation of the critical path, and matched within 15% for all tech-
nologies. This level of accuracy is comparable to the accuracy of
the original CACTI model. A full description of the modeling and
validation can be found in [1].
Apart from modeling direct-mapped and set associative caches,

we used our extended version of ECacti to explore other microar-
chitectural structures. For example, a register file is essentially a
direct mapped cache with more ports, but fewer address and data
bits than a typical L1 data cache. We use a similar methodology to
examine issue windows, reorder buffers, branch prediction tables,
and TLBs.

Using our extended ECacti, we measured the memory structure ac-
cess time, while varying cache capacity, block size, associativity,
number of ports, and process technology. While cache organization
characteristics do affect access time, the most critical characteristic
is capacity. In Figure 5, we plot the access time versus capacity for
a dual-ported, two-way set associative cache. The maximum cache
capacities that can be reached in 3 cycles for the , and
clocks are also plotted as “isobars”. Note that the capacity for a
three cycle access cache decreases moderately for and , but
falls off the graph for .
We compared our analytical model to other models and related

implementations. In a 250nm technology, we compute the access
time for a 64KB L1 data cache to be 2.4ns. This access time is
comparable to that of the 700MHz Alpha 21264 L1 data cache.
Furthermore, for a 4Mb cache in a 70nm technology, our model
predicts an access time of 33 FO4 delays which matches the 33

5
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The design complexity wall
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The design complexity wall

Chip Area and Power Consumption

0

500

1000

1500

90nm 65nm 45nm 32nm 22nm 16nm

P
o
w

e
r 

D
e
n
s
it
y
 (

W
a
tt

s
/c

m
2
)

Active Power

Leakage Power

power envelope to remain constant

Source: Shekhar Borkar (Intel)

1

10

100

1000

1 10 100 1000 10000 100000

Processor Area

I
n

te
g

e
r
 P

e
r
fo

r
m

a
n

c
e

Source: Shekhar Borkar (Intel)

With leakage power dominating, 
power consumption roughly 

proportional to transistor count

Pollack’s Law: 
Processor performance grows 

with sqrt of area

Tuesday, April 24, 12

Pollack’s law: single processor performance grows with the 
square root of area
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The ILP wall

 (CMU 15-418, Spring 2012)

ILP scaling
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Single core performance scaling
The improvement rate of single core 
performance has decreased 
(essentially to 0) 

Frequency scaling limited by power  
(end of Dennard Scaling) 

ILP scaling tapped out 

Design complexity wall 

No more free lunch for software 
developers!

 (CMU 15-418, Spring 2012)

End of frequency scaling
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The shift to multi-core

Performance 1 
Power 1
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The shift to multi-core

Performance 1 
Power 1

Performance 2 
Power 4
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The shift to multi-core

Performance 1 
Power 1

Performance 2 
Power 4

Performance 4 
Power 4
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The shift to multi-core

Performance 1 
Power 1

Performance 2 
Power 4

Performance 2 
Power ≈1

Or: halving frequency

1 core at f proportional to:  f∙V12, 4 cores at f/2 proportional to: 4∙(f/2)∙V22 = 2f∙V22
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The shift to multi-core

Performance 1 
Power 1

Performance 2 
Power 4

Performance 2 
Power ≈1

Or: halving frequency

1 core at f proportional to:  f∙V12, 4 cores at f/2 proportional to: 4∙(f/2)∙V22 = 2f∙V22

V1 > V2!!
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Multi-core and Dark Silicon

silicon that is not used all the time, or at its
full frequency. Even during the best days of
CMOS scaling, microprocessor and other
circuits were chock full of ‘‘dark logic’’
used infrequently or for only some applica-
tions—for instance, caches are inherently
dark because the average cache transistor is
switched for far less than one percent of
cycles, and FPUs remain dark in integer
codes.

Soon, the exponential growth of dark sil-
icon area will push us beyond logic targeted
for direct performance benefits toward
swaths of low-duty cycle logic that exists,
not for direct performance benefit, but for
improving energy efficiency. This improved

energy efficiency can then allow an indirect
performance improvement because it frees
up more of the fixed power budget to be
used for even more computation.

The four horsemen
Recently, researchers proposed a taxon-

omy—the four horsemen—that identifies
four promising directions for dealing with
dark silicon that have emerged as promising
potential approaches as we transition beyond
the initial multicore stop-gap solution. These
responses originally appeared to be unlikely
candidates, carrying unwelcome burdens in
design, manufacturing, or programming.
None is ideal from an aesthetic engineering

4 cores at 1.8 GHz 

4 cores at 2×1.8 GHz
(12 cores dark) 

2×4 cores at 1.8 GHz
(8 cores dark, 8 dim) 

(Industry’s choice) 

75% dark after two generations;
93% dark after four generations

65 nm 32 nm

Spectrum of trade-offs
between no. of cores and
frequency  

Example:
65 nm → 32 nm (S = 2)    

....

....

....

Figure 1. Multicore scaling leads to large amounts of dark silicon.3 Across two process gen-

erations, there is a spectrum of trade-offs between frequency and core count; these include

increasing core count by 2! but leaving frequency constant (top), and increasing frequency

by 2! but leaving core count constant (bottom). Any of these trade-off points will have

large amounts of dark silicon.

...............................................................................................................................................................................................

Is Dark Silicon Real? A Reality Check
A quick survey of recent designs from multicore outfits such as Tilera,

Intel, and AMD indicates that industry has pursued core count and fre-

quency combinations consistent with the utilization wall. For instance,

Intel’s 90-nm single-core Prescott chip ran at 3.8 GHz in 2004. Dennard

scaling would suggest that a 22-nm multicore version should run at 15.5

GHz, and contain 17 superscalar cores, for a total improvement of 69! in

instruction throughput. Instead, the upcoming 2013 22-nm Intel Core i7

4960X runs at 3.6 GHz and has six superscalar cores, a 5.7! peak serial

instruction throughput improvement. The darkness ratio is thus 91.74 per-

cent versus the 93.75 percent predicted by the utilization wall. The latest

2012 International Technology Roadmap for Semiconductors also shows

that scaling has proceeded consistently with post-Dennard predictions.

.............................................................

10 IEEE MICRO

...............................................................................................................................................................................................
DARK SILICON

Here, S = k



Multi-core processors 
and hw multithreading

Explicit concurrency in hardware,  
explicit concurrency in low-level software
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Multi-cores main players
Sun (now Oracle) was the forerunner in this field with its Niagara chips 

Intel have moved to multi-core without significantly changing their architecture 

i7 is a 4-6 core with 14 stage speculative pipeline, Poulson IA-64 with 8 
cores 

Intel launched an experimental 48 core Single-Chip Cloud (SCC) chip 

In 2012, Intel introduced the Xeon Phi: up to 61 cores on a chip 

IBM moved to multicore used in both games consoles & supercomputers  
e.g. Cell = 1 PPC + 8 vector cores
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Multi-core organization
Most multi-cores typically are symmetric, i.e. have an UMA 
organization
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Multi-core often implies multi-threading per core

Larger number of cores implies larger average distance, hence 
latency, between cores and cores/memory 

In turn, this implies larger mandatory off-core communication overheads for 
single threads 

To maximize utilization and throughput, cores should fetch instructions 
from independent threads to tolerate latencies 

This must be possible at the finest grain (individual loads and stores), hence 
the need for hardware thread scheduling in the fetch/issue stage
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Hardware multi-threading
Requires replication of hardware resources 

Each thread uses its own PC and often its own register file 

Interleaved (or temporal) multi-threading 

Each clock, core chooses from which thread one or more instructions are 
issued 

Simultaneous multi-threading (SMT) 

Each clock, core chooses instructions from multiple threads (extension of 
superscalar design)
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Two types of multi-threadingUniversity
of

Amsterdam
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Computer
Architecture

Simultaneous MultiThreading (SMT) (cont’d)
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Superscalar! Interleaved!
multi-threading!

Simultaneous!
multi-threading!



Advances in Computer Architecture,  Andy D. Pimentel 

Multi-thread main players
Sun/Oracle again with Niagara chips - 8 threads/core 

Intel recycled the SMT plans of 21464 as “HyperThreading”, 
found in P4 and again in Core i7 Nehalem, 2 threads/core 

Also found again in Itanium 2, 2 threads/core 

IBM POWER8: 8 threads/core 

Two main strategies for scheduling hw threads: control 
flow scheduling and dataflow scheduling
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Control flow scheduling
In control flow scheduling threads are identified  for scheduling using 
control flow triggers 

e.g. cache miss on a load 

branches 

Threads are selected for execution from ready  threads (e.g. round robin 
scheduling) 

On a trigger, e.g. branch or cache miss, the thread is suspended until 
resolution – e.g. Niagara, Itanium 2
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Dataflow scheduling
In dataflow scheduling threads are scheduled when  data 
to complete the instruction is available 

Need a mechanism to suspend a thread on reading  data 
(called “matching store,” e.g. registers or memory) 

Dataflow i-structure does this: it includes synchronisation bits 
and holds either data or a handle to suspended thread(s) 

e.g. Transputer and Delencor HEP
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Programming issues
Multiple cores and multiple threads per core appear as 
different processors to software, each with their own 
instruction stream (program counter sequence) 

Major departure from the “simple” Turing/Von Neumann model, 
convergence with parallel programming of HPC 

Explicit hardware concurrency requires parallel machine 
models to abstract the hardware, which in turn entail 
concurrent programming models
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Programming models

3 phases to program an explicit concurrent chip: 

decompose problem into concurrent sub-problems 

express sub-problems as communicating threads 

map threads onto chip components 

Different programming environments automate these tasks 
in different ways
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Who’s in charge of explicit concurrency?

Programming styles

Task of programmer Task of software stack 
(compiler + run-time system)

Find dependencies

Decompose in threads

Map threads

Find dependencies

Decompose in threads

Specify problem
HIGH-LEVEL, FUNCTIONAL

VECTORED / ANNOTATED

EXPLICIT THREADS, 
IMPLICIT PLACEMENT

(eg. SQL, Haskell, SDF)

(eg. OpenMP, FORTRAN)

(eg. Cilk, TBB, pthreads)
Map threads

Schedule instructions

EXPLICIT THREADS
EXPLICIT PLACEMENT

(eg. MPI, GrandCentral Dispatch)
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Programming issues (revisited)

Parallel programming models at each level of abstraction come 
in two flavors: implicit vs. explicit communication 

Implicit communication based on shared memory or 
distributed software cache protocols, which do not scale 

Explicit communication leaves the program in charge of 
scalability, but is more difficult to program 

These issues are revisited in the Concurrent Programming course



Example  
multi- and many-cores
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IBM PowerXCell 8i
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IBM PowerXCell 8i
1 Power Processor Element (PPE) 

Derived from IBM Power5 architecture 

8 Synergistic Processor Elements (SPEs)– SIMD processors 

128 bit vector unit supporting variable precision integer & double precision FP  

1 Element Interconnect Bus (EIB) - a fast multiple ring network 

Direct Memory Access controller 

DDR-2 memory interface (originally Rambus XDR) 

65nm technology 3.2 GHz frequency
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IBM PowerXCell 8i
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Cell’s PPE
64 bit RISC processor, PowerPC ISA 

32/32 KByte L1 I- and D-caches 

512KB L2 cache 

64GB/s load-store bandwidth 

In-order execution, 2-way issue - 2 hardware threads  

Optionally equipped with AltiVec SIMD extensions
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Cell’s SPE
Independent processors each runs an application thread 

has its own 256KB private local store 

has DMA access to coherent shared memory of PPE 

It is a SIMD vector processor with an Altivec-like ISA 

128 by 128 bit registers used as 16 x 8 bit, 8 x 16 bit, 4 x 32bit, 2 x 64bit 

4 single precision FP units (latest version supports 2 x DP) 

4 integer units 

Dual issue - 8 x 32 bit operations per cycle  

max 25.6 GFLOP/s with single precision FP
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Cell’s SPE

point and load instructions take six cycles. Two-way

SIMD double-precision floating point is also supported,

but the maximum issue rate is one SIMD instruction per

seven cycles. All other instructions are fully pipelined.

To limit hardware overhead for branch speculation,

branches can be ‘‘hinted’’ by the programmer or compiler.

The branch hint instruction notifies the hardware of an

upcoming branch address and branch target, and the

hardware responds (assuming that local store slots are

available) by pre-fetching at least seventeen instructions

at the branch target address. A three-source bitwise select

instruction can be used to further eliminate branches

from the code.

The control area makes up only 10–15% of the area

of the 10-mm2 SPE core, and yet several applications

achieve near-peak performance on this processor. The

entire SPE is only 14.5 mm2 and dissipates only a few

watts even when operating at multi-GHz frequencies.

High-bandwidth on-chip coherent fabric and
high-bandwidth memory
With the architectural improvements that remove the

latency-induced limitation on bandwidth, the next

challenge is to make significant improvements in

delivering bandwidth to main memory and bandwidth

between the processing elements and interfaces within the

Figure 3

Synergistic processor element (a) organization and (b) pipeline diagram. Central to the synergistic processor is the 256-KB local store SRAM. 
The local store supports both 128-byte access from direct memory access (DMA) read and write, as well as instruction fetch, and a 16-byte 
interface for load and store operations. The instruction issue unit buffers and pre-fetches instructions and issues up to two instructions per 
cycle. A 6-read, 2-write port register file provides both execution pipes with 128-bit operands and stores the results. Instruction execution 
latency is two cycles for simple fixed-point instructions and six cycles for both load and single-precision floating-point instructions. Instruc-
tions are staged in an operand-forwarding network for up to six additional cycles; all execution units write their results in the register file in 
the same stage. The penalty for mispredicted branches is 18 cycles.

Fixed-point instruction

Floating-point instruction

Branch instruction

Load/store instruction

Permute instruction

IF Instruction fetch
IB Instruction buffer
ID Instruction decode
IS Instruction issue
RF Register file access
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Intel Single-Chip Cloud

48 P54C cores (Pentium I), mesh interconnect, 
no cache coherency in hardware
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Intel Single-Chip Cloud

8 voltage islands

28 frequency 
islands

Independent V/F 
for I/O and 
memory
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Intel Xeon Phi

Copyright© 2013, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Intel® Xeon Phi™ Architecture 
Overview 

Reliability Features 
 Parity on L1 Cache, ECC on memory 

CRC on memory IO,  CAP on memory  IO 

High-speed bi-directional  
ring interconnect 

Fully Coherent L2 Cache 

8 memory controllers 
16 Channel GDDR5 MC 

PCIe GEN2 

Cores: 61 cores,  at 1.1 GHz 
in-order,  support 4 threads 

512 bit Vector Processing Unit   
32 native registers 

7/11/2013 

18 PRACE MIC Summer School, July 2013, CINECA 



Advances in Computer Architecture,  Andy D. Pimentel 

Intel Xeon Phi core
Two pipelines 

Scalar unit based on Pentium 

Dual issue with scalar instructions 

SIMD Vector processing unit 

4 HW threads per core 

Cannot issue instructions back-to-back 
from same thread 

Need minimum of 2 threads to keep 
pipeline filled

Copyright© 2013, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Core Architecture Overview  
60+ in-order, low power IA cores in a ring 
interconnect 

Two pipelines 
• Scalar Unit based on Pentium® processors 
• Dual issue with scalar instructions 
• Pipelined one-per-clock scalar throughput 

SIMD Vector Processing Engine  

4 hardware threads per core 
• 4 clock latency, hidden by round-robin 

scheduling of threads  
• Cannot issue back to back inst in same 

thread: Means minimum two threads per 
core to achieve full compute potential 

Coherent 512KB L2 Cache per core 

 

Ring 

Scalar 
Registers 

Vector 
Registers 

512K L2 Cache 

32K L1 I-cache 
32K L1 D-cache 

Instruction Decode 

Vector 
Unit 

Scalar 
Unit 

7/11/2013 

20 PRACE MIC Summer School, July 2013, CINECA 
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IA-64 Montecito... Poulson
Both multi-core McKinley (Itanium 2)

Montecito (2006) Poulson (2012)
1.72 billion transistors 3.1 billion transistors

90nm - 596mm2 32nm - 544mm2

75-104W 15-170W
2 cores, 1.4-1.6GHz core clock 8 cores, 1.6-1.85GHz core clock

6-way issue per core, 12-way total 6-way issue per core, 48-way total
6-24MB L3 on chip (2 x 3-12MB) 32MB L3 on chip (8 x 4MB) 

16/16 KB L1, 1MB/256KB L2 16/16 KB L1, 512KB / 256KB L2
21GB/s FSB bandwidth 700GB/s system bandwidth (est.)
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IA-64  Poulson
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IA-64  Poulson
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SPARC Niagara 
T1/2/3/4/5
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Niagara in a nutshell

Departure from the beaten road of sequential performance:  
focus on multi-cores and multi-threading 

Niagara T1 (2005): 8 cores, 4 threads/core, 1-1.4GHz 

Niagara T2 (2007): 8 cores, 8 threads/core, 1.2-1.6GHz 

Niagara T3 (2009):  16 cores, 8 threads/core, 1.67GHz 

2 single-issue in-order pipelines / core, 4 threads per pipeline
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Niagara T3 floorplan
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Niagara landmarks
Single shared L2 cache, cross-bar for full coherency  
Scalability problems with larger number of cores / larger cache  
(see next chapter) 

Explicit concurrency: 

each core can issue 2 instructions per cycle to 2 pipelines (from T2 onward)  
which share IF, load/store and FPU 

with 16 cores, ILP = 32 instructions per cycle 

virtual concurrency 4 threads per pipeline 

this allows for flexibility in instruction scheduling,  
select stage issues from available threads
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Niagara T1 pipeline

Source: RealWorldTech
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Niagara T2 pipeline

Source: RealWorldTech
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Niagara register files
SPARC ISA supports register windows  

for n overlapping windows register file comprises   
16 + n*16 registers, where each window has 8 global,  
8 local, 8 input and 8 output registers 

output of one window is the input to the next 

Niagara provides 4 independent thread contexts per pipeline 

8 per core in two groups (strands 0..3 and 4..7),  each file has 8 register windows – 160 
registers per thread giving a total of 1152 registers per core 

Each register file has 5 ports, uses “3D addressing” to exploit the fact that only one window 
per thread is active at a time - this design is scalable

LOCAL[7:0]=R[23:16]

RESTORE SAVE

IN[7:0] = R[31:24]

OUT[7:0] = R[15:8]

W0

W4

W
1

W2

W6

W3

W
5

W7

GLOBAL[7:1] = R[7:1]

R0 = 0

WIM

PSR

PC

RY

TBR

Supervisor access only

(integer multiply/divide)

(processor status)

(trap base address)

(window valid mask)

nPC
(program counter)
(next program counter)

F[31:0]

32 single /
16 double

FSR (FPU state)

Floating point Unit

CTPR
CR (MMU control)

(MMU Context table pointer)
CXR (MMU Context)
FSR (MMU fault status)
FAR (MMU fault address)

Memory Management Unit

32bits

32bits
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Niagara thread scheduling
How are SPARC threads defined? 

threads are defined by OS call setting up a thread,  its stack and its PC using a system mode instr. 

How scheduled? 

Active threads are scheduled on an LRU basis for fairness  
threads become inactive on branch  instructions and when stalled waiting for memory 

Thread scheduling assumes an L1 cache hit 

Thread management costs: 

creation  – performed in software, so relatively high cost but can be reduced using thread pooling  

scheduling  – zero cycle thread switching: new  threads are selected for execution on every cycle 

synchronisation  – depends on where test and set address resides in memory hierarchy 
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Niagara memory (T3)
L1 shared between 2 pipelines 

L2 shared between all cores 

It has 16 banks with two X-bar switches between groups of 8 cores 

Switch is approximately 5% of core area 

Reads at 180 Gbytes/s, writes at 90 Gbytes/s 

L2 cache 6 MByte, 64 Byte lines - 16-way set associative 

Memory interfaces 4 x DDR 3, fully buffered 

Memory system designed for throughput



Advances in Computer Architecture,  Andy D. Pimentel 

Niagara T4 - yet different
Departure from the T1/T2/T3: focuses again on sequential 
performance 

Introduces OoO issue and branch prediction 

The extra logic per core is compensated by fewer cores (8) 

T5 brings the number of cores back to 16 

Introduces a “Work Register File” for storage after register 
renaming
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Niagara T4 pipeline
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Niagara T4 pipeline
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Niagara T4 pipeline
Before pick:  
only 1 thread per 
stage 

Pick to commit:  
multiple threads per 
stage 

Commit:  
1 thread per stage
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Niagara T4
Telltale signs that 
sequential performance 
matters again:  

new 128KB L2 cache 
per core, shared L3 

OoO/BP logic 

Higher frequency 
(up to 3GHz)
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Niagara T4 sequential performance
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Niagara power usage
Chip TDP Nominal Technology Parallelism

T1 72W 378 mm2, 90nm 8 cores,  
32 threads

T2 123W 95W 342mm2, 65nm 8 cores,  
64 threads

T3 139W 75W 371mm2, 40nm 16 cores,  
128 threads

T4 240W 103W 403mm2, 40nm 8 cores,  
64 threads

T5 ? ? 478mm2, 28nm 16 cores, 
128 threads


