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Embedded Systems Design

• Design of embedded systems 
becomes increasingly complex

• Heterogeneous Multi-Processor 
System-on-Chip architectures
✓Different processor types, dedicated / reconfigurable 

hardware blocks, Network-on-Chip, etc.
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Embedded Systems Design

• Design of embedded systems 
becomes increasingly complex

• Heterogeneous Multi-Processor 
System-on-Chip architectures
✓Different processor types, dedicated / reconfigurable 

hardware blocks, Network-on-Chip, etc.

• Many design requirements
✓High performance, low power, low cost, small form 

factor, high flexibility, high reliability, etc.
✓ Typically conflicting requirements
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Our Holy Grail…
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Climbing the abstraction ladder
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  Implementation

Assembly instructions

Machine instructions

Register transfers

Compilers 
(1960's,1970's)

Assemblers, linkers 
(1950's, 1960's)

Behavioral synthesis 
(1990's)

RT synthesis 
(1980's, 1990's)

Logic synthesis 
(1970's, 1980's)

Microprocessor plus program bits: 
“software”

VLSI, ASIC, or PLD 
implementation: “hardware”

Logic gates

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

Source: 
Vahid/Givargis
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  Implementation

Assembly instructions

Machine instructions

Register transfers

Compilers 
(1960's,1970's)

Assemblers, linkers 
(1950's, 1960's)

Behavioral synthesis 
(1990's)

RT synthesis 
(1980's, 1990's)

Logic synthesis 
(1970's, 1980's)

Microprocessor plus program bits: 
“software”

VLSI, ASIC, or PLD 
implementation: “hardware”

Logic gates

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

Application specification(s) + constraints

System-level synthesis (±2005 - )

[IEEE TCAD’09]
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Towards  
System-level Synthesis

Library of
IP cores

Sequential
application(s)

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors) 

System-level
Synthesis
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The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform 
specification

Sequential
application

Parallel application 
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors) 

RTL-level
Models

Common XML
Interface

[CODES+ISSS’07, DAC’08]
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System-level Design  
Space Exploration (DSE)

• We need to automatically
✓ find the best decomposition of the (parallel) application(s)
✓ decide what application task to perform in SW or 

accelerate using HW
✓ choose the number and types of required processing 

elements in the (heterogeneous) system
✓ decide on how to interconnect the processors
✓ decide on how to map application tasks onto the selected 

processors
✓ and so on…
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System-level Design  
Space Exploration (DSE)

• We need to automatically
✓ find the best decomposition of the (parallel) application(s)
✓ decide what application task to perform in SW or 

accelerate using HW
✓ choose the number and types of required processing 

elements in the (heterogeneous) system
✓ decide on how to interconnect the processors
✓ decide on how to map application tasks onto the selected 

processors
✓ and so on…

• while simultaneously optimizing the system for cost, 
performance, energy consumption, reliability, etc.

7

Major challenge: develop DSE 
techniques that efficiently and 

effectively handle the vast 
design space, with sufficient 

accuracy
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MPSoC

System-level Mapping DSE
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CPU-A

MEM
1

CPU-B CPU-C

CPU-D CPU-E CPU-F

MEM  
3

MEM  
2

• Exploring different
• Resource allocations
✓ Number and type of 

processors, memories, 
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal 
binding)
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System-level DSE: two elements
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Evaluating a design point Searching the design space

Source:  
Teich et al.
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Evaluating a design point

Source:  
Teich et al.
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Specification

Analytical models

Cycle-approximate  
TLM models

Cycle-accurate 
models

RTL models

Alternative realizations
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System-level DSE: two elements
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Evaluating a design point

Source:  
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Searching the design space

System-level DSE: two elements

12

• Exhaustive search usually is not 
feasible

• Typically, metaheuristics are 
used to search the design space

• Only visit a relatively small number 
of design points

• Single-objective or  
multi-objective optimization

• Do not guarantee finding the 
global optimum
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Searching the design space

System-level DSE: two elements

12

• Exhaustive search usually is not 
feasible

• Typically, metaheuristics are 
used to search the design space

• Only visit a relatively small number 
of design points

• Single-objective or  
multi-objective optimization

• Do not guarantee finding the 
global optimum

Genetic Algorithm
Simulated Annealing

Ant Colony Optimization

Other 
metaheuristics
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Evaluating a single 
design point
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The Sesame simulation framework
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Application model
(Kahn Process Network)

Cycle approximate,  
TLM MPSoC architecture model

Mapping model
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The Sesame simulation framework
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Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer 
(mapping,  scheduling and event refinement)

[IEEE TC’06]
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The Sesame simulation framework

15

Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer 
(mapping,  scheduling and event refinement)

Execute(), 
Read(), and
Write() events

[IEEE TC’06]
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The Sesame simulation framework
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Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer 
(mapping,  scheduling and event refinement)

Op. Cycles

X

Y

Z

750

150

1500

[IEEE TC’06]
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Exploring the  
design space
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Exploring the design space: GAs
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Selection 
based on 
fitness

Population

Reproduction

Variation
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Exploring the design space: GAs
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Exploring the design space: GAs
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Analyzing the DSE process  
and its results

19

• Visualization support for three 
aspects:

• Help algorithm developers to find the 
best optimization algorithm for their 
specific problem

• Help designers to analysis the DSE 
results

• Help decision makers to choose the 
most preferred solution 

Generate  
Initial Population

Calculate 
Fitness

Select Parents

Create Offspring

Update 
Population

Output 
Final Results

Terminatio
n Criterion 
Satisfied?

Y
e
s

N
o
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Analyzing the DSE process  
and its results (cont’d)
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Analyzing the DSE process  
and its results (cont’d)
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• For example, making the search process aware of 
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain 
diversity and prevent evaluating duplicates
• δ(a,a) = 0    ( equality )

• δ(a,b) =  #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3] ) = 4 

Exploiting domain knowledge

21
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A small example

22

Quality of result as percentile towards optimum

• 11-process application, 4-processor crossbar architecture 
• Design space: 411 = 4M design points (175275 unique) 
• Summary of results of repeated GA experiments 

    (dominating lines show better GA performance)

better

better

Random search

Standard GA
GA with distance-based 

diversity control
Probability of finding result
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Multi-functional  
embedded systems

• Modern embedded systems need to support 
multiple applications and standards

• Multiple applications can be active simultaneously, 
contending for system resources

• Application workload may change over time
✓ System demands change over time
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How to perform DSE for multi-application workloads?
How to deal with dynamic workload behavior?
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DSE for multi-application 
systems: scenario-based DSE
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Scenarios: they are exponential
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Scenarios: they are exponential
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Infeasible to evaluate design points using all 
possible application workload scenario’s!
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Scenarios: they are exponential

25

Use a small, representative 
subset of application 
scenarios to evaluate 

designs!
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Scenario-based DSE

26

Scenario 
databaseInter	and	intra 

application	scenarios

…

Applications
Scenario	detection

Workload	 
generation

Parameterized	MP-SoC	
platform	specification

… …

Scenario	and 
mapping/platform 
co-exploration

Pareto	front	for 
average	scenario	behavior

Latency

Power

Cost
[ICCD’10, IEEE TCAD’13]
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The need for system adaptivity

• Cope with changing (demands of) application 
workloads

• Dynamic QoS management allowing to trade off 
different system qualities like performance, precision 
and power consumption

• Cope with transient and/or permanent system faults
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The need for system adaptivity

• Cope with changing (demands of) application 
workloads

• Dynamic QoS management allowing to trade off 
different system qualities like performance, precision 
and power consumption

• Cope with transient and/or permanent system faults

• Types of adaptivity:
• Component reconfiguration (e.g., DVFS, reconfigurable 

HW, reconfigurable network, etc.)

• Run-time (re-)mapping of application tasks

27
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Run-time adaptive systems

28

Design-time optimization

Run-time reconfiguration
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Run-time adaptive systems

28

Design-time optimization

Run-time reconfiguration

How to find optimal system configurations at 
runtime using light-weight algorithms?

When to migrate tasks?
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Adaptive MPSoCs

• Re-mapping (migration) of tasks not always 
beneficial! 
• Dependent on workload scenario duration

29
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• This leads to a need for adaptivity throttling
• Predict whether or not it is beneficial to re-map
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Current _mappingT − New_mappingT( )* duration > overhead of remapping
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Adaptive MPSoCs

• Re-mapping (migration) of tasks not always 
beneficial! 
• Dependent on workload scenario duration

• This leads to a need for adaptivity throttling
• Predict whether or not it is beneficial to re-map

29

Current _mappingT − New_mappingT( )* duration > overhead of remapping

Needs prediction
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Incorporating additional 
optimization objectives

30
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Incorporating fault-tolerance as design objective

Reliability-aware DSE
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DMR TMR

ASSERT

Incorporating fault-tolerance as design objective

Reliability-aware DSE
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• Detection

• Recovery
• E.g. trade-off checkpoint 

overhead / restart overhead

• Design options
• Different effects on reliability 

• Affects other objectives (like 
performance, power and costs)

DMR TMR

ASSERT

DMR
(skip)

TMR
(restart)

TMR
(restart)

[1 check / frame]

Incorporating fault-tolerance as design objective

Reliability-aware DSE

[CODES+ISSS’12]
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Security-aware DSE?

• Increasing ubiquity and connectivity of embedded 
systems à security!

• At this moment, security mostly an afterthought 
in the design process

• Security must be an objective in early DSE!
• Security mechanisms affect other design objectives 

32
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BIG CHALLENGE:
how do you quantify the level of security? 


