
PSA’17 Andy D. Pimentel, University of Amsterdam 1

Andy D. Pimentel
System and Network Engineering Lab

University of Amsterdam

Perspectives on  
System-level MPSoC Design Space

Exploration

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Embedded Systems Design

• Design of embedded systems 
becomes increasingly complex

• Heterogeneous Multi-Processor 
System-on-Chip architectures
✓Different processor types, dedicated / reconfigurable

hardware blocks, Network-on-Chip, etc.

2

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Embedded Systems Design

• Design of embedded systems 
becomes increasingly complex

• Heterogeneous Multi-Processor 
System-on-Chip architectures
✓Different processor types, dedicated / reconfigurable

hardware blocks, Network-on-Chip, etc.

• Many design requirements
✓High performance, low power, low cost, small form

factor, high flexibility, high reliability, etc.
✓ Typically conflicting requirements

2

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Our Holy Grail…

3

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Our Holy Grail…

3

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Our Holy Grail…

3

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Climbing the abstraction ladder

4

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Climbing the abstraction ladder

4

 Implementation

Assembly instructions

Machine instructions

Register transfers

Compilers
(1960's,1970's)

Assemblers, linkers
(1950's, 1960's)

Behavioral synthesis
(1990's)

RT synthesis
(1980's, 1990's)

Logic synthesis
(1970's, 1980's)

Microprocessor plus program bits:
“software”

VLSI, ASIC, or PLD
implementation: “hardware”

Logic gates

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

Source:
Vahid/Givargis

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Climbing the abstraction ladder

4

 Implementation

Assembly instructions

Machine instructions

Register transfers

Compilers
(1960's,1970's)

Assemblers, linkers
(1950's, 1960's)

Behavioral synthesis
(1990's)

RT synthesis
(1980's, 1990's)

Logic synthesis
(1970's, 1980's)

Microprocessor plus program bits:
“software”

VLSI, ASIC, or PLD
implementation: “hardware”

Logic gates

Logic equations / FSM's

Sequential program code (e.g., C, VHDL)

Application specification(s) + constraints

System-level synthesis (±2005 -)

[IEEE TCAD’09]

PSA ‘17 Andy D. Pimentel, University of Amsterdam 5

Towards  
System-level Synthesis

Library of
IP cores

Sequential
application(s)

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

System-level
Synthesis

PSA ‘17 Andy D. Pimentel, University of Amsterdam 6

The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform
specification

Sequential
application

Parallel application
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level
Models

Common XML
Interface

[CODES+ISSS’07, DAC’08]

PSA ‘17 Andy D. Pimentel, University of Amsterdam 6

The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform
specification

Sequential
application

Parallel application
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level
Models

Common XML
Interface

[CODES+ISSS’07, DAC’08]

PSA ‘17 Andy D. Pimentel, University of Amsterdam 6

The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform
specification

Sequential
application

Parallel application
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level
Models

Common XML
Interface

Mem BProc B

Proc A Proc A

[CODES+ISSS’07, DAC’08]

PSA ‘17 Andy D. Pimentel, University of Amsterdam 6

The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform
specification

Sequential
application

Parallel application
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level
Models

Common XML
Interface

Mem BProc B

Proc A Proc A

[CODES+ISSS’07, DAC’08]

PSA ‘17 Andy D. Pimentel, University of Amsterdam 6

The context: Daedalus  
A system-level synthesis framework

System-level synthesis

Library of
IP cores

Platform
specification

Sequential
application

Parallel application
specification

Automatic
Parallelization

High-level
Models

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

RTL-level
Models

Common XML
Interface

Mem BProc B

Proc A Proc A

[CODES+ISSS’07, DAC’08]

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level Design  
Space Exploration (DSE)

• We need to automatically
✓ find the best decomposition of the (parallel) application(s)
✓ decide what application task to perform in SW or

accelerate using HW
✓ choose the number and types of required processing

elements in the (heterogeneous) system
✓ decide on how to interconnect the processors
✓ decide on how to map application tasks onto the selected

processors
✓ and so on…

7

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level Design  
Space Exploration (DSE)

• We need to automatically
✓ find the best decomposition of the (parallel) application(s)
✓ decide what application task to perform in SW or

accelerate using HW
✓ choose the number and types of required processing

elements in the (heterogeneous) system
✓ decide on how to interconnect the processors
✓ decide on how to map application tasks onto the selected

processors
✓ and so on…

• while simultaneously optimizing the system for cost,
performance, energy consumption, reliability, etc.

7

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level Design  
Space Exploration (DSE)

• We need to automatically
✓ find the best decomposition of the (parallel) application(s)
✓ decide what application task to perform in SW or

accelerate using HW
✓ choose the number and types of required processing

elements in the (heterogeneous) system
✓ decide on how to interconnect the processors
✓ decide on how to map application tasks onto the selected

processors
✓ and so on…

• while simultaneously optimizing the system for cost,
performance, energy consumption, reliability, etc.

7

Major challenge: develop DSE
techniques that efficiently and

effectively handle the vast
design space, with sufficient

accuracy

PSA ‘17 Andy D. Pimentel, University of Amsterdam

MPSoC

System-level Mapping DSE

8

CPU-A

MEM
1

CPU-B CPU-C

CPU-D CPU-E CPU-F

MEM  
3

MEM  
2

• Exploring different
• Resource allocations
✓ Number and type of

processors, memories,
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal
binding)

PSA ‘17 Andy D. Pimentel, University of Amsterdam

MPSoC

System-level Mapping DSE

8

CPU-A

MEM
1

CPU-B CPU-C

CPU-D

CPU-E CPU-F

MEM  
3

MEM  
2

• Exploring different
• Resource allocations
✓ Number and type of

processors, memories,
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal
binding)

PSA ‘17 Andy D. Pimentel, University of Amsterdam

MPSoC

System-level Mapping DSE

9

CPU-A

CPU-E CPU-F

MEM  
3

MEM  
2

func1 func2

Application 1

func3 func5

Application 2

func4

• Exploring different
• Resource allocations
✓ Number and type of

processors, memories,
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal
binding)

PSA ‘17 Andy D. Pimentel, University of Amsterdam

MPSoC

System-level Mapping DSE

9

CPU-A

CPU-E CPU-F

MEM  
3

MEM  
2

func1 func2

Application 1

func3 func5

Application 2

func4

• Exploring different
• Resource allocations
✓ Number and type of

processors, memories,
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal
binding)

PSA ‘17 Andy D. Pimentel, University of Amsterdam

MPSoC

System-level Mapping DSE

9

CPU-A

CPU-E CPU-F

MEM  
3

MEM  
2

func1 func2

Application 1

func3

func5

Application 2

func4

• Exploring different
• Resource allocations
✓ Number and type of

processors, memories,
interconnect(s), etc.

• Application to Resource 
bindings (spatial binding)

• Task scheduling (temporal
binding)

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level DSE: two elements

10

Evaluating a design point Searching the design space

Source:
Teich et al.

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level DSE: two elements

10

Evaluating a design point Searching the design space

Source:
Teich et al.

PSA ‘17 Andy D. Pimentel, University of Amsterdam

System-level DSE: two elements

11

Evaluating a design point

Source:
Teich et al.

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Specification

Analytical models

Cycle-approximate  
TLM models

Cycle-accurate
models

RTL models

Alternative realizations

High

Low

Ev
al

ua
tio

n
sp

ee
d

System-level DSE: two elements

11

Low

High

A
cc

ur
ac

y/
M

od
el

in
g

co
st

[IEEE Computer’01]

Evaluating a design point

Source:
Teich et al.

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Specification

Analytical models

Cycle-approximate  
TLM models

Cycle-accurate
models

RTL models

Alternative realizations

High

Low

Ev
al

ua
tio

n
sp

ee
d

System-level DSE: two elements

11

{
Sy

st
em

-le
ve

l

Low

High

A
cc

ur
ac

y/
M

od
el

in
g

co
st

[IEEE Computer’01]

Evaluating a design point

Source:
Teich et al.

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Searching the design space

System-level DSE: two elements

12

• Exhaustive search usually is not
feasible

• Typically, metaheuristics are
used to search the design space

• Only visit a relatively small number
of design points

• Single-objective or  
multi-objective optimization

• Do not guarantee finding the
global optimum

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Searching the design space

System-level DSE: two elements

12

• Exhaustive search usually is not
feasible

• Typically, metaheuristics are
used to search the design space

• Only visit a relatively small number
of design points

• Single-objective or  
multi-objective optimization

• Do not guarantee finding the
global optimum

Genetic Algorithm
Simulated Annealing

Ant Colony Optimization

Other
metaheuristics

PSA’17 Andy D. Pimentel, University of Amsterdam

Evaluating a single
design point

13

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The Sesame simulation framework

14

Application model
(Kahn Process Network)

Cycle approximate,  
TLM MPSoC architecture model

Mapping model

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The Sesame simulation framework

15

Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer
(mapping, scheduling and event refinement)

[IEEE TC’06]

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The Sesame simulation framework

15

Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer
(mapping, scheduling and event refinement)

Execute(),
Read(), and
Write() events

[IEEE TC’06]

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The Sesame simulation framework

15

Process A Process C Process D

Processor 1 Processor 2 Processor 3

Shared memory

Process B

Mapping layer
(mapping, scheduling and event refinement)

Op. Cycles

X

Y

Z

750

150

1500

[IEEE TC’06]

PSA’17 Andy D. Pimentel, University of Amsterdam

Exploring the  
design space

16

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Exploring the design space: GAs

17

Selection
based on
fitness

Population

Reproduction

Variation

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Exploring the design space: GAs

18

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Exploring the design space: GAs

18

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Analyzing the DSE process  
and its results

19

• Visualization support for three
aspects:

• Help algorithm developers to find the
best optimization algorithm for their
specific problem

• Help designers to analysis the DSE
results

• Help decision makers to choose the
most preferred solution

Generate
Initial Population

Calculate
Fitness

Select Parents

Create Offspring

Update
Population

Output
Final Results

Terminatio
n Criterion
Satisfied?

Y
e
s

N
o

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Analyzing the DSE process  
and its results (cont’d)

20

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Analyzing the DSE process  
and its results (cont’d)

20

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Analyzing the DSE process  
and its results (cont’d)

20

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• For example, making the search process aware of
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain
diversity and prevent evaluating duplicates
• δ(a,a) = 0 (equality)

• δ(a,b) = #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3]) = 4

Exploiting domain knowledge

21

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• For example, making the search process aware of
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain
diversity and prevent evaluating duplicates
• δ(a,a) = 0 (equality)

• δ(a,b) = #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3]) = 4

Exploiting domain knowledge

δ = 1

21

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• For example, making the search process aware of
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain
diversity and prevent evaluating duplicates
• δ(a,a) = 0 (equality)

• δ(a,b) = #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3]) = 4

Exploiting domain knowledge

δ = 2

21

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• For example, making the search process aware of
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain
diversity and prevent evaluating duplicates
• δ(a,a) = 0 (equality)

• δ(a,b) = #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3]) = 4

Exploiting domain knowledge

δ = 3

21

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• For example, making the search process aware of
“mapping symmetries”
• GA encoding: [0,1,2,3,0,0]  
 
 
 

• A “Mapping distance” (δ) metric to maintain
diversity and prevent evaluating duplicates
• δ(a,a) = 0 (equality)

• δ(a,b) = #transformations needed to achieve equality

• δ([0,1,2,3,0,0] , [0,1,0,0,2,3]) = 4

Exploiting domain knowledge

δ = 4

21

PSA ‘17 Andy D. Pimentel, University of Amsterdam

A small example

22

Quality of result as percentile towards optimum

• 11-process application, 4-processor crossbar architecture
• Design space: 411 = 4M design points (175275 unique)
• Summary of results of repeated GA experiments 

 (dominating lines show better GA performance)

better

better

Random search

Standard GA
GA with distance-based 

diversity control
Probability of finding result

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Multi-functional  
embedded systems

• Modern embedded systems need to support
multiple applications and standards

• Multiple applications can be active simultaneously,
contending for system resources

• Application workload may change over time
✓ System demands change over time

23

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Multi-functional  
embedded systems

• Modern embedded systems need to support
multiple applications and standards

• Multiple applications can be active simultaneously,
contending for system resources

• Application workload may change over time
✓ System demands change over time

23

How to perform DSE for multi-application workloads?
How to deal with dynamic workload behavior?

PSA ‘17 Andy D. Pimentel, University of Amsterdam

DSE for multi-application
systems: scenario-based DSE

24

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Scenarios: they are exponential

25

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Scenarios: they are exponential

25

Infeasible to evaluate design points using all
possible application workload scenario’s!

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Scenarios: they are exponential

25

Use a small, representative
subset of application
scenarios to evaluate

designs!

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Scenario-based DSE

26

Scenario
databaseInter	and	intra

application	scenarios

…

Applications
Scenario	detection

Workload	
generation

Parameterized	MP-SoC	
platform	specification

… …

Scenario	and
mapping/platform
co-exploration

Pareto	front	for
average	scenario	behavior

Latency

Power

Cost
[ICCD’10, IEEE TCAD’13]

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The need for system adaptivity

• Cope with changing (demands of) application
workloads

• Dynamic QoS management allowing to trade off
different system qualities like performance, precision
and power consumption

• Cope with transient and/or permanent system faults

27

PSA ‘17 Andy D. Pimentel, University of Amsterdam

The need for system adaptivity

• Cope with changing (demands of) application
workloads

• Dynamic QoS management allowing to trade off
different system qualities like performance, precision
and power consumption

• Cope with transient and/or permanent system faults

• Types of adaptivity:
• Component reconfiguration (e.g., DVFS, reconfigurable

HW, reconfigurable network, etc.)

• Run-time (re-)mapping of application tasks

27

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Run-time adaptive systems

28

Design-time optimization

Run-time reconfiguration

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Run-time adaptive systems

28

Design-time optimization

Run-time reconfiguration

How to find optimal system configurations at
runtime using light-weight algorithms?

When to migrate tasks?

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Adaptive MPSoCs

• Re-mapping (migration) of tasks not always
beneficial!
• Dependent on workload scenario duration

29

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Adaptive MPSoCs

• Re-mapping (migration) of tasks not always
beneficial!
• Dependent on workload scenario duration

• This leads to a need for adaptivity throttling
• Predict whether or not it is beneficial to re-map

29

Current _mappingT − New_mappingT()* duration > overhead of remapping

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Adaptive MPSoCs

• Re-mapping (migration) of tasks not always
beneficial!
• Dependent on workload scenario duration

• This leads to a need for adaptivity throttling
• Predict whether or not it is beneficial to re-map

29

Current _mappingT − New_mappingT()* duration > overhead of remapping

Needs prediction

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Incorporating additional
optimization objectives

30

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Incorporating fault-tolerance as design objective

Reliability-aware DSE

31

PSA ‘17 Andy D. Pimentel, University of Amsterdam

DMR TMR

ASSERT

Incorporating fault-tolerance as design objective

Reliability-aware DSE

31

PSA ‘17 Andy D. Pimentel, University of Amsterdam

• Detection

• Recovery
• E.g. trade-off checkpoint

overhead / restart overhead

• Design options
• Different effects on reliability

• Affects other objectives (like
performance, power and costs)

DMR TMR

ASSERT

DMR
(skip)

TMR
(restart)

TMR
(restart)

[1 check / frame]

Incorporating fault-tolerance as design objective

Reliability-aware DSE

[CODES+ISSS’12]

31

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Security-aware DSE?

• Increasing ubiquity and connectivity of embedded
systems à security!

• At this moment, security mostly an afterthought
in the design process

• Security must be an objective in early DSE!
• Security mechanisms affect other design objectives

32

PSA ‘17 Andy D. Pimentel, University of Amsterdam

Security-aware DSE?

• Increasing ubiquity and connectivity of embedded
systems à security!

• At this moment, security mostly an afterthought
in the design process

• Security must be an objective in early DSE!
• Security mechanisms affect other design objectives

32

BIG CHALLENGE:
how do you quantify the level of security?

