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Course objectives

To learn the basic background of radiative transfer processes in astrophysical media, with
special emphasis on the analysis of stellar atmospheres. More specifically:

� The student can give a description of the Morgan-Keenan (MK) classification of stellar
spectra, explain the underlying physical ideas, and classify an optical stellar spectrum
as an early-, mid- or late-type spectrum.

� The student is aware that a small fraction of stars cannot be classified according to
MK, can explain the nature of these stars and the reasons why they require a separate
classification scheme

� The student can describe the Johnson photometric system and can give an expose on the
pros and cons of photometric versus spectroscopic observations in a given astrophysical
case.

� The student knows the definitions of the main radiation field quantities, understands
their physical meaning, and can compute their values in given astrophysical cases.

� The student can prove that specific intensity is distance invariant and that flux decreases
with the square root of the distance.

� The student can give a heuristic derivation of the equation of transfer.

� The student can solve the equation of transfer for source functions that are linear in
optical depth.

� The student can analyse the optically thick and optically thin limit of radiative transfer
problems.

� The student can explain the basic physics of line formation in a static atmosphere.

� The student understands the different assumptions underlying TE, LTE and NLTE and
can give an expose on which of these equilibrium states is most representative in a given
astrophysical case.

� The student understands the basics of the methodology to derive the excitation and
ionization state of a gas in LTE.

� The student can give an expose on different temperature definitions

� The student understands the nature of, and can give an expose on, opacities resulting
from both discrete and continuous processes, and is able to identify the main sources of
extinction in stellar and planetary atmospheres.

� The student understands the physical meaning of the conservation laws and can derive
the density structure and total mass of a hydrostatic isothermal atmosphere.
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� The student can explain how the basic global properties (mass, luminosity and radius)
and basic atmospheric properties (effective temperature, surface gravity, abundances,
micro-turbulent velocity, and projected surface rotation velocity) of a star can be con-
strained and what kind of observations are required to do this.

� The student can synthesize his/her basic knowledge of radiative transfer to build a grey
planar LTE atmosphere in hydrostatic and radiative equilibrium.

� The student understands the concept of constructing LTE and NLTE model atmospheres
and can explain why scatterings are the main problem in building such models.

� The student can give an expose on spectral line-broadening mechanisms and can explain
the physical processes responsible for these line-broadening processes.

� The student can give an expose on the curve of growth method.

� The student can give an overview of the structure of the solar atmosphere.

� The student can explain the basic physics of line formation in outflowing atmospheres
and the formation of P Cygni, flat-topped and parabolic line profiles.

� Using the lecture notes, the student is able to derive the relations needed to constrain
the mass-loss rate from the Halpha spectral line and radio continuum flux.

� The student can describe the impact of inter-stellar gas and dust on the spectra of stars,
and can give an expose on the potential problems such contaminations may cause when
interpreting stellar and planetary spectra.

� The student can apply the acquired skills in radiative transfer to problems other than
those related to atmospheres.
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Physical Constants

Name Symbol CGS Value CGS units

Speed of light in a vacuum c 2.998× 1010 cm s−1

Planck constant h 6.626× 10−27 erg s
~ 1.055× 10−27 erg s

Gravitational constant G 6.673× 10−8 cm3 g−1 s−2

Atomic mass unit mamu 1.661× 10−24 g
Mass of hydrogen mH 1.673× 10−24 g
Mass of proton mp 1.673× 10−24 g
Mass of neutron mn 1.675× 10−24 g
Mass of electron me 9.109× 10−28 g
Avagadro’s number NA 6.022× 1023

Gas constant R 8.314× 107 erg K−1 mol−1

Boltzmann constant k 1.381× 10−16 erg K−1

Electron volt eV 1.602× 10−12 erg
Radiation density constant a 7.565× 10−15 erg cm−3 K−4

Stefan-Boltzmann constant σ 5.671× 10−5 erg cm−2 K−4

Fine structure constant α 7.297× 10−3

Rydberg constant R∞ 2.180× 1011 erg

Astronomical Constants

Name Symbol CGS Value CGS units

Astronomical unit AU 1.496× 1013 cm
Parsec pc 3.086× 1018 cm
Light year ly 9.463× 1017 cm
Solar mass M� 1.989× 1033 g
Solar luminosity L� 3.828× 1033 erg s−1

Solar radius R� 6.957× 1010 cm
Solar effective temperature Teff,� 5 772 K
Thomson scattering coefficient σT 6.652× 10−25 cm2

Conversion Factors

Name Symbol Value CGS units

Year yr 3.156× 107 s
Arcsec ” 4.848× 10−6 radians
Solar mass per year M�yr−1 6.303× 1025 g s−1
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Introduction

In the vast majority of cases radiation is the only information we have from distant astro-
nomical objects. Almost all knowledge we have gathered about stars, planets and moons, the
interstellar medium, galaxies, et cetera, is derived from analysis of this radiation. It is there-
fore of considerable importance to study the physics of the creation and transport of radiation
in these objects, and to develop reliable methods that allow to decode the information about
such systems that is contained in their spectra.

If we construct a model of the problem of interest and predict the corresponding spectral
energy distribution, we can make quantitative statements about the physical state of the surface
layers of the object that is observed, if we compare our predictions with the measurements.
In this way we may learn about properties such as temperature and density structure, the kind
of gases and solid particles present, magnetic field strengths and topologies, velocity fields,
force fields (particularly that due to gravity), mass, mass loss and mass gain, luminosity of
the source as a whole, geometrical properties (e.g. radius in the case of an opaque spherical
object), and distance.

1.1 Radiation as probe and as constituent

In the astrophysical context, radiation has a conspicuously dualistic character. On the one hand
it carries the information that we use to derive the physical state of a medium, i.e. it serves as
a probe of this medium. On the other hand it is, in many cases, an important constituent of
this medium, i.e. it in fact determines the structure of the medium itself.

A well-known example of such an astrophysical medium is the stellar atmosphere. In the
outermost layers of a star photons escape to the surrounding space, taking away energy. This
energy is often transported from the near-surface layers to the edge by photons, and photons
therefore in part determine the temperature, and – because of radiation pressure – density
of the atmospheric layers. If radiation pressure is intense, photons may drive a stellar wind
through which matter is lost to space. Coded in the spectral lines and the continuum energy
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distribution, that both originate in the stellar atmosphere, is information on the local condi-
tions. This illustrates the dualistic nature of radiation.

In the past decades impressive progress has been made in the quantitative analysis of atmo-
spheres. Several reasons for this may be identified: i) the unprecedented increase in the
quality of ground- and space-based observations; ii) the development of extremely fast and
efficient numerical methods; and iii) an ever increasing computer power. The theory of stellar
atmospheres has reached such a high level of sophistication that it can be used as a method-
ological handbook for the study of other astrophysical systems where radiation has the above
mentioned dualistic nature. Examples of such systems are planetary atmospheres, the cir-
cumstellar medium, accretion disks, H II regions, planetary atmospheres and rings, and the
interstellar and intergalactic medium.

In these lectures we focus on the physics of the creation and transport of radiation, and on
methods that help us decode spectral information. We primarily discuss stellar and planetary
atmospheres, however several chapters are devoted to other astrophysical objects.

1.2 About these lecture notes

In chapter 2 we discuss the spectra of stars, brown dwarfs, and planets and their classification.
This classification is done primarily on the basis of spectral line properties, but may also be
done using broadband color indices. The calibration of the spectral types, luminosity classes
and color indices in terms of effective temperature, gravity and chemical composition is done
using models of stellar atmospheres. The first 8 chapters are devoted to discussing the basic
physics of radiative transfer and of extinction and emission. This knowledge is applied in
chapters 9 through 13 (and in the optional chapters 14 and 15) to construct model atmospheres.
In Chapter 16 we discuss our star, Sun. The final chapters discuss other astrophysical media.

In chapter 3 we introduce the macroscopic quantities that characterise the radiation field; in
chapter 4 the equation that describes the transfer of radiation is derived. This 4th chapter also
discusses simple analytical solutions of the radiation transfer equation. Numerical solutions
are treated in (the optional) chapter 5. The coupling between the radiation field and the ma-
terial medium is discussed in chapter 6. We will invest time to study types of equilibrium
between radiation and matter. In thermodynamic equilibrium (TE) the state of the gas is fully
described by the equations of Boltzmann and Saha. The Saha equilibrium specifies the ion-
isation as a function of temperature and density of the medium. This provides a relatively
simple, but already quite successful way to classify a stellar or planetary spectrum (see § 6.5).
In TE the radiation field is described by the Planck function. This is the simplest description
of the emerging radiation field of a star or planet, and could, at least in principle, be used
to calibrate color indices (see § 6.6). However, a real stellar spectrum is more complex and
shows appreciable deviations from that of a Planck curve. A meaningful calibration therefore
requires more sophisticated models.
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The transfer of radiation is dependent on the sources of extinction χν and of emission ην in
the medium. In chapters 7 and 8 we make the link between these macroscopic quantities and
the microscopic processes that cause extinction and emission.

Starting with chapter 9 we focus on the modelling of atmospheres. We start out with a dis-
cussion of the conservation of mass, momentum, and energy. In essence, the problem of
stellar and planetary atmospheres is to solve the equation of radiation transfer for a suitable
equilibrium between radiation and matter, subject to the conservation constraints given above.

In chapter 10 we discuss the grey atmosphere. This relatively simple model provides important
insight in the role of the energy equation. A widely used model to describe the stellar atmo-
sphere assumes that the gas is in local thermodynamic equilibrium (LTE) and that hydrostatic
and radiative equilibrium hold. This type of model is treated in chapter 11. In chapter 12, we
focus in on planetary atmospheres. Next, the processes that determine the shape and strength
of spectral lines are reviewed. These need to be included in our models if the aim is to con-
struct a representation of the atmosphere that may be compared to observations. Chapter 14
focusses on the process of scattering, arguably the most fundamental physical complication
inherent to solving the model atmosphere problem. In some cases, the assumptions that make
up LTE break down in the stellar atmosphere. In that case non-LTE models are needed to
describe the medium. Aspects of non-LTE physics & models are discussed in chapter 15.

The sun is such a special star that we devote a separate chapter to it. In the final chapters we
‘move away from the stellar surface’. We successively discuss stellar winds, nebulae, and the
interstellar and intergalactic medium.

Exercise 1.1

a) Give astrophysical information carriers other than electromagnetic radiation.

b) Think of types of observations and areas of astronomical research where knowledge of
the creation and transport of radiation is not important.

1.3 Literature

No books fully cover what is presented in these lecture notes. However, we follow parts of:

• Mihalas: Stellar Atmospheres, 2nd edition. W.H. Freeman and Company, New York,
1978. Standard work, including a detailed description of the basis physics of stellar
atmospheres.
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• Hubeny & Mihalas: The Theory of Stellar Atmospheres, 1st edition. Princeton Uni-
versity Press, 2014. Essentially the 3rd edition of the book of Mihalas, completely
reworked by Hubeny to include modern techniques. Standard work.

• Rybicki and Lightman: Radiative Processes in Astrophysics. Excellent standard book.
Treats parts of the basic physics in more detail than is done in these lecture notes.

• Pradhan & Nahar: Atomic Astrophysics and Spectroscopy, 1st edition. Cambridge Uni-
versity Press, 2011. Excellent overview of atomic structure and processes relevant for
radiative transfer.

• Gray: The Observation and Analysis of Stellar Photospheres, 1st edition. Cambridge
University Press, 1992, 2005, 2008. Excellent book. More basic than these lectures,
with an emphasis on instrumentation and observing techniques in optical spectroscopy.

• Gray & Corbally: Stellar Spectral Classification. Very useful book. Discusses the spec-
tral classification method, but unfortunately does not provide an overview of spectral
calibration.

• Rutten: Opwekking en Transport van Straling. Second year lecture notes of the Univer-
sity of Utrecht (in Dutch). Very clear and conceptual discussions. Though at a lower
level, it is used as the main guide to write several chapters of these lecture notes.

• Rutten: Radiative Transfer in Stellar Atmospheres. Doctoral lectures at the University
of Utrecht. Almost encyclopedic approach, though less conceptual than his second year
lectures. Available through internet. Comparable level.

• Hubeny: In: Stellar Atmospheres: Theory and Observations. Excellent discussion of
modern techniques in radiation transfer.

• Seager: Exoplanet Atmospheres. Clear and concise textbook on exoplanet atmospheres,
with a brief introduction of basic concepts of radiative transfer.

• Osterbrock & Ferland: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei.
University Science Books, California, 2006, Second Edition. Standard textbook on the
physics of nebulae and AGNs. Beautifully written.

• Aller: Physics of Thermal Gaseous Nebulae. Standard work on the physics of nebulae
with many useful tables. Well written though printed in an horrific font.

• Lamers & Cassinelli: Introduction to Stellar Winds. Standard work on the theory of
stellar winds. Clear, very didactic approach.

• Aller: The Atmospheres of the Sun and Stars. Somewhat outdated, though very readable
book on the physics of stellar spectra and stellar atmospheres with a good introduction
on atomic and molecular line formation.

• Hearnshaw: The Measurement of Starlight. Very readable book on the history of stellar
spectroscopy.

https://ui.adsabs.harvard.edu/abs/2008oasp.book.....G/abstract
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The spectra of stars, brown
dwarfs, and planets

The history of astronomical spectroscopy reaches back for two centuries. In this introductory
chapter we first give a short (and therefore incomplete) summary of this history. We then
discuss the spectra of stars and planets and their classification.

2.1 Spectral classification

In 1802 William Hyde Wollaston (1766–1828), an English chemist and physicist, found that
the spectrum of the sun contained dark stripes (spectral lines), which he interpreted as natural
separations between colors. From 1814 on the German maker of lenses Joseph von Fraunhofer
(1787–1826) studied these lines in detail, which he labeled with the letters A to K (a notation

Figure 2.1: Joseph von Fraun-
hofer (1787–1826).

which in part is still in use today). He hoped to be able to
use these dark stripes as markers of wavelengths for the devel-
opment of optical instruments. Fraunhofer also observed the
spectra of stars in the night sky, and noticed large differences
in color and stripe pattern. In the yellow and orange part of
the spectrum of Sirius and Castor he could not detect lines at
all, however, in the green-blue part he found three strong lines.
The spectra of Pollux and Capella were very similar to that of
Venus (i.e. to that of the sun). The spectrum of Betelgeuse did
not look like that of the sun at all, though Fraunhofer thought
he saw the D-line.

Later, others described the spectral differences between stars
as recognized by Fraunhofer in more detail. These differences
were used to classify stars. The first systematic classification

is from father Angelo Secchi (1818–1878), who founded a Jesuit observatory in the city of
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Figure 2.2: Discussion of the peculiar A-type stars by Morgan, Keenan & Kellman in their ‘Atlas
of stellar spectra, with an outline of spectral classification’ (1943), which is at the basis of the MK
classification scheme.

Rome in the mid of the nineteenth century. In 1867 he published a catalogue of 314 stars
subdivided in four types. In 1890 at Harvard Observatory a large program to classify stars
was initiated by Edward Charles Pickering (1846–1919), leading to the Henri Draper Memo-
rial Catalogue, which contained the spectra of 10 351 stars. These spectra were recorded on
photographic objective-prism plates, and were classified by means of visual inspection. The
estimated ratio between the strengths of spectral lines determined their spectral class.

The spectral classes were denoted by the capital letters A through P (later some of these
letters disappeared as labels of spectral type). Besides this large scale classification project
more detailed studies were done, from which emerged that some stars needed an extra label
to properly describe their spectra. For this, small letters were used. Some examples of this
are: e, in case emission lines are present, especially those of the Balmer series1; c, in case the
spectral lines were unusually sharp; f , in case of emission in the He II λ4686 and N III λ4640
lines. The latter may occur in the spectra of O-type stars.

The great importance of a precise classification became clear with, among others, the discov-

1Hydrogen lines from main quantum level n (> 2) to 2 are referred to as Balmer lines.
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ery by Ejnar Hertzsprung (1873–1967)2 in 1905 that the proper motion of early-type stars
that carried the label c was much smaller than that of normal stars of the same spectral class,
having comparable apparent magnitudes. Hertzsprung concluded that c-stars of equal appar-
ent magnitude were much more distant than normal stars, and therefore intrinsically much
brighter. We now know that these c-stars are giants and supergiants. The sharpness of their
spectral lines is linked to a much lower density of their atmospheres, which results in less
‘pressure broadening’ of these lines (see chapter 13).

On an even larger scale, the spectra of almost a quarter of a million stars were classified at
Harvard and published from 1918 to 1924. This work, by Annie Jump Cannon (1863–1941)
and assistants, culminated in a new version of the Henri Draper (HD) Catalogue, in which
225 300 stars were included. Classification of a further 46 850 stare were published in the
Henry Draper Extension (HDE) catalogue. In this monumental catalogue the spectral classes
were indicated by capital letters, followed by a number (0 to 9) for a possible finer subdivision.
The original series A through P was thinned out, and ended up in the non-alphabetic order we
use today3:

O B A F G K M

← earlier types later types→

This enormous industry was purely morphological. The idea was that the classification re-
flected the evolution of stars, hence the terms ‘early-’ and ‘late’-type stars. Even after Hertz-
sprung in 1908 and, independently, Henry Norris Russell (1877–1957) in 1913 presented their
diagram of absolute magnitude versus spectral type, the true meaning of the spectral types
remained unclear. Only after Anton Pannekoek realized the implications of pressure broaden-
ing; Meghnad Saha derived the equations for ionization equilibrium, and Alfred Fowler and
Edward Arthur Milne coupled the colors of stars to differences in ionization, things became
clear.

The spectral sequence is one of stellar surface temperature. As we will see later in these lec-
tures it is predominantly temperature that determines the ionization and excitation properties
of the outer layers of a star, where the spectral lines are formed. The degree of ionization
of an element depends also on the density of the medium. This forms the basis of the lumi-
nosity classification of stars, first proposed by William Sydney Adams (1876–1956) in 1914,
and later refined by many others, and which, after calibration, can be used for ‘spectroscopic
parallax’ determination. In its present form the luminosity-classification divides stars in types

2Born in Denmark, Hertzsprung worked at Leiden Observatory from 1919 to 1944, the last nine years as
director.

3Mnemonics to remember the spectral order are, for the ladies: O Be A Fine Guy, Kiss Me; and for the
gentlemen: Only Boys Accepting Feminism Get Kissed Meaningfully.
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Table 2.1: An overview of the Morgan and Keenan (MK) spectral classification scheme, and of additions made to this system.
For extremely cool objects, such as very cool stars, brown dwarfs, and planets with gaseous atmospheres the types L, T, and Y
have been added. For giants with peculiar abundance patterns the types S, R, N, and C are used.

MK spectral class Class characteristics

O Strong UV continuum with He II absorption. Lines from: C III, N III, O III, Si IV
B No He II lines. He I absorption, with maximum at B2; H lines stronger at later subtypes.

Lines from: C II, O II, Si III
A H lines reach maximum at A0, weaken at later subtypes. Weak Ca II appearing.

Mg II and Si II strong.
F Ca II stronger; H lines weaken; lines of singly ionised metals prominent;

those of neutral metals appear
G Ca II very strong; strong neutral and weaker ionic metal lines, e.g. of Fe; H lines weaker
K Blue continuum weak. Strong neutral metallic lines, e.g. Ca I; H lines very weak;

CH and CN bands developing
M Red continuum; very strong Ca I; TiO bands developing strongly.

L Infrared continuum. Weakening VO & TiO bands; CO, H2O, CaH, FeH, CrH absorption bands.
Strong lines of easily ionised atoms Li, Na, K, Rb, Cs (i.e. alkali metals)

T Strong infrared continuum. Appearance of strong CH4, H2 and NH3 bands in near-IR
Y Strong mid-infrared continuum; CH4, H2O, and NH3 bands.

Additional spectral classes Class characteristics

S Strong bands of ZrO and YO, LaO present, TiO weak compared to M stars,
strong CN bands though not as strong as in C stars

R (or C) Strong bands of CN and CO instead of TiO in class M
N (or C) Swan bands of C2, Na I (D), Ca I λ4227, for the rest similar to R

Additional qualifiers sometimes included with MK types

e emission components in hydrogen lines when not expected, e.g. Be
f N III λ4634−40−42 emission, He II λ4686 emission in certain O type stars

(for an even more detailed sub-classification of Of stars, see Sota et al. 2011, ApJS 193, 24)
p peculiar spectrum, e.g. anomalous line strengths or nebular (diffuse) lines
n broad lines ( nn – even more broadened lines; nnn - extremely broad lines)
s sharp lines
c especially sharp lines, characteristic of supergiants
k interstellar lines present
m conspicuously strong metal lines (usuall applied to A stars)
v or var variable lines

MK luminosity class

I supergiants
Ia+ or Ia-0 extreme supergiants
Ia luminous supergiants
Iab normal supergiants
Ib underluminous supergiants

II bright giants
III giants
IV subgiants
V dwarfs (or main sequence stars)
VI or sd (prefix) subdwarfs
VII or D (prefix) white dwarfs
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Figure 2.3: Strength of key features in the spectra of stars as a function of spectral type.

I, II, III, IV, and V (see figure 2.5). A more refined devision of class I (supergiant) stars can
be made using the letters a+, a, ab, and b (class Ia+ being the most luminous).

Todays standard for the classification of stellar spectra is that defined by William Morgan,
Philip Keenan, and Edith Kellman in the forties, and later revised by Morgan and Keenan
(MK), and which is based on spectra of standard stars. The earliest spectral type in this system
is O3 (O0..O2 are not used); the latest type is M8.4 Of all stars brighter than magnitude 8,
for which the Henri Draper Catalogue is still complete, 99.95% can be classified in this way.
An overview of the MK classification scheme is given in table 2.1. Roughly the classification
works as follows (see also Fig. 2.3)

O- and B-type stars are principally classified on the basis of lines of hydrogen and of neutral
and singly ionized helium. In addition lines of several ionization stages of heavier elements,
such as C, N, O, and Si, are used. For a detailed overview of the O and B star classification
see Liu et al. 2019 and Table B.1. A-type stars are difficult to classify, as in this group of
stars the Balmer series lines reach their maximum strength, and most lines of other elements
are relatively weak. One uses the K-line of Ca II, which rapidly increases in strength from
B8 to F0, as the prime criterion. F0 to early M-type stars show the following changes: In
general the F-type stars show the absorption lines of heavy elements. These lines become
stronger toward later spectral type. From type F toward later types the Balmer series lines
become weaker, and are no longer conspicuous in K- and M-type spectra. Classification of F-
to K-type spectra is based on Balmer lines, the lines of Fe I, Ca I, Ca II, and the G-band at
ca. 4300 Å (a superposition of lines of the CH molecule and of a number of heavy elements,
which Fraunhofer referred to with the letter G). M-type stars are characterized by the presence
of molecular TiO bands, which rapidly increase in strength toward later types.

4More recently also the types O2 and M8.5, 9, and 9.5 have been introduced.

https://ui.adsabs.harvard.edu/abs/2019ApJS..241...32L/abstract
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Figure 2.4: Spectral energy distribution of an O-type star. The insets highlight specific parts of the
spectrum. P Cygni type line of N V, Si IV and C IV are visible in the ultraviolet; He I, He II and H I
(Hα) in the optical, and H I (Brα) in the near-infrared. The Lyman continuum (at λ < 912 Å) shows
many lines of metal ions.

The luminosity of a star is inversely proportional to its surface gravity (see Eqs. 3.25 and 9.28
for details),

L = 4π R2 σT 4 = 4πGM
σT 4

g
, (2.1)

which sets the absolute scale of the pressure structure – and by that the density in the region
in which the spectral lines are formed (see exercise 9.8). In early-type stars the wings of
hydrogen lines are sensitive to atmospheric pressure. These lines (notably those of the Balmer
series, such as Hα, Hβ, Hγ and Hδ) are therefore used to determine the luminosity class of
O, B, A, and F-type stars.

The calibration of spectral type, luminosity class and color indices (which will be discussed in
§ 2.6) as function of temperature and density of the medium – expressed in terms of effective
temperature Teff and surface gravity g – is done using model atmospheres. One output of such
models is the spectral energy distribution or SED, of which an example is given in figure 2.4.
Model atmospheres will be discussed later on in these lectures.
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Figure 2.5: Hertzsprung-Russell diagram showing the stellar spectral types and luminosity classes.
Note the large span in luminosity of the supergiants, illustrating the need for a sub-classification in
Ia+ (not shown), Ia, Iab (not shown) and Ib. Source: Pradhan & Nahar, Atomic Astrophysics and
Spectroscopy.

2.2 Special stellar spectra

The vast majority of stars emit spectra that are well classified using the method we have just
described. There are however stars of which the spectra show special characteristics. We will
give a brief description of a few of such objects.
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Be-stars

The spectra of some B- (and also O-) type stars show emission lines of, notably, the Balmer
series (discrete transitions between the first and higher excited stages of neutral hydrogen).
Hα is the strongest; the emission strength decreases toward higher members of the Balmer
series. These stars are called B-emission (Be) stars. Be stars constitute about 15% of all B
stars. In some Be stars the Be phenomenon is transient, i.e. it may be present for some time,
then disappear for a while. It has been established that the rotation velocities of Be stars are
on average significantly higher than that of normal B stars. Whether all B stars show the
Be phenomenon during some part of their main sequence evolution or whether it is linked
to binary evolution is currently being investigated. The near break-up velocities of Be stars
apparently allows these stars to eject material, mainly in the equatorial regions. Line emission
of this disk-like distribution of gas dominates the profile shape of the strong Balmer lines. A
second characteristic of most Be stars is that they show an excess in their infrared continuum
brightness.

Wolf-Rayet stars

This type of stellar spectrum was first discovered by the French astronomers Charles Wolf
(1827–1918) and Georges Rayet (1839–1906), in 1867, and is characterized by broad emission
lines of highly ionized elements, superposed on a very ‘hot’ continuum spectrum. The lines
are formed in a dense, optically thick outflow or stellar wind and reflect the high mass loss of
the star.

The temperatures of Wolf-Rayet (WR) stars range from that of O-type stars to well above
100 000 K. The mass-loss rates are in the order of 10−5 to 10−4 M�yr−1. Because of the
extreme character of their spectra they can not be classified using the MK scheme. They
have an independent classification scheme consisting of three types. Depending of the pres-
ence of strong lines of ionized nitrogen, carbon, or oxygen one refers to them as WN-, WC-
and WO stars, respectively. These are further subdivided in the spectral sequences WN2–11,
WC4–9 and WO1–4, depending on the ionization-excitation conditions and the density in the
outflowing atmosphere.

The Galactic Wolf Rayet Catalogue (v1.25, Crowther, Baker & Kus) contains 667 galactic
WR stars; more than 100 are known in the Magellanic Clouds. The WR stars represent the
last phase in the evolution of very massive stars (i.e. stars with an initial mass & 25M�). In
absolute terms they are young stars (∼ 5 − 10 Myr). During the WR phase these stars end
their lives in a core-collapse supernova explosion.

In a completely different category of stars WR spectra have also been observed, i.e. in some
of the (∼ solar mass) central stars of planetary nebulae.

http://pacrowther.staff.shef.ac.uk/WRcat/index.php
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Stars with P Cygni profiles

Resonance lines of abundant ions in the ultraviolet part of the spectra of O- and B-type stars
often show P Cygni type profiles. Such line profiles consist of a blue shifted absorption
component and a symmetric emission component. They are the result of a spherical stellar
wind in which material is ejected from the star with a high velocity (on the order of 103

km sec−1). In the part of the wind that is seen in projection in front of the stellar disk, and
in which the flow accelerates over a large interval in velocity (causing a shift in wavelength),
the blue shifted absorption is formed. The emission originates from those parts of the outflow
that are seen next to the stellar disk, and that give rise to a symmetric profile centered on the
rest wavelength of the line (see chapter 17).

Carbon stars

Very cool stars have spectra that are dominated by absorption bands of molecules. They can
have spectral types M, C, or S. M-type stars show strong absorption bands of TiO. C-type or
carbon stars have spectra dominated by absorption bands of molecules that contain carbon.
Important species are C2, CH, and CN.

Whether a cool star has an M- or a C-type spectrum does not depend on its temperature, but
on the number ratio of carbon and oxygen atoms. The reason is the exceptional stability of
the CO molecule, which binds all available C and O atoms. When the star is oxygen rich,
i.e. when the oxygen abundance is higher than that of carbon, a surplus of oxygen atoms will
remain after the formation of carbon monoxide to form molecules such as TiO. In this case
we observe an M-type spectrum. Reversely, when a star is carbon rich, a surplus of carbon
atoms will remain to form carbon compounds such as the ones mentioned above. This yields
a C-type spectrum.

If the C/O ratio is ∼ 1 the spectral properties are intermediate between M- and C-type. These
stars are classified as of S-type.

The atmospheric C/O number ratio of evolved stars of low or intermediate mass (more pre-
cisely, those that are on the asymptotic giant branch in the Hertzsprung-Russell diagram or
HRD) may change over time when carbon produced in thermonuclear reactions in the stellar
interior reaches the surface layers by means of convective motions. The turnover of an M-type
star into a C-type star takes only a very short time (< 104 year).

Peculiar stars

The chemically anomalous or ‘peculiar’ stars form a group that in the HRD is located along
the main sequence, from about spectral type B5 to F2. In total about 15% of all main sequence
stars is situated in this spectral interval. They are roughly subdivided in two groups, the pecu-
liar A (Ap) stars, and the metal line A (Am) stars. They deviate from other stars in that they
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show strong lines of very specific elements. Examples are the mercury-manganese or HgMn
stars and the strontium-chromium-europium or Sr-Cr-Eu stars. For these stars atmospheric
abundances of the elements mentioned can be enhanced up to a factor 103 relative to normal
values.

These deviations are thought to be the result of the exceptional stability of the atmosphere, in
which a combination of gravitational forces and selective radiation pressure on spectral lines
causes a differential diffusion of elements, such that some show preference to ‘float’ to the
surface. The exceptional stability of the atmosphere is most probably linked to the absence of:
i) a convection zone that penetrates to layers close to the surface, which explains the absence
of peculiar stars later than type F2; ii) strong mass loss, which explains the absence of peculiar
stars earlier than type B2. The atmospheric stability of peculiar stars is also illustrated by, for
instance, a systematically lower X-ray luminosity of A-type main sequence stars compared to
that of dwarfs of neighboring spectral types.

Magnetic fields and slow rotation also promote atmospheric stability, each process favoring
specific elements to surface abundantly. Indeed, both the Ap/Bp and Am stars show much
slower rotation than normal A and B stars, but stronger magnetic fields than normal A and
B stars. The chemically peculiar, weakly-magnetic Am and the hotter (B-type) HgMn stars
appear in binary systems more frequently than normal A and B stars. Rotational breaking
due to binary tidal interactions provides a mechanism for slowing these stars sufficiently for
atomic diffusion to proceed efficiently. In contrast, the strongly magnetic chemically peculiar
Ap and Bp stars appear in close binary systems very rarely. Ap and Bp stars appear in widely
separated binaries with roughly the same frequency as normal A and B stars, but their apparent
rarity in close binary systems likely provides an important clue to the origin of their magnetic
fields. A particularly interesting, although currently untested, hypothesis is that these stars
are actually the product of stellar mergers. The merger process may than have generated the
magnetic field.

2.3 Special binary spectra

It is estimated that about 40% of solar-type stars to 100% of massive stars are part of a binary
or higher-order multiple star system. The binary fraction seems to increase with the mass
of the primary (the initially most massive component of the binary systems), perhaps even
reaching ∼100% for O star primaries. We briefly discuss the spectra of three special types of
binaries.

Cataclysmic variables

Cataclysmic variables (CVs) are close binary stars in which a low mass star (of about a solar
mass, which in the HRD is usually located close to the main sequence) fills its Roche lobe and
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Figure 2.6: Spectrum of the cataclysmic variable IP Pegasi (top) together with four spectra of M-type
stars. IP Peg is a system with a low mass transfer rate. The spectrum shows a hybrid nature in-between
that of the “blue” spectrum of the accretion disk around the white dwarf and the “red” spectrum of its
M3V companion. Clearly visible in emission are the lines of the Balmer series of hydrogen and the
He I λ5875 line. These are formed in the optically thin outer regions of the rotating disk. This can be
deduced, for instance, from the fact that they are double peaked. The M3V companion reveals itself,
e.g. by the strong molecular bands of TiO.

transfers mass to a white dwarf. CVs usually have orbital periods of a few hours. The mass
transfer proceeds through an accretion disk, in which material spirals in, in almost Keplerian
orbits, toward the white dwarf. In most cases the disk dominates the optical light of the binary
system. The spectral characteristics of CVs sensitively depend on the rate of mass transfer. If
this is low (of the order of 10−10 M� per year, e.g. in dwarf novae in quiescence) one sees
strong emission lines, notably those of the Balmer series (see figure 2.6), superimposed on a
blue continuum. These lines originate from a large optically thin regime in the outer parts of
the disk. When the mass transfer rate is high (of the order of 10−8 M� per year) the continuum
emission increases relative to that of the lines (because also the outer parts of the disk become
optically thick). In some cases the lines disappear (e.g. during a dwarf nova eruption).

Low Mass X-ray Binaries and High Mass X-ray Binaries

Low Mass X-ray Binaries (LMXBs) are similar to CVs, except that the compact object is
a neutron star or a black hole i.s.o. a white dwarf. The optical spectra of LMXBs show a
blue continuum (corresponding to a temperature of 30 000 K or higher), on which superposed
are a number of weak emission lines. The most important of these lines are Balmer series
transitions, He II λ4686, and C III/N III λ4640-50. The spectra originate in the accretion disk
around the compact star, where x-ray radiation from the compact object is being converted in
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optical and ultraviolet photons (so called x-ray heating or “reprocessing”).

In High Mass X-ray Binaries (HMXBs) the star accompanying the neutron star or black hole
is a massive star (typically> 10M�) of spectral type O or early-B. Accretion of matter on the
compact object can be different for LMXBs and HMXBs. In the case of LMXBs, the small
and low mass companion star fills and overflows its Roche lobe, therefore accretion of matter
always occurs through the formation of an accretion disk. In the case of HMXBs, accretion
can also occur through an accretion disk, for systems in which the companion (supergiant)
star overflows its Roche lobe. There are however two alternatives. The first concerns dwarf to
giant Be-stars, i.e. stars with a circum-stellar disk (see above). Here it is when the compact
object – on a wide and eccentric orbit – crosses this disk, that accretion periodically occurs.
These systems are sometimes referred to as Be-HMXBs. The second case is when the massive
star (often a supergiant) ejects a dense radial stellar wind (see Chapter 17), and the compact
object directly accretes the stellar wind through Bondy-Hoyle-Littleton processes. These are
sometimes referred to as Sg-HMXBs.

We point out that there also exist X-ray binary systems for which the normal star if of inter-
mediate mass (typically between 1 and 10 M�), called IMXBs for Intermediate Mass X-Ray
Binaries.

2.4 Brown dwarfs and planets

The masses of brown dwarfs are too low to allow thermonuclear burning of hydrogen in their
cores, resulting in a steady decline in both luminosity and effective temperature with time5.
Deuterium is fused during the contraction phase. Lithium however always remains present
(and it is therefore the detection of Li that is used to identify these dim objects as brown
dwarfs). Very low mass stars and brown dwarfs are probably the most common objects in our
Milky Way. The warmest brown dwarfs have M-type spectra and are dominated by molecular
absorption bands of H2, CO, H2O and metal oxides such as TiO and VO (see Fig. 2.7).

The cooler L-type brown dwarfs (with effective temperatures Teff . 2 200 K) are characterized
by strong metal-hydride (FeH, CrH), H2O and CO molecular absorption; and alkali lines,
including the heavily pressure-broadened Na I and K I doublets. L dwarfs also show evidence
for condensed clouds in their photospheres, which give rise to highly reddened spectral energy
distributions and absorption features from silicate grains. Ti and V are locked up in solid state
particles causing the TiO and VO molecular bands to disappear.

Even cooler Jupiter-like objects with masses less than' 13MJ do not even burn deuterium. If
the spectra of such objects show strong CH4 bands then Teff . 1 300 K and spectral type T is
used to characterise them. Other typical features are H2O, NH3, and strong collision-induced

5The mass limit for sustained hydrogen fusion is roughly 0.072 M� (71 Jupiter masses) for a Solar metallicity
gas mixture, increasing to 0.090 M� for a pure hydrogen gas (e.g. Chabrier & Baraffe 2000).

https://www.annualreviews.org/doi/pdf/10.1146/annurev.astro.38.1.337
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Figure 2.7: Spectra of representative M-type, L-type, and T-type dwarfs, compared to data for Jupiter.
The spectra are arbitrarily normalised. Major molecular absorption bands characterising these spectra
are labeled. Atomic K I absorption is also labeled, which produces a substantial pressure-broadened
line feature spanning 0.7-0.85µm in L and T dwarf spectra. Note that Jupiter’s emission shortward of
∼4µm is dominated by scattered solar light modulated by CH4 and NH3 absorption features, while
the dwarf spectra are entirely due to emergent flux From: Burgasser 2009

H2 absorption.

A formal and robust definition of the spectral type Y, for even cooler objects, is not yet in
place. The appearance of an absorption feature of potentially ammonia (NH3) at 1.55µm has
been proposed as a classifier. Objects that show this feature have been modelled to have Teff .
400 K.

Brown dwarfs differ from Jupiter-like objects, as are presently being discovered around nearby
stars, in their genesis. For example, the bulk of the discovered L dwarfs is ‘free floating’,
i.e. they exist as individual objects in space, contrary to (exo)-planets. The classification of
exoplanet spectra is complicated by the presence of the much brighter host star. A promising
technique is that of transit spectroscopy, in which the extinction of background host-starlight
passing through the exoplanet atmosphere is used to probe the composition and vertical height
of the exoplanet atmosphere. Figure 2.8 shows such a classification for hot Jupiters in the
(equilibrium) temperature range of 1000-2500 K.

https://arxiv.org/abs/0903.1390
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Figure 2.8: Spectral sequence of hot-Jupiter exoplanets. The dots are transmission observations; the
solid coloured lines show fitted atmospheric models. Horizontal and vertical error bars indicate the
wavelength spectral bin and 1σ measurement uncertainties, respectively. Prominent spectral features
of Na, K, and H2O are indicated. Plotted on the vertical axis is the transit-measured altitude z(λ) of a
hydrostatic atmosphere normalised to the pressure scale heightHeq, which is a measure of the degree of
cloudiness (see Chapter 12). The planet with smallest z(λ)/Heq is at the top, the one with largest ratio
at the bottom. Planets with predominantly clear atmospheres (top) show prominent alkali and H2O
absorption; heavily hazy and cloudy planets (bottom) have narrow alkali lines and H2O absorption that
is partially or completely obscured. The latter planets also feature the strongest optical (0.3 - 0.57µm)
to infrared (3 - 5µm) continuum slopes. The relatively weak H2O features in the hazy and cloudy
planets is interpreted as clouds obscuring the deeper layers where water emission originates. From:
Sing et al. 2016

https://ui.adsabs.harvard.edu/abs/2016Natur.529...59S/abstract
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Figure 2.9: Spectra of the Planetary nebulae NGC 1501 (left) and IC 1297 (right) in visible light. Plan-
etary nebulae are characterized by strong emission lines and a (very) weak continuum. The strongest
nebular lines in PN spectra are often those of the forbidden [O III]λ4959 and 5007 transitions. The
lines that have the superscript * are from the central star, which in both cases has an effective tempera-
ture of Teff ∼ 80 000 K; the nebulae have a electron temperature Te ∼ 10 000 K. Source: Stanghellini,
Kaler, & Shaw 1994, A&A 291, 604.

2.5 Nebulae

Planetary nebulae

Diffuse objects that can not be resolved in stars are referred to as nebulae. It may be clear
that in many cases this definition says more about the spatial resolution of the instrument that
is used than about the nature of the observed object. Planetary nebulae were termed as such
by Frederick William Herschel (1738–1822), who saw them with his telescope and thought
they looked somewhat like the disks of planets. The first spectrum of a planetary nebula
was recorded in 1864 by William Huggins (1824–1910). Huggins discovered that a single
emission line seemed responsible for the light. At higher spectral resolution this single line
could be resolved in three individual lines, of which Hβ is one.

Planetary nebula contain a central star. The nebula is ejected by this star. Planetary nebula
represent a short (of the order of 104 year) period near the end of the lives of low mass stars,
after evolving of the asymptotic giant branch but before reaching the white dwarf stage. The
spectra of planetary nebulae are dominated by line emission; continuum emission is relatively
weak. The hydrogen line emission in the nebula results from the illumination by Lyman
continuum photons from the very hot (30 000 to ∼ 150 000 K) central star, which ionises the
nebular gas. After recombination a line cascade occurs (e.g. in the Balmer series) giving rise
to the emission lines. Planetary nebulae also show forbidden line emission, e.g. [O III]λ4959



34 The spectra of stars, brown dwarfs, and planets

and 5007. This radiation originates from collisional excitation of metastable levels, which as
a result of the extremely low densities in nebulae are no longer depopulated by collisional
processes. Figure 2.9 shows two examples. We will discuss the line formation in gaseous
nebulae at a conceptual level in more detail in chapter 15. Further quantitative elaborations
will be given in chapter 18.

Nebulae around massive stars

Massive stars may also be surrounded by nebulae. These may form from material ejected by
the star, typically in evolutionary phases characterised by a high mass loss in a stellar wind.
Nebulae are observed around for instance Luminous Blue Variable stars, Wolf-Rayet stars
and red supergiants. The nebular spectra of LBVs en WRs are dominated by recombination
lines, just as in the case of planetary nebulae. In the infrared one often observes the thermal
emission of solid state material (or dust), that may condense in the stellar outflow or in the
nebular environment.

2.6 The continuum energy distribution

Connected to the changes in relative line strengths that are observed along the spectral se-
quence, and which are caused by changes in the ionisation and excitation conditions in the
stellar atmospheres, is a change in the continuum energy distribution of the emitted light.

Libraries of optical and near-IR spectra illustrate the changes in the continuum energy distribu-
tion as a function of spectral type. An example is the VLT/UVES Paranal Observatory Project
by Bagnulo et al. (2003). The spectra cover the wavelength range from 3040 to 10400 Å (save
for a few narrow wavelength gaps) and have a spectral resolving power (see eq. 13.3) of about
80 000. For most of the spectra, the typical signal-to-noise ratio in the V band is between
300 and 500. All this implies that both the individual spectral lines and continuum energy
distribution are clearly visible. The spectra can be obtained and/or visualised using the UVES
POP Archives. A second example is the X-Shooter Spectral Library, covering the wavelength
range 3000 to 25000 Å (save for a few gaps) at a spectral resolution R ∼ 10, 000 (Verro et al.
2022). This library contains spectra for 683 stars of spectral types O through M, as well as
AGB-stars. Both original and galactic dust corrected spectra are available.

Changes in the spectral energy distribution can be measured by one or more color indices. The
best known are the B−V and U−B indices introduced by Johnson & Morgan (1953). The
central wavelengths of U , B, and V broad-band filters, as defined by Johnson, are at 3600,
4400, and 5500 Å, respectively. The typical filter width is about 1000 Å. Their transmission
efficiency (convolved with the detector transmission) as a function of wavelength is given in
figure 2.10 for different realisations (see below).

It is customary to define the index in such a way that the magnitude in the long wavelength

https://www.eso.org/sci/publications/messenger/archive/no.114-dec03/messenger-no114-10-14.pdf
http://www.eso.org/sci/observing/tools/uvespop.html
http://www.eso.org/sci/observing/tools/uvespop.html
http://xsl.u-strasbg.fr/
https://arxiv.org/pdf/2110.10188.pdf
https://arxiv.org/pdf/2110.10188.pdf
https://ui.adsabs.harvard.edu/abs/1953ApJ...117..313J/abstract
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Figure 2.10: Filter transmission curves convolved with detector transmission curves for six photo-
metric systems: (1) HST/NICMOS, (2) HST/WFPC2, (3) Washington, (4) ESO/EMMI, (5) ESO/WFI
UBVRIZ + ESO/SOFI JHK, and (6) Johnson-Cousins-Glass. To facilitate a relative comparison, the
curves have been re-normalized to their maximum value of Sλ. The bottom panel presents the spectra
of Vega (A0 V), the Sun (G2 V), and an M5 giant, in arbitrary flux scales. From: Girardi et al. (2002).

filter is subtracted from that in the short wavelength filter, such that an increase in the color
index signifies a ‘redder’ spectrum. The run of the B−V and U−B indices (in the Johnson
system) with spectral type and luminosity class is shown in figure 2.11 and in table B.5.

The B−V color index is a relative measure of the temperature of the star in the Paschen
continuum (see figure 6.4); the U−B color index too is a measure of temperature. In addition
it probes the extend of the Balmer jump, which not only depends on temperature but also
somewhat on density.

If one plans to use these indices to determine the spectral type and luminosity class of a star it
is important to realize that extinction in the interstellar medium – as a result of the interaction
of starlight with ‘interstellar dust’ – can affect the intrinsic continuum energy distribution (see
chapter 19). The importance of extinction increases with decreasing wavelength and therefore

https://arxiv.org/pdf/astro-ph/0205080.pdf
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Figure 2.11: Top: The color indicesU−B andB−V as a function of spectral type and luminosity class.
Bottom: The absolute visual magnitude versus spectral type, i.e. the Hertzsprung-Russell diagram.

also has an effect on the color indices. Interstellar extinction is typically important for stars at
relatively large distances in the plane of the Milky Way and for stars in star-forming regions.
For nearby stars (say d . 100 pc) interstellar extinction is negligible. The shape of spectral
lines is not affected by interstellar extinction as they cover only a very small wavelength band,
such that one may ignore the wavelength dependence of the extinction. Often stellar spectra
show absorption lines that originate from extinction of starlight passing through interstellar
gas.
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Figure 2.12: Synthetic absorption spectrum of the sky between 0.3 and 30µm at a spectral resolution
of R ∼ 10 000 using the annual mean profile for Cerro Paranal (Noll et al. 2012). The eight molecules
O2, O3. H2O, CO, CO2, CH4, OCS, and N2O are important contributors to the telluric absorption.
The red regions mark the ranges where they strongly impact the transmission. Green regions denote
(minor) contributions from (1) NO, (2) HNO3, (3) COF2, (4) H2O2, (5) HCN, (6) NH3, (7) NO2, (8)
N2, C2H2, (10) C2H6, and (11) SO2. From: Smette et al. 2015.

https://arxiv.org/pdf/1205.2003.pdf
https://arxiv.org/pdf/1501.07239.pdf
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Paranal (FORS1 Bessell) La Silla (COMBO17) Mercator (MAIA)
λm λmin λmax logCm λm λmin λmax logCm λm λmin λmax logCm

U 0.36 0.32 0.40 -8.45 U 0.37 0.36 0.40 -8.41 u 0.36 0.32 0.39 -8.42
B 0.43 0.35 0.51 -8.19 B 0.46 0.39 0.51 -8.23 g 0.49 0.40 0.56 -8.29
V 0.55 0.48 0.68 -8.45 V 0.54 0.48 0.60 -8.42
R 0.67 0.56 0.93 -8.68 R 0.65 0.56 0.77 -8.66 r 0.64 0.54 0.71 -8.64
I 0.79 0.70 0.89 -8.93 I 0.86 0.74 0.98 -9.03

Paranal (NACO) 2MASS
J 1.26 1.06 1.44 -9.54 J 1.24 1.08 1.41 -9.50
H 1.66 1.44 1.88 -9.95 H 1.66 1.48 1.82 -9.95
Ks 2.14 1.90 2.42 -10.36 Ks 2.16 1.95 2.36 -10.37
L′ 3.81 3.40 4.27 -11.30
M′ 4.78 4.39 5.21 -11.69

Paranal (MIDI)
N8.7 8.71 7.59 9.74 -12.70
N11.3 11.3 10.61 12.07 -13.15

Table 2.2: Properties of the optical/infrared filters of six common system. The mean wavelength λ◦, minumum
wavelength λmin, and maximum wavelenth λmax are in micron. The calibration constant Cm of filter m has
dimensions erg cm−2 sec−1 Å−1. From: SVO Filter Profile Service.

The jungle of photometric systems

For different reasons no universal photometric system exists. Johnson (1966, ARA&A 4,
p193), who measured the photometric magnitudes of a large number of stars in ten different
filters, lost his filter set before he could measure the filter transmissions. Later, others tried to
design filters with properties that best recovered the colors of the stars measured by Johnson
– but without getting a perfect match. One should also realize that the quantum efficiency
of the detector and the optical efficiency of the lenses in the telescope may differ for each
observatory, as, obviously, will the atmospheric transmission. Especially in the near- and
mid-infrared the atmospheric transmission is a problem. Figure 2.12 shows the synthetically
computed atmospheric transmission at Cerro Paranal, where the VLT telescopes are located.
Note that the near-infrared filters are designed to make optimal use of relatively transparent
‘windows’ in the earth atmosphere.

The measured flux in filter m is related to the true flux distribution of the star at the distance
to the earth, Fλ(d), where d is the distance, as

Fm(d) =

∫∞
0 Fλ(d)Sm(λ) dλ∫∞

0 Sm(λ) dλ
, (2.2)

where Sm = (filter transmission) ⊗ (detector quantum efficiency) ⊗ (optical efficiency) ⊗
(atmospheric transmission) is the response function. Defining

∫∞
0 Sm(λ) dλ ≡ S◦m, yields for

the apparent magnitude

m = −2.5 log

[
1

S◦m

∫ ∞
0
Fλ(d)Sm(λ) dλ

]
+ 2.5Cm. (2.3)

The filter calibration constant may be defined such that m = 0 for the Vega (αLyrae) system.
If the spectral energy distribution of Vega at earth is Vgλ(d) it follows that

Cm =
1

S◦m

∫ ∞
0

Vgλ(d)Sm(λ) dλ. (2.4)

http://svo2.cab.inta-csic.es/theory/fps/
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Vega is the fifth brightest star in the night sky. Though ideally one would have wished Vega
to be a star of constant brightness, it turns out that it varies slightly (0.09 mag in V). For this
and other reasons, the calibration constants are often derived on the basis of a set of standard
stars.

Filter properties and calibration constants Cm for a few often used filter systems are given in
table 2.2. An overview of hundreds of filter systems is provided at the Filter Profile Service.
Using Cm one may obtain the measured flux, Fm, corresponding to the observed or apparent
magnitude m, from

logFm = −0.4m+ Cm. (2.5)

As the tabulation of Cm uses units erg cm−2 sec−1 Å−1, this too is the unit for the measured
flux. If, for instance, we would be considering the Paranal/FORS1 Bessell V filter, the above
equation would tell us that for a star with V = 0 the measured flux is 10−8.45 = 3.55× 10−9

erg cm−2 sec−1 Å−1. For a star with V = 5, the measured flux is 100 times less.

http://svo2.cab.inta-csic.es/theory/fps/
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Exercise 2.1

We have classified the spectrum of a star as M2 III and have measured its visual magni-
tude: V = 1.63 magn. We assume that in the line-of-sight towards the star there is no
interstellar extinction at visual wavelengths: AV = 0 magn. Use the equation for the
distance modulus

mf −Mf = 5 log d− 5 +Af (2.6)

where m is the apparent magnitude and M the absolute magnitude of photometric filter
f , d the distance in parsec, andAf the interstellar extinction in filter f (see also eq. 19.2),
as well as table B.5 to determine its distance. This procedure of distance determination
is known as the spectroscopic parallax method.

Exercise 2.2

A large survey provides a catalogue of all sources brighter than V = 20 mag in a certain
part of the sky. We are interested in an M5 V star at a distance of 400 pc that is in the
observed field. Is this star listed in the catalogue? Use table B.5 for a measure of the
absolute magnitude of the star.

Exercise 2.3

Consider the two stars whose properties have been described below. The symbols in the
table have their usual meaning.

Star V B−V MV Teff Spectral Class BC

Betelgeuse 0.42 1.84 -5.47 3370 M2 Ib -1.62
Gliese 887 7.34 1.48 9.75 3520 M2 V -1.89

How much larger in radius is Betelgeuse than Giese 887?

Exercise 2.4

The top panel of Figure 2.11 shows a plot of the color-color diagram in which U−B is
plotted as a function B−V . Explain why the U−B color shows a local maximum at
about spectral type F5.
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Figure 2.13: HRD of 240 703 stars with parallax $ > 10 (or distance d < 100 pc) observed with
GAIA. Cross matches with the Gaia Ultracool Dwarf Sample (GUCDS; Smart et al. 2017) of brown
dwarfs and gas giants are given the color blue (M-type object), green (L type) or red (T type). The
magnitudes of (in any case) four green objects are too bright, most probably because of a cross-match
issue. This leaves 21, 443, and 7 of M-, L, and T-type objects, respectively. Pink squares are added
around stars with tangential velocity vT > 200 km sec−1. From: Gaia Collaboration 2018).

Exercise 2.5

Figure 2.13 shows the HRD diagram of 240 703 sources within 100 pc. One clearly
recognizes the main sequence and the giant branch (starting at MG ∼ 3 and G−GRP ∼
0.6). Labelled with blue (M-type objects; 21 in number), green (L type; 443), and red (T
type; 7) are objects that have been identified as of sub-stellar mass.

a) Is it likely that the relative numbers of M-, L-, and T-type objects of sub-stellar mass rep-
resent the intrinsic relative numbers of these types of objects in the solar neighborhood?

b) The white dwarfs reside on the branch to the lower left of the main sequence. Notice that
at G − GRP > 0.9 this branch seems to bridge to the regime of the low-mass stars and
sub-solar mass objects. What could be the nature of the objects located in this ‘bridge’?

c) Say, we want to find sub-solar mass objects using photometry, e.g. by focussing on

https://arxiv.org/pdf/1703.09454.pdf
https://arxiv.org/pdf/1804.09378.pdf
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Figure 2.14: Panels of the same small (hypothetical) spectral window for two different stars observed
with the same spectrograph (settings) and telescope.

objects with MG & 15.5 and G − GRP & 1.6. Would we pick up only sub-solar mass
objects? If not, how could we further eliminate sources of a different nature?

d) Notice that quite a number of black dots are to the right of the lower part of the main
sequence (at MG ∼ 10 − 15 and G − GRP & 1.5). What could be the nature of these
objects?

Exercise 2.6

In Fig. 2.14, each panel shows the same small (hypothetical) spectral window for two
different stars observed with the same spectrograph (and spectrograph settings) and tele-
scope. The spectra are normalized to the continuum and have the same flux (y-axis) and
wavelength (x-axis) scale. For convenience one of the spectra is offset in the y-direction.
In each case, one physical property is different for the two stars. Identify, per panel,
which physical property is different and briefly explain your reasoning.
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Characterizing the radiation field

In this chapter we give the basic definitions that characterize the radiation field. We start out
with a short discussion of the two geometries that will be used frequently throughout these
lecture notes.

3.1 Coordinate systems

Plane-parallel layers

Throughout these lectures we will almost exclusively concentrate on one-dimensional prob-
lems in either a geometry of plane-parallel layers or of spherical shells (see figure 3.1).

In a geometry of plane-parallel homogeneous layers we use a Cartesian coordinate system,
such that r = (x, y, z) and z denotes the direction normal to the planar layers. In case of
homogeneous layers axial symmetry will hold, such that all quantities relevant in describing
the state of the medium depend on z only. They are constant in the x and y directions, therefore
all gradients ∂/∂x and ∂/∂y will be zero. For a beam entering or exiting the medium at a
polar angle θ between the normal direction and the beam direction, we will frequently use the
variable µ = cos θ.

The atmospheres of most stars and planets are well described using a plane parallel geometry.
This may seem surprising. However, taking the sun as an example, one should realize that the
thickness of the solar atmosphere (where the continuum and spectral lines in the visible part
of the solar spectrum originate) is only some 500 km whereas the radius of the sun is about
700 000 km. For a sufficiently small patch of the solar atmosphere, its curvature is therefore
negligible. For some stars the assumption of plane-parallel layers can not be justified. For
example, if the star has a stellar wind (see chapter 17) the strongest lines may form over a
radial extend of many (sometimes thousands of) stellar radii. In that case we must assume a
geometry of spherical shells.
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µ = cos θ

    Planar layers    Spherical shells

Figure 3.1: Diagram showing the geometry of plane-parallel layers and of spherical shells.

Spherical shells

In a spherical coordinate system the spatial point r is described using the coordinates (r,Θ,Φ).
If we assume that the shells are homogeneous, spherical symmetry will hold. All quantities
describing the medium will only depend on the radial coordinate r. At the position r we
specify the direction of a beam using the polar and azimuthal angles (θ, φ). The angle θ is
that between the radial direction and the beam direction, and we will frequently replace it by
µ = cos θ. As spherical symmetry implies axial symmetry, all azimuthal gradients ∂/∂φ are
zero.

Vector calculus in a geometry of planar layers or spherical shells

As a reminder we list some formulas from vector calculus used in these lecture notes to de-
scribe planar layers and spherical shells.

CARTESIAN COORDINATES (x,y, z)

A vector field A = (Ax, Ay, Az) = Axx +Ayy +Azz

Gradient ∇f =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
= ∂f

∂xx + ∂f
∂yy + ∂f

∂z z

Divergence ∇ ·A = ∂Ax
∂x +

∂Ay
∂y + ∂Az

∂z

Differential displacement ds = dxx + dy y + dz z

Differential volume dV = dx dy dz
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SPHERICAL COORDINATES (r,θ,φ)

A vector field A = (Ar, Aθ, Aφ) = Arr +Aθθ +Aφφ

Gradient ∇f =
(
∂f
∂r ,

∂f
∂θ ,

∂f
∂φ

)
= ∂f

∂r r + 1
r
∂f
∂θθ + 1

r sin θ
∂f
∂φφ

Divergence ∇ ·A = 1
r2

∂(r2Ar)
∂r + 1

r sin θ
∂(Aθ sin θ)

∂θ + 1
r sin θ

∂Aφ
∂φ

Differential displacement ds = dr r + rdθ θ + r sin θdφφ

Differential volume dV = r2 sin θ dr dθ dφ

3.2 Specific intensity

The specific intensity, surface brightness, or radiance Iν at position r and time t, traveling in
direction n, is defined such that the amount of energy transported by radiation of frequencies
(ν, ν + dν) across an element of area dS into a solid angle dω in a time interval dt is

dEν = Iν(r,n, t) n · dS dωdνdt

= Iν(r,n, t) cos θ dS dωdνdt (3.1)

where θ is the angle between the direction of the beam and the normal to the surface, i.e.
n · dS = n · sdS = cos θ dS (see figure 3.2). The dimensions of Iν are erg cm−2 sec−1

hz−1 sr−1 (recall that 1 erg = 10−7 J). From a macroscopic point of view, the specific intensity
provides a complete description of the (unpolarized) radiation field.

Formally it would be better to refer to Iν(r,n, t) as the surface brightness, however we will opt
for the term specific intensity. By default we will drop an explicit reference to the position,
time and direction for which the specific intensity is given and will suffice with Iν . If the
specific intensity is given as a function of wavelength, we will use Iλ. These quantities can be
converted into each other if one realizes that

|Iν dν| = |Iλ dλ| (3.2)

Using ν = c/λ yields: Iλ = c/λ2Iν . The dimensions of Iλ are erg cm−2 sec−1 cm−1 sr−1.

The frequency integrated or total specific intensity is

I ≡
∫ ∞

0
Iν dν =

∫ ∞
0

Iλ dλ (3.3)
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θS

dω

s

n

dS

Figure 3.2: Definition of the specific intensity as a beam of radiation into a solid angel dω, across a
surface dS oriented in direction s. The vector n is the direction of propagation of the beam which is at
an angle θ with s.

The invariance of Iν

The specific intensity is defined such that it is independent of distance if there are no sources
or sinks of radiation along the direction of the beam. This implies that the value for the specific
intensity at the source location can be obtained by measuring the amount of energy per unit
time and per frequency interval that hits a detector (with known efficiency) per unit detector
surface, when the solid angle subtended by the source is known. To be able to measure the
specific intensity it is therefore required that the source is spatially resolved.

In other words: if we use our telescope to observe a fragment of an extended source (for
instance a nebula, a galaxy, a planet, or the sun) somewhere in the sky, then the intensity that
we derive from the amount of energy that reaches our detector, per unit frequency and time, is
the same as that is emitted by the fragment in our direction.

We can understand this property by considering a beam of radiation that passes through a sur-
face element dS at position r, as well as through an element dS′ at position r′ (see figure 3.3).
The amount of energy passing through both areas is

dEν = Iν cos θ dS dωdνdt = I ′ν cos θ′ dS′ dω′dνdt (3.4)

where dω is the solid angle subtended by dS′ as seen from position r, and dω′ is the solid
angle subtended by dS as seen from r′. Given that the distance between r and r′ is equal to d,
it follows from dω = 4π cos θ′dS′/4πd2 and dω′ = 4π cos θ dS/4πd2 that Iν = I ′ν .
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Figure 3.3: Illustration of the proof of invariance of the specific intensity. The points r and r′ are
separated by a distance d. Area dS subtends a solid angle dω′ seen from position r′, and the area dS′

subtends dω at r. n and n′ are unit vectors normal to dS and dS′.

Lambertian emission and reflectance

A Lambertian surface emits (or reflects) specific intensity equally in all directions. Lamber-
tian surfaces therefore are also called isotropically radiating surfaces. For stellar surfaces,
Lambertian emission is a poor approximation (see 10.1) – though we will use it anyways for
simple transfer problems. A Lambertian surface is often used to approximate the reflectivity
of planetary bodies. If a planar Lambertian planetary surface illuminated from above reflects
an amount of energy dEν(θ = 0) from a surface element dS into a solid angle dω in a fre-
quency band dν in a time interval dt in the direction normal to the surface, it will reflect an
energy

dEν(θ) = cos θ dEν(θ = 0) = µdEν(µ = 1) (3.5)

in the direction θ.

3.3 Mean intensity

The mean specific intensity or mean intensity averaged over all directions is

Jν(r, t) =
1

4π

∮
Iν(r,n, t) dω (3.6)

The mean intensity is the angular moment of order zero of the specific intensity and has
dimensions erg cm−2 sec−1 hz−1. In spherical coordinates dω = sin θdθdφ = −dµdφ (see
figure 3.4). The total solid angle Ω therefore is

Ω =

∮
dω =

∫ 2π

0

∫ π

0
sin θ dθdφ = 2π

∫ +1

−1
dµ = 4π (3.7)

This explains the normalisation factor 4π in eq. (3.6). Solid angle is expressed in the dimen-
sionless unit steradian (sr). In the small angle limit, i.e. θ? → 0 or µ? = cos θ? → 1 of the
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axially symmetric case (for instance, we observe a circular looking object in the sky), we find

Ω? = 2π

∫ θ?

0
sin θ dθ = 2π (1− cos θ?) ' 2π

(
1−

[
1− θ2

?/2
])

= π θ2
?, (3.8)

where θ? is in radians and the one-but-final equality follows from Taylor expansion of the
cos θ? term.

Notice that though the mean intensity is defined per steradian, through the factor 1/4π in
eq. 3.6, its dimension does not convey this. The reasoning behind this is that Jν is no longer
a function of solid angle; as solid angle is a dimensionless unit explicit reference to it may be
dropped. We may now rewrite eq. (3.6) as

Jν =
1

4π

∫ 2π

0

∫ π

0
Iν sin θ dθdφ

=
1

2

∫ +1

−1
Iν dµ (3.9)

where the latter equality assumes axial or spherical symmetry. The mean intensity is, for
instance, used in the description of processes such as photoexcitation and photoionization,
which only depend on the number of photons at some position at some time and do not depend
on the direction of origin of these photons. For an isotropic radiation field Jν = Iν .

The frequency integrated or total mean intensity is

J ≡
∫ ∞

0
Jν dν (3.10)

Geometrical dilution

Consider a spherical star that emits an isotropic radiation field Iν(θ, φ) = Iν from its surface
at R?. We are interested in the mean intensity above the stellar surface, i.e. at r > R?.
Figure 3.5 shows the directions from which the point r receives the stellar intensity Iν . For
the mean intensity in this point we find

Jν(r) =
1

2

∫ 1

µ?

Iν dµ =
1

2
(1− µ?) Iν ≡W (r) Iν (3.11)

where µ? =
[
1− (R?/r)

2
]1/2 is the grazing angle that just hits the stellar rim (seen from r)

and

W (r) =
1

2

1−

[
1−

(
R∗
r

)2
]1/2

 (3.12)

The factor W is called geometrical dilution and denotes the fraction of the total solid angle
subtended by a star of radius R? seen from a point in the sky at distance r. If r = R? one finds



3.3 Mean intensity 49

Figure 3.4: The infinitesimal solid angle dω expressed in spherical polar coordinates using colatitude
or polar angle θ and longitude or azimuthal angle φ. The area A of a sphere of radius r in the interval
(θ, θ + dθ) and (φ, φ + dφ) is A = b · a = r2 sin θdθdφ = r2dω, so that dω = sin θdθdφ. The total
solid angle is 4π steradians.

W = 1/2. This is easy to understand as an observer on the stellar surface sees half of the
sky filled by the star. At very large distances, i.e. r � R?, one may approximate the dilution
factor by

W (r) ' 1

4

(
R?
r

)2

. (3.13)

This also is easy to grasp: at large distances one sees the stellar disk, therefore W (r) =
πR2

?/4πr
2.

Energy density of radiation

The monochromatic energy density of radiation is the amount of energy present in a region of
space per unit volume in frequency range (ν, ν + dν). In order to obtain the energy density
uν of the radiation field (dimensions ergs cm−3 hz−1) we determine the amount of radiation
energy Eν that is contained in an elementary volume V , such that uν = Eν/V .

The amount of energy in a beam of solid angle dω passing through a surface element dS of
this volume is given by eq. (3.1). We are only interested in those photons in the beam that are
actually inside V . Say the path length of these photons through V is l, then they will be inside
of the elementary volume during a time dt = l/c. The part of the volume in which the photons
are located is dV = l dS cos θ, where θ is the angle between the direction of the beam and the
normal to the surface element dS. The energy in this part of the volume provided by the beam
is therefore dEν = c−1 Iν(r,n, t) dω dν dV . Integrating over all beams (to cover the entire



50 Characterizing the radiation field

R*
!*

2 2

*(d ! R  )
1/2

 
*

cos =!* *
[1!(R  /d)  ]

1/22

d

µ  =   

µ  =   cos*

µ  = 1  

!*

Figure 3.5: Geometry showing the directions from which a point d receives the stellar intensity Iν .

volume) and the volume (to account for the size of the volume through the path length l), one
finds for the total energy in V in the frequency band dν

Eν(r, t) dν =
1

c

[∫
V

{∮
Iν(r,n, t) dω

}
dV

]
dν (3.14)

As the volume V is chosen so small that it is elementary, i.e. Iν is independent of position
within V , we may evaluate the integrals independently. We then find for the monochromatic
energy density

uν(r, t) =
Eν(r, t)

V
=

1

c

∮
Iν(r,n, t) dω =

4π

c
Jν(r, t) (3.15)

The frequency integrated total energy density is

u =

∫ ∞
0

uν dν =
4π

c
J. (3.16)

3.4 Flux

We define the flux of radiation Fν(r,t) as a vector quantity such that Fν · dS gives the net
rate of radiant energy flow across the arbitrarily oriented surface dS = s dS per unit time and
frequency interval.

The flux can be derived from the specific intensity passing through surface dS if we integrate
over all solid angles. The energy that passes through the surface in frequency interval dν in
time dt can be written as

Fν(r, t) · dS dν dt =

∮
dEν =

∮
Iν(r,n, t) n · dS dω dν dt, (3.17)
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where the integration is over solid angle, consequently

Fν(r, t) =

∮
Iν(r,n, t) n dω, (3.18)

that is

(Fx,Fy,Fz) =

(∮
Iν(r,n, t) nx dω,

∮
Iν(r,n, t) ny dω,

∮
Iν(r,n, t) nz dω

)
. (3.19)

The flux has dimensions erg cm−2 sec−1 hz−1. One may therefore also think of the flux being
the power per unit surface per unit frequency bandwidth (which a radio astronomer would
likely find more appealing). In infrared and radio astronomy the flux is often given in units of
jansky (symbol: Jy): 10−23 erg cm−2 sec−1 hz−1 ≡ 1 Jy.

In a plane-parallel medium only the flux in the z directionFz 6= 0. Symmetry arguments show
that in the x and y directions the flux Fx = Fy = 0. As in this case only the z component of
the flux is relevant one usually denotes this flux vector component as ‘the’ flux. It follows that

Fν(z, t) =

∫ 2π

0

∫ π

0
Iν cos θ sin θ dθdφ

= 2π

∫ +1

−1
Iν(z, µ, t)µ dµ (3.20)

Again: Fν(z, t) is the net flow of radiant energy, per second per frequency interval, that passes
through a surface of 1 cm2 that at position z is oriented normal to the z-direction. It is a net
flow of energy as the perspective factor µ = cos θ (measuring the effective surface) counts
inward directed contributions (−1 ≤ µ ≤ 0) negative. We may write

Fν(z, t) = 2π

∫ +1

0
Iν(z, µ, t)µ dµ− 2π

∫ −1

0
Iν(z, µ, t)µ dµ

≡ F+
ν (z, t)−F−ν (z, t) (3.21)

where the outward directed flux F+
ν and the inward directed flux F−ν are both positive. With

the ‘flux of a star’ one most often intends to say the outward directed or emergent flux F+
ν .

Two alternative definitions for the flux are also used. These are the astrophysical flux Fν ≡
π−1Fν and the Eddington flux

Hν ≡
1

4π
Fν =

1

2

∫ +1

−1
Iν µ dµ (3.22)

which is of a similar form as eq. (3.9) for the mean intensity and is referred to as the angular
moment of order one of the specific intensity.

One obtains the total energy passing through a unit surface, per second, by integrating the flux
over frequency. This yields the total flux

F ≡
∫ ∞

0
Fν dν ≡ σT 4

eff , (3.23)
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in erg cm−2 sec−1. The last equality already introduces the effective temperature Teff (see
§ 6.6). Integration of the flux over all of the stellar surface results in the monochromatic
luminosity

Lν = 4πR2
? Fν(R?) (3.24)

in erg sec−1 hz−1, where R? is the stellar radius. Further integration over all frequencies yields
the luminosity of the star

L? =

∫ ∞
0

Lν dν = 4πR2
? F(R?) = 4πR2

? σT
4
eff (3.25)

in erg sec−1. Even though planets do not produce energy through thermo-nuclear reactions in
their interiors, they too have a luminosity originating from gravitational potential energy left
over from the planet’s natal contraction and radioactive decay.

The r−2 dependence of the flux

The observational meaning of the flux can be understood in the following way: Consider a
constant, isotropically radiating source, e.g. a spherical star with radius R?. When we place
a concentric spherical surface around this source, with radius r, the total amount of radiation
energy passing through the outer surface will be the same as that passing through the stellar
surface, assuming there is no absorption or emission in the space around the source. Therefore

Fν(R?) 4πR2
? = Fν(r) 4πr2 (3.26)

The flux therefore decreases with distance as Fν(r) ∝ r−2. If d is the distance of the source
to earth, then Fν(d) is the observed flux. For the sun, the observed flux is also referred to as
the solar irradianceRν .

At first sight it may seem that this result is in contradiction to the invariance of the specific
intensity along the line of sight. This is not so. Again consider a constant, isotropically
radiating star with radius R? and emerging intensity Iν . At a point r the intensity is equal to
Iν for all beams that intersect the star, for all other beams it is zero. We then find for the flux
in r (see figure 3.5)

Fν(r) = 2π

∫ 1

µ?

Iν µdµ = πIν(1− µ2
?) = πIν

(
R?
r

)2

(3.27)

So, we again find the flux to be proportional to r−2. Note that the flux at the surfaceFν(R?) =
πIν , a result that can also be obtained directly from

Fν(R?) = 2π

∫ 1

µ?=0
Iν µdµ ≡ F+

ν (R?) = πIν (3.28)
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Figure 3.6: Geometry of measurement of stellar flux. The projected annulus on the surface of the star
has an area dS = 2πpdp = 2πR? sin θR? cos θ dθ = −2πR2

? µdµ, normal to the line of sight. This
area subtends a solid angle dω = dS/d2 as seen by the observer at distance d.

Reconstruction of the flux using a ray-by-ray description

We formulate the r−2 dependence of the flux in yet another way. Assume that the distance d
between star and observer is very much larger than the stellar radius, i.e. d � R?, so that all
rays of light from star to observer may be considered to be parallel. The energy received, per
unit area normal to the line of sight, from a differential area on the star is

dFν(d) = Iν dω, (3.29)

where dω is the solid angle subtended by the area, seen from the position of the observer. This
follows directly from the definition of the flux, eq. (3.18).

We subdivide the stellar surface in differential projected annuli dS = 2πp dp = −2πR2
? µdµ,

where µ = cos θ as usual (see figure 3.6). The projected distance p to the center of the
stellar disk is referred to as the impact parameter. The solid angle of the projected annulus is
dω = dS/d2 = −2π(R?/d)2 µdµ as seen by the observer. The radiation emitted from this
annulus in the direction of the observer emerged at angle θ; hence the appropriate value of the
specific intensity is Iν(µ). Integrating over the disk, we find

Fν(d) =
2π

d2

∫ R?

0
Iν(p) p dp =

(
R?
d

)2

2π

∫ 1

0
Iν(µ)µdµ =

(
R?
d

)2

F+
ν (R?) (3.30)

Once more we see that the flux is proportional to r−2. It is because the solid angle subtended
by the stellar disk decreases with the square of the distance. This way of reconstructing the
flux is known as a ray-by-ray solution.
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Angular diameter

The angular diameter of an object (e.g., a star, the moon) at distance d is

α? =
2R?
d

(3.31)

such that the observed flux can also be written as Fν(d) = (α2
?/4)Fν(R?). For spatially

resolved objects, we may directly constrain the stellar radius if the distance is known, R? =
α? d/2, as well as the flux at the objects’s surface, Fν(R?). If we know the latter quantity
from (other) measured quantities we may determine the angular diameter of the object, even
if we can’t measure α? directly. This too leads to an estimate of the stellar radiuis.

3.5 Photon momentum (a.k.a. radiation pressure)

Consider an amount of momentum pν transported by the radiation field through an area dS,
per unit time per frequency interval.

A photon of frequency ν has a momentum hν/c such that the amount of momentum in a beam
with energy dEν is dEν/c. If we consider the component of the momentum in the direction
normal to that of surface dS, then the contribution of the beam is

dpν dSdνdt =
1

c
dEν cos θ (3.32)

where again θ is the angle between the direction of the beam n and the direction s normal to
the surface. If we express the energy in terms of the specific intensity, using eq. (3.1), and if
we integrate over all directions we find

pν =
1

c

∮
Iν(r,n, t)nn dω

=
1

c

∮
Iν cos2 θ dω (3.33)

The dimensions of pν are ergs cm−3 hz−1. For clarity: the one “cos θ” term determines the
effective size of area dS, oriented in the direction s, for radiation propagating in direction n;
the other “cos θ” determines the momentum component in the direction s.

If axial symmetry is valid

pν =
2π

c

∫ +1

−1
Iν(z, µ, t)µ2 dµ =

4π

c
Kν (3.34)

where

Kν ≡
1

2

∫ +1

−1
Iν µ

2 dµ (3.35)
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is the angular moment of order two of the specific intensity.

The quantity pν is called the radiation pressure, which is highly confusing as it is not the
mechanical force per unit surface that would be exerted by photons on an absorbing screen.
We may derive this mechanical force from the above equation though, realizing that radiation
only exerts a force when there is a gradient in the radiation pressure – in analogy to the force
associated with a gas pressure gradient. We will return to this when we discuss hydrostatic
equilibrium (see § 9.3). Radiation pressure is a scalar when the radiation field is isotropic.

The total radiation pressure is

pR =

∫ ∞
0

pν dν (3.36)

where we have introduced the subscript R to avoid confusion with the gas pressure (see e.g.
eq. 6.28).

3.6 Eddington factors

The moment equations (3.9), (3.22) and (3.35) of the radiation field are used to define the
so-called Eddington factors

fν(r, t) ≡ Kν(r, t)

Jν(r, t)
(3.37)

and

gν(r, t) ≡ Hν(r, t)

Jν(r, t)
. (3.38)

The Eddington factors have no dimension and vary within only a very limited range: fν
typically between 1/3 and 1; and gν typically between 0 and 1. In essence both factors are a
measure of the amount of anisotropicity that is contained in the radiation field. Is the radiation
field completely isotropic then fν = 1/3 and gν = 0. Is the radiation field sharply peaked
then both factors tend toward unity. In § 4.5 we will see that fν can be used to seemingly
reduce the number of independent variables in a transfer problem. They also provide a means
to close a system of moment equations derived from the equation of transfer. Later on, this
will allow us to obtain a transfer equation for Jν rather than for Iν , a result that will be pivotal
for obtaining the temperature structure of atmospheres in chapter 10. The factor gν is often
used in formulating boundary conditions to the equation of transfer (see § 11.2).
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Exercise 3.1

Assume that the sun emits an isotropic radiation field of which the specific intensity is
Iν . Express the solar specific intensity, mean intensity, flux, and irradiation as measured
at the position of earth in Iν . (No need to prove these relations; simply look them up in
the lecture notes).

Exercise 3.2

From Earth, the mean distance to the moon is 385 000 km.
For this distance, the lunar angular diameter is 31.02’ (or
31’1”).

a) Compute the radius of the moon.

b) Compute the geometrical dilution of the moon, as seen
from Earth (pretend you are at the center of Earth for the
remainder of this exercise).

c) Compute the solid angle ∆Ω subtended by the moon. How
many moons (at the mean lunar distance) are needed to fill
the entire sky? (It is okay to use scissors to cut and paste
lunar disks to fill holes in between full lunar disks).

Exercise 3.3

The Total Irradiance Monitor (TIM) on board the Solar Radiation and Climate Exper-
iment (SORCE) measured the total solar irradiance above the Earth atmosphere to be
R = 1.3608±0.0005×106 erg sec−1 or 1360.8±0.5W m−2 (Kopp & Lean, 2011). We
measure the angular diameter of the sun to be 31.97’ (or 31’.58”). Compute the effective
temperature of the sun.

Exercise 3.4

At some point in the calculation of the observed stellar flux under the assumption of
plane-parallel layers one needs to introduce the fact that a star is a sphere. Where is this
done?

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL045777
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Exercise 3.5

Consider an infinately extended flat plate emitting from its surface an isotropic radiation
field Iν(θ, φ) = Iν . Show that the mean intensity above the surface is given by Jν =
1/2 Iν . Explain this is a simple way.

Exercise 3.6

This could be a nice exam question. We take a picture of the lunar disk, which is at
distance d and emits an isotropic radiation field with specific intensity Iν . Our camera
has a spatial resolving power dω � πR2

m/d
2 – defined by the pixel size of the ccd –

and we find that we need to open the shutter a time t to assure that we have the desired
exposure.

a) If we would now place the moon at twice the original distance, how long should we open
the shutter to gain an identical exposure?

We now place the moon at such a distance that the lunar disk subtends a solid angle equal
to the spatial resolving power of our camera, i.e. dω = πR2

m/d
2. The camera is pointed

such that the moon falls in a single pixel.

b) How long should we open the shutter to get an identical exposure?

c) If now place the moon at twice the distance (than in b), implying we can no longer
resolve the lunar disk. All photons that reach the ccd hit the same pixel. What should be
the shutter time to get an identical exposure?

L

R
*

R

R’

d

d

L

Exercise 3.7

L is a spatially resolved spherical lamp with radiusR that is
positioned at distance d from an observer and that radiates
an isotropic radiation field with specific intensity Iν .

a) Give the specific intensity Iν(d) and flux Fν(d) as mea-
sured by the observer.

It starts to fog. The light from the lamp is purely scattered
with the result that it appears to originate from a spherical
surface of radius R′.

b) For this new situation, give the specific intensity Iν(d) and
flux Fν(d) as measured by the observer.
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Exercise 3.8

Consider a cluster of four stars; each star radiates an
isotropic radiation field of which the specific intensity is
Iν . The four stars and the observer are in the same plane.
The observer is in the center P of the cluster. The distance
from P to each of the four stars is d. The radius of the stars
B and C is R; that of the stars A and D is 2R.

a) Give the mean intensity at P .

b) Give the flux at P .
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d

Exercise 3.9

This could be a nice exam question. A ”pinhole” camera
consists of a very small circular hole of diameter d, at dis-
tance L from the ”film-plane” (see figure). The pinhole
is so small that the specific intensity that falls through the
pinhole on a square centimeter of the film-plane may be
assumed to be constant.

a) Derive an expression for the solid angle ∆Ω that is ex-
tended by the pinhole as seen from the position P on the
image plane.

The energy received per unit area normal to the line of sight
from solid angle ∆Ω is given by dFν = Iν(θ, φ)∆Ω.

b) Derive an expression for the flux Fν at the film plane.

Exercise 3.10

Show that for isotropic radiation pν = uν/3. What is the meaning of the factor 1/3?

Exercise 3.11

a) Deep in the atmosphere the radiation field will be almost isotropic, i.e. Iν(θ, φ) = Iν .
Show that in this case the Eddington factor fν = 1/3.
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b) Far above the stellar surface the radiation field will be strongly peaked in the radial direc-
tion, i.e. Iν(θ, φ) = Iν(µ, φ) = Iνδ(µ− 1). Show that in this case the Eddington factor
fν = 1.

We may conclude that the Eddington factor will not vary much throughout the atmosphere
(only by about a factor of three).



4

The equation of transfer

In this chapter we formulate the equation that describes the transfer of radiation through a
medium, and we introduce the macroscopic quantities that play a role in this equation. The
transfer equation has a formal solution which reflects that the specific intensity at each point
in the medium can be determined if the source function Sν and the optical depth τν are known
throughout the medium, or – equivalently – the extinction coefficient χν and the emission
coefficient ην . We discuss analytical solutions to simple transfer problems.

4.1 Absorption, emission, and scattering processes

Photons traveling through a material medium will experience interactions with the particles
that are present: they can be absorbed or scattered. The medium itself may also emit radiation.
Here, we give a macroscopic description of these processes. In principle, the nature of the
medium is irrelevant. It may be a neutral or (partly) ionized gas, a molecular gas, or a medium
of solid state particles.

We will make a distinction between “real” absorption and emission processes on the one
hand, and scattering processes on the other hand. In a “real” absorption process (for the
sake of convenience we will simply refer to this as absorption) energy is removed from the
radiation field, and added to the local thermal energy of the medium. In this process photons
are truely destroyed and we say that the photon has been thermalized. The reverse process
is thermal emission, which adds energy from the local thermal pool into the radiation field.
The photons that are created in this way are referred to as thermal photons. An example of
a ‘real’ absorption process is the photo excitation of an electron in an atom or ion, followed
by a downward transition in which the energy that is released is added to a free electron that
is interacting with the atom or ion. An example of a thermal emission is the reverse process,
i.e. a collisional excitation involving a free electron followed by the spontaneous emission of
a photon.

In a scattering process the photon essentially only changes direction. So, although the photon
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is absorbed and emitted, it keeps, as it were, its identity. One distinguishes between pure and
non pure scatterings. In a pure scattering the frequency of the photon changes only slightly.
Examples of pure scattering processes are the interaction of photons in a resonance transition
(for instance Lyα or C IV λλ1548,1551) or the elastic scattering of photons by free electrons
(Thomson scattering) or by an atom or molecule (Rayleigh scattering). In a scattering pro-
cess that is not pure the frequency of the photon is changed significantly. An example of
such a process is the in-elastic scattering of high-energy photons by free electrons (Compton
scattering).

When “real” absorption and emission processes dominate over scattering processes there will
be a strong coupling between the local thermodynamic properties of the gas and the proper-
ties of the radiation that is generated by it. Concerning scattering processes the situation is
different. Here the nature of the emitted radiation will predominantly be determined by the
properties of the infalling radiation field. If scatterings dominate, the photons that are present
in the local medium typically originate from elsewhere and simply propagate through the lo-
cal medium without actually being coupled to it in any way. Depending on the origin of the
photons the radiation field may be thermal or non-thermal.

c

a

b

Figure 4.1: Photon conversion

A description in terms of absorption/emission and of scat-
tering has its conceptual limitations. Take for instance an
atom that has three bound states, a, b, and c, in order of in-
creasing energy (see figure 4.1). Say that an absorption of
a photon brings the atom from state a to c, and that this is
followed by the spontaneous emission of a photon bring-
ing the atom in state b, after which the atom returns into
state a after again emitting a photon. One can not speak
of a “real” absorption/emission as the thermal energy con-
tent of the gas did neither increase nor decrease. Also, it
is clear that one can not speak of a scattering as the initial
photon lost its identity.

Processes in a beam of light

The transfer of radiation along a ray of light – in terms of “real” absorption and emission
and pure scattering – is schematically given in figure 4.2. There are two processes that add
photons of given frequency to the ray, i.e. “real” emissions and scattering of photons that
come in from different directions into the direction of the ray. There are also two processes
that remove photons from the ray, i.e. “real” absorptions and scattering of photons out of the
direction of the beam.

We will now formulate a quantitative description of these processes.

— — —
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Figure 4.2: Schematic representation of the transfer of radiation along a ray of light.

Let us consider a gas and a radiation field that is described by a specific intensity Iν(s) in a
given direction. The path-length along the ray is described by s. Let us consider a flat cylinder,
of length ds and cross-section dO, perpendicular to s. We describe changes in Iν(s) due to
absorption and emission processes between s and s+ ds as follows

Iν(s+ ds) dO dω dν dt = Iν(s) dO dω dν dt+ dIν(s) dO dω dν dt

or

Iν(s+ ds) = Iν(s) + dIν(s) (4.1)

Extinction coefficient

If only extinction processes occur along the path-length ds, either as a result of absorption or
because of scattering out of the direction of the ray, then the decrease in the specific intensity
is proportional to the incident specific intensity, to the path-length ds, and to the properties
and number of absorbing/scattering particles. The constant of proportionality is called the
extinction coefficient and can be defined in three ways (see eq. 4.5 for an overview).

We will often use the linear extinction coefficient χν , which has dimension cm−1, such that

dIν(s) = −χν(s) Iν(s) ds (4.2)

This coefficient is defined such that an element of material, of cross-section dO and length ds,
removes from a beam with specific intensity Iν(r,n, t), incident normal to dS and propagating
into a solid angle dω, an amount of energy

dEν ≡ χν(r,n, t) Iν(r,n, t) dO ds dω dν dt (4.3)

within a frequency band dν in a time dt. The linear extinction coefficient is sometimes also
called the volume extinction coefficient as it refers to the total extinction surface in cm2, per
cm−3 ([cm2 cm−3] = [cm−1]). The value of the extinction coefficient is determined by the
properties/state of the medium and is not dependent on the radiation field. However, the latter
can have an indirect effect on the properties/state of this medium.

The linear extinction coefficient can be split up in a contribution due to absorption, κν , and
due to scattering, σν

χν(s) = κν(s) + σν(s) (4.4)
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Here it is implicitly assumed that these processes are independent of each other and that they
are additive (see eq. 4.9).

Alternative definitions of the extinction coefficient are

χν = χ′ν ρ = αν n (4.5)

Here χ′ν is the mass extinction coefficient ([cm2 gr−1]) and ρ the density of the material
medium ([gr cm−3]). αν is the extinction cross section per particle ([cm2]) and n the number
density of particles ([cm−3]) that cause the extinction.

Emission coefficient

If only emission processes occur along the path-length ds, either as a result of thermal emis-
sion or because of scattering into the direction of the ray, then the increase in the specific
intensity is given by

dIν(s) = ην(s) ds (4.6)

The constant of proportionality is called the volume emission coefficient and is defined such
that the amount of energy released from an element of material of cross-section dO and length
ds, into a solid angle dω, within a frequency band dν, in direction n in a time interval dt, is

dEν ≡ ην(r,n, t) dO ds dω dν dt (4.7)

The emission coefficient has dimensions [erg cm−3 sec−1 hz−1 sr−1]. ην always depends
on the properties of the medium, and, in case of scattering from other directions into the ray
of light, also on the radiation field. For completeness we mention that in studies of gaseous
nebulae it is custom to use the letter j (so jν) to denote the emission coefficient (for instance
in Osterbrock & Ferland).

An alternative definition of the emission coefficient is

ην = η′νρ (4.8)

where η′ν is the mass emission coefficient ([erg gr−1 sec−1 hz−1 sr−1]).

— — —

If different extinction/emission processes occur at once they may be added

χν =
∑
i

χν,i ην =
∑
i

ην,i (4.9)

The subscript i labels all different processes contributing at frequency ν.
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Angular phase function for coherent scattering

For the emission coefficient of a coherent scattering process, i.e. where the frequency of the
incoming photon ν ′ equals the frequency of the outgoing photon ν, we may write

ηsc
ν (n) = σν

1

4π

∮
g(n′,n) Iν(n′) dω′ (4.10)

where σν is the total scattering coefficient and g is the probability that a photon will be scat-
tered from direction n′ in solid angle dω′ into solid angle dω in direction n. This angular
phase function is normalised to unity, i.e.

1

4π

∮
g(n′,n) dω′ = 1 (4.11)

For isotropic scattering g(n′,n) ≡ 1, and the emission coefficient for scattering reduces to
ηsc
ν = σνJν (see Eq. 3.6). If in the interaction both the direction and frequency of the photon

change, one introduces a redistribution function R(ν ′,n′; ν,n) to describe the process.

Extinction and emission: the equation of transfer

If both extinction and emission occur along the path-length ds then we may write

dIν(s) = [ ην(s)− χν(s) Iν(s) ] ds (4.12)

or
dIν
ds

= ην − χν Iν , (4.13)

where in the latter equation we have dropped explicit reference to the spatial coordinate s.
This is a simple form of the equation of transfer.

4.2 General form of the equation of transfer

Now that we know the quantities that describe the macroscopic interaction between radiation
and matter, it is relatively simple to give a heuristic derivation of the general form of the equa-
tion of transfer. Let us again consider a ray of light of specific intensity Iν , that is transported
in a frequency interval (ν, ν+dν), passing in a time dt through a volume element of length ds
(such that dt = ds/c) and cross-section dO oriented normal to the ray in direction n into solid
angle dω (eq. 3.1). The difference between the amount of energy that emerges (at position
r + ∆r and at time dt + ∆t) and that incident (at r and t) must equal the amount created by
emission from the material in the volume minus the amount absorbed. Therefore, using the
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definition of specific intensity (eq. 3.1) and of the extinction and emission coefficient it must
hold that in order to conserve the total photon energy

[Iν(r + ∆r,n, t+ ∆t)− Iν(r,n, t)] dO dν dt dω =

[ην(r,n, t)− χν(r,n, t) Iν(r,n, t)] ds dO dν dt dω (4.14)

The difference in specific intensity at the left hand side of this equation can be written as

Iν(r + ∆r,n, t+ ∆t)− Iν(r,n, t) =
∂Iν
∂t

dt+
∂Iν
∂s

ds

=

[
1

c

∂Iν
∂t

+
∂Iν
∂s

]
ds (4.15)

The general form of the equation of transfer holds for all geometries. To adopt a specific
coordinate system one should express the derivatives along the ray of light in terms of the
orthogonals in the chosen coordinate system. If ds is an infinitesimal displacement along the
direction of the ray then

∂

∂s
=
∂x

∂s

∂

∂x
+
∂y

∂s

∂

∂y
+
∂z

∂s

∂

∂z
= nx

∂

∂x
+ ny

∂

∂y
+ nz

∂

∂z
= n · ∇, (4.16)

for a Cartesian coordinate system, where (nx, ny, nz) are the components of the unit vector
n.

For the general form of the equation of transfer we then find(
1

c

∂

∂t
+ n · ∇

)
I(r,n, ν, t) = η(r,n, ν, t)− χ(r,n, ν, t) I(r,n, ν, t) (4.17)

In these lectures we will assume by default that the medium is time-independent, in which
case the partial derivative ∂/∂t = 0. Furthermore, we will focus on solving transfer equations
in three special types of geometries. These are: (i) along a line, i.e. a pencil beam; (ii) a
medium of homogeneous plane-parallel layers; or (iii) a medium of homogeneous spherical
shells.

Along a pencil beam

The equation of transfer along a pencil beam, where s is the coordinate along the beam, is
given by eq. (4.13).

Planar layers

If the medium consists of homogeneous plane-parallel layers, such that the properties of this
medium are only a function of the z direction, then nz = dz/ds = cos θ = µ (see figure 3.1).
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Figure 4.3: Geometric relation among the variable ds and dr and dθ used in the derivation of the
transfer equation in a spherically symmetric medium.

The equation of transfer reduces to

µ
dIν(z, µ)

dz
= ην(z, µ)− χν(z, µ) Iν(z, µ) (4.18)

Note that in the case µ = 1, i.e. a beam along the z direction, the equation of transfer is equal
to eq. (4.13).

Spherical shells

If the medium consists of homogeneous spherical shells, and θ and φ specify the direction
of the beam at position r, such that θ is the angle of the beam relative to the local outward
normal direction (which is the radial direction) and φ is the azimuthal angle, then the specific
intensity will be independent of φ, i.e. ∂/∂φ = 0.

An infinitesimal displacement along the beam direction is given by ds = dr r̂ + rdθ θ̂. The
geometry implies (see figure 4.3) that dr = cos θds and rdθ = − sin θds. Note that always
dθ ≤ 0 for any ds; this explains the minus sign. We find

∂

∂s
=
∂r

∂s

∂

∂r
+
∂θ

∂s

∂

∂θ
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
= µ

∂

∂r
+

1

r

(
1− µ2

) ∂

∂µ
(4.19)

where µ = cos θ, such that
∂

∂θ
=
∂µ

∂θ

∂

∂µ
= − sin θ

∂

∂µ
(4.20)

Using these results the transfer equation for a spherically symmetric medium is[
µ
∂

∂r
+

1

r

(
1− µ2

) ∂

∂µ

]
Iν(r, µ) = ην(r, µ)− χν(r, µ) Iν(r, µ) (4.21)
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4.3 Optical depth and the source function

Optical depth

Let us introduce an elementary optical depth interval dτν along a path-length ds, measured
along the direction of the ray.

dτν ≡ χν(r,n) ds (4.22)

This defines the optical depth τν which gives the integrated extinction of the material along
the line of sight. For a geometrical thickness D the optical depth is

τν(D) =

∫ D

0
χν(s) ds (4.23)

The optical depth is a dimensionless number. The physical meaning of τν is simple. In the
absence of emission in the medium the equation of transfer along the beam is given by (see
eq. 4.2 and/or 4.13)

dIν
dτν

= −Iν (4.24)

This yields

Iν(D) = Iν(0) e−τν(D) (4.25)

and shows that τν(D) is the exponential decline parameter that determines what remains of
a beam that has passed through a layer of thickness D in which extinction processes occur.
How far can photons penetrate in this layer? The chance that an incident photon travels an
optical depth τν(s) in the layer (for s < D) is p(τν) = exp(−τν), where we have dropped
explicit reference to s. The chance that after traveling this far it is absorbed within the interval
(τν , τν + dτν) is 1− exp(−dτν) ' dτν for dτν � 1. So, the probability that a photon will be
scattered or absorbed between τν and τν + dτν is exp(−τν) dτν . As the average of a quantity
x that has a probability distribution p(x) is given by

〈x〉 =

∫∞
0 x p(x) dx∫∞
0 p(x) dx

(4.26)

the mean optical photon path of the photon must be

〈τν〉 =

∫∞
0 τν e

−τν dτν∫∞
0 e−τν dτν

= 1 (4.27)

Photons therefore typically travel one optical depth unit before interacting with the medium.



68 The equation of transfer

Mean free path of the photon

This result immediately shows what the mean geometrical path ([cm]) of a photon in a homo-
geneous medium must be, i.e. the path length it can travel before it is absorbed or scattered.
This is

`ν =
〈τν〉
χν

=
1

χν
=

1

χ′νρ
=

1

αν n
(4.28)

and is formally refered to as the photon mean-free-path.

Optically thick and optically thin

One of the first questions one should ask oneself when trying to understand the transfer of
radiation through a medium is whether this medium is optically thin or optically thick for
radiation of given frequency. Optically thin implies that almost all incident photons, as well
as almost all photons emitted in the medium, can propagate undisturbed by the medium and
escape from it. An optically thin medium therefore describes the limiting case τν � 1. In
an optically thick medium τν � 1. This (opposite) limit therefore describes a medium that is
almost opaque for photons. Almost all photons in a beam that is incident to a medium that is
optically thick will be absorbed or scattered inside the medium. Of all photons that are emitted
by the medium only those will contribute to the emerging specific intensity that are emitted at
a position and into a direction for which the optical depth to the edge of the medium is τν ∼ 1.

At which optical depth do half of the emitted photons escape? This is from τν = − ln 0.5 =
0.693 ' 2/3 along the direction of the beam. Relying on ones intuition, this implies that we
may expect that the layer in a stellar or planetary atmosphere from which the radiation that
we observe originates should be at an optical depth τν ' 2/3, measured from outside in (so
τν = 0 is at the position of the observer). Later on in these lectures we will show that this is
indeed the case.

Source function

The source function is defined as
Sν ≡

ην
χν

(4.29)

and has dimensions erg cm−2 sec−1 hz−1 sr−1. It has the same units as the specific intensity,
therefore Sν and Iν can be added and subtracted (see eq. 4.36). The extinction and emission
coefficients are local quantities, implying the source function is independent of the adopted
geometry.

The meaning of the source function can be understood as follows: The number of photons that
is emitted per bandwidth and time interval from an elementary volume of cross-section dO
and length ds into all directions is Nem = (4π/hν) ην dO ds dν dt, where we have assumed
that the emission is isotropic. The factor 4π is the result from the integration over all solid
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angles, and hν converts energy to number of photons (see eq. 4.7). From the definition of
optical depth, eq. (4.22), it follows that ην ds = (ην/χν)χν ds = Sν dτν . So, we may also
write for the number of emitted photons

Nem = Sν dτν
4π

hν
dν dt dO (4.30)

In other words, the source function is proportional to the number of photons that is emitted
per unit optical depth.

Using an analogous reasoning we may derive the number of photons, coming from all direc-
tions, that is absorbed per unit optical depth. Using the definition of the extinction coefficient
(eq. 4.3) we find that the number of photons in a ray traveling in direction n into solid angle
dω that suffer extinction is given by dNabs = χν(r) Iν(r,n) dO ds dω dν dt/hν, where we
have assumed that the extinction is isotropic. Integration over all solid angles, again using the
definition of the optical depth, gives

Nabs = Jν dτν
4π

hν
dν dt dO (4.31)

— — —

If several extinction/emission processes play a role the total source function is

Sν ≡
ην
χν

=

∑
i ην,i∑
i χν,i

(4.32)

The subscript i labels all different processes contributing at frequency ν (see eq. 4.9).

Let us for a moment get ahead of things such that we can already give the proto-typical form
of the source function. In a medium that features both absorption and scattering processes,
Kirchhoff’s law (eq.6.3) implies that for the thermal emission ηth

ν = κνBν ; if we assume
isotropic and coherent (i.e. ν = ν ′) continuum scattering, the emission term for scattering is
given by ηsc

ν = σνJν . For the proto-typical source function we get

Sν =
κνBν + σνJν
κν + σν

(4.33)

In section 9.4 the proto-typical source function will be discussed in more detail.

The frequency integrated or total source function is

S ≡
∫ ∞

0
Sν dν (4.34)
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4.4 Boundary conditions and formal solution of the planer transfer equation

We define the optical depth scale in a geometry of planar layers such that for z increasing in
the direction to the observer, τν is decreasing, i.e.

dτν(z) = −χν(z)dz (4.35)

This implies that for an observer at z = ∞, the optical depth τν(∞) = 0. Adopting this
optical depth scale, and using the source function, the planar transfer equation (eq. 4.18) may
be written in its standard form

µ
dIν(τν , µ)

dτν
= Iν(τν , µ)− Sν(τν , µ) (4.36)

Note that we measure τν along the z direction. The relation between the optical depth in the
µ direction, τνµ, and that in the z direction (for which µ = 1) is τνµ = τν/µ.

Boundary conditions in axial symmetry

Transfer equation (4.36) has an upper boundary condition for inward directed beams (−1 ≤
µ ≤ 0) and a lower boundary condition for outward directed beams (0 ≤ µ ≤ 1). How
might these boundary conditions look like? If the outer boundary condition is dark space, the
condition is

Iν(0, µ) = 0 for − 1 ≤ µ ≤ 0. (4.37)

It is quite customary to adopt this condition when modelling stars. For some stars though (e.g.
Asymptotic Giant Branch stars), the mean interstellar radiation field IISRF

ν = (c/4π)uν is
usually considered as upper boundary condition, where uν is the monochromatic interstellar
energy density (see Eq.3.15). In that case

Iν(0, µ) = J ISRF
ν (0, µ) for − 1 ≤ µ ≤ 0, (4.38)

where the ISRF is assumed to be isotropic, i.e. J ISRF
ν (0, µ) = J ISRF

ν (0). In case one is
modelling the surface of a planet illuminated by the host star the situation is more complex.
Radiation is incident from above from (almost) a single direction, that of the star. Lets say the
star is positioned at (µ◦, φ◦). Simply look out of the window in daytime to see an illustration
of this situation. Often (see Hansen 2008, ApJS 179, 484), this is ignored and the host star
radiation is assumed to be incident uniformly from all incoming directions (so, Eq. 4.38 is
adopted with the mean interstellar radiation field replaced by J?ν = W (d) I?ν , where I?ν is the
specific intensity of the host star). Alternatively, one assumes the condition

Iν(0, µ) = I?ν (0, µ◦) for − 1 ≤ µ ≤ 0, (4.39)

for incoming starlight that – if axial symmetry is to be preserved – is essentially distributed
over a ring in the sky (covering all azimuthal angles φ) at fixed polar angle µ◦, and that is
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emitting a specific intensity I?ν . This assumption is usually applied to describe the incident
stellar flux assuming the incoming radiation to be plane parallel at the planet surface (see
Eq. 12.11).

We will return to boundary conditions for exo-planets in Chapter 12.

The lower boundary condition specifies the specific intensity coming from the interior. In case
of a semi-infinite atmosphere one usually applies the diffusion approximation (see Eq. 4.60)

Iν(τmax,ν , µ) = Sν(τν) + µ
dSν
dτν

∣∣∣∣
τmax,ν

for 0 ≤ µ ≤ 1, (4.40)

for both stars and planets. Here, τmax,ν is the optical depth at the lower boundary. For stars,
the origin of the energy (specific intensity is photon energy after all) coming from deep layers
is thermonuclear reactions in the core. For planets the energy has two possible origins. The
first is from reprocessed absorbed host star radiation and the second is from interior energy
arising from slow loss of residual gravitational energy and from radioactive decay.

Formal solution

For known source function Sν , eq. (4.36) has a formal solution. To find this solution we
bring Iν to the left hand side, divide by µ and multiply both sides by the integrating factor
exp(−τν/µ). This yields[

dIν
dτν
− Iν
µ

]
e−τν/µ =

d

dτν
(Iνe

−τν/µ) = −Sν
µ
e−τν/µ (4.41)

Integration from τ1 to τ2, and multiplying by − exp (τ1/µ) results in

Iν(τ1, µ) = Iν(τ2, µ) e−(τ2−τ1)/µ +

∫ τ2

τ1

Sν(tν) e−(tν−τ1)/µdtν
µ

(4.42)

This is the formal solution of the equation of transfer. We will discuss the meaning of the
two terms in this solution in § 4.6 using some example problems. Here we only point out that
the boundary conditions are represented by Iν(τ2, µ) for outward beams (0 ≤ µ ≤ 1) and by
Iν(τ1, µ) for inward beams (−1 ≤ µ ≤ 0).

4.5 Moments of the transfer equation

We introduce the first two moments of the transfer equation. The angular moments (i.e. with
respect to µ) of the transfer equation yield results of deep physical significance and great math-
ematical utility when constructing, for instance, models of stellar and planetary atmospheres.
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Planar layers

The zero order moment of the equation of transfer in a planar medium can be derived from
eq. (4.36)

1

2

∫ +1

−1
µ

dIν
dτν

dµ =
1

2

∫ +1

−1
Iν dµ−

1

2

∫ +1

−1
Sν dµ

dHν

dτν
= Jν − Sν (4.43)

where we have assumed that the source function is isotropic. For the first order moment we
find

1

2

∫ +1

−1
µ2 dIν

dτν
dµ =

1

2

∫ +1

−1
µIν dµ−

1

2

∫ +1

−1
µSν dµ

dKν

dτν
= Hν (4.44)

as
∫ +1
−1 µSν dµ = 0 for an isotropic source function. Substituting eq. (4.44) in (4.43) then

gives
d2Kν

dτ2
ν

=
d2(fνJν)

dτ2
ν

= Jν − Sν (4.45)

where we have used the Eddington factor defined in eq. (3.37). If fν and Sν are known, the
above equation reduces to a 2nd order differential equation for the mean intensity. A method
to solve this type of equation will be discussed in § 5.

Spherical shells

The zero order moment of the equation of transfer in a spherical symmetric medium can be
derived from eq. (4.21)

1

r2

∂(r2Hν)

∂r
= ην − χνJν (4.46)

where we have assumed that ην and χν are isotropic. For the first order moment we find

∂Kν

∂r
+

1

r
(3Kν − Jν) =

∂(fνJν)

∂r
+

1

r
(3fν − 1)Jν = −χνHν (4.47)

Similar to the case of a planar geometry, we may combine eq. (4.46) and (4.47) to arrive at a
2nd order differential equation for the mean intensity.

4.6 Simple examples of transfer problems

We will now solve the equation of transfer for some simple cases.
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Radiation from a homogeneous finite slab

Let us consider a homogeneous finite slab. Homogeneity implies that χν and ην , therefore
also Sν , are constant. If the integrated optical depth in the normal direction of the slab is τν
the emerging intensity at τ1 = 0 is

Iν(0, µ) = Iν(τν , µ) e−τν/µ + Sν

[
1− e−τν/µ

]
(4.48)

We concentrate on the normal direction µ = 1 and for convenience drop reference to the angle
dependence. This reduces eq. (4.48) to

Iν(0) = Iν(τν) e−τν + Sν
[
1− e−τν

]
(4.49)

The first term on the right hand side describes the weakening of the radiation that is incident
to the far side of the slab (viewed from the direction of the observer). The second term on the
right hand side gives the contribution of radiation emitted by the slab itself. Let us analyse the
two limiting cases of this solution.

In the optically thin limit (τν � 1, such that exp(−τν) ' 1− τν) we find

Iν(0) ' Iν(τν) + (Sν − Iν(τν)) τν (4.50)

If no radiation is incident at the far side (Iν(τν) = 0) it follows that Iν(0) ' Sντν . This is to
be expected as in the optically thin case we observe emission from almost all parts of the slab.
The emerging radiation therefore must be Iν(0) ' ηνD = SνχνD = Sντν , where D is the
geometrical thickness of the slab. If no radiation is emitted by the slab itself (Sν = 0) then
Iν(0) ≈ Iν(τν), which is obvious – one sees through the slab.

If the slab is optically thick (τν � 1) then

Iν(0) ' Sν (4.51)

The radiation Iν(τν) that is incident at the far side does not penetrate through the slab. One
only observes the source function in the slab, irrespective of the nature of the extinction. The
nature of the medium is only relevant for the source function Sν .

We rewrite the solution of eq. (4.49) to

Iν(0) = Iν(τν) + (Sν − Iν(τν))
[
1− e−τν

]
(4.52)

Note that the term [1−exp (−τν)] is always positive and that therefore Iν(0) < Iν(τν) if Sν >
Iν(τν) (see figure 4.4). This is an important result. It shows the principle of the formation of
absorption casu quo emission lines in a plane-parallel atmosphere. Let us identify the incident
intensity Iν(τν) with the intensity that is emitted by the stellar or planetary continuum. The
homogeneous layer corresponds to the stellar or planetary photosphere, i.e. the region in
which the spectral lines are formed. Is the line source function Sν < Iν(τν) then an absorption
line will form, i.e. Iν(0) < Iν(τν). Is the line source function Sν > Iν(τν) then an emission
line will form, i.e. Iν(0) > Iν(τν). Is the line source function equal to the intensity emitted
by the continuum, i.e. Sν = Iν(τν), then no line will form, i.e. Iν(0) = Iν(τν).
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Figure 4.4: The emerging specific intensity Iν(0) for a homogeneous finite slab in which the optical
depth in the normal direction is τν . The emitted specific intensity approaches the source function Sν
from both sides, en reaches Sν for a sufficiently large optical depth τν of the slab.

Radiation from a semi-infinite medium

The assumption of a homogeneous stellar atmosphere is not very realistic. To improve this
model, we assume that the medium consists of multiple homogeneous planar layers, i.e. that
variations occur in the z direction. As the density increases inward to very high values, the
optical depth τ2 →∞. The emerging intensity (τ1 = 0) is then given by

Iν(0, µ) =

∫ ∞
0

Sν(tν) e−tν/µ
dtν
µ

(4.53)

Now let us assume that the source function is a linear function of optical depth, i.e.

Sν(τν) = aν + bντν (4.54)

Substitution in eq. (4.53) yields

Iν(0, µ) = aν + bν µ = Sν(τν = µ) (4.55)

This is known as the Eddington-Barbier approximation. It shows that the emerging specific
intensity in the outward normal direction (µ = 1) is characterized by the source function at
τν = 1. This does not mean that all photons that are observed from this direction originate
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from the layer where the optical depth τν = 1. The effective contribution to the integrant
Sν exp(−tν) reaches over a broad range in optical depth, from the surface at τν = 0 down to
τν ≈ 10. From all of this part of the semi-infinite atmosphere photons will escape; together
they are characterized by the value of the source function at τν = 1.

For the emergent flux (see Eq. 3.21) one finds

F+
ν = 2π

∫ 1

0
Iν(0, µ)µdµ = π Sν(τν = 2/3), (4.56)

a result we will prove in one of the exercises at the end of this chapter. Notice that for a
constant source function (i.e. bν = 0, implying Iν is isotropic) the emergent flux is given by
F+
ν = πIν , a result already obtained in Eq. (3.28).

The formation of spectral lines in a semi-infinite medium

As an example of the results that we have obtained above for the specific intensity in a semi-
infinite medium we discuss the formation of spectral lines. A spectral line is always the result
of a discrete (bound-bound) transition in an atom or ion, i.e. of a process that occurs in
addition to continuous processes that take place at the frequency of interest.

The presence of a spectral lines has two consequences:

- The bound-bound process gives the opportunity for extinction, superposed on the con-
tinuous extinction. At the frequency of the spectral line the extinction coefficient of the
medium will be larger than at frequencies next to the line.

- The source function associated with the bound-bound process may differ from that of
continuous processes at the line frequency.

Together these two effects may cause that the spectral line is observable in the emerging
intensity, either in emission or in absorption relative to the continuum background.

We examine the special case that the continuum and line source functions are equal, but may
vary (together) with depth in the medium. The effect of the extra line extinction is that the
layer of optical depth τν = 1, which is representative of the emerging photons, is located
further out for line frequencies relative to continuum frequencies in the spectrum next to the
line. In other words: one can see less deep in the medium at line frequencies as at these
frequencies additional bound-bound extinction processes take place. The four panels shown
in figure 4.5 illustrate this.

Note that an optically thick medium with identical continuum and line source function will
only show a spectral line if the source function changes with depth, such that a different
sampling will cause a different emerging specific intensity. In the four panels the source
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Figure 4.5: Four panels illustrating line formation in a semi-infinite medium consisting of planar layers.
The extinction coefficient χν (top left) determines the location of τν = 1 for each frequency ν (top
right). As an example the location of line center is shown. This location defines the value of the source
function (bottom right) to which the observed specific intensity will be equal to (bottom left). It is
assumed that the continuum and line source function are identical (such that only one curve needs to
be plotted in the bottom left panel). Because the source function decreases with increasing distance the
spectral line is in absorption.

function decreases outward such that spectral lines will always show a lower specific intensity
compared to the continuum: they will be absorption lines.

The effect of line extinction on the characteristic depth of formation τν = 1 can be very
large as the bound-bound extinction coefficient at line centre is often orders of magnitudes
larger than the continuum extinction coefficient. A “strong” spectral line may thus sample the
emerging intensity in a geometrically thick layer. This implies that the shape of an observed
strong spectral line does not so much reflect the behaviour of the extinction coefficient as
a function of frequency, rather it reflects the run of the source function with depth in the
atmosphere, sampled by the extinction coefficient. Throughout the line profile it is the depth
one views into the atmosphere that is changing, and by that the value of the source function
that we see.

The above discussion is not limited to rapid changes of the extinction coefficient in small
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frequency intervals, as is the case for bound-bound processes. It holds equally well for widely
separated frequencies that measure the slow change of the continuum extinction coefficient.
Although in this case the assumption that the two source functions are identical is usually not
valid, and the extinction coefficients thus measure their own source function.

Radiation deep inside a semi-infinite medium

The above discussed Eddington-Barbier approximation describes the radiation field close to
the surface. Now we will direct our attention to the behaviour of the radiation quantities at
great optical depth, τν � 1, i.e. deep inside the medium, far below the surface. Here all
characteristic length scales will be larger than the mean free path of the photons, therefore the
particles will “see” an almost isotropic radiation field. As large optical depths are reached in
regions of high density, collisional processes, i.e. real absorptions and emissions, will dom-
inate over photon scattering processes. Consequently, the properties of the medium will be
close to that of thermodynamic equilibrium (see chapter 6) such that LTE is a good approxi-
mation. We formulate the source function as a Taylor-McLaurin expansion

Sν(tν) =

∞∑
n=0

(tν − τν)n

n!

[
dnSν(tν)

dtnν

]
τν

(4.57)

Substitution in eq. (4.53) (you may find it more insightful to use the rightmost term in eq. 4.42)
gives for an outward directed beam (0 ≤ µ ≤ 1)

Iν(tν , µ) =
∞∑
n=0

1

n!

[
dnSν(tν)

dtnν

]
τν

∫ ∞
τν

(tν − τν)ne−(tν−τν)/µ dtν/µ

=
∞∑
n=0

[
dnSν(tν)

dtnν

]
τν

1

n!

∫ ∞
0

xne−x/µ dx/µ

=

∞∑
n=0

µn
[

dnSν(tν)

dtnν

]
τν

= Sν(τν) + µ
dSν
dtν

∣∣∣∣
τν

+ µ2 d2Sν
dt2ν

∣∣∣∣
τν

+ · · ·(4.58)

where we have made use of eq. (4.70). For an inward directed beam (−1 ≤ µ ≤ 0) one
recovers an identical expression save for correction terms of order e−τν/µ. As we consider
large optical depths these corrections are unimportant. We may therefore apply the above
expression for radiation in all directions; moreover it applies for small optical depths as well,
provided that µ > 0.

Using eq. (3.20) we find for the net flux

Fν =
∞∑
n=0

4π

2n+ 3

[
d2n+1Sν(tν)

dt2n+1
ν

]
τν

=
4π

3

dSν
dtν

∣∣∣∣
τν

+
4π

5

d3Sν
dt3ν

∣∣∣∣
τν

+ · · · (4.59)

To get a rough idea of the rate of convergence of these expansions we make the simple order
of magnitude estimate |dnSν/dτnν | ∼ Sν/τ

n
ν , such that the ratio between the differentials
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∣∣dn+2Sν/dτ
n+2
ν

∣∣ / |dnSν/dτnν | ∼ 1/τ2
ν . This guarantees fast convergence and yields for

τν � 1 the following approximations

Iν(τν , µ) ' Sν(τν) + µ
dSν
dtν

∣∣∣∣
τν

(4.60)

Jν(τν) ' Sν(τν) (4.61)

Fν(τν) ' 4π

3

dSν
dtν

∣∣∣∣
τν

(4.62)

and

Kν(τν) ' 1

3
Sν(τν) (4.63)

where we have also given the end results for the mean intensity Jν and the second order
moment Kν for completeness. In the expansion for the specific intensity we also take the first
order term into account because we want to have a non-zero value for the flux. The isotropic
component of the mean intensity is determined by the value of the source function. The net
flux is determined by the anisotropic component of the source function. This is logical as Fν
measures the difference between F+

ν and F−ν . For the radial component only I+
ν ' Sν +

dSν/dτν and I−ν ' Sν − dSν/dτν . The difference (relevant for the net flux) is proportional
to dSν/dτν . This implies that in order to transport radiation outward the source function has
to increase inward. In LTE this corresponds to a temperature that increases in the inward
direction (see § 6.7).

Note that

lim
τν→∞

Kν(τν)

Jν(τν)
= lim

τν→∞
fν(τν) =

1

3
(4.64)

a result that we already obtained in § 3.6 for a strictly isotropic radiation field. Equation (4.64)
therefore expresses that for ever increasing optical depth the radiation field becomes more and
more isotropic. This can also be learned from a simple order of magnitude estimate of the
anisotropy of the specific intensity |dSν/dτν | /Sν ∼ 1/τν , i.e. if τν increases the anisotropy
decreases.

Diffusion approximation

At large optical depth the properties of the medium approach (local) thermodynamic equilib-
rium. We discuss the specifics of these equilibria in more detail in Chapter 6. For now we
mention that for thermodynamic equilibrium Sν = Bν (see § 6.2). For the flux this implies
(see eq. 4.62)

Fν '
4π

3

∂Bν
∂τν

= −4π

3

1

χν

∂Bν
∂z

= −4π

3

1

χν

∂Bν
∂T

dT

dz
(4.65)

This equation is known as the diffusion approximation because of the similarity of the equa-
tions to that of (other) diffusion processes that have a form such that the transported flux of a
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quantity is the product of a diffusion coefficient times the gradient of the quantity itself. The
coefficient (4π/3χν)dBν/dT is also referred to as the radiative thermal conductivity.

In those parts of the atmosphere that can not be observed – or more general in the stellar
interior – the total flux F is a much more interesting quantity than is the monochromatic flux
Fν . If we integrate eq. (4.65) over frequency and introduce the Rosseland mean extinction
coefficient χR (dimension cm−1), defined as

1

χR
≡
∫∞

0 (1/χν)(∂Bν/∂T ) dν∫∞
0 (∂Bν/∂T ) dν

(4.66)

we find using (see eq. 6.11)∫ ∞
0

∂Bν
∂T

dν =
∂

∂T

∫ ∞
0

Bν dν =
∂B

∂T
=

∂

∂T

(σ
π
T 4
)

=
4σ

π
T 3 (4.67)

for the total flux

F = −16

3

σT 3

χR

dT

dz
(4.68)

where 16σT 3/3χR is the effective radiative thermal conductivity. This equation shows that in
LTE a net outward radiative flux is accompanied by an inward increase of the temperature.

The general form of the above diffusion equation is given by

F(r, t) =
16

3

σT 3

χR
∇T =

16

3

σT 3

χR

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
(4.69)

A formal derivation of this equation is given in Wehrse, Baschek, & von Waldenfels (2000)

We will return to the diffusion approximation in chapter 10.

https://articles.adsabs.harvard.edu/pdf/2000A%26A...359..780W
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Exercise 4.1

This could be a nice exam question. Suppose that in Sherwood Forest, the average radius
of a tree isR = 1 m and that the average number of trees per unit area is Σ = 0.005 m−2.
When Robin Hood or Lady Marian shoots an arrow, it flies horizontally until it strikes a
tree.

a) What is the mean cross section of a tree in m?

b) If Robin Hood shoots an arrow in a random direction, how far, on average, will it travel
before it strikes a tree?

c) If Lady Marian shoots a total of 1000 arrows in random directions, how many, on average,
will travel at least 500 m?

Exercise 4.2

Show that for a medium in which no photons are created, destructed or converted, but
in which only pure scattering processes occur, the source function is equal to the mean
intensity: Sν = Jν . The importance of this result is that in a scattering-dominated
medium the source function at some position r may be the result of a radiation field
that is generated far, far away, at some r′ where conditions (temperature, density) are
completely different from those at r.

Exercise 4.3

Derive the moment equations (4.46) and (4.47) in case of a spherically symmetric medium.
These equations play an important role in the modelling of, for instance, stellar winds,
supernova remnants, and Bok globules.

Exercise 4.4

Stellar light passes through an interstellar cloud. The continuum specific intensity of
the starlight is I◦ = 1, independent of frequency. Spectral line absorption occurs in the
cloud. The optical depth in the spectral line is given by τ(x) = τ◦φ(x), where φ(x) is a
’bell shaped’ function given by Eq. 13.20. The parameter x is a dimensionless measure of
frequency. Use a spreadsheet program to create a graph of the spectrum of the emerging
specific intensity Ix in the range x = [−4.0,+4, 0], for τ◦ = 0.1, 1.0, and 10.
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Exercise 4.5

a) Give the emerging specific intensity, as a function of beam direction µ, for a homoge-
neous semi-infinite slab. The result tells you that for these assumptions, no matter the
angle at which you view the surface of the slab, you always see the same surface bright-
ness.

b) Give the specific intensity in a direction µ > 0 inside of a homogeneous, semi-infinite
medium.

Exercise 4.6

A radio astronomer states that the radio intensity that she observes from the center of a
spherical looking interstellar cloud of diameterD is given by Iν = χνSνD. Give the five
assumptions that she has made.

Exercise 4.7

a) Give the derivation of the Eddington-Barbier approximation (Eq. 4.55). This result is
fundamental in understanding spectral line formation.

b) Give the emerging specific intensity in case Sν(τν) =
∑∞
n=0 an,ντ

n
ν . Remember that∫ ∞

0

xne−x dx = n! (4.70)

Show that one recovers the Eddington-Barbier approximation if an,ν = 0 ∀ n ≥ 2.

Exercise 4.8

a) The specific intensity of the solar disk in visual light de-
clines from the center of the disk towards the edge. What
does this tell about the variation of the source function as a
function of height in the solar atmosphere?

b) This image of the solar disk is taken during the transit of
Mercury on November 8, 2006. Locate Mercury.
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Figure 4.6: Left panel: Earth’s hemispherically averaged spectrum, i.e. Earth as an exoplanet. Top:
Earth’s visible spectrum from Earthshine measurements plotted as normalised reflectance (Turnbull et
al. 2006). Middle: near-IR spectrum from NASA’s EPOXI mission with flux in units of W m−2 lm−1

(Robinson et al. 2011). Bottom: Earth’s mid-IR spectrum as observed by Mars Global Surveyor
en route to Mars with flux in units of W m−2 Hz−1 (Christensen & Pearl, 1997). Major molecular
absorption features are noted including Rayleigh scattering (noted as ‘Ray’). Only strongly absorbing,
globally mixed molecules are detectable. Right panel: the vertical structure of Earth’s atmosphere
typical of midlatitudes. From the 1976 U.S. Standard Atmosphere.

Exercise 4.9

Figure 4.6 shows Earth’s mid-infrared spectrum as seen from space and Earth’s vertical
temperature structure typical of mid-latitudes. From the ground up to about 60 km our
atmosphere is in LTE (we will get to this in Sect. 6.7) and we adopt Sν(z) = Bν(T (z))
for the source function.

a) In which layer of Earth’s atmosphere is most of the gas mass concentrated? It is fair to
assume that the bulk of the spectral features seen in the figure are formed in this layer.

b) We focus on the CO2 feature at 13−17µm. The overal shape of the CO2 profile is that
of an absorption line. Explain why this is to be expected.

c) Notice a narrow emission feature (at about 15µm) in the center of the CO2 absorption.
Explain the origin of this feature.

https://iopscience.iop.org/article/10.1086/503322/pdf
https://iopscience.iop.org/article/10.1086/503322/pdf
https://www.liebertpub.com/doi/10.1089/ast.2011.0642
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JE00637
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Exercise 4.10

Prove that in the Eddington Barbier approximation the emergent flux is given by Eq. 4.56.

Exercise 4.11

We assume a semi-infinite stellar atmosphere. The continuum extinction χcont in the
part of the spectrum that we are probing is independent of frequency and height. The
source function is a linear function of optical depth. Using the continuum optical depth
as our measure of vertical height, the source function is S(τ cont) = a + b τ cont. The
spectrum contains a spectral line that has a source function that is the same as that of the
continuum at every position in the atmosphere. The line extinction coefficient is given by
χline
x = χline

◦ φ(x), where φ(x) is a ‘bell shaped’ function given by Eq. 13.20 and χline
◦

is independent of height. The parameter x is a measure of frequency. The total optical
depth τx = τ cont +τ line

x . As the Eddington-Barbier approximation is valid, the emerging
specific intensity in the normal direction is given by Ix(0) = S(τx = 1).

a) Show that τx = 1 is reached for τ cont = 1/(1 + q), where q = χline
x /χcont is the ratio

between the line extinction coefficient and continuum extinction coefficient.

b) Adopt χline
◦ = 10 and χcont

circ = 1. Use a spreadsheet program to create a graph of the
spectrum of the emerging specific intensity Ix in the range x = [−4.0,+4.0], for (a, b) =
(1.0, 0.0), (0.6, 0.4), and (0.2, 0.8). Note that a steeper dependence of the source function
with optical depth produces a deeper absorption line.

Exercise 4.12

Make a schematic drawing similar to Fig. 4.5 for the case that the source function in-
creases in the outward direction. What type of spectral line does this give?

Exercise 4.13

Show that eq. (4.58) is also valid for inward directed beams, i.e. for −1 ≤ µ ≤ 0. Your
professor agrees that this is quite heavy stuff. It is just to let you know that if you ever
find yourself deep down in a star, move in the direction from where the surface brightness
that you see is lowest to find the exit.
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Exercise 4.14

a) Show that for the mean intensity a Taylor-McLaurin expansion of the source function
(eq.4.57) yields

Jν(τν) =

∞∑
n=0

1

2n+ 1

[
d2nSν(tν)

dt2nν

]
τν

= Sν(τν) +
1

3

d2Sν
dt2ν

∣∣∣∣
τν

+ · · · (4.71)

b) Show that the second order moment is given by

Kν(τν) =

∞∑
n=0

1

2n+ 3

[
d2nSν(tν)

dt2nν

]
τν

=
1

3
Sν(τν) +

1

5

d2Sν
dt2ν

∣∣∣∣
τν

+ · · · (4.72)

c) What is the Eddington factor fν (Eq. 3.37) deep down in a star, where the (value of
the) gradient in the source function is very small compared to the (value of the) source
function itself.

Exercise 4.15

This could be a nice exam question. Consider a spherical homogeneous cloud of small
dust particles. The cloud has a mass m and a radius R = 0.1 AU (1 AU = 1.5×1013 cm).
The dust particles have a temperature T and radiate according to the Planck-function.
The optical depth τ , as measured from the edge of the cloud to the center, is independent
of frequency (’gray’).

a) Give the specific intensity, mean intensity, and flux at the center of the cloud.

The dust particles have a frequency independent (’gray’) extinction coefficient χ′ =
100 cm2/gr.

b) Derive an expression that gives the gray radial optical depth as a function of the basic
parameters of the cloud.

c) What should be the minimum mass of the cloud to assure that the cloud is optically thick
(i.e. τ ≥ 1)?

d) If we increase the radius of the cloud by a factor of two, but keep its mass the same,
does this lead to a change in the specific intensity at the center (yes/no). Does the mean
intensity at the center change (yes/no)? Does the flux at the center change (yes/no)?

The cloud represents the halo of a comet. This halo develops when the comet gets so
close to the sun that because of heating small dust particles come off its surface layers.
A comet has a typical initial diameter of 10 km and consists of material that has a typical
density of 1 gr cm−3.

e) Will the halo of this comet be optically thick or optically thin?
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Figure 4.7: Four-panel diagram for a spectral line formed in a homogeneous interstellar cloud.

Exercise 4.16

This could be a nice exam question. We use the four-panel diagram (introduced in
Fig. 4.5) to draw the shape of a spectral line that is formed in an interstellar cloud. For
this purpose an empty diagram is given in Fig. 4.7). The cloud is spatially resolved and
can be modelled by a homogeneous slab, i.e., by a geometry of planar layers. The back-
ground behind the cloud is dark, i.e., there is no radiation illuminating the cloud at the far
side. As the slab is homogeneous, the density and temperature are constant as well as the
source function of the spectral line we’re considering. The spectral line is very optically
thick at all line frequencies [νa, νb]. In the top left panel the extinction coefficient is given
in arbitrary units. In all panels the axes are on a linear scale.

a) Which condition, in general, determines whether a line is in emission or in absorption?

b) Use the panel to reconstruct the line profile (lower left panel) that the cloud is emitting.
In doing so, draw – in any case – the situation for frequencies νa, ν◦ and νd in the panels.
Do so as quantitative (notably in the top right panel) and accurate as possible. Draw
dashed lines from panel to panel to clarify your reasoning.
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We now assume that the line is very optically thick only for frequencies in between
[νb, νc]. For frequencies outside of this regime the line becomes optically thin. At νa and
νd the optical depth τνa = τνd = 0.7.

c) Draw/sketch the line profile for this situation (add it to the lower left panel); do so quan-
titatively for the frequency points for which you know what the emerging intensity Iν(0)
should be and sketch the situation in between these points.

Exercise 4.17

In section 9.4 we will discuss in more detail that in a planar atmosphere the total flux F
(see 4.68) is constant. The value for the constant is σT 4

eff , see eq. (3.23). Introduce, using
eq. (4.35), the Rosseland optical depth dτRoss = −χR dz and show that in the diffusion
limit the temperature structure is given by

T 4(τRoss) =
3

4
T 4

eff

(
τRoss +

2

3

)
if one assumes that the diffusion approximation is valid down to τRoss = 2/3 and that
the temperature T at τRoss = 2/3 is equal to Teff .



5

Numerical methods for solving the
equation of transfer

In many cases the equation of transfer can not be solved analytically. In this chapter we
discuss a number of numerical techniques that allow to compute the formal solution eq. (4.42).
”Formal” implies that both Sν and τν are known functions. In principle, we may simply
replace the integral over optical depth by a quadrature sum, such as for instance the trapezium
rule ∫ x2

x1

f(x) dx = ∆x

[
1

2
f1 +

1

2
f2

]
(5.1)

where f(x) = S(x)e−x. Solving this problem is trivial. In practice, however, this is not
the way in which it is done. The reason for it is that this simple numerical quadrature is a)
inaccurate because of the stongly non-linear (read: exponential) behaviour of the integrant
f(x), and b) very inefficient in terms of computation speed. The latter is so because the
integrant contains an exponential function, which is very “expensive” to compute. In many
complex models, especially those aimed at quantitative spectroscopy, the overal computation
time is dominated by the time it costs to perform formal solutions (for all frequencies and
angles at all grid points). Highly efficient numerical schemes are therefore indispensable.

One may distinguish between two classes of methods, those based on the i) integral solution
(eq. 4.42), or ii) differential solution (eq. 4.36) of the equation of transfer. The latter class can
again be divided in a a) first-order form, or b) a second-order form. The formal solution using
short characteristics uses the integral solution. We will first discuss this method. Then we
will focus on a second-order differential method that is refered to as Feautrier method, named
after the person that devised this scheme. Until recently the accurate and efficient Feautrier
method (which does not feature exponential functions) has been the prefered numerical tool
for solving the transfer equation. Presently, there is a renewed interest in the method of short
characteristics. This is so because of the relative ease with which this formalism can be im-
plemented in 2D and 3D transfer problems. For both the 1D and multiD-problems there is a
recent increasing interest in an ingeneous adaptation of the discontinous finite element method,
which is based on the first-order differential form. We will not discuss this last method.
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Figure 5.1: Specification of the grid points in our description of the method of short characteristics.

5.1 Short characteristics

The method of short characteristics uses the integral solution eq. (4.42) of the equation of
transfer. Let us consider a finite slab in planar geometry, through which the total optical depth
of the medium in the normal direction is Tν . Along lines of sight in the outward direction, i.e.
for 0 ≤ µ ≤ 1, or, phrased differently, in the direction in which the optical depth decreases,
we have

I+
ν (τν , µ) = I+

ν (Tν , µ)e−(Tν−τν)/µ +

∫ τν

Tν

Sν(tν)e−(tν−τν)/µdtν
µ

(5.2)

where I+
ν (Tν , µ) is the incident intensity (in the + direction) at τν = Tν . Similarly, for an

inward directed beam, i.e. −1 ≤ µ ≤ 0, we find using the boundary condition I−ν (0, µ) that

I−ν (τν , µ) = I−ν (0, µ)eτν/µ +

∫ τν

0
Sν(tν)e−(τν−tν)/µ dtν

(−µ)
(5.3)

Perhaps, intuitively, this last solution may seem somewhat odd. However, realize that µ is
negative.

We choose a set of optical depth points {τd}, d = 0, ..., D where τ0 = 0 and τD = T .
For convenience we drop the frequency subscript. The boundary conditions are given by
I+
D(µ, ν) = I+(T, µ, ν) and I−0 (µ, ν) = I−(0, µ, ν). Figure 5.1 illustrates this grid specifica-

tion.

The above equations provide the solution along beams that pass through the slab at an angle
θ, where µ = cos θ. We now write the solution in a local form, such that it appears that
the specific intensity at point d is only a function of the source function and the boundary
conditions I+(τd+1, µ, ν) and I−(τd−1, µ, ν). This yields

I+(τd, µ, ν) = I+(τd+1, µ, ν) e
−∆τ

d+ 1
2 + ∆I+

d (S, µ, ν) (5.4)

and
I−(τd, µ, ν) = I−(τd−1, µ, ν) e

−∆τ
d− 1

2 + ∆I−d (S, µ, ν) (5.5)

where
∆τd+ 1

2
= (τd+1 − τd)/ |µ| (5.6)
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The increase in intensity, ∆I±d , is the contribution of the source function integrated over the
grid interval. We now assume that locally (over the range {τd−1, τd+1}) the source function
may be approximated, for instance by first- or second-order polynomials (Kunasz & Auer
1988; van Noort et al. 2002), Bézier curves (Hayek et al. 2010; Holzreuter & Solanki 2012;
Auer 2003; Hennicker et al. 2020) or cubic Hermite splines (Ibgui et al. 2013). Let us here
adopt a parabolic function, i.e. second-order polynomial

S(τ) = a+ bτ + cτ2 (5.7)

Note that if c = 0 this expression reduces to the Eddington-Barbier approximation (see § 4.6),
which assumes that the source function is linear in each grid interval {τd, τd+1}. Using the
adopted behaviour (5.7) we may analytically solve the transfer equation over the relevant grid
interval, and we may express this solution as

∆I±d = α±d Sd−1 + β±d Sd + γ±d Sd+1 (5.8)

After a heroic amount of algebra and integration we find for the parabolic interpolation coef-
ficients

α−d = e0d +
[
e2d −

(
∆τd+ 1

2
+ 2∆τd− 1

2

)
e1d

]
/
[
∆τd− 1

2

(
∆τd+ 1

2
+ ∆τd− 1

2

)]
β−d =

[(
∆τd+ 1

2
+ ∆τd− 1

2

)
e1d − e2d

]
/
[
∆τd− 1

2
∆τd+ 1

2

]
γ−d =

[
e2d −∆τd− 1

2
e1d

]
/
[
∆τd+ 1

2

(
∆τd+ 1

2
+ ∆τd− 1

2

)]
α+
d =

[
e2d+1 −∆τd+ 1

2
e1d+1

]
/
[
∆τd− 1

2

(
∆τd+ 1

2
+ ∆τd− 1

2

)]
β+
d =

[(
∆τd+ 1

2
+ ∆τd− 1

2

)
e1d+1 − e2d+1

]
/
[
∆τd− 1

2
∆τd+ 1

2

]
γ+
d = e0d+1 +[

e2d+1 −
(

∆τd− 1
2

+ 2∆τd+ 1
2

)
e1d+1

]
/
[
∆τd+ 1

2

(
∆τd+ 1

2
+ ∆τd− 1

2

)]
(5.9)

where

e0d = 1− exp(−∆τd− 1
2
)

e1d = ∆τd− 1
2
− 1 + exp(−∆τd− 1

2
) = ∆τd− 1

2
− e0d

e2d = (∆τd− 1
2
)2 − 2∆τd− 1

2
+ 2− 2 exp(−∆τd− 1

2
) = (∆τd− 1

2
)2 − 2e1d (5.10)

For a linear source function the interpolation coefficients simplify to

α−d = e0d − e1d/∆τd− 1
2

β−d = e1d/∆τd− 1
2

γ−d = 0

α+
d = 0

https://ui.adsabs.harvard.edu/abs/1988JQSRT..39...67K/abstract
https://ui.adsabs.harvard.edu/abs/1988JQSRT..39...67K/abstract
https://ui.adsabs.harvard.edu/abs/2002ApJ...568.1066V/abstract
https://arxiv.org/pdf/1007.2760.pdf
https://arxiv.org/pdf/1209.0559.pdf
https://ui.adsabs.harvard.edu/abs/2003ASPC..288....3A/abstract
https://arxiv.org/pdf/1910.13379.pdf
https://arxiv.org/pdf/1211.4870.pdf
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β+
d = e1d+1/∆τd+ 1

2

γ+
d = e0d+1 − e1d+1/∆τd+ 1

2
(5.11)

Equations (5.4) and (5.5) may now be solved trivially for each angle and frequency. If one
opts for second order accuracy, i.e. adopting the parabolic description eq. (5.7) for the source
function, one needs to take some special care at the inner boundary for the incoming beam
and at the outer boundary for the outgoing beam because α−D and β−D and β+

0 and γ+
0 are not

defined (γ−D and α+
0 are both zero). One way out is to assume first order accuracy (i.e. adopt

a linear source function) for the above coefficients at d = D and d = 0.

The above described technique is called method of short characteristics because it reduces the
problem of solving the transfer equation to that of a series of analytical solutions over small
intervals, where the source function behaves in a characteristic way. Note that the strong non-
linear behaviour of the integrant f(x) = S(x)e−x (see eq. 5.1) is no longer a problem because
of the analytical integration of the exponential term.

Though these lectures are not concerned with numerical techniques, we do show, for fun, how
such a piece of code might look like. The listed routine is for a first order solution of the
equation of transfer by means of the method of short characteristics and is programmed in
IDL:

pro short_characteristics_transfersolver, Src,tau,Int,Int_incident,ND
;
; First order short characteristics transfer solver for outgoing beams
; only, following Olson & Kunasz 1987, JQSRT 38, 325.
;
; INPUT:
;
; Src - source function grid
; tau - optical depth grid where tau=0 at the observer
; Int_incident - incident specific intensity at the far side of the
; medium (as seen from the observer) for the outgoing
; beam. It should have the same units as Src
; ND - nr of depth points; 0..ND-1 = outer..inner boundary
;
; OUTPUT:
;
; Int - specifice intensity grid for outgoing beam. The
; emerging intensity is Int(0)
;

Nill = replicate(0.d0,ND)
Int = Nill & dInt = Nill & dtau_dph = Nill

;
for d = 0,ND-2 do begin

dtau_dph(d) = tau(d+1)-tau(d)
e0_dp1 = 1.d0-exp(-dtau_dph(d))
e1_dp1 = dtau_dph(d)-e0_dp1
bdp = e1_dp1/dtau_dph(d)
cdp = e0_dp1-e1_dp1/dtau_dph(d)
dInt(d) = bdp*Src(d)+cdp*Src(d+1)

endfor
;

Int(ND-1) = Int_incident
for d = ND-2,0,-1 do begin
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Int(d) = Int(d+1)*exp(-dtau_dph(d))+dInt(d)
endfor

;
return
end

5.2 Feautrier method

The basis of Feautriers method is i) the use of separate transfer equations for inward and
outward directed radiation, and ii) the introduction of a symmetric and an anti-symmetric
average of the specific intensity. We first rewrite transfer equation eq. (4.36). We limit the
beam angles µ to the half space 0 ≤ µ ≤ 1, and, for the moment, drop the standard notation
of a subscript ν specifying the frequency dependence. We get

±µdI(z,±µ, ν)

dτ(z, ν)
= I(z,±µ, ν)− S(z, ν) (5.12)

where I(+µ) and I(−µ) describe the outward and inward intensity. The symmetric and anti-
symmetric average are defined as, respectively

u(z, µ, ν) =
1

2
[I(z,+µ, ν) + I(z,−µ, ν)] (5.13)

and
v(z, µ, ν) =

1

2
[I(z,+µ, ν)− I(z,−µ, ν)] (5.14)

Note that in a one-dimensional space, u would describe the mean intensity and v the flux.
We may obtain a system of two 1st order differential equations by adding the two equations
(5.12), i.e.

µ
dv

dτ
= u− S (5.15)

and subtracting them, i.e.

µ
du

dτ
= v (5.16)

Substitution of (5.16) in (5.15) yields the 2nd order differential equation

µ2 d2u

dτ2
= u− S (5.17)

The boundary conditions are the incoming intensity I(−µ) = I−µ at the edge τ = 0 and the
outgoing intensity I(+µ) = I+

µ at the edge τ = τmax. It has been found in many trans-
fer problems that an accurate description of the boundary conditions is essential. The two
boundary equations follow from (5.16) and are given by

µ
du

dτ

∣∣∣∣
0

= u(0)− I−µ (5.18)
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and

µ
du

dτ

∣∣∣∣
τmax

= I+
µ − u(τmax) (5.19)

— — —

To give an example of what the boundary conditions I−µ and I+
µ may look like, we use the

model atmosphere as an example. In this case the incident intensity at the outer boundary
τ = 0 is I−µ ≡ 0, such that

µ
du

dτ

∣∣∣∣
0

= u(0) (5.20)

The incoming intensity at the inner boundary τ = τmax of the atmosphere follows from
eq. (4.60) and Sν = Bν (see § 6.2). This yields I+

µ = Bν(τmax) + (χ−1
ν |dBν/dz|)τmax . For

u(τmax, µ, ν) = Bν(τmax) we then arrive at

µ
du

dτ

∣∣∣∣
τmax

= µ

(
1

χν

∣∣∣∣dBνdz

∣∣∣∣)
τmax

(5.21)

— — —

The next step is to formulate the system of differential equations (5.17), (5.18) and (5.19) as a
set of difference equations using the finite difference method.

We choose a set of of optical depth points {τd}, d = 0, ..., D where τ0 < τ1 < ... < τD; a set
of angle points {µm},m = 0, ...,M and a set of frequency points {νn}, n = 0, ..., N . In this
grid notation we may write the symmetric average of the intensity u as u(zd, µm, νn) = udmn,
and the source function as S(zd, νn) = Sdn. We apply the central difference approximation
for arbitrary stepsize and find for the derivative

du

dτ

∣∣∣∣
d+ 1

2

=
∆ud+ 1

2

∆τd+ 1
2

=
ud+1 − ud
τd+1 − τd

(5.22)

and for the second derivative

d2u

dτ2

∣∣∣∣
d

=

du
dτ

∣∣
d+ 1

2
− du

dτ

∣∣
d− 1

2

1
2(∆τd+ 1

2
+ ∆τd− 1

2
)

(5.23)

where we have introduced

∆τd± 1
2

=
1

2
(χd±1 + χd) |zd±1 − zd| (5.24)

and
∆τd =

1

2

(
∆τd− 1

2
+ ∆τd+ 1

2

)
(5.25)
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Equiped with these definitions we find for the difference representation of the 2nd order trans-
fer equation (5.17)(

µ2
m

∆τd− 1
2
∆τd

)
ud−1 −

µ2
m

∆τd

(
1

∆τd− 1
2

+
1

∆τd+ 1
2

)
ud +(

µ2
m

∆τd∆τd+ 1
2

)
ud+1 = ud − Sd (5.26)

This equation is valid at the depth points d = 2, ..., D − 1. At the boundary τ = 0 we have

µm
u1 − u0

∆τ 1
2

= u0 − I−m (5.27)

and at τ = τmax

µm
uD − uD−1

∆τD− 1
2

= I+
m − uD (5.28)

Feautrier elimination scheme

The final step in the Feautrier method is to write the set difference equations (5.26), (5.27),
and (5.28) as a matrix equation. To that end we introduce the vector ud which for given beam
angle µ and frequency ν has dimension D. The matrix equation can be expressed as

−Adud−1 + Bdud −Cdud+1 = Ld (5.29)

where the (D ×D) matrix Ad contains only lower diagonal terms; Bd only diagonal terms,
and Cd only upper diagonal terms. Note that A0 = 0 and CD = 0. The right hand side
vector Ld contains source terms. The structure of the system looks as follows

B0 −C0

−A1 B1 −C1

−A2 B2 −C2

... ... ...
−AD−1 BD−1 −CD−1

−AD BD





u0

u1

u2

...
uD−1

uD

 =



L0

L1

L2

...
LD−1

LD

 (5.30)

The matrix has a tridiagonal structure. One may solve this type of matrix by an efficient
forward-backward recursive sweep through the system. We start at d = 0, and express the
symmetric average ud in terms of ud+1. If

ud = Ddud+1 + Ed (5.31)

then
Dd = (Bd −AdDd−1)−1Cd (5.32)
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and
Ed = (Bd −AdDd−1)−1(Ld +AdEd−1) (5.33)

On arrival at d = D, where CD = 0, such that DD = 0 we find that uD = ED. Now that
uD is known we may do a back substitution in (5.31) and recover all values for ud. If one
is only interested in the emerging intensity at τ = 0, at which in many transfer problems the
incident intensity I−µ = 0, one could start the recursive sweep at d = D and one would not
even require back substitution: I+

0 = 2u0 − I−µ . A routine for solving tridiagonal systems is
given in, for example, Numerical Recipes.
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Exercise 5.1

a) Derive the set of difference equations (5.26), (5.27) and (5.28).

The boundary conditions (5.27) and (5.28) are only accurate to within first order. In this
exercise we will derive the boundary conditions to within second order precission.

b) Show by means of a ‘forward’ Taylor series expansion to within second order that the
boundary condition (5.27) at τ = 0 can be improved to

µm
u1 − u0

∆τ 1
2

= u0 − I−m +
∆τ 1

2

2

(u0 − S0)

µm
(5.34)

c) Show by means of a ‘backward’ Taylor series expansion to within second order that the
boundary condition (5.28) at τ = τmax can be improved to

µm
uD − uD−1

∆τD− 1
2

= I+
m − uD −

∆τD− 1
2

2

(uD − SD)

µm
(5.35)
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Radiation and matter

6.1 Introduction

The most important parameters describing the material medium are the mass density ρ(r)
and the temperature T (r). The essential problem in the study of astrophysical media is to
understand the interaction between the material medium and the radiation field. The basic
quantities mentioned can be determined from the conservation laws of hydrodynamics. The
density structure of the medium is determined by the conservation of mass and momentum;
the temperature structure follows from the conservation of energy.

The description of the coupling between the gas (and/or dust) and the radiation field can be
simplified considerably if the medium and the radiation are in some type of equilibrium.

Types of equilibrium between particles and photons

The most strict form of equilibrium is thermodynamic equilibrium (TE). A system that is in TE
is in thermal, mechanical, and chemical equilibrium. So, there is no internal heat transport.
All forces in the system are balanced. Finally, all chemical reactions are reversible with no net
change in the amounts of reactants and products; its chemical composition does not change.
In TE the medium is homogeneous and at rest. There are no gradients. Each process is in
a microscopic equilibrium with its reverse process, i.e. all processes are in detailed balance.
The radiation field is given by the Planck function, which only depends on T , and both the
thermal velocity distribution of the particles and the distribution of particles over excitation
and ionization states depend only on ρ and T .

The simple fact that we receive photons of the objects in which we are interested tells us that
these media can not be in a state of TE. Because photons escape from these media it must be
so that significant gradients are present in the quantities describing the medium. If we can not
assume that the medium may be characterized as a whole with one value for ρ and one value
for T , but if we are allowed to describe the state of the material medium locally using only
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the value of ρ(r) and T (r), then we refer to the situation as being in local thermodynamic
equilibrium (LTE). In LTE all atomic processes are still in detailed balance. However, the
radiation field is not in equilibrium, but follows from the solution of the equation of transfer.

In those cases that even LTE is not valid, the medium is (per definition) in a state of non local
thermodynamic equilibrium (NLTE). This is so when (at least) one microscopic process is not
in detailed balance. The population of (at least) two excitation/ionization levels will deviate
from their LTE values.

In this chapter we mainly focus on a description of TE and LTE.

6.2 Thermodynamic equilibrium

Thermodynamic equilibrium is realized in a cavity that is enclosed by isothermal walls, and
that has relaxed to a situation of rest. As photons do not have a mass they can be absorbed
and emitted by the walls of the cavity in arbitrary numbers. We expect that the number of
photons and the distribution of these photons over frequency will reach an equilibrium state,
characterized by the temperature T of the walls. The state of the radiation field (as well as that
of the medium; but more about that later) in TE is therefore described by only one variable,
the temperature T . This variable is independent of the nature of the walls or of the shape,
texture, or size of the container.

The latter we may understand using a thought experiment. We connect the container to a
second container of which the isothermal walls are also at the temperature T , and we carefully
drill a hole in the containers such that their radiation fields are in contact. We place a filter
that only allows radiation of frequency ν to pass through (see figure 6.1). If I1

ν 6= I2
ν , then an

energy flow would occur between both cavities. This would be in contradiction to the second
law of thermodynamics (it would allow the possibility of a perpetuum mobile). From our
experiment we may also conclude that the intensity in the enclosure is isotropic (Iν 6= Iν(n))
and homogeneous (Iν 6= Iν(r)). In other words

Iν = Iν(T ) ≡ Bν(T ) (6.1)

In circa 1860 Gustav Robert Kirchhoff (1824–1887) measured the best approximation of this
equilibrium radiation by making a small hole in the side of a closed box. He realized that
radiation incident to the enclosure would be absorbed by the box, though perhaps only after
very many reflections off the insides of the walls (provided the hole was sufficiently small).
The box thus behaves as a perfect blackbody, i.e. a body that absorbs radiation of any fre-
quency completely. Such a body is also the best possible emitter. The equilibrium radiation
that emerges from the hole is therefore referred to as blackbody radiation. Max Planck
(1858–1947) derived the function that describes the radiation field of a blackbody. We will
discuss the shape of this function, after introducing Kirchhoff’s law.
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Figure 6.1: Left panel: Two isothermal containers of which the walls have identical temperatures.
A filter that only allows through radiation of frequency ν is in front of a small hole separating the
enclosures. If the system is in equilibrium then the radiation fields in both containers must be identical.
Right panel: Radiation incident to a small hole in a container will be absorbed by the walls, though
perhaps only after many reflections. The radiation emitted by the insides of the walls (so also the
radiation that emerges from the hole) will be an excellent approximation of blackbody radiation.

Kirchhoff’s law & the Kirchhoff-Planck relation

In a medium that is in TE there are no gradients, i.e. the specific intensity is homogeneous,
isotropic and time independent. In that case eq. (4.13) implies that for all rays, for all frequen-
cies, at all times

ην = χνIν (6.2)

This is Kirchhoff’s law. Combining this law with eq. (6.1) results in

ην = χνBν(T ) (6.3)

This is the Kirchhoff-Planck relation. So, the source function Sν = ην/χν in TE is equal to
the Planck function Bν .

In summary: in TE Iν=Bν= Sν . As the radiation field is isotropic and homogeneous, Iν = Jν
and Fν = 0.

6.3 Planck function

The Planck function per frequency unit is given by

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
(6.4)

where h and k are Planck’s constant and Boltzmann’s constant respectively, and c is the speed
of light. The dimensions of Bν are erg cm−2 s−1 hz−1 sr−1. A derivation of the Planck
function is for instance given in Rybicki & Lightman. Using the relation

|Bν(T ) dν| = |Bλ(T ) dλ| , (6.5)
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Figure 6.2: The Planck curve Bν for different temperatures. Note that the peak frequency (Wien’s
displacement law) and the integral of Bν (Stefan-Boltzmann’s law) increase with temperature.

such that Bλ = (c/λ2)Bν , we may rewrite the Planck function in wavelength units. We find

Bλ(T ) =
2hc2

λ5

1

ehc/λkT − 1
(6.6)

of which the dimensions are erg cm−2 s−1 cm−1 sr−1.

A series of Planck curves (in frequency unit) is given in figure 6.2. This reveals a number of
striking properties of this function: i) The maximum of Bν shifts toward higher frequencies
if the temperature increases; ii) the Planck curves do not intersect: Bν increases monotonous
with temperature, therefore the frequency integrated or total Planck function will do so too,
and iii) at frequencies much lower than the peak position ∂ logBν/∂ log ν = 2.

Let us study the properties of the Planck function in more detail.
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Wien’s displacement law

Note that if we write Bν(T ) = T 3q3B(q), where q = ν/T , that the function B(q) is a
universal function. This proofs that the Planck curves will not intersect. The position of the
maximum of the Planck curves follows from Wien’s displacement law, and can be derived by
taking the partial derivative ∂Bν/∂ν = 0. We find

hνmax = 2.82144 kT or
νmax

T
= 5.87870× 1010 hz K−1 (6.7)

The peak of Bλ is at
λmaxT = 0.28979 cm K (6.8)

Note: the maxima of Bν and Bλ are not at the same position in the spectrum. For instance,
the cosmic microwave background (CMB) temperature is 2.72 K (Planck Collaboration et al.,
2016). It peaks at 160 GHz or 0.19 cm in frequency space and at 281 GHz or 0.11 cm in
wavelength space.

Rayleigh-Jeans approximation

For frequencies low enough to have hν/kT � 1, the Planck function simplifies to the
Rayleigh-Jeans approximation

Bν(T ) ' 2ν2kT

c2
or Bλ(T ) =

2ckT

λ4
(6.9)

This explains the linear parts at the left side of figure 6.2. The Rayleigh-Jeans approximation
can almost always be applied in the radio regime. The coldest a natural system in space can
be is about the CMB temperature (excluding black holes), implying that thermal emission
of everything drops off very fast at frequencies much below ∼ 100 GHz. The LOFAR radio-
telescope observes in the 30−80 MHz and 120−240 MHz bands, i.e. far in the Rayleigh-Jeans
regime of any thermal body in space. 1

Wien’s approximation

For frequencies high enough to have hν/kT � 1, the Planck function simplifies to Wien’s
approximation

Bν(T ) ' 2hν3

c2
e−hν/kT or Bλ(T ) =

2hc2

λ5
e−hc/λkT (6.10)

These are the steep parts at the right side of figure 6.2.
1Continuum emission at such low frequencies becomes dominated by particles which have been accelerated

to very much above the thermal average by energetic processes. The most important such process for radio
astronomy is synchrotron emission, caused by acceleration of electrons in a magnetic field (e.g. in jets, novae, and
supernovae).

https://arxiv.org/pdf/1502.01582.pdf
https://arxiv.org/pdf/1502.01582.pdf
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Stefan-Boltzmann’s law

Integrating over the entire spectrum yields Stefan-Boltzmann’s law

B ≡
∫ ∞

0
Bν dν ≡

∫ ∞
0

Bλ dλ =
σ

π
T 4 (6.11)

where

σ =
2π5k4

15h3c2
= 5.66961× 10−5 erg cm−2 K−4 s−1 (6.12)

is Stefan-Boltzmann’s constant.

6.4 Laws describing the material medium in TE

Maxwellian velocity distribution

The probability, in TE, that a particle of mass m and temperature T has a velocity in the range
(v,v + dv) is given by the Maxwellian velocity disbribution

f(v) dvxdvydvz =
( m

2πkT

)3/2
exp

[
−m(v2

x + v2
y + v2

z)/2kT
]
dvxdvydvz (6.13)

For each component the spread in velocities is thus given by a Gauss distribution. In the x
direction for instance

f(vx) dvx =
1√
π

( m

2kT

)1/2
exp

[
−mv2

x/2kT
]
dvx (6.14)

The most probable velocity in the x direction is vx = 0. The root-mean-square velocity in this
direction is

< v2
x >

1/2=

[∫∞
0 v2

x f(vx) dvx∫∞
0 f(vx) dvx

]1/2

=

(
kT

m

)1/2

. (6.15)

To find the probability distribution in terms of speed v we must integrate over all direction
components. We find

f(v) dv =
( m

2πkT

)3/2
exp

[
−mv2/2kT

]
4πv2 dv (6.16)

The dimensions of f(v) are cm−1 sec and the integral of f(v) is unity, similar to f(v) and
f(vx). It is not a Gauss distribution, but shows a ‘tail’ as a result of the v2 term (see fig-
ure 6.3). The exponent of the distribution function is the ratio of the gas particle’s kinetic
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Figure 6.3: The Maxwellian velocity distribution for iron at a temperature of 6 000 K, both in terms of
one of the velocity components (for instance the one in the line of sight) and in terms of the absolute
velocity v; vmax indicates the most probable speed, and vrms the root-mean-square velocity.

energy, mv2/2, to the characteristic thermal energy, kT . It is relatively improbable that a sig-
nificant number of the particles have an energy much greater or less than the thermal energy;
the distribution peaks when these energies are equal, at a most probable speed

v =

(
2kT

m

)1/2

. (6.17)

The mean speed is

< v >=

(
8kT

πm

)1/2

= 14.551

(
T

104A

)1/2

km s−1, (6.18)

where A is the atomic weight (in amu) of the particle. The root-mean-square speed is

< v2 >1/2=

(
3kT

m

)1/2

= 15.793

(
T

104A

)1/2

km s−1. (6.19)

This implies an average thermal energy of the particle

1

2
m〈v2〉 =

3

2
kT. (6.20)

The typical thermal energy of the particle is therefore Eth ∼ kT .

If the Maxwellian velocity distribution is valid one speaks of kinetic equilibrium (KE). In KE
processes that exchange energy between particles (such as collisions between free particles)
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occur rapid compared to the timescale on which processes occur that change kinetic condi-
tions (such as collisional ionisations and recombinations). In almost all astrophysical media
the free electrons are in KE. For this condition to be valid an electron that is ejected from
an ion (for instance after a photoionization or a collisional ionization) needs to experience a
large number of elastic collisions (usually with other electrons) before it suffers a non-elastic
collision with an atom or ion. KE implies that the medium has a unique kinetic electron tem-
perature Te. Atoms and ions also fulfill the Maxwell velocity distribution. Their matching
kinetic temperature will be almost identical to Te if the density is not too low and the temper-
ature is not too high. Only in very rarefied plasmas such as the solar corona, where T > 106

K and ne < 105 cm−3, substantial differences between the two may occur.

Boltzmann excitation equation

In TE the number density distribution of electronic transitions of atoms, ions, or molecules
and of vibrational and rotational transitions of molecules over all discrete excitation states (the
bound energy levels) is given by the Boltzmann excitation equation.

nj
ni

=
gj
gi

exp [−(Ej − Ei)/kT ] =
gj
gi

exp [−hνij/kT ] (6.21)

Here ni is the number density per cm3 in level i; gi is the statistical weight, equivalent to
the number of states with the same energy but different quantum numbers; Ei the excitation
energy in erg, and νij = ∆Eij/h the frequency in Hz corresponding to the energy difference
∆Eij = Ej − Ei.

It is customary that within each ionization stage the excitation energy is measured from the
ground state up (see figure 6.4). The ionization energy is also measured per ionization stage
from the ground state up. Usually one does not give the energy difference between levels in
erg, but in electron volts (eV) or wavenumber (cm−1). If we adopt the first unit one speaks of
excitation potential . In this caseEj[erg] = 1.602192 10−12 Ej[eV] and ∆Eij[eV] = 12 398.54
/ λij[Å]. If we adopt the last unit the wavelength of the transition can trivially be recovered
using λij[Å] = 108/(Ej[cm−1] - Ei[cm−1]). Wavenumber simply provides the number of
wavelengths that fit in a cm.

The Boltzmann equation can also be written as

ni
N

=
gi

U(T )
exp [−Ei/kT ] (6.22)

where N =
∑

i ni is the sum of populations over all levels, i.e. the total particle density per
cm3 of a given ionization stage, and U(T ) is the partition function of this ionization stage
given by

U(T ) ≡
∑
i

gi exp [−Ei/kT ] (6.23)

The above two equations are for instance used in traditional curve-of-growth analysis (see
§ 13.4).
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Figure 6.4: Schematic picture of the energy level diagram or Grotrian diagram of hydrogen. The
excitation energy of the levels is measured from the ground state up and is given in units of wavenumber
on the left axis and in electron volts on the right axis. See table 7.1 for addiation information.
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Saha ionization equation

In TE the number density distribution over the ionization stages of an element is given by the
Saha ionization equation

NI

NI+1
= ne

UI
2UI+1

(
h2

2πmekT

)3/2

exp [EI/kT ]

≡ neΦ̃I(T ) (6.24)

where ne is the electron density per cm3 and me the electron mass; NI =
∑

i ni,I is the
particle density of ions in ionization stage I; UI is the partition function of this ion; and EI its
ionization energy (in erg), i.e. the minimum energy required to liberate an electron from the
ion. The factor 2 in front of the partition function UI+1 reflects the statistical weight of the
liberated electron, that may have one out of two possible spin orientations.

If the temperature decreases at constant density (such that ne remains more or less the same)
the exponential term in the Saha ionization equation will make that NI/NI+1 increases, i.e.
the medium recombines. Essentially, the root-mean-square speed (Eq. 6.19) of the Maxwellian
velocity distribution decreases, lowering the number of free electrons that can cause ioniza-
tion. If the density decreases at constant temperature, ne (more or less proportional to ρ)
will decrease and therefore also NI/NI+1, i.e. the medium ionizes. Essentially, the lower
electron density lowers the probability that a free electron is captured by an ion, while at the
same time collisional ionizations are unimportant relative to photo-ionizations in liberating
electrons from ions in the conditions typical for stellar photospheres (see section 15.2).

In many cases the particle density of the ground level i = 0 will dominate the particle density
of the ion I , i.e. NI =

∑
i ni,I ' n0,I . The Saha equation for ground levels only is given by

n0,I

n0,I+1
= ne

g0,I

2g0,I+1

(
h2

2πmekT

)3/2

exp [EI/kT ] (6.25)

Finally, we may express the particle density ni in terms of the particle density of the ground
level of ion I + 1 and the electron density by substitution of eq. (6.21) in (6.25). This gives

ni,I = n0,I+1ne
gi,I

2g0,I+1

(
h2

2πmekT

)3/2

exp [(EI − Ei)/kT ]

≡ n0,I+1ne ΦiI(T ) (6.26)

This is the Saha-Boltzmann equation or equation of state (EOS) of a gas in TE or LTE. In
the latter case one should use the local values for temperature and density (see section 6.5).
The equation can also be used to define LTE particle densities in a NLTE medium, i.e. using
the values for n0,I+1 and ne that follow from imposing statistical equilibrium (see eq. 9.19).
Deviations from LTE can thus be described by the NLTE departure coefficient

bi,I ≡
ni,I

nLTE
i,I

(6.27)
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in which nLTE
i,I is given by eq. (6.26). Henceforth we will denote LTE values of the level

populations with a superscript ∗ (and not with LTE). However, we will do so only if this is
required in the context of the discussion (if not, no superscript is used).

6.5 The TE equation of state for an ionized gas

Using the Saha-Boltzmann relation we may determine for each element the number densities
of all ionization stages, and its contribution to the number of free electons in the plasma.
Different elements will have widely different ionization energies; some will be neutral under
given conditions, others will be singly or multiply ionized. For increasing temperature the
transition from one to the next ionization stage is usually rather abrupt. This yields a sensitive
diagnostic for the temperature (structure) of the medium, as it implies that the ratios in line
strength of two successive ions (for instance He I & II, or Ca I & II) will rapidly change as a
function of temperature (see § 2.1). Fundamental work in this field has been done at the start
of the previous century by, among others, Saha, Anton Pannekoek , and Fowler & Milne (see
figure 6.5).

In a normal stellar atmosphere hydrogen is by far the most abundant element, followed by
helium (NHe/NH ∼ 0.1). The heavier elements have far smaller abundances (see table 16.2).
In the solar atmosphere, which has a temperature of about 6 000 K, hydrogen is almost com-
pletely neutral. Free electrons mainly originate from “metals” such as Na, Mg, Al, Si, Ca, en
Fe. At temperatures characteristic for A-type stars (10 000 K) hydrogen starts to ionize and
becomes the dominant source of free electrons. At very high temperatures, typically for O-
and B-type stars, also helium gets ionized and will contibute noticeably to the electron density.

In this section we will describe how the state of the gas in TE can be determined from the
values of the temperature T and the total particle density N , or equivalently, from the total
gas pressure pG and the electron density ne.

Ideal gas law

As we will show in chapter 9 the total gas pressure is an important quantity in the description
of a stellar atmosphere. If we assume that the gas is ideal, i.e. that there are no forces at work
among the particles themselves – which is in almost all cases a valid assumption – then the
gas pressure pG and temperature T are related to the total particle number density N in the
gas as (see also eq. 9.2)

pG = Nk T (6.28)

The total particle number density itself is the sum of all atoms, ions, and free electrons

N = Natoms +Nions + ne = NN + ne (6.29)

where NN is the number density of nuclei.
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Figure 6.5: The link between the spectral classification and the ionization of a gas in TE. Top: estimates
(by eye, from photographic plates) of the strength of representative spectral lines as a function of the
heuristically introduced spectral type. Bottom: ionization fractions for pe = ne k T = 131 dyne cm−2.
After Payne.

Particle and charge conservation

If we define the abundance or number abundance Ak of a chemical element k as

Nk = AkNN where
∑
k

Ak ≡ 1 such that
∑
k

Nk = NN (6.30)

then either the last equality of the above equation, or

Nk = Ak(N − ne) (6.31)

summarizes the constraint of particle conservation.

We will also require that the plasma is electrically neutral. In order for this to hold the total
charge of the free electrons must be equal to the total ionic charge, i.e.

ne =
∑
k

Jk∑
j=1

jNjk =
∑
k

Nk

Jk∑
j=1

jqjk(ne, T ) = (N − ne)
∑
k

Ak

Jk∑
j=1

jqjk(ne, T ) (6.32)

https://ui.adsabs.harvard.edu/abs/1925PhDT.........1P/abstract
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where for each element we start the summation over ionization stages at j = 1, as the neutral
atom j = 0 does not yield any free electrons, and end at the maximum ionization Jk. Note
that we have changed the index label of the ionization stages from I to j. Equation (6.32)
defines the condition of charge conservation. In this condition the ionization fraction qjk ≡
(Njk/Nk) gives the fraction of atoms of element k in ionization stage j relative to the total
number of atoms of species k.

In TE

qjk ≡ (Njk/Nk)
∗

=
(Njk/Nj+1,k)

∗ · · · (NJ−1,k/NJk)
∗

(N0k/N1k)
∗ · · · (NJ−1,k/NJk)

∗ + (NJ−2,k/NJ−1,k)
∗ (NJ−1,k/NJk)

∗ + (NJ−1,k/NJk)
∗ + 1

=

Jk−1∏
l=j

[
neΦ̃lk(T )

]/ Jk∑
m=0

Jk−1∏
l=m

[
neΦ̃lk(T )

]
≡ Pjk(ne, T )/Sk(ne, T ), (j = 1, · · · , Jk) (6.33)

Note that the product term for l = Jk, which formally is not defined, is substituted by 1 in
both the numerator and denominator. If we know (ne, T ), we may compute all qjk’s and also,
using eq. (6.32), N .

A pure hydrogen gas

For a pure hydrogen gas the system of equations (6.24), (6.31), and (6.32) may be solved
analytically to obtain

ne(N,T ) =

[(
N Φ̃H(T ) + 1

)1/2
− 1

]/
Φ̃H(T ) (6.34)

For an increasing density the ionization at constant temperature will decrease as the recombi-
nation rate increases as N+ne, while the ionization only scales with N0 (see § 8.1).

General solution for the ionization of a gas in TE

In the general case the problem of determining ne in a gas in TE, for given values of N and
T requires an iterative linearization procedure. We will describe this procedure in fair detail
because it is a simple example of the approach taken in more complicated problems in stellar
atmospheres.

In a multi-dimensional linear perturbation or Newton-Raphson method we start with an initial
estimate x◦ = (x◦1, . . . , x

◦
n). This is likely not the correct answer to our problem, therefore

we assume that the true solution is given by a linear expansion x = x◦ + δx◦ where δx◦ is to
be determined in such a way as to satisfy exactly the equation at hand. In other words, we if
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we seek the solution of the problem f(x) = 0, we assume that

f(x◦) +
n∑
i=1

∂f

∂xi

∣∣∣∣
x◦
δx◦i = 0 (6.35)

Because the equation is nonlinear, we cannot determine the exact value of this δx◦, but need
to start an iteration procedure in which we use x◦(new) = x◦(old) + δx◦ to update the value
of δx◦. The convergence of this procedure is quadratic (if our original estimate lies within the
range of convergence) and one can obtain the result to within the desired accuracy quickly.

The only equation we need to solve by linearization is eq. (6.32), where the ionization fractions
qjk(ne, T ) are given by (6.33). First order perturbation of both sides gives

ne + δne ≈ (N − n◦e)Σ̃(n◦e , T ) + Σ̃(n◦e , T )
∂(N − ne)

∂ne

∣∣∣∣
n◦e

δne + (N − n◦e)
∂Σ̃

∂ne

∣∣∣∣∣
n◦e

δne

= (N − n◦e − δne)Σ̃(n◦e , T ) + (N − n◦e)
∂Σ̃

∂ne

∣∣∣∣∣
n◦e

δne (6.36)

such that
δne ≈

[
(N − n◦e)Σ̃− n◦e

] [
1 + Σ̃− (N − n◦e)

(
∂Σ̃/∂ne

)]−1
(6.37)

where

Σ̃(n◦e , T ) ≡
∑
k

AkS
−1
k (n◦e , T )

Jk∑
j=1

jPjk(n
◦
e , T ) (6.38)

The derivative ∂Σ̃/∂ne can be obtained analytically

∂Σ̃

∂ne
=
∑
k

Ak

S−1
k

Jk∑
j

j
∂Pjk
∂ne

− S−2
k

∂Sk
∂ne

Jk∑
j

jPjk

 (6.39)

where (∂Pjk/∂ne) and (∂Sk/∂ne) are easily determined if one considers that

Pjk(ne, T ) ≡
Jk−1∏
l=j

[
neΦ̃lk(T )

]
= n(Jk−j)

e Πjk(T ) (6.40)

and

Sk(ne, T ) ≡
Jk∑
j=0

Pjk(ne, T ) =

Jk∑
j=0

n(Jk−j)
e Πjk(T ) (6.41)

The derivatives that occur in a linearization procedure can always be determined numerically.
However, in quite some cases they can also be derived analytically. The latter is the preferred
way to go as experience teaches that this way one has more “control” over the computation.
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— — —

Finally, after one has obtained ne using the above procedure, and, as a by-product all ioniza-
tion fractions qjk, one may calculate all desired number particle densities from (for instance)
Boltzmann equation (6.22). From Njk = qjkAk(N − ne) one gets

nijk =
gijk

Ujk(T )
exp[−Eijk/kT ] qjk(ne, T )Ak(N − ne) (6.42)

This completes the calculation of the TE equation of state for an ionized gas.

6.6 Temperature definitions

Based on the above discussions we may define six characteristic temperatures that are often
used in astrophysics. The first two are related to the Planck function; the next two to the
equations of Boltzmann and Saha. One is related to the total flux emitted at the surface of the
radiating body (this is Teff ) and one to the power from a source received by a telescope.

Brightness temperature

The brightness temperature Tb is the temperature for which the Planck function, at the fre-
quency at which is measured, reproduces the observed specific intensity

Iobs
ν = Bν(Tb) (6.43)

The brightness temperature is often used in radio astronomy, where in most cases the Rayleigh-
Jeans approximation is valid such that

Tb ≡
hν/k

ln [1 + 2hν3/c2Iobs
ν ]
' c2

2ν2k
Iobs
ν (6.44)

In general Tb will depend on frequency. Only if the source emits a blackbody spectrum Tb

will be the same for all frequencies.

If we consider a medium at a constant temperature T that emits according to the Planck func-
tion, the solution of the equation of transfer (vgl. 4.49) in the Rayleigh-Jeans limit is

Tb(0) = Tb(τν)e−τν + T
[
1− e−τν

]
∀ hν

kT
� 1 (6.45)

For large optical depth in the medium the brightness temperature will be equal to the temper-
ature of the material, i.e. Tb(0) = T .
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Color temperature

The color temperature Tc is the temperature for which the Planck function, at the frequency
ν◦ at which is measured, reproduces the slope of the observed spectrum

dIobs
ν

dν

∣∣∣∣
ν◦

=
dBν(Tc)

dν

∣∣∣∣
ν◦

(6.46)

Often the shape of a (part of the) observed stellar spectrum more or less resembles that of
a Planck curve. However stars are not spatially resolved (save for the sun and a few nearby
asymptotic giant stars and supergiants) such that only the flux can be observed. Therefore, flux
is what is commonly used. In everyday life a number of apparent magnitudes m is measured,
as discussed in § 2.6, from which colors are composed. The B−V color, for instance, follows
from

B−V = −2.5 log

[∫∞
0 Fν(d)SB(ν) dν∫∞
0 Fν(d)SV (ν) dν

]
+ 2.5 (CB − CV ) (6.47)

where Fν(d) is the stellar flux at the location of the earth, and Sm has the meaning as given
in § 2.6. In figure 6.6 the U−B vs. B−V diagram for the MK spectral types is repeated (see
also figure 2.11). Also given is the result of equation 6.47 assuming a Planck curve for the
radiation field (solid line). Note that the U−B vs. B−V dependence is almost linear, and that
it does not agree very well with the relation given by the MK calibration. The reason for the
difference, obviously, is that a real star emits a spectrum that deviates from the Planck curve.
Especially the Balmer jump has a strong influence on the U magnitude, therefore on U−B.

For a simple estimate of the values of the color indices using the Planck function we assume
that the UBV respons functions can be replaced by δ functions at 3600, 4400, and 5500 Å,
respectively. Using the constants CU , CB , and CV as given in table 2.2 (Landelt-Börnstein
1982) we get for the colors of the Planck-curves

B−V = −2.5 log

[
BB
BV

]
+ 0.22 en U−B = −2.5 log

[
BU
BB

]
− 1.04 (6.48)

For this result figure 6.6 also gives the relation between U−B and B−V (dashed line). Be-
cause now we did not convolve with the respons functions Sm the relation differs from the
solid line.

Color temperatures are often used to characterize stars and gaseous planets. For relations
between colors and effective temperature derived from detailed atmosphere models, see the
tables in the appendix.

Excitation temperature

The excitation temperature is determined by comparison of observed level populations of an
atom, ion, or molecule, using the Boltzmann equation (eq 6.21). Obviously, the measured
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Figure 6.6: Relation between the color indices U−B and B−V , assuming the flux distribution of the
star is given by the Planck function (solid line). If one does not convolve with the proper response
functions, but adopts a peaked profile at the centre wavelength of the filter, one obtains monochromatic
values for the color indices (dashed line).

populations need not be in LTE. To conserve a description of the measured population ra-
tios in terms of the Boltzmann equation, we introduce the excitation temperature Text. This
temperature is given by

(
nj
ni

)obs

=
bj
bi

n∗j
n∗i

=
bj
bi

gj
gi

exp [−hνij/kT ] ≡ gj
gi

exp [−hνij/kText] (6.49)

If bu/bl = 1, such as is the case of TE and LTE, then T = Text. The excitation temperature
can be determined from measurements of the equivalent width of two spectral lines (see e.g.
§ 13.4). The derived value of the excitation temperature can be rather ambiguous. Even for
different line pairs of the same ion the excitation temperatures may differ significantly. Some-
times this is due to uncertainties in the oscillator strength (see § 7.3). More often it is because
lines may form in different regions of the atmosphere, where temperatures and/or departures
from LTE may be different. The excitation temperatures derived from molecular lines (in cool
stellar atmospheres) are usually lower than those found from lines of atomic or ionized gas.
This is so because molecular lines typically originate in higher atmospheric layers, where T
is relatively low.
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Ionization temperature

In analogy to the excitation temperature, the ionization temperature is the temperature for
which an observed ionization ratio fulfills the Saha equation (eq. 6.24)(

NI

NI+1

)obs

≡ ne
UI

2UI+1

(
h2

2πmekTion

)3/2

exp [EI/kTion] = neΦ̃I(Tion) (6.50)

This temperature can only be determined if the electron density ne is known. In LTE it holds
that T = Tion.

Effective temperature

The effective temperature Teff of a source is a measure of the total flux emitted by that source.

F+
source = σT 4

eff (6.51)

So, it is the temperature that an isotropic black surface should have such that the total outward
directed flux F+ = πB = π

∫∞
0 Bν dν, per cm2, is equal to the flux emitted by the source,

again per cm2.

Antenna temperature

Sub-millimeter and radio astronomers often use the concept of an antenna temperature. The
motions of charged particles in a resistor in an electrical circuit cause the resistor to generate
noise and to reach a certain temperature. The frequency spectrum of the power of this noise
only depends on the temperature of the resistor (and not, for instance, on the material of which
the resistor is made). So, by equating the power the antenna is receiving to the temperature
of a resistor that is connected to the antenna by power lines one can measure the antenna
temperature.

We assume the effective surface of the antenna to be Aeff cm2. The definition of the flux
(see section 3.4) tells us that we receive a power Pν = Fν Aeff from the source. Radio re-
ceivers, for instance a dipole antenna, are typically sensitive to only one polarization direction.
Therefore, only part of the total power incident to the effective surface is measured. For an un-
polarized electromagnetic wave E(ω) = E◦e

iωt the flux scales with the square of the strength
of the electrical field. For the mean power of the polarization component E(ω) = E◦ cosω it
then follows that:

〈Pν〉 ∝
〈
cos2 ω

〉
=

1

2π

∫ 2π

0
cos2 ω dω =

1

2π

[
ω

2
+

1

4
sin 2ω

]2π

0

=
1

2
(6.52)

The power absorbed by the antenna is thus given by Pν = 1/2Aeff Fν .
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For the power that flows through the transmission wire, as well as the noise that is generated
in the resistor, one finds analogues to Planck’s law2

Pν =
hν

ehν/kT − 1
(6.53)

In the Rayleigh-Jeans limit it follows that Pν = kT . This is Nyquist’s law, stating that a
resistor at temperature T produces a noise of which the power per unit bandwidth is kT .
Equating this to the power that is received from the source leads to an antenna temperature

TA =
Fν Aeff

2k
. (6.54)

This result connects the flux of radiation from the source to an antenna temperature using the
effective surface of the telescope.

To establish a relation between the antenna temperature and the physically more relevant
brightness temperature we use relation 3.29, where we assume that the solid angle dω ob-
served of (part of) the source emits an isotropic radiation field Iν . This leads to

TA =
Aeff

λ2
Tb dω. (6.55)

6.7 Approximations in describing the interaction of matter and radiation

Local thermodynamic equilibrium (LTE)

In a medium in LTE the material medium can be described using the equations of Maxwell,
Boltzmann and Saha, using the local values of ρ(r) en T (r). However, the radiation field
is not in equilibrium, i.e. it may deviate from the Planck function. LTE is an often applied
generalization of TE (see chapter 11).

In LTE the assumption of detailed balance in all microscopic processes involving atomic tran-
sitions is still valid (see chapters 7 and 8). An important consequence is that the source
function that is ascribed to each such process is still given by the Kirchhoff-Planck relation
(eq. 6.3), i.e.

Sν(r) = Bν(T (r)) (6.56)

An example of a source function for which this relation holds is the line source function S`ν that
describes the microscopic transition between two bound energy levels (see § 7.3). Also the
source functions of bound-free and free-free continuum processes (see chapter 8) are given by
Kirchhoff-Planck. In these continuum processes energy is either added to or taken away from

2This result follows from a one-dimensional consideration of what leads to the Planck function in three dimen-
sions.
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the local thermal energy pool of the medium. These source functions are therefore referred
to as thermal source functions. A process in LTE that can not be described by eq. (6.56) is
that of scattering. This is to be expected as the mean intensity Jν(r) – the relevant radiation
quantity if we assume that the scattering process is isotropic – can deviate from the local
emitted thermal radiation field Bν(T (r)).

In summary: in LTE
nijk = nijk(ρ(r), T (r)) (6.57)

and

S`ν(r) = Bν(T (r)) Iν(r,n) 6= Bν(T (r)) Jν(r) 6= Bν(T (r)) Fν(r) 6= 0 (6.58)

The first equality implies that also complete redistribution applies (see §§ 7.1 and 7.3).

The essence of LTE is that of the two types of processes that determine the state of the mate-
rial medium, i.e. the collisionally controlled “true” absorption and emission processes on the
one hand and the scattering processes on the other hand, it is the collisional processes that
dominate. In other words: the mean-free-path of photons for absorption `ν = 1/κν is smaller
than the mean-free-path for scattering `ν = 1/σν (see eq. 4.28). According to the assumptions
that define LTE the state of the material medium is determined by such a small TE-volume
V (r) that the fact that the temperature and density elsewhere in the medium may be different
is not noticed by the excitation and ionization state of the gas in V (r). Still, the radiation
that is present in this volume does contain information about far away regions. However, the
photons in the radiation field that have been created elsewhere and have reached r directly or
through scattering do not bring enough information about these far away places to push the
number populations of the energy levels out of equilibrium.

Non-local thermodynamic equilibrium (NLTE)

NLTE is per definition a state that deviates from LTE. In NLTE the state of the particles at
position r is no longer controlled only by the local values of density and temperature but will
also depend on the radiation field Jν(r), i.e.

nijk = nijk(ρ(r), T (r), Jν(r)) (6.59)

Departures from LTE typically occur if

- the particle densities are low, such that collisional processes will no longer dominate
over scattering processes and photon conversion processes (see § 4.1), and, in addition

- the radiation field strongly deviates from the local Planck function, i.e. Jν(r) 6= Bν(T (r)).

The exact assumptions that enter in NLTE are not formally defined. Usually it is implied that
statistical equilibrium is valid (see § 9.2); that the Maxwell velocity distribution holds, and
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that complete redistribution applies. The level occupation numbers may deviate from the local
Saha-Boltzmann values. The extinction coefficient may differ from the LTE value and the line
source function may differ from the Planck function.
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Exercise 6.1

Why is a blackbody the best possible emitter?

Exercise 6.2

a) Give the net flux Fν in a medium that is in TE and in which the specific intensity is Iν .

b) Do we observe objects in the sky that are in TE?

Exercise 6.3

a) Give the derivation of eq. (6.6) using eq. (6.4), and the relation (6.5)

b) Show that Bν ↓ 0 for T ↓ 0, and that Bν ↑ ∞ for T ↑ ∞ ∀ ν.

c) Derive eq. (6.11) and the constant (6.12), given that∫ ∞
0

x3

ex − 1
dx =

π4

15
(6.60)

Exercise 6.4

a) The number of photons per cm3 per Hz in a Planck radiation field is n(ν) = uν/hν,
where uν (see eq. 3.15) is the energy density of the Planck radiation field. Show that the
total number of photons per cm3 in the Planck radiation field

ntot =
16πζ(3)k3

c3h3
T 3 ' 20 T 3 (6.61)

given that ∫ ∞
0

x2

ex − 1
dx = 2 ζ(3) (6.62)

where ζ(3) = 1.202057 is Apéry’s constant.

b) Compute the mean energy per photon in a Planck radiation field.
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Exercise 6.5

a) Derive eq. (6.16) from (6.13).

b) Show that both distributions are normalized. Remember that∫ +∞

−∞
e−x

2/a2 dx = a
√
π and

∫ +∞

0

x2e−x
2/a2 dx = a3

√
π/4 (6.63)

c) Show that the mean particle energy is given by

<
1

2
mv2 >=

3

2
kT (6.64)

if we give that ∫ +∞

0

x4e−x
2/a2 dx =

3

8
a5
√
π (6.65)

d) Show that the most probable velocity of eq. (6.14) is given by vx = 0 and of eq. (6.16)
by v = (2kT/m)1/2.

Exercise 6.6

Show that the ideal gas law eq. (6.28) is equivalent to (see also eq. 9.2)

p =
RρT
µ

, (6.66)

where ρ is the density, R ≡ k/mamu = 8.314 × 107 erg K−1 mol−1 is the gas constant,
and µ is the mean molecular weight of the gas in atomic mass units mamu (so, the mean
mass per free particle in mamu).

Exercise 6.7

a) Show that for a pure hydrogen gas in TE the analytical solution of the electron density in
terms of NH and T is given by

ne(NH, T ) =

[(
4NHΦ̃H(T ) + 1

)1/2

− 1

]/
2Φ̃H(T ), (6.67)

where NH = NN = N0 +N+ = N − ne.
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b) Show that in the general case, i.e. for any atomic gas in TE, the perturbation term δne in
terms of NN and T is given by

δne =
[
NN Σ̃− n◦e

] [
1−NN

(
∂Σ̃/∂ne

)]−1

. (6.68)

Exercise 6.8

The Time of Decoupling in the early universe refers to the era of recombination of the
hot ionized gas in the expanding young cosmos. Before decoupling, Thomson scattering
by free electrons caused a high opacity in the medium keeping the electrons and photons
in thermal equilibrium. After decoupling, the loss of free electrons caused a drop in
opacity, freeing the photons to roam unhindered throughout a newly transparent universe
– hence the term ‘decoupling’. As the majority of baryonic gas is in the form of hydrogen,
recombination usually refers to the recombination of hydrogen gas. The primordial mass
fraction of hydrogen is Xprim = 0.75. For simplicity, we adopt that only hydrogen
supplies free electrons for the cosmic gas (i.e. helium is neutral).

The temperature at the time of recombination can be estimated through the use of the
Saha equation (6.24) for neutral and ionized hydrogen, where we use U1 ≡ UI = 2 and
U2 ≡ UII = 1. The ionisation energy of hydrogen is EI = 13.6 eV. We define q to be the
fraction of hydrogen atoms that are ionised, i.e.

q =
NII

NI +NII
, (6.69)

hence
NII

NI
=

q

1− q
, (6.70)

where NI and NII are the density of neutral and ionized hydrogen. In the present-day
universe the baryonic density is nb,◦ = ρb,◦/µmH = 5.4× 10−6 cm−3, where the mean
atomic weight is µ = 1.23, and the temperature of the cosmic background radiation T◦ =
2.725 K. We define the scale factor in the present-day universe to be R◦ = 1. At the time
of recombination, the universe was already matter-dominated, implying nb,◦ = R3 nb,
where nb is the density at the time when the scale factor was R. The temperature at the
time when the scale factor was R is given by T = T◦/R. Recall that the cosmic redshift
is given by

z =
1

R
− 1. (6.71)

a) Why might one consider the term ‘recombination’ in this context as oddly inappropriate?

b) Express the baryonic density nb in the hydrogen density nH = nHI + nHII , assuming X
is constant throughout cosmic time.

c) Use Saha equation (6.24) to derive an expression that links the scale factor R to the
ionization fraction q, for the known present-day quantities nb,◦ and T◦.
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d) Let us assume that the time interval of decoupling spans the era where q drops from 0.9
to 0.1 and that the surface of last scattering, from which the cosmic microwave back-
ground photons arriving at Earth were last scattered, corresponds to q = 0.1. Use for
instance Excel to compute the scale factor at these two q values, hence the redshifts and
temperatures at the start and end of recombination. (It may be convenient to introduce
R′ = 103R for your Excel calculation, in which case the solutions are in the range
0.5 ≤ R′ ≤ 1.0).

To let you compare your findings to the results of the Wilkinson Microwave Anisotropy
Probe: WMAP finds for the redshift at the time of decoupling zdec = 1089 ± 1, and a
temperature at the end of recombination of T = T◦ (1 + zdec) = 2970 K.

Exercise 6.9

a) Does the brightness temperature of a radio source depend on its distance?

b) Can one measure the brightness temperature of a point source (i.e. an object that is not
spatially resolved) such as a star? Can one measure Tb for an extended source, such as a
nebula, if this source is not in TE?

Exercise 6.10

What requirements have to be fulfilled in order to obtain the stellar temperature from two-
color photometry? For which layer of the star would this temperature be representative?

Exercise 6.11

The displacement law of Wien (eq. 6.7) can also be used to derive the temperature of a
star. Which characteristic temperature does this give: Tb, Tc or Teff?

Exercise 6.12

Use the table to fill in – with a simple yes or no – whether for each of the three equilibria
(TE, LTE, or NLTE) it holds that

a) the flux is equal to zero;
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TE

LTE

NLTE

=0F
tot th

Boltzmann
Saha

ν S   = B S   = B S   = Bν ν ν ν ν νEquilibrium Maxwell
line

b) the total (i.e. continuum + line) source function is equal to the Planck function Bν ;

c) the thermal source function is equal to Bν ;

d) the line source functions are equal to Bν ;

e) the velocity distribution of the free elections is equal to the Maxwell distribution

f) the excitation and ionization equilibria are given by the equations of Boltzmann
and Saha.



7

Discrete processes

So far we have given a macroscopic description of emission and extinction processes. In this
chapter we focus on a microscopic specification. Between two energy levels five different
processes may occur

1. spontaneous radiative de-excitations
requires: nothing

2. radiative excitations
requires: photon with the correct energy

3. induced radiative de-excitations
requires: photon with the correct energy

4. collisional excitations
requires: passing particle with sufficient energy

5. collisional de-excitations
requires: passing particle

These processes take place between bound-bound (or bb) transitions as well as between
bound-free (or bf) and free-free (or ff) transitions. More general, they occur in any system
in which an exchange between internal energy and radiation is possible. So in all systems in
which energy states can be defined, either discretely or continuously distributed over energy.

In this chapter we will examine these five processes for the bound-bound transitions between
discrete energy levels. There are several types of such discrete states. We will mainly discuss
the energy levels in the electron configuration of atoms and ions. Examples of other systems
that have energy levels are i) shared electron configurations of molecules; ii) rotation of
atoms in molecules; iii) vibration of atoms in molecules; iv) vibrations in the latice struc-
ture of solid state particles; and v) hadron configurations of atomic nuclei. The nature of
these configurations and the selection rules that apply for them, and that follow from Pauli’s
exclusion principle for fermions, will not be treated here.
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Figure 7.1: Schematic overview of the five possible bound-bound transitions between two energy lev-
els.

The listed processes affect the number density of particles in a given state ni. Let Pij be the
total rate of transition from state i to state j by all processes, then (in a static medium, see also
section 9.2),

∂ni
∂t

= −ni Pij (7.1)

is the number of particles per cm3 per second that transition from state i to state j, hence Pij
has unit s−1. Likewise,

∂ni
∂t

= nj Pji (7.2)

is the number of particles per cm3 per second that transition from state j to our state i. We
will now specify these rates Pij (and Pji) in detail for each of the possible processes.

7.1 From a macroscopic toward a microscopic description

Spontaneous radiative de-excitation

In a spontaneous radiative de-excitation or spontaneous emission a particle in an excited en-
ergy state u (upper) returns spontaneously to a lower energy state l (lower) by emitting a
photon. The rate at which this process occurs is defined by the Einstein coefficient for sponta-
neous emission Aul (dimension sec−1). It is an atomic parameter and does not depend on the
properties of the medium in which the atom or ion is embedded (such as pressure, temperature,
or radiation field), but is determined solely by the nature of the transition.

The number of spontaneous de-excitations in cm−3 sec−1 is given by

nuRul = nuAul

∫
ψν dν = nuAul (7.3)
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where nu is the number density of particles in level u in cm−3 and ψν the normalized profile
function for spontaneous emission (see below for some discussion on the profile function).
The dimension of ψν is hz−1. Rul is the rate for spontaneous de-excitation in sec−1.

Radiative excitation

In a radiative excitation or photoexcitation a particle in energy state l is excited to a higher
energy state u after absorption of a photon. The rate for this process depends on atomic prop-
erties, denoted by Blu, as well as on the number of available photons of suitable frequency.

Due to some lack of sharpness of the energy levels, a certain spread in the energy that is
required to induce the transition is present. We therefore introduce the profile function for
excitation φν of which the dimension is hz−1, that describes this allowed spread in frequency
(see § 13.2). This function is sharply peaked around the central frequency νlu = (Eu−El)/h.
The profile function, similar to ψν , is normalized such that∫ ∞

0
φ(ν) dν ≡ 1 (7.4)

The number of radiative excitations in cm−3 sec−1 is given by

nlRlu = nlBlu

∫
φν Jν dν ≡ nlBlu J̄lu (7.5)

where nl is the number density of particles in level l in cm−3; Blu is the Einstein coefficient
for extinction in erg−1 cm2 hz, and J̄lu is the integral of the mean intensity over the profile
function of the transition. Note that the mean intensity is here the relevant radiation quantity:
the particles are only interested in the total number of suitable photons, and not in the direction
from which these photons arrive.

Induced radiative de-excitation

For Einstein to be able to derive the radiation formula of Planck he introduced a third radiative
process, that of induced de-excitation or stimulated emission. In this process an incident
radiation field triggers an emission, such that a particle in an excited state u returns to a lower
energy state l.

The number of induced radiative de-excitations in cm−3 sec−1 is given by

nuRul = nuBul

∫
ϕν Jν dν ≡ nuBul J̄ul (7.6)

where Bul is the Einstein coefficient for stimulated emission, and ϕν is the normalized profile
function for induced de-excitation. The photons that are emitted in induced radiative de-
excitations have the same direction as do the incident photons that trigger the process.
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In TE φν , ψν and ϕν are identical as in that case detailed balance is valid, which applies for
each frequency separately. In less strict circumstances this need not be the case. If, however,
there is no correlation between the frequency of the incident photon (the one that causes the
excitation) and that of the emitted photon (the one that is emitted in the de-excitation process),
then φν = ϕν (= ψν) therefore J̄lu = J̄ul. This situation is known as complete redistribution
and it is justified if the atoms/ions in a gas are so strongly perturbed by collisions during
the excitation/emission process that the excited electrons are randomly redistributed over the
substates of the upper level of the transition.

Collisional excitation

In a gas (consisting of atoms, ions, and electrons) of sufficient density a variety of collisions
will occur, which may cause excitations and ionization. As soon as the gas is somewhat
ionized, collisions of ions with charged particles will dominate over collisions with neutral
particles. This is because the Coulomb interaction (governing the interaction of charged par-
ticles) reaches much farther than does the Van der Waals interaction (governing the inter-
action of neutral particles). As a rule electron-ion collisions are much more efficient than
are ion-ion collisions. The reason is that the collision rate is proportional to the relative ve-
locity of the colliding particles. In kinetic equilibrium the root-mean-square velocity is in-
versely proportional to the root of the mass of the particle (see eq. 6.19). Electrons thus move
(mHA/me)

1/2 ∼ 43A1/2 times as fast as do ions of atomic weight A.

Even in those parts of the solar atmosphere where the ionization fraction of hydrogen is only
∼ 10−5 one may assume that the relevant collisional processes are dominated by collisions
with free electrons. This is partly so due to contributions of elements that have low ionization
energies, such as iron and magnesium. Only in particularly cool environments, such as the
atmospheres of extremely cool stars (late M-type stars such as AGB stars), brown dwarfs
or gas-rich exoplanets, in proto-planetary disks and molecular clouds, collisions with neutral
hydrogen atoms or molecular hydrogen may play a role, or even dominate.

The number of collisional excitations in cm−3 sec−1 is given by

nl Clu = nl ne

∫ ∞
v◦

σlu(v) f(v) v dv ≡ nl ne qlu(T ) (7.7)

where v◦ is the threshold velocity (providing the minimum required kinetic energy E◦ =
1
2mv

2
◦ = hνlu), ne the electron density per cm3, and σlu(v) the electron collision cross-section

of the process in cm2. In kinetic equilibrium, the velocity distribution f(v) is that according
to Maxwell (eq. 6.16). The collision cross-sections are for the most part poorly known. They
are determined in experiments or by means of quantum mechanical calculations. We give an
often used formula based on a dipole approximation, deduced by Van Regemorter

qlu(T ) ≈ p1

(
E0

kT

)p2

T−3/2 e−E0/kT flu (7.8)
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where (p1, p2) = (2.16,−1.68) for atoms and (3.9,−1) for ions (see e.g. Jefferies). The
result is proportional to the oscillator strength flu of the line transition (see § 7.3), and only
applies to allowed transitions. The rates for forbidden transitions (which have very small val-
ues of flu) are usually very poorly known, but most certainly are not as low as implied by
Van Regemorters formula. The term T−3/2 exp(−E◦/kT ) finds its origin in the Maxwellian
velocity distribution (eq. 6.16); the exponential term dominates the rate, such that it increases
rapidly with temperature. For a fixed temperature, the rate increases for decreasing E0 as a
lower threshold for the kinetic energy implies that a larger fraction of the free electrons (dis-
tributed according to Maxwell) can participate. This is very relevant for transitions between
high lying energy levels, i.e. transitions close to the continuum (see figure 6.4). These have
only small level-to-level energies E0 = hνlu; which typically correspond to line wavelengths
in the infrared or submillimetre. These levels are strongly coupled by collisions.

Collisional de-excitation

The rate of collisional de-excitations can be obtained directly from a detailed balance argu-
ment. In KE the occupation numbers of the upper and lower level are related according to

n∗l Clu = n∗uCul (7.9)

In this equilibrium, set by collisions and only dependent on temperature, the ratio (nu/nl)
∗

fulfills the Boltzmann equation (6.21).

The number of collisional de-excitations in cm−3 sec−1 is then given by

nuCul = nu

(
nl
nu

)∗
Clu = nu ne qlu(T )

gl
gu
e+E◦/kT (7.10)

Note that the rate for collisional de-excitations is much less sensitive to the temperature than is
that of collisional excitations (the exponential term has dropped out). Roughly one could say
that each encounter with an electron suffices to accelerate it, by transferring excitation energy.

Maxwellian averaged collision strength

We provide an alternative expression for the rate of collisional excitations using the Maxwellian
averaged collision strength Υ, also referred to as the effective collisional strength. It holds
that

qlu(T ) =
8.629× 10−6

gl T 1/2
e−Elu/kT Υlu(T ). (7.11)

For the rate of collisional de-excitations it follows that

qul(T ) =
gl
gu
e+Elu/kT qlu(T ) =

8.629× 10−6

gu T 1/2
Υlu(T ). (7.12)
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7.2 Einstein relations

The Einstein coefficients Aul, Blu and Bul can be expressed in each other, assuming that
thermodynamic equilibrium is valid.

In TE each specific process is in detailed balance: for each two energy levels the number of
radiative excitations equals the number of radiative de-excitations

nlBlu J̄lu = nuAul + nuBul J̄lu (7.13)

If we isolate the profile integrated mean intensity J̄lu, and use that in TE the occupation of the
levels is given by Boltzmann (eq. 6.21), then

J̄lu =
Aul/Bul

(nl/nu) (Blu/Bul)− 1

=
Aul/Bul

(glBlu/guBul) ehνlu/kT − 1
(7.14)

In TE Jν = Bν . As Bν is a function that changes very little over the sharply peaked profile
function φν , we may also assume that J̄lu = Bνlu . To fulfill this equation at each temperature,
it must hold that

Aul =
2hν3

lu

c2
Bul and glBlu = guBul (7.15)

These are the Einstein relations. They connect atomic properties, i.e. properties that are
independent of external circumstances. We therefore must conclude that they are universally
valid, i.e. also in media that are not in TE, or for cases in which J̄lu 6= Bνlu .

7.3 Relation between Einstein coefficients and η`ν and χ`ν

The emission coefficient ην defines the emitted energy per cm3 per second per hz per solid
angle (see eq. 4.7). We may derive this coefficient for spontaneous emission processes in a
simple way. The energy emitted in all directions per cm3 per second at all frequencies relevant
for the transition is hνlu nuAul. To get the emitted energy per hz we need to multiply with
the profile function for spontaneous emission ψν (which has dimension hz−1), and, finally, to
get the emission per unit solid angle we need to divide by the total solid angle Ω = 4π. This
yields for the line emission coefficient

η`ν =
hνlu
4π

nuAul ψν (7.16)
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Let us now derive an expression for the extinction coefficient χν . The total energy that is
absorbed in a volume element dV in a time interval dt by radiative excitation is

dEtot
ν = 4π · hνlu nlBlu J̄lu dV dt

= 4π · hνlu nlBlu
[∫ {

1

4π

∮
Iν dω

}
φν dν

]
dV dt (7.17)

where the 4π is the integration over all directions and the last equality at the right-hand side
follows from eq. (7.6) and (3.6). So, the energy dEν that is absorbed in a volume dV = dOds
in a bandwidth dν in a time interval dt, from an incident beam of opening angle dω and
specific intensity Iν is

dEν =
hνlu
4π

nlBlu φν Iν dO ds dω dν dt (7.18)

Using the definition of the extinction coefficient χν (eq. 4.3) we find

χexcitation
ν =

hνlu
4π

nlBlu φν (7.19)

Finally, let us turn to stimulated emissions. Usually this process is not added to that of spon-
taneous emission, but is treated in terms of a “negative extinction”. The reason is that induced
excitation is much more similar to radiative excitation than it is to spontaneous de-excitation.
First because – if complete redistribution is valid – it is proportional to J̄lu. Second, the emis-
sion is in the same direction as that of the incident radiation by which it is induced (therefore
the term “negative extinction”). In fact, radiative excitation and stimulated emission always
occur together. We find for the line extinction coefficient

χ`ν =
hνlu
4π

[nlBlu φν − nuBul ϕν ] (7.20)

Oscillator strength

To quantify the line emission and extinction coefficient we only need one of the Einstein
coefficients (which needs to be determined by either measurement or calculation). The others
follow from the Einstein relations eq. (7.15). Usually Aul is tabulated. There is a fourth
parameter that is used to quantify line strength: the oscillator strength flu.

This parameter is used in the classic description of a spectral line as a damped harmonic
oscillator, according to which the extinction coefficient (or cross-section) per particle αlu(ν)
(dimensions cm2) is given by

αlu(ν) =
πe2

mec
flu φν (7.21)

where (πe2/mec) = 0.02654 cm2 hz and φν is the Lorentz profile or damping profile of which
the dimension is hz−1. (see § 13.2). The oscillator strength does not feature in the classical
theory. A quantum mechanical treatment shows that the transition probabilities for different
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transitions may differ by orders of magnitude. The dimensionless oscillator strength is thus
introduced as a correction on the classical value.

In the above description the extinction coefficient is given by

χexcitation
ν = αlu(ν)nl =

πe2

mec
flu nl φν (7.22)

The oscillator strength is related to the Einstein coefficient Blu through the total extinction
coefficient (or cross-section) per particle

αlu ≡
∫ ∞

0
αlu(ν) dν =

πe2

mec
flu =

hνlu
4π

Blu (7.23)

of which the dimensions are (note!) cm2 hz. For resonance lines, such as Lyα, a classical
oscillator is a good approximation and flu ∼ 1. Other observed allowed lines in spectra
typically have 10−4 . flu . 10−1. Forbidden transitions have flu . 10−6. The oscillator
strengths of a number of important hydrogen lines are given in table 7.1.

Finally: usually also glflu is tabulated, known as the gf-value. In the literature, this quantity
is often (erroneously) referred to as the “transition probability”.

Kramers formula

For hydrogen an analytical expression for flu has been derived by Kramers

fK(l, u) =
32

3π
√

3

(
1

l2
− 1

u2

)−3( 1

l5 u3

)
(7.24)

where l and u are the principal quantum numbers of the lower and upper level respectively.
The Kramer formula is a semi-classical result. A full quantum mechanical derivation results
in a correction factor, the bound-bound Gaunt factor gI, that is of order unity. The oscillator
strength is then given by

f(l, u) = gI(l, u) fK(l, u) (7.25)

For the lines of a given spectral series, for instance the Lyman series (1→ u) or Balmer series
(2→ u), the α-line (l→ l+1) will have the largest oscillator strength, followed by the β-line
(l→ l+ 2), etcetera. This is reflected in the line strengths, e.g. Hα is almost always stronger
than is Hβ, which in turn is stronger than Hγ, etcetera.

For hydrogenic ions

flu = Z4 flu(Z = 1) (7.26)
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Table 7.1: Wavelength λlu, oscillator strength flu, and Einstein coefficientAul for important transitions
in hydrogen. See figure 6.4 for the Grotrian diagram

Wavelength in Å
Series l u=2 3 4 5 6 7 8
Ly 1 1215.67 1025.72 972.54 949.74 937.80 930.75 926.23
H 2 6562.80 4861.32 4340.46 4101.73 3970.07 3889.05
Pa 3 18751.0 12818.1 10938.1 10049.4 9545.98
Br 4 40512.0 26252.0 21655.0 19445.6
Pf 5 74578 46525 37395
Hu 6 123680 75005

Oscillator strength
Series l u=2 3 4 5 6 7 8
Ly 1 0.4162 0.07910 0.02899 0.01394 0.007799 0.004814 0.003183
H 2 0.6407 0.1193 0.04467 0.02209 0.01270 0.008036
Pa 3 0.8421 0.1506 0.05584 0.02768 0.01604
Br 4 1.038 0.1793 0.06549 0.03230
Pf 5 1.231 0.2069 0.07448
Hu 6 1.424 0.2340

Einsteincoefficient Aul in sec−1

Series l u=2 3 4 5 6 7 8
Ly 1 4.699 108 5.575 107 1.278 107 4.125 106 1.644 106 7.568 105 3.869 105

H 2 4.410 107 8.419 106 2.530 106 9.732 105 4.389 105 2.215 105

Pa 3 8.986 106 2.201 106 7.783 105 3.358 105 1.651 105

Br 4 2.699 106 7.711 105 3.041 105 1.424 105

Pf 5 1.025 106 3.253 105 1.388 105

Hu 6 4.561 105 1.561 105

Line source function

The line source function, using eq. (7.16) and (7.20), is given by

S`ν =
η`ν
χ`ν

=
nuAul ψν

nlBlu φν − nuBul ϕν
(7.27)

As the Einstein relations do also apply for conditions other than TE, the general form of the
line source function (and in fact also of the source function of any arbitrary radiative transition)
is

S`ν =
2hν3

lu

c2

1

(gu nl)/(gl nu)− 1
(7.28)

where we have assumed complete redistribution, i.e. φν = ϕν = ψν . The frequency de-
pendence of the line source function is in effect extremely weak as the factor ν3 varies only
slowly compared with the sharply peaked profile function φν . S`ν is often referred to as a
frequency-independent source function, i.e. S`ν = S`. In TE we may apply Boltzmann’s law
such that S`ν = Bν . This recovers the Kirchhoff-Planck relation (eq. 6.3).
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We end this section with two useful relations. The ratio of the number of spontaneous and
induced de-excitations in TE is

nuAul
nuBul J̄lu

=
Aul

Bul J̄lu
=

2hν3

c2Bν
= ehν/kT − 1 (7.29)

So, if hν/kT � 1 (Wien’s approximation) the majority of de-excitations will be spontaneous,
and if hν/kT � 1 (Rayleigh-Jeans’s approximation) the dominant downward radiative pro-
cess is induced emission – provided that the populations and radiation field are of the order of
what is expected in TE.

The ratio of the number of spontaneous de-excitations and the total radiative de-excitation rate
in TE is

nuAul
nuAul + nuBul J̄lu

=
Aul

Aul +Bul J̄lu
= 1− e−hν/kT (7.30)

This term is referred to as the correction factor for stimulated emission. In Wien’s approx-
imation (hν/kT � 1), downward radiative transitions in TE or LTE are dominated by
spontaneous de-excitations. In the Rayleigh-Jeans approximation (hν/kT � 1) induced
de-excitations dominate as Bul/(Aul +Bul J̄lu) = exp(−hν/kT ) ' 1− hν/kT ' 1.
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Exercise 7.1

a) At time t = 0 the population of an excited level is nu(0). How does the population of
this level decrease over time if only spontaneous emission to a lower level l occurs and
the Einstein coefficient of this process is Aul?

b) If de-excitations are possible to multiple lower levels the transition probabilities should
be added. Show that if Γu ≡

∑
i<uAui the lifetime (in sec) of the particle in state u is

given by

< t >=
1

Γu
(7.31)

Exercise 7.2

Use Kramers’ formula eq. 7.24 to show that the α-line of hydrogen is the strongest ab-
sorption line of a series (i.e. of all lines with fixed lower level).

Exercise 7.3

a) Show that in NLTE, assuming complete redistribution, the line extinction coefficient per
particle corrected for stimulated emissions is given by

αcse
lu (ν) =

πe2

mec
flu

[
1− nu gl

nl gu

]
φν (7.32)

b) Show that in TE and LTE the line extinction coefficient is given by

αcse
lu (ν) =

πe2

mec
flu

[
1− e−hνlu/kT

]
φν (7.33)

Exercise 7.4

This could be a nice exam question. The fine structure lines of neutral oxygen arise from
the fact that the ground electronic state splits up into three fine structure levels. The lines
are forbidden. Relevant atomic data for the lines are provided in table 7.2.

a) Make a sketch of the energy level structure of the oxygen ground electronic state with the
three line transitions and calculate their wavelength.
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Designation Ei gi
i [K]

3P2 0.0 5.0
3P1 227.7 3.0
3P0 326.6 1.0

Designation Aij qij
i→ j [s−1] [cm3 s−1]

3P1 – 3P2 8.9× 10−5 1.5× 10−10

3P0 – 3P2 1.3× 10−10 2.4× 10−10

3P0 – 3P1 1.8× 10−5 2.1× 10−12

Table 7.2: Left: level designations, energies, statistical weights of hyperfine structure of O I 2p4 3P.
Right: level designations of the forbidden hyperfine transition, Einstein A coefficient, collision rate
coefficient for collisions with molecular hydrogen at 100 K.

b) List the processes that impact the level population numbers of these fine structure states.

The critical density for a given downward transitions u→ l is given by

ncr =
Aul
qul

. (7.34)

See section 15.3 for the physical meaning of this quantity.

c) Calculate the critical density of the [O I] 63 µm line transition and compare this value to
a typical molecular cloud. Do you expect the level populations to be in Local Thermody-
namic Equilibrium in that environment?

d) Predict the LTE total intensity in erg cm−2 s−1 sr−1 of the [O I] 63 µm line from an opti-
cally thin slab of gas with an oxygen column density N(O) = 1012 cm−2 and constant
temperature of 100 K. (Tip: consult Eq. 7.16).

Exercise 7.5

We consider an atomic model with only two bound levels, in which the lower and upper
level are respectively labeled 1 and 2.

a) Give the probability ε that a photon that causes a radiative excitation from level 1 is
destroyed by a collisional de-excitation event. This probability is generally referred to as
the photon destruction probability.

b) Show that in TE

ε =
C21

C21 +A21/
(
1− e−hν12/kT

) (7.35)
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Exercise 7.6

a) Show that for the two level atom, line source function Eq. (7.28) can be written as

S`ν =
ε′Bν + J̄12

1 + ε′
, (7.36)

where
ε′ =

C21

A21

(
1− e−hν12/kT

)
. (7.37)

b) Show that
S`ν = εBν + (1− ε) J̄12, (7.38)

where

ε =
ε′

1 + ε′
. (7.39)

One can readily see that expressions Eq. (7.39) and (7.35) are identical. Source func-
tion (7.36) contains a thermal emissivity term ε′Bν . In essence, it represents photons
created by collisional excitation followed by radiative de-excitations. The term ε′ in the
denominator is a sink term that represents photons that are destroyed by a collisional
de-excitation following a photo-excitation. J̄12 is the non-coherent scattering emissivity
term. It is non-coherent (i.e. the emitted photon has forgotten about the nature of the ab-
sorbed photon) as we have explicitly adopted complete redistribution of the line photons
at the very start of our derivations. See section 14.2 for a more extended discussion of
the two-level problem.
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Continuum processes

Opacities

In this chapter we treat processes that give rise to continuum extinction and emission. An
overview of the behavior of the mass extinction coefficient χ′ν (see Eq. 4.5) as function of
temperature and density is given in Figure 8.1. The unit of χ′ν is cm2gr−1, i.e. it provides the
total cross section per gram of material. In the figure the density is chosen such that it rep-
resents common environments characterized by a temperature T . For instance, in the densest
fragments of an interstellar molecular cloud the particle density may reach n ∼ 107 cm−1,
hence ρ ∼ 10−19 gr cm−3. In the atmosphere of a giant star of 5 000 K a typical density is
10−8 gr cm−3.

The mass extinction coefficient is dominated by dust grains at temperatures up to about 1500-
2000 K and by molecules and atoms above that temperature range. Between temperatures of
about 400 and 1500 K the grains are composed of mainly silicates, iron, and their compounds.
Between 400 and 175 K, volatile organics such as methane (CH4), ethane (C2H6) and ethanol
(C2H5OH) are also present. Below 175 K, ice grains are present along with the other species
and are actually dominating. In this low temperature range the Rosseland mean opacity κR
(Eq. 4.66) increases as T 2. Between 175 K and about 1700 K the opacity is dominated by
silicates and iron grains. The sudden dip at about 1700 K is caused by the evaporation of
the silicate and iron grains; above that temperature and up to about 3500 K molecular opacity
dominates with important contributors being H2O, CH4, NH3, and CO. At a few thousand
Kelvin and up, the hydride ion H− gains in importance, dominating the opacity above 3500 K
up to about 8000 K. The Rosseland opacity in this regime increases as ρ1/2 T 9/2. At 8000 K
bound-free and free-free opacity of hydrogen takes over with Thomson scattering on free
electrons gaining importance. Above 10000 K scattering on free electrons becomes the main
opacity source.

Calculating the Rosseland mean opacity for a gas mixture is very challenging as it requires
knowledge of the individual opacities of tens to hundreds of millions of atomic and, particu-
larly, molecular transitions from neutral and ionized stages. Much of the pioniering work in
this field has been done in relation to nuclear bomb experiments after the second world war.
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Figure 8.1: The Rosseland mean opacities in cm2 gr−1 calculated for temperatures between 1 K and
105 K and gas densities ρ = 10−19 T 3 gr cm−3. The adopted C/O abundance is 0.43. Dust grains dom-
inate the opacity up to a temperature of about 1500-2000 K; atoms dominate beyond 4000 K. The dust
grains consist of a mix of silicates, organics, amorphous ice, FeS, and iron. The ice grains evaporate
at about 160 K. The results of Semenov et al. are compared to opacity tables provided by the Opacity
Project (OP; 1994, crosses), the Opacity Project at Livermore (OPAL; 1996, circles) and other, smaller,
projects. From: Semenov et al. 2003.

Later on, astrophysics benefitted from this data. Notable large efforts have been the Opacity
Project (OP) and the Opacity Project at Livermore (OPAL). Results of these projects are com-
pared to the work of Semenov et al. (2003) in the overlapping part of the parameter domain
in Fig. 8.1.

In the remainder of this chapter we focus on atomic and ionic material, i.e., we refrain from a
discussion of molecular and dust opacities.

8.1 Bound-free transitions

Similar to there being five bound-bound processes, we identify also five bound-free processes:

1. photoionization
requires: photons of sufficient energy

https://arxiv.org/pdf/astro-ph/0308344.pdf
https://arxiv.org/pdf/astro-ph/0308344.pdf
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Figure 8.2: Schematic overview of the five possible bound-free processes.

2. spontaneous photo-recombination
requires: free electron that can be captured

3. stimulated photo-recombination
requires: free electron that can be captured and a photon to induce the process

4. collisional ionization
requires: passing particle with sufficient energy

5. collisional recombination
requires: passing particle and a free electron that can be captured

The processes 1 and 4 require an energy (from photon or collision)E > EI−Ei = E◦, where
Ei is the energy of the bound level i and EI is the ionization energy. The relevant extinction
coefficient has a threshold value, ν◦ = E◦/h for photoionization, and v◦ = (2E◦/me)

1/2 for
collisional ionization, below which the process can not take place.

The latter process is a three particle collision and is therefore, as a rule, rare.

Photoionization

In a photoionization a particle in a bound energy state i is ionized, through absorption of a
photon. We refer to the ionized state as κ.

Say, the extinction coefficient for photoionization or photoionization cross-section per particle
in energy level i is given by αiκ(ν), which has dimension cm2. If the energy of a photon is
less than what is required to remove the electron from the atom or ion, i.e. ν < ν◦, then
αiκ(ν) = 0. The rate of photoionization follows from the product of this cross-section and
the number of photons that are available at each frequency ν ≥ ν◦, i.e. 4πJν/hν.
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Figure 8.3: The bound-free extinction coefficient per particle for hydrogen atoms, for different principal
quantum numbers n. Although αbf

ν (n) increases with n one should be reminded that the particle
number density of excited levels, nn, usually is a strongly decreasing function of n (see for instance
eq. 6.21) such that the behaviour of the linear extinction coefficient as a function of n can be more
complex (see for instance fig 8.6). From: Gray (1992).

From this consideration it follows that the number of photoionizations per second per cm3 is
given by

niRiκ = ni 4π

∫ ∞
ν◦

αiκ(ν)
Jν
hν

dν (8.1)

For hydrogenic ions (H I, He II, Li III, etcetera) the extinction coefficient per particle for pho-
toionization (without correction for induced recombinations) from a level of principal quan-
tum number n, for ν ≥ ν◦(n,Z), is given by

αbf
ν (n,Z) =

(
64π4mee

10

3
√

3 ch6

)
Z4

n5
gII(ν, n) ν−3 (8.2)

where Z is the charge of the ion (Z = 1 for hydrogen) and gII is the bound-free Gaunt factor.
Close to the ionization edge gII ∼ 1. For this type of ion the excitation energy is given by
E(n,Z) = RZ2(1 − 1/n2), where R is the Rydberg constant for hydrogen, such that the
edge frequency ν◦(n,Z) = (RZ2/hn2). Using this relation and substituting constants yields

αbf
ν (n,Z) = 7.91× 10−18 n

Z2
gII(ν, n)

(ν◦
ν

)3
(8.3)

The extinction is thus proportional to ν−3 for ν > ν◦. For more complicated ions, that have
more valance electrons (for instance Fe I which has an electron shell that is half filled and
that provides a multitude of valance electrons and valance cavities), the smooth decline is
disrupted by resonances which produce all sorts of peaks in αiκ(ν) that need to be determined
in experiments.

https://ui.adsabs.harvard.edu/abs/2008oasp.book.....G/abstract
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Spontaneous recombination

In a spontaneous recombination an electron is captured by a particle in an ionized state κ and
a photon is emitted that carries with it the recombination energy. We may derive the number
of spontaneous recombinations per second per cm3 using a detailed balance argument.

In TE the number of photoionizations, at each frequency, must be in balance with the number
of radiative recombinations. As in this most strict of all equilibria Jν = Bν , it follows that in
TE the total number of radiative recombinations per cm3 per second is

n∗κRκi = n∗i Riκ = n∗i 4π

∫ ∞
ν◦

αiκ(ν)
Bν
hν

dν (8.4)

The superscript ∗ indicates that the level occupations are according to the Boltzmann and Saha
equilibrium (see for instance eq. 6.26). The total number of radiative recombinations is the
sum of spontaneous and induced recombinations, and we may split these two contributions
using the correction term for stimulated emission

n∗κRκi = nκR
spon
κi + nκR

stim
κi (8.5)

= n∗i 4π

[ ∫ ∞
ν◦

αiκ(ν)

hν
Bν

(
1− e−hν/kT

)
dν +

∫ ∞
ν◦

αiκ(ν)

hν
Bν e

−hν/kT dν

]
Using the definition of the Planck function (eq. 6.4) we find for the spontaneous recombina-
tions

n∗κR
spon
κi = n∗i 4π

∫ ∞
ν◦

αiκ(ν)

hν

2hν3

c2
e−hν/kT dν (8.6)

For a spontaneous recombination to occur what is required is a passing free electron that can
be captured. What is not required is knowledge of possible deviations from TE of the local
radiation field. Even if TE (or LTE) is not valid, the rate Rspon

κi should still hold per ion, as
long as the velocity distribution of the free electrons is according to Maxwell. We therefore
only need to rescale eq. (8.6) from the TE ion density to the real ion density nκ to get a general
expression for the number of spontaneous radiative recombinations per cm3 per second:

nκR
spon
κi = nκ

(
ni
nκ

)∗
4π

∫ ∞
ν◦

αiκ(ν)

hν

2hν3

c2
e−hν/kT dν (8.7)

This expression states that the emission coefficient for spontaneous recombination, per ion,
“feels” the Planck function (which represents the Maxwell velocity distribution) and not the
real radiation field. The latter may obviously have caused the ionization into state κ, however,
this dependence is locked up in nκ (and not in Rspon

κi ). It may be clear that this recombination
process is less “spontaneous” as is a spontaneous de-excitation between two bound levels;
after all, the ion needs to wait for a free electron that can be captured. The dependence of
Rspon
κi on this free electron is hidden in the TE ratio (ni/nκ)∗ and is explicitly given by the

Saha-Boltzmann equation (6.26). Substitution yields

nκR
spon
κi = nκne Φiκ(T ) 4π

∫ ∞
ν◦

αiκ(ν)

hν

2hν3

c2
e−hν/kT dν

≡ nκ ne α
RR
i,κ−1(T ) (8.8)
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where αRR
i,κ−1(T ) is the recombination coefficient in cm3 per second into level i of ion κ −

1. This function decreases with increasing temperature, as it is more difficult for an ion to
capture a faster moving electron (see e.g. table 18.1). Equation (8.8) shows that the number
of spontaneous recombinations scales with the product nκne, as expected. The recombination
coefficient does not account for stimulated recombinations. These are however in most cases
unimportant compared to the spontaneous recombinations (see for instance eq. 8.5 for the case
Jν = Bν and realize that ν◦ usually is quite large).

Stimulated recombination

The same argument that applies to the process of spontaneous recombination also holds for
stimulated recombinations or induced recombinations. In TE the number of stimulated re-
combinations per cm3 per second is (see eq. 8.5)

n∗κR
stim
κi = n∗i 4π

∫ ∞
ν◦

αiκ(ν)

hν
Bν e

−hν/kT dν (8.9)

Rescaling of the TE ion density n∗κ to the real ion density nκ, and substituting the TE radiation
field Bν for the real radiation field Jν , yields

nκR
stim
κi = nκ

(
ni
nκ

)∗
4π

∫ ∞
ν◦

αiκ(ν)

hν
Jν e

−hν/kT dν (8.10)

The end result for the total number of radiative recombinations, per cm3 per second, therefore
is

nκRκ,i = nκ

(
ni
nκ

)∗
4π

∫ ∞
ν◦

αiκ(ν)

hν

[
2hν3

c2
+ Jν

]
e−hν/kT dν (8.11)

Collisional ionization

The number of collisional ionizations per cm3 per second follows from eq. (7.7), where the
threshold velocity v◦ now corresponds to the minimum energy E◦ = 1

2mv
2
◦ = hν◦ of the

electron needed for collisional ionization. We get

niCiκ = ni ne

∫ ∞
v◦

σiκ(v) f(v) v dv ≡ ni ne qiκ(T ) (8.12)

For general remarks concerning the collisional process we refer to § 7.1. Here we only give the
approximate formula for qiκ(T ) based on a dipole approximation, derived by Van Regemorter,

qiκ(T ) ≈ 2.7 ζ

(
E◦
kT

)−2

T−3/2 e−E◦/kT (8.13)

where ζ is the number of electrons in the outer shell.
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Collisional recombination

The rate of collisional recombinations can also be obtained using a detailed balance argument.
In KE

n∗i Ciκ = n∗κCκi (8.14)

such that the number of collisional recombinations per cm3 per second is

nκCκi = nκ

(
ni
nκ

)∗
Ciκ = nκ n

2
e Φiκ(T ) qiκ(T ) (8.15)

The equation shows clearly that this is a three particle process, i.e. the process scales as
nin

2
e . The rate of collisional recombinations is much less sensitive to temperature as is that of

collisional ionizations, because, similar to collisional processes between bound energy levels
(see § 7.1), the exponential term drops out. Collisional recombinations are more likely to
occur for energy levels high up in the atom/ion because of the low threshold energy E◦.

Collisional coupling of high levels with the continuum

The collisional coupling between high lying levels and the continuum is even stronger than
that between two bound energy levels close to the ionization edge (see § 7.1). This is so
because qiκ(T ) for given temperature increases more rapidly with decreasing E0 as does qlu
(see eq. 7.8). If the electron density decreases, for instance high up in the atmosphere or in
a stellar wind, spontaneous recombination and spontaneous de-excitation processes will win
over collisional processes for an increasing number of levels. Consequently, these levels will
cascade or “rain down” into the ground level. However, for levels that are extremely high up in
the energy level diagram (i.e. those close to the ionization threshold) the collisional processes
will continue to dominate and therefore the populations will remain in LTE (relative to the
continuum) and will be given by eq. (6.26).

8.2 Free-free transitions

Radiation that is the result of the negative (see below) acceleration of a charge in the Coulomb
field of another charge is known as free-free radiation. In a dipole approximation free-free
radiation only occurs if the two particles are not identical. So, it does not happen for electron-
electron or ion-ion interactions, as in those cases the electric dipole moment d ≡

∑
qiri is

proportional to the center of mass
∑
miri, which is a conserved quantity. This causes the

emitted power, given by Larmor’s law

P =
2d̈2

3c3
(8.16)
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to be zero. In electron-ion interactions the electrons are the prime radiators as the rela-
tive acceleration r̈ is inversely proportional to the mass of the particles squared, while the
charges are typically about equal. Free-free radiation is also referred to as bremsstrahlung.
Bremsstrahlung is the German for ’braking radiation’, since the emitting electron-ion pair are
being braked rather than accelerated.

We give, without derivation, the result for the free-free extinction coefficient χff
ν per cm for

particles of element k in ionization state j

χff
ν =

4e6

3hc

(
2π

3km3
e

)1/2

gIII(ν, T )
Z2
jk

T 1/2ν3
neNjk

(
1− e−hν/kT

)
(8.17)

where gIII is the velocity mean for the Gaunt factor of free-free processes, which gives the
quantum mechanical correction to the classic result; gIII is dimensionless and of order unity
(but see eq. 17.39 for its behavior in the radio regime). Njk is the density of ions of charge
Zjk. For H II and He II, Zjk = 1; for He III, Zjk = 2. Evaluation of all constants yields a cgs
value 3.692× 108.

In TE the free-free source function is given by the Planck function Bν(T). This is also true if
TE is not valid, provided that the velocity distribution of the particles is given by the Maxwell
equation, because in free-free processes kinetic and radiative energy is exchanged fully. In
each free-free emission a photon is created out of the “thermal pool of particles” that has no
prior knowledge about anything; likewise, in a free-free absorption all information about the
absorbed photon will be lost. In other words: a free-free process is a pure collisional process.

In the Wien approximation (hν/kT � 1) the correction term for stimulated emissions may
be neglected. One is left with

χff
ν = 3.692× 108 gIII(ν, T )

Z2
jk

T 1/2ν3
neNjk (8.18)

i.e. χff
ν ∝ ν−3. In the Rayleigh-Jeans regime (hν/kT � 1)

χff
ν = 1.772× 10−2 gIII(ν, T )

Z2
jk

T 3/2ν2
neNjk (8.19)

which shows a frequency dependence χff
ν ∝ ν−2 ∝ λ2.

8.3 H− absorption

Hydrogen, because of its large polarizability, can form a negative ion consisting of a proton
and two electrons. The H− or hydride ion has a single bound state with a binding energy of
0.754 eV. The wavelength corresponding to this energy is 16444 Å. Therefore, it has no lines,
only bound-free and free-free transitions. For bound-free processes

H− + hν 
 H + e−(v) (8.20)
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Figure 8.4: Extinction coefficient (in 1026 cm2) of the H− ion, per neutral H atom and per unit of
electron pressure pe = nekT , in LTE at 6300 K. The bound-free extinction has a maximum at ∼ 8000
Å. The free-free extinction is proportional to λ2. The sum shows a maximum at 8500 Å and a minimum
at 1.6 µm. From Mihalas (1978).

where 1/2mev
2 = hν − 0.754 eV. For free-free processes

H− + e−(v) + hν 
 H− + e−(v′) (8.21)

where 1/2mev
′2 = hν + 1/2mev

2. The bound-free continuum does not have a sharp ioniza-
tion edge at 16444 Å, but a broad peak at lower wavelength reaching a maximum at ∼ 8500
Å (see figure 8.4).

Because of its low binding energy H− can only exist in relatively cool stars (up to stars slightly
hotter than the sun). In the photosphere of the sun and in that of cooler stars the H− processes
are the dominant source of visual and infrared extinction. The extra electrons are supplied
by elements such as Na, Mg, Al, Si, Ca, en Fe, that are relatively abundant and have a much
lower ionization energy than hydrogen (see also § 6.5). In extremely cool stars, brown dwarfs
and hot gaseoous planets H− will not be the dominant source of extinction, because of a lack
of free electrons, but it may be one of the contributing sources.

The identification of H− as the most important source of extinction in cool stars by Pannekoek
in 1930 and 1935 and Wildt in 1939 and 1942 was viewed as a fundamental breakthrough. To
illustrate this: Eddington, in his book ‘The internal constitution of the stars’ in 1926 saw the
unknown extinction and the (at that time) also unknown internal source of energy of the stars
as the only remaining problems in the physics of stars!

In TE (or LTE) the number of H− ions is given by the Saha equation (6.24). Usually one

https://ui.adsabs.harvard.edu/abs/1978stat.book.....M/abstract
https://ui.adsabs.harvard.edu/abs/1926ics..book.....E/abstract
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formulates this using an explicit reference to the electron pressure pe = nekT , such that
NH− = NH peΦ̆(T ). This yields for the H− extinction

χ∗ν(H−) = αbf
ν (H−)NH pe Φ̆(T )

[
1− e−hν/kT

]
(8.22)

where αbf
ν (H−) is the extinction coefficient per cm2. For the free-free extinction αff

ν (H−) a
similar expression can be given. Fitting formulas for αbf

ν (H−) and αff
ν (H−) are discussed in,

for instance, Gray.

8.4 Elastic scattering by electrons

We discuss the scattering of radiation by free and bound electrons in non-relativistic media,
such that the scattering is elastic, implying the frequency and energy remain unchanged and
only changes in direction occur.

We do not discuss extinction or emission due to electrons being accelerated in a magnetic field,
i.e. cyclotron radiation (in case the electrons have non-relativistic velocities) and synchrotron
radiation (in case the electrons do have relativistic velocities).

Thomson scattering

In the limit of low photon energy, i.e. hν � mec
2, the scattering by free electrons of low

energy will be elastic or coherent. This process is referred to as Thomson scattering. For high
photon energies Compton shifts will occur because of the change of momentum and energy
between photon and electron. If the scattering by free electrons involves high energy electrons
one needs to apply relativistic corrections; this process is referred to as inverse Compton
scattering. We will only concentrate on Thomson scattering.

The extinction coefficient per free electron is given by

σT =
8πe4

3m2
e c

4
= 6.652× 10−25 cm2 (8.23)

and is independent of the frequency of the incident radiation. The result can be obtained using
a classical description in which the electron is viewed as a free particle that vibrates (without
being damped) in a passing electromagnetic wave.

The linear extinction coefficient is given by

χe = σT ne (8.24)

where ne is the electron density. Note that no subscript ν is given as the process is independent
of frequency. Thomson scattering is the dominant source of continuous extinction in the
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atmospheres of early-type stars where hydrogen is almost fully ionized. The much larger
value of the bound-free extinction, that is of the order of 10−17 cm2 per particle (see eq. 8.3)
usually wins from scattering by free electrons if hydrogen is only partly ionized.

Specifying the mass fraction of hydrogen in a gas by X , and the ionization fraction of hy-
drogen by q, we find for the contribution of hydrogen to the mass extinction coefficient by
Thomson scattering

χ′e(H) =
σT

mH
X q = 0.40X q cm2/gr (8.25)

where mH is the mass of the hydrogen atom. For a gas of solar abundances X = 0.747. If in
this gas hydrogen in fully ionized (q = 1) we find χ′e(H) = 0.30 cm2/gr.

Rayleigh scattering

Photons can also be scattered by bound electrons in for instance an atom or molecule or
for any other particle that is much smaller than the wavelength of the incident light. In the
classic picture this bound electron will have a resonance frequency that is equal to the eigen
frequency νlu of a harmonically bound electron. In the limit in which the frequency of the
incident radiation ν � νlu, we have Rayleigh scattering. In this case the cross section per
valance electron per resonance line is given by

σRay(ν) = σT flu
ν4

(ν2 − ν2
lu)2
' σT flu

(
ν

νlu

)4

(8.26)

where the oscillator strength gives the quantum mechanical correction of the resonance strength
compared to the classic value.

The Rayleigh scattering cross section of a gas is also related to its index of refraction m:

σRay =
8π3

3c4

(
m2 − 1

n

)2

ν4 (8.27)

where n is the number density of scattering centers per cm−3.

The ratio between the cross section for Rayleigh and Thomson scattering is σRay(ν)/σT '
flu(ν/νlu)4 � 1. Rayleigh scattering can only be a significant contribution to the total ex-
tinction coefficient if the medium contains only very few free electrons, and if other sources of
extinction do not spoil things. This is the case in G- and K-type stars, and specifically those of
population III. The latter have very low abundances of metals, which are the most important
donors of free electrons in G and K stars (see § 6.5). This implies that H− as a source of
extinction is relatively unimportant. In G- and K-type stars hydrogen is almost completely in
the ground state. The resonance frequencies of the Lyman series lines (i.e. those originating
from the ground level) are in the ultraviolet part of the spectrum, such that photons in the
visual part of the spectrum can interact with these transitions through the Rayleigh scattering
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Figure 8.5: Blue light from the sun (to the left of the figure) is much more efficiently scattered by
molecules in the Earth atmosphere than red light. Blue photons from beams of solar light that would
not directly reach our eyes are thus more often scattered in the direction of our eyes. This is why the
sky appears blue. Also shown in the figure are scatterings of solar photons on relatively large solid
state particles in the Earth atmosphere. Such scatterings are not very wavelength dependent but occur
mostly in almost forward directions. When such particles are dispersed in the air one sees a white glare
around the sun.

mechanism. In the very low temperature M stars, brown dwarfs and (exo)planets, molecular
Rayleigh scattering will dominate because hydrogen, the most abundant element, is mainly
present in molecular form. For H2 a convenient formula for σRay(H2) is given by Dalgarno
& Williams (1962), see also Seager (2010). The cross section of Rayleigh scattering per H2

molecule is comparable to that of atomic hydrogen.

Rayleigh scattering of sunlight by N2 and O2 is important in the earth atmosphere and causes
the sky to have a blue color and the setting sun to become redder. A useful numerical formula
for the Rayleigh scattering cross section for Earth’s atmosphere is given by Bates (1994). In
the visible spectral range, from 4000 Å (violet) tot 8000 Å (red), the extinction coefficient of
Rayleigh scattering decreases by a factor 24 = 16. Therefore, blue photons will experience
significantly more scattering than do red photons. The probability that blue light is scattered
out of the sun-eye direction is thus much larger than for red light. At sunset, when the column
mass (see eq. 9.34) in the line-of-sight becomes large, this effect causes the sun to become
redder. Scattered blue photons that originally traveled in a direction that would not reach our
eyes have a larger probability of being scattered into a line-of-sight that reaches our eyes. The
effect is that the observer sees blue photons from arbitrary directions. This explains the blue
color of the sky (see Fig. 8.5).
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8.5 Comparison of the main sources of extinction

Figure 8.6 shows the relative importance of continuous extinction by H I, H−, and He− in the
photosphere of three types of dwarf stars, as a function of wavelength. The contribution of
Thomson scattering is not given as for these three cases it is negligibly small (the stars are too
cool to have large numbers of free electrons). We first make an estimate to show that this is
so.

The extinction coefficient given on the vertical axis (in units of 1026 cm2) is measured per
neutral hydrogen atom for an arbitrary excitation state (distributed according to Boltzmann),
and normalized to the electron pressure. The latter is done because free-free and H− extinction
scale with pe (see §§ 8.2 and 8.3 respectively). The linear extinction coefficient follows from
the values given in figure 8.6, which we will call κ0(ν), via χν = 10−26κ◦(ν)N0 pe cm−1. In
the unit of κ0 the extinction by Thomson scattering is 1026σT ne/N0 pe = (66.5/pe)ne/N0.
The value of the electron pressure, as given in the three panels, is of the order 102-103 dyn
cm−2. If we assume a pure hydrogen gas, the ratio ne/N0 = N+/N0 is derived immediately
from the Saha ionization equation 6.24. As hydrogen is almost completely neutral in the three
examples, this ratio � 1. This shows that the extinction coefficient of Thomson scattering
in the unit applied in the figure � 1, i.e. it is negligible compared to the other sources of
extinction.

The top panel in figure 8.6 shows the extinction in a model of a solar-type dwarf (an early-G
star). The absorption is dominated by H− (compare with figure 8.4). The bound-free absorp-
tion by hydrogen is significantly larger in the Balmer continuum compared to the Paschen
continuum, whereas the cross-section for ionization αbf

ν (eq. 8.3 and figure 8.3) shows an
increase with excitation level. The reason is in the temperature dependence of the level pop-
ulation numbers of the exited states: there are much less H-atoms in level n=3 (Paschen)
compared to atoms in level n=2 (Balmer).

The mid panel is for a late-A dwarf. The bound-free and free-free contributions of neutral
hydrogen are the most important. Of these two the relative importance of free-free extinction
increases for increasing wavelength as in the optical and near-infrared χff

ν ∝ λ3 (see eq. 8.17).
This explains the increase of the H-absorption with wavelength. The negative hydrogen ion
still adds somewhat to the total extinction.

The bottom panel shows the extinction for a late-B dwarf. The H−-ion is no longer con-
tributing in any significant way. The absorption is dominated by hydrogen. In the optical the
bound-free transitions dominate, while in the near-infrared free-free processes are the most
important.
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Other sources of extinction

Figure 8.6 does not show the extinction behaviour at ultraviolet wavelengths. In this part of
the spectrum the situation is more complex as also bound-free extinction of heavy elements
(such as Mg, Al, Si, and C) start to play a role. For the hot O- and early B-type stars the
bound-free edges of helium are an important source of absorption in the ultraviolet. The He I

continuum starts at 504 Å; that of He II at 228 Å.

Stars cooler than the sun feature several molecular ions, such as H−2 , CN−, C−2 and H2O−

which contribute strongly to the continuous extinction. Also Rayleigh scattering by hydrogen
atoms and H2 molecules plays a role. For the extremely cool M-type stars molecular bands,
notably those of TiO, are strong sources of continuous absorption (see chapter 2).
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Figure 8.6: The extinction coefficient (in 10−26 cm2; note that the scaling by a factor 10+26 is not
indicated on the vertical axis) for hydrogen and helium for different continuum processes, per neutral
hydrogen atom and per unit electron pressure measured at an optical depth τ◦ = 1 for continuum
radiation at a wavelength of 5000 Å. Panel (a) is for a sun-like dwarf; (b) for a late-A dwarf, and (c)
for a late-B dwarf. From Gray (1992).

https://ui.adsabs.harvard.edu/abs/2008oasp.book.....G/abstract
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Exercise 8.1

Give an expression for the total linear extinction coefficient for bound-free processes,
χν

bf , in a pure hydrogen gas in LTE.

Exercise 8.2

Show that the free-free emission coefficient is given by

ηff
ν =

8e6

3c3

(
2π

3km3
e

)1/2

gIII(ν, T )
Z2
jk

T 1/2
neNjk e

−hν/kT (8.28)

= 5.443× 10−39 T−1/2 ne np e
−hν/kT ,

where the latter equation assumes an ionized hydrogen gas and gIII(ν, T ) = 1

Exercise 8.3

This could be a nice exam question. From the dispersion of radial velocities of galaxies
in the Coma cluster and applying the virial theorem, one finds a total mass for the Coma
cluster of 3.3 × 1015M�. The total mass of all stars in all galaxies of the Coma cluster
can be derived from the total UV to infrared luminosity of the entire system and is 1.5×
1013M�. The Coma cluster also contains hot gas, with Tgas = 8.8 × 107 K. In this
exercise we investigate whether this hot gas might account for the difference in total
mass and total mass in stars.

Coma is a spherical cluster of galaxies with radius 3 Mpc. The hot gas is optically
thin, and we assume that it is distributed homogeneously and composed of fully ionized
hydrogen. The temperature of the gas is so high that it effectively emits all its energy at
x-ray wavelengths. The measured x-ray luminosity of the gas is Lx = 5×1044 erg sec−1.
We may assume gIII(ν, T ) = 1.

a) Derive a formula that gives the frequency integrated emission of the gas in all directions
in erg sec−1 cm−3.

b) Derive a formula that gives the electron density as a function of Lx and other relevant
quantities.

c) Calculate the total mass of the hot gas in solar mass. Recall that the proton mass mp =
1.66 × 10−24 gr. Which fraction of the total mass of the Coma cluster resides in the hot
gas component?

d) It appears that the mass in gas and stars can not account for all of the mass in the Coma
cluster. What component may be responsible for the missing mass?
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Exercise 8.4

The bound-free peak in figure 8.4 behaves all but hydrogen like, while it does concern
hydrogen. Why is this so?

Exercise 8.5

Show that if the mass fraction of helium in a gas is Y ; qHeII is the ionization fraction of
He II; and qHeIII is the ionization fraction of He III, that the contribution of helium to the
mass extinction coefficient of Thomson scattering is

σ′e(He) = 0.10Y (qHe II + 2qHe III) (8.29)

For a gas of solar abundances Y = 0.236.

Exercise 8.6

Does the light of the blue sky contain spectral lines? If so, what is the origin of these
spectral lines?

Exercise 8.7

Why does the sun turn red at sunset?
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Conservation laws

In this chapter we discuss the conservation laws of mass, momentum and energy, which are
faithfully fulfilled by stellar atmospheres. In essence the model atmosphere problem consists
of solving the transfer problem for a suitable equilibrium between matter and radiation (see
chapter 6), subject to these conservation laws. Here also, we find that in many cases one is
allowed to make assumptions that greatly reduce the complexity of the problem.

The equations that essentially control the model atmosphere problem are listed in Table 9.1,
together with the corresponding state parameter. We briefly highlight two of these, density
and temperature. The density structure in the medium, ρ(r, t), is primarily determined by
the conservation of mass and momentum. For relatively normal stars and planets, such as
those without an outflow, it is almost always justified to assume hydrostatic equilibrium. The
temperature structure, T (r, t), is primarily determined by the interplay between the equations
of transfer and energy conservation. Often the energy in an atmosphere is transported by
radiation, such that radiative equilibrium applies. In other cases it may be advantageous to
transport energy by means of convection. We will not deal with this alternative means of
energy transport in great detail, though we will discuss the principle of convection and the
conditions in which it will occur.

9.1 Equation of state

The behavior of a gas or solid under different physical conditions is described by the equation
of state (or EOS), expressing how the pressure depends on density and temperature

p = f(ρ, T ). (9.1)

The simplest assumption for the EOS of a gas is that it behaves as an ideal gas (see Eq. 6.28),
i.e.

p = nk T =
ρ k T

µmamu
=
R ρ T
µ

(9.2)
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Equation Corresponding state parameter
Radiative transfer Mean intensities Jν

Fluxes Fν
Equation of state (EOS) Pressure, temperature, density p = f(T, ρ)
Radiative equilibrium Temperature T
Hydrostatic equilibrium (Total particle) density N , ρ
Statistical equilibrium Populations nijk
Charge conservation Electron density ne

Table 9.1: Summary of classical atmosphere equations and state parameters.

where p is the gas pressure in dyn cm−2, n is the particle density in cm−3, ρ is the density in
gr/cm3, T is the temperature in K, and µ is the mean molecular weight of the gas in atomic
mass units mamu. The latter provides the mean mass per free particle in units of the mass
of the hydrogen atom. It holds that ρ = µmamu n. The constants have their usual meaning;
R = k/mamu = 8.314×107 erg K−1 mol−1 is the gas constant. Essentially, in an ideal gas the
particles are point sources whose only interactions are perfectly elastic collisions. It is some-
times convenient when treating astrophysical problems to assume that the gas temperature and
chemical composition remain constant. The former is known as the isothermal assumption,
under which equation 9.2 becomes

p

ρ
=

k T

µmH
=
RT
µ

= a2 = constant, (9.3)

where a is the isothermal sound speed in the gas at temperature T .

For stellar and planetary atmospheres the assumption that the gas is ideal is justified. For the
interior of terrestrial planets the equation of state is set by material conditions. Seager et al.
(2007, ApJ 669, 1279) summarize equations of state that assume uniform or zero temperature
for a set of materials and material conditions (hence p = f(ρ)).

9.2 Continuity equation

The material in an astrophysical medium may not be static (i.e., ∂/∂t = 0 and v = 0) or
stationary (i.e., ∂/∂t = 0), and for a general description we must take this into account.
To do so, we use the basic equations of fluid mechanics. In general, there are two methods
commonly used to model gas/fluid flow. One method is to use a fixed set of coordinates
in space and calculate the parameters of the gas as it flows through the coordinate frame.
This is known as the Eulerian method or reference frame. An alternative is to choose a set
of coordinates fixed to a particle of the gas, moving with that particle, and to calculate the
varying parameters in that coordinate frame (referred to as co-moving coordinates). This is

https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1279S/abstract
https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1279S/abstract
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GAUSS’S DIVERGENCE THEOREM

Suppose V is a volume in three-dimensional space which is compact and has a piecewise
smooth boundary S. If F is a continuously differentiable vector field defined on a neighbor-
hood of V , then ∫

V
(∇ · F) dV =

∮
S

(F · dS) . (9.4)

The left-hand-side is an integral over the volume V ; the right-hand-side is the surface integral
over the boundary of the volume V .

known as the Lagrangian method or reference frame. So, in the Eulerian reference frame think
of a 1 cm−3 cube wire frame as a control volume being fixed in space. We monitor the rate of
change of a property inside this volume, for instance density or temperature. In the Lagrangian
reference frame the cube wire frame follows the motion of the flow, again we monitor the rate
of change of one of its properties.

Assume an arbitrary volume V contained by a closed surface S. V and S are fixed in space, so
we are here adopting the Eulerian viewpoint. The mass flowing out of V per unit time through
the element of area dS of the surface is given by

ρv · dS, (9.5)

where v is the macroscopic (i.e. systemic) velocity in cm sec−1 and ρ the total mass density
in gr cm−3, and so the net rate at which mass flows out of V through S is given by∮

S
ρv · dS =

∫
V
∇ · (ρv) dV, (9.6)

where we have obtained the right-hand side by invoking Gauss’s divergence theorem. The rate
at which the mass in V decreases is given by

− ∂

∂t

(∫
V
ρdV

)
=

∫
V

(
−∂ρ
∂t

)
dV, (9.7)

where we can take ∂/∂t inside the integral because V is fixed in space. Obviously, the rate at
which the mass in V decreases, i.e. eq. (9.7), must equal the rate at which mass flows out of
V , across S, so ∫

V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0, (9.8)

and since the volume V is arbitrary, it follows that

∂ρ

∂t
+∇ · (ρv) = 0 (9.9)
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everywhere. This is known as the continuity equation. We can expand this equation and
rewrite it as

∂ρ

∂t
+ ρ (∇ · v) + v · ∇ρ =

∂ρ

∂t
+ ρ

∂vi

∂xi
+ vi

∂ρ

∂xi
= 0 (9.10)

where the double occurrence of index i in both terms in the first right-hand-side implies a
summation over the components of the coordinate system. Notice that we have implicitly
assumed that there are no sources or sinks of mass in the volume V . If that would have been
the case, the right hand side of Eq. 9.9 would not have been equal to zero, but would have
listed the generation rate or removal rate of ρ. A positive rate would imply a mass source; a
negative rate a mass sink. We briefly discuss such a possible situation later on in this section.
The fact that in Eq. 9.9 no such sources or sinks exist implies that the quantity ρ is conserved.

We stress that ∂ρ/∂t is the Eulerian time derivative of the density, i.e. the rate of change of
density at a fixed point in space. If we want the Lagrangian time derivative of the density, i.e.
the rate of change of density moving with the fluid, we must include the contribution due to
the displacement, dr = vdt, which occurs during the time interval dt. The net density change
is

dρ =
∂ρ

∂t
dt+ dr · ∇ρ, (9.11)

and hence the Lagrangian time derivative of the density is

dρ

dt
=
∂ρ

∂t
+ v · ∇ρ = −ρ (∇ · v) , (9.12)

where the final expression is obtained by substituting from equation (9.10)1. The Lagrangian
time derivative is called variously the ‘co-moving time derivative’, ‘fluid-frame derivative’,
‘total derivative’, or ‘material derivative’. Though here we use the symbol d/dt for the La-
grangian derivative, it is more common to use the notation D/Dt, to distinguish it from the
ordinary derivative of a function of one variable in the sense it is usually used in mathematics.
We do not do that. Here d/dt is the rate of change of some characteristic (in the above case,
density) of a particular element of fluid.

Mass-loss rate

For a stationary one-dimensional radial spherical flow the mass continuity equation reduces
to (see section 3.1)

∇ · (ρv) =
1

r2

∂(r2ρv)

∂r
= 0 (9.13)

from which we find
4πr2ρ(r)v(r) = constant ≡ Ṁ (9.14)

1If the density of a control volume which moves with the flow remains constant, i.e. the fluid is neither
compressed or expanded, the flow is said to be incompressible. It is equivalent to a vanishing divergence of the
flow velocity, i.e. ∇ · v = 0.
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where Ṁ is the mass-loss rate through a spherical surface of radius r, and v is the velocity in
the radial direction. The cgs unit of mass loss is gr sec−1, but in most astrophysical situations
it is custom to use the unit M� per year: 1 M�yr−1 = 6.303 × 1025 gr sec−1. It is straight-
forward to link the density of nuclei NN (see Eq. 6.29) to the mass loss. If we introduce the
mean atomic weight

µa ≡
1

mamu

∑
k

mkAk (9.15)

where mk is the atomic mass of element k in atomic mass unit mamu and Ak the abundance
by number as defined by eq. (6.30), then

ρ(r) = mamu µaNN (r) (9.16)

such that

NN (r) =
Ṁ

4πmamu µa r2 v(r)
(9.17)

Statistical equilibrium

One may also write the equation of continuity separately for each species in the medium, e.g.
for Ca IV or Al X. If these species can occur in different states i we get

∂ni
∂t

+∇ · (niv) =
∑
j 6=i

(njPji − niPij) (9.18)

Here ni is the volume density of the specie at hand that is in energy level i and Pij = Rij+Cij
the rate at which particles change from level i to j. The first term at the right-hand side of
eq. (9.18) gives the number of particles per cm3 per second that enter level i. The second term
at the right-hand side gives the number of particles per cm3 per second that leave level i.

In a static medium, or in a stationary medium in which equilibrium is reached in a time
that is much shorter than the time it takes the characteristic flow velocity to change the local
properties of the medium ∑

j 6=i
(njkPji − nikPij) = 0 (9.19)

This is known as statistical equilibrium (SE). In general, the rate Pij contains both radiative
and collisional processes (see chapters 7 and 8). In NLTE it is usually assumed that the state
of the gas can be described by statistical equilibrium (see section 15.5 for an example).

9.3 Momentum equation

Consider again the volume of gas V . If the gas in this volume has pressure p(r, t), then –
pressure being the force per unit surface – the total force acting on the volume is the sum of
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the external pressure on the surface. This is given by the surface integral

−
∮
S
pdS. (9.20)

The minus sign naturally enters in a detailed derivation of this equation, consistently requiring
the pressure (force) to act in the direction of the center of the volume. Transforming the
above equation into a volume integral using Gauss’s divergence theorem, the net pressure
force exerted on the arbitrary volume V is

−
∮
S
pdS = −

∫
V
∇p dV, (9.21)

and hence the net pressure force per unit volume is simply −∇p.

The equation of motion of this volume can be derived by equating the force per unit volume
with the mass per unit volume multiplied by its acceleration. This is simply Newton’s third
law. The mass per unit volume is defined as the density ρ and the acceleration is the time
derivative of the velocity, i.e. dv/dt. So we have

−∇p = ρ
dv

dt
, (9.22)

and hence
dv

dt
= −∇p

ρ
. (9.23)

Here dv/dt is the co-moving acceleration of the gas, so equation 9.23 is the Lagrangian
formulation of the equation of motion. The Eulerian formulation is obtained by substituting
for dv/dt using

dv

dt
=
∂v

∂t
+ (v · ∇) v. (9.24)

For the j-th component of velocity vector v this implies

dvj
dt

=
∂vj
∂t

+ vi
∂vj
∂xi

. (9.25)

If the gas is also in a force field, for instance a gravitational field, then an extra term must be
included in eq. (9.23) to account for this. The force f on unit volume due to an acceleration g
is simply f = ρg, and so eq. (9.23) becomes

ρ

[
∂v

∂t
+ (v · ∇) v

]
= −∇p+ f (9.26)

This is sometimes referred to as Euler’s equation. The momentum equation primarily deter-
mines the density c.q. velocity structure of the medium.
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dz

p + dp

p dO

g

f

f+df

Figure 9.1: Schematic representation of hydrostatic equilibrium. The gas that is on top exerts a force f
on surface dO, causing a pressure p. The weight of the volume dOdz adds an amount df to the force,
such that the pressure in the interval dz increases with an amount dp = df/dO.

Hydrostatic equilibrium

In a static medium (9.26) reduces to the equation of hydrostatic equilibrium

∇p = f (9.27)

Let us focus on planar atmospheres and derive the above equation again, but now in a heuristic
way. In an atmosphere consisting of plane-parallel layers hydrostatic equilibrium implies an
equilibrium between the force generated by the gradient of the gas pressure and the gravita-
tional force at the surface, which is assumed constant

g =
GM

R2
(9.28)

where G is the gravitational constant. The gravitational force may be considered constant if i)
the thickness of the atmosphere is much less than the radius R – the inherent assumption of a
planar atmosphere, and ii) the mass of the atmosphere is much smaller than the total mass M ,
which holds for all stars and planets.

Consider an elementary volume, with cross-section dO and length dz in the direction normal
to the planar layers (see figure 9.1). The difference in pressure between the top and bottom of
the volume is the force per unit surface of the mass of the volume. This force df is the product
of density ρ, volume, and gravity g. For the pressure difference we find dp = df/dO =
−ρg? dz, therefore

dp

dz
= −ρg (9.29)

We now assume that the total pressure in the atmosphere is dominated by the gas pressure,
and that radiation pressure can be neglected. This allows us to use the ideal gas law eq. (9.2).
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If we further assume that the atmosphere is isothermal, we find after substitution of our EOS
in (9.29) for the solution of this first order differential equation

ρ(z) = ρ(z◦) exp [− (z − z◦) /H] , (9.30)

where

H =
RT
µg

=
a2

g
(9.31)

is the density scale height of the isothermal atmosphere and z◦ is an arbitrary reference point
along the z-axis. H measures the distance over which the density changes with a factor e−1.
For our sun this is about 150 km, a sizable fraction of the total geometrical thickness of the
photosphere (∼ 500 km) though only a tiny fraction of the solar radius (700 000 km). For the
M1.5 Iab supergiant Antares (α Sco) with Teff = 3600 K, R? = 650R� and log g = 0 one
finds H = 5 000 000 km. This too is a sizable fraction of the thickness of the photosphere of
Antares. Taking T = 250 K, µ = 29 and g = 981 cm s−2, we find for Earth’s atmosphere
H = 7.3 km. Some more details about our planet’s atmosphere are given in Sect. 12.4. For
Jupiter, assuming a typical atmospheric temperature of 124 K, log g = 3.39, and µ = 4.3,
yields H = 10 km. Again, a sizeable fraction of the total extent of Jupiter’s atmosphere. For
hot Jupiter-like exoplanets, the density scale height can be several hundred kilometers. Notice
that the expression for H implies that for an increasing gravity the atmosphere will become
more compact.

Radiation pressure

For extremely luminous stars (such as O-type stars, LBVs and Wolf-Rayet stars) the pressure
that is exerted by the photons pR (see eq. 3.36) is an important component of the total pressure
p = pG + pR. Note that, so as to avoid confusion, we have introduced the subscript G to
identify the gas pressure. We may rewrite the equation of hydrostatic equilibrium into

dpG

dm
= g? −

dpR

dm
= g? − gR(m) (9.32)

where gR(m) is the radiative acceleration and m is the column mass (dimensions gr cm−2).
The latter serves as an independent measure of the depth in the atmosphere and is measured
from the outside in, i.e.

dm ≡ −ρ dz (9.33)

such that at depth z◦

m(z◦) =

∫ ∞
z◦

ρ(z)dz (9.34)

gives the total mass of a column of cross-section unit cm2 between the observer and z. The
column mass is a very favourable variable as it allows for a very simple solution of the pressure
structure in the atmosphere, p(m) = g?m+ constant.
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Using eq. (3.34), (3.36), (4.35), and (4.44) we find for the outward directed acceleration due
to the gradient of the radiation pressure

gR(m) ≡ dpR

dm
=

4π

c

∫ ∞
0

χ′νHν dν (9.35)

As the accelerations due to gravity g? and radiation gR(m) have opposite signs one can have
a situation where the net force in the atmosphere is zero (or even outward directed): the gas
at this location is no longer bound to the star but “floats” on the photons (loosely speaking).
This situation, for which g? = gR, is known as the Eddington limit. In hot O stars, where
hydrogen is fully ionized throughout the atmosphere, the extinction is dominated by Thomson
scattering (see § 8.4). Using the fact that this process is wavelength independent, and using
eq. (3.22), (3.23) and (3.25) we may derive an expression for the luminosity that is required to
reach this situation of no net force in the atmosphere. We find for this Eddington luminosity

LE =
4πcGM?

σ′e
= 1.3× 104 1

σ′e

M?

M�
L� (9.36)

It is thought that the Eddington limit plays an important role in the life of very massive stars
(with initial masses M & 40M�) when they reach an evolutionairy phase in which they are
spectroscopically identified as LBV (see § 2.2).

Atmospheres that are not in hydrostatic equilibrium

In the above discussion we have assumed that the forces due to pressure gradients and gravity
are in equilibrium. Yet there are stars that have, for a range of reasons, a stationary stellar
wind. This wind causes the atmosphere to be extended. In many cases the stellar wind does
not have a significant influence on the continuum emission of the star. For luminous O, LBV
and Wolf-Rayet stars this, however, is the case (see § 2.2). Notably Wolf-Rayet stars may
develop stellar winds that are so strong that the continuum radiation is formed in the wind.
Acoustic waves in red giants and supergiants, and pulsations in asymptotic giant branch stars
can also lead to very extended atmospheres. Stellar winds of hot stars will be discussed in
more detail in chapter 17.

9.4 Energy equation

Conservation of energy is expressed by the energy equation

∂

∂t

(
1

2
ρv2 + ρε

)
+∇ ·

[(
1

2
ρv2 + ρε

)
v

]
+∇ · (pv) = f · v−∇ · (Frad + Fconv + Fcon)

(9.37)
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ε is the specific (i.e. per unit mass) internal energy and v2/2 the specific bulk kinetic energy.
Think of ε as the grand total of microscopic manifestations of kinetic energy (e.g. translation,
rotation, vibration) and potential energy (e.g. excitation, ionisation, chemical bonds) of the
system’s particles. The first term describes the change of energy in time. The second term
specifies the change in energy because of movement through the medium. ∇ · (pv) is the
work done by the gas pressure p to accomplish a change in the specific volume (so the change
of volume per unit mass, i.e. per 1/ρ). f · v is the work done by external forces. Heating
by radiation, convection and conduction are described by the divergences of Frad, Fconv and
Fcon, i.e. the total radiative, convective and conductive flux, respectively. Heat conduction
occurs as rapidly moving or vibrating atoms and molecules interact with neighboring atoms
and molecules, transferring some of their energy to these neighboring particles. In other words
heat is transferred by conduction when adjacent atoms vibrate against one another, or as elec-
trons move from one atom to another. Conduction is the most significant means of heat transfer
within a solid or between solid objects in thermal contact. Fluids and especially gases are less
conductive. Convection is the transfer of heat from one place to another by the movement of
fluids or gases. Radiation is, as we have discussed, a means to transport energy by means of
photons. In principle other terms could be added to the energy equation, such as terms due to
viscous processes. The energy equation primarily determines the temperature structure of the
medium.

Radiative equilibrium

In a static medium in which all energy is transported in the form of radiation the energy
equation reduces to

∇ · Frad = 0 (9.38)

This is the equation of radiative equilibrium. For a planar atmosphere we find dF/dz = 0,
where we have dropped the subscript “rad” as hereafter we will only speak of radiative flux.
So, the same amount of total flux passes through each planar layer. This is to be expected.
As no energy is generated in the atmosphere of a normal star (for instance by thermonuclear
reactions) or planet the only thing that needs to be done is to transport the energy outward.
The constant total flux is given by eq. (3.23), which we here repeat

F = constant = σT 4
eff (9.39)

Note that the effective temperature Teff does not represent a physical temperature, but is a
measure of the total flux (see also § 6.6).

For a spherical atmosphere eq. (9.38) implies that ∂(r2F)/∂r = 0, or

4πr2F(r) = constant = L (9.40)

where L is the luminosity of the star. So, for the case of spherical shells the total flux, and
therefore the effective temperature, depends on distance. To conserve the concept of effective
temperature (as best as possible) it is custom to identify Teff with the total flux at the stellar
surface R? (see eq. 3.25).
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Equations 9.39 and 9.40 are global representations of the condition of radiative equilibrium.
The total flux that enters the “inner boundary” of the atmosphere should also leave at the
“outer boundary”. We can however also formulate the requirement of radiative equilibrium
in a local representation using the zero-order moment of the equation of transfer (eq. 4.43
or 4.46). For a planar geometry, after substituting eq. 4.35, we obtain

dHν

dz
= χν (Sν − Jν) . (9.41)

Integrating over frequency yields dH/dz = 1/4π · dF/dz, which equals zero. Multiplying
by 4π yields

4π

∫ ∞
0

χν(z) [Sν(z)− Jν(z)] dν = 0. (9.42)

An identical equation is found for the case of spherical shells, with z is replaced by r. Each
volume element of gas must fulfill the above requirement. This is why this is called the
local representation of radiative equilibrium. The equation describes that the total amount of
energy that is absorbed by an elementary volume of gas per second (4π

∫∞
0 χνJν dν) must be

equal to the total amount of energy that is emitted from the volume in the same time interval
(4π

∫∞
0 χνSν dν = 4π

∫∞
0 ην dν).

The effect of scattering on radiative equilibrium

In eq. (9.42) we may replace the total extinction coefficient χν by the “true” absorption co-
efficient κν (see eq. 4.4) and the source function by the local Planck function. The reason
for this is that scattering contributions drop out of the equation. Obviously, this is what one
would intuitively expect should happen: the scattering of a photon does not lead to a change
in the energy balance in the elementary volume and therefore can not contribute to eq. (9.42).
To illustrate this we use a proto-type source function (see also eq. 4.33) that contains both a
thermal and a scattering component, i.e.

Sν =
κνBν + σνJν
κν + σν

(9.43)

Let us first briefly discuss this equation. Thermal emission, as expected, is described by the
Kirchhoff-Planck relation (6.3), i.e. ηth

ν = κνBν . The contribution of scattering processes
to the emission is given by ηsc

ν = σνJν , where we have assumed that the scattering process
is isotropic and coherent (for coherent scattering, see § 8.4). After all, for isotropic scat-
tering the fraction of energy that is scattered out of a beam of light that is incident from
direction n, into a beam of solid angle dω in for instance the direction of the observer,
is dω/4π. For coherent scattering the contribution to the emission into this direction is
dηsc

ν (r) = σν(r)Iν(r,n)dω/4π. Integrating over all incident directions yields ηsc
ν = σνJν .

Substitution of the proto-type source function in eq. (9.42) results in

4π

∫ ∞
0

κν(z) [Bν(z)− Jν(z)] dν = 0 (9.44)
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This equation shows that the total thermal emission
∫∞

0 κνBν dν, which fixes the local tem-
perature T , is determined by the mean intensity. The value of Jν depends upon the global
properties of the atmosphere because it follows from a solution of the transfer equation. Thus
the temperature at a given point in the atmosphere is to some extent determined by the tem-
perature at all other points and, at the same time, helps to establish the temperature structure
elsewhere. This nonlocalness in the problem is a result of radiative transfer, by which photons
moving from one point in the medium to another give rise to a fundamental coupling (i.e.
interdependence) of the properties at those points.

9.5 Convection

In a stellar atmosphere energy can also be transported by convection, i.e. by large scale mo-
tions of gas elements that obtain an excess energy content at some place and that deposit this
excess energy at some other place. Convection becomes important in the somewhat deeper
layers of the atmospheres of late type stars, starting at about middle F-stars. In the outermost
part of the atmosphere, where τ < 1 and photons can freely escape, the transport of energy
by radiation is always more efficient than by convective motions. For stars of earlier spectral
type than mid-F all of the atmosphere is in radiative equilibrium.

At the solar surface the convective motions are visible as a complex granulous pattern (see
figure 9.2). The rising convective cells, called granules, are about 100 K warmer than the
surrounding relatively dark cells. Because of this temperature difference the rising granules
are about 25 percent brighter. The velocity of the cells is between 1 and 2 km sec−1. The cells
that go down have a velocity that typically is twice as large. There are at least two reasons
why the falling gas moves faster than the rising gas. First, the darker areas cover less than half
of the solar surface. Conservation of mass flow thus requires the downward velocities to be
larger than the upward velocities. More important, the continuum extinction is lower in the
cooler areas, such that we see deeper layers, where the convective velocities are larger.

Convective motions are turbulent and consist of a complicated hierarchy of “eddies” or “bub-
bles” moving and interacting in an extremely involved way. Turbulence is a complex math-
ematical problem for which a definitive theory does not yet exist. Instead one adopts a phe-
nomenological description that includes free scaling parameters. In this mixing length theory
it is assumed that the convective cells travel a certain distance (the mixing length) before
they deposit their excess thermal energy into their surroundings. We will not give a detailed
description of the physics of energy transfer by convection, rather we focus on deriving a
criterion that will allow us to determine whether energy is transported by radiation or by con-
vection.
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Figure 9.2: Detailed image of the surface of the sun. The tick marks are 1000 km apart. Though what
we see here is part of a sunspot group near disk center, the irregular granular pattern can clearly be
seen around the sunspot structures. The granular pattern is caused by temperature variations over the
surface. The individual cells, or granules are the signature of convective motions and exist for about
five minutes. The rising granules are about 100 K warmer compared to the relatively dark inter-granular
regions that are falling; this higher T corresponds to a brightness difference of about 25 percent. The
velocity of the rising granules is about 1 to 2 km sec−1; the velocities of the falling material is about
twice as large. From: The institute for Solar Physics, Sweden.

Schwarzschild instability criterion

Let us forget about the complex of turbulent gas motions, and focus on the movement of a
single identifiable “bubble” of gas. We assume this gaselement is hotter than its surroundings.
In order for the bubble not to radiate this surplus of thermal energy the total optical depth
measured over the dimensions of the bubble should be large, i.e. τ > 1. We also assume
that the motion of the bubble is subsonic, such that it will be in pressure equilibrium with
its surroudings (an equilibrium that sets itself with the velocity of sound). Because of this the
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Figure 9.3: Schematic representation of convection. A gas bubble having a temperature slightly above
that of its surrounding, and that does not exchange heat with these surroundings, will rise because the
density in the bubble is lower than that of its surroundings.

density in the bubble will be lower than that of its surroundings. According to Archimedes law
the bubble will rise (see figure 9.3). We further assume that all during the rise of the bubble
non of the surplus in energy will leak into the ambient medium – i.e. the convective bubble
behaves adiabatically. The change in density in the cel, after it has ascended a distance dr,
can then be described by (dρ)cel = (dρ/dr)ad dr. In a radiative surroundings the change in
density over the same distance will be (dρ)sur = (dρ/dr)rad dr. As long as the density in the
bubble is lower than that of its surroundings it will continue its rise upward in the atmosphere,
and convection will persist. Convection thus occurs when (dρ/dr)cel < (dρ/dr)sur (Recall
that both density gradients are negative), or, phrased differently

d log ρ

d log p

∣∣∣∣
ad

>
d log ρ

d log p

∣∣∣∣
rad

(9.45)

(the sign flips as also dp/dr is negative). For adiabatic circumstances Poisson’s law is valid

p = constant ργ (9.46)

where the adiabatic index γ is the ratio between the specific heat at constant pressure and
constant volume. One gets

d log ρ

d log p

∣∣∣∣
ad

=
1

γ
(9.47)

Using the ideal gas law eq. (9.2) we find for this gradient in a radiative environment

d log ρ

d log p

∣∣∣∣
rad

= 1− d log T

d log p
+

d logµ

d log p
(9.48)
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Substituting the results (9.47) and (9.48) into the convection criterion (9.45) yields

d log T

d log p

∣∣∣∣
rad

>
γ − 1

γ
+

d logµ

d log p
=

d log T

d log p

∣∣∣∣
ad

(9.49)

The last equality on the right-hand side can be verified by substitution of the ideal gas law into
eq. (9.46) and subsequent differentiation. The above equation is known as the Schwarzschild
instability criterion, after the person that thought of it. In terms of the temperature gradient
dT/dr we may write the criterion for convection to occur as∣∣∣∣dTdr

∣∣∣∣
rad

>

∣∣∣∣dTdr
∣∣∣∣
ad

(9.50)

This shows that an atmosphere will opt for the smallest temperature gradient: is |dT/dr|rad

larger than |dT/dr|ad it will switch to the transport of energy by convection.

Condition for convection to occur

Using the diffusion approximation 4.68, which for the radiative temperature gradient yields

dT

dz
= − 3

16σ

χ′RρF
T 3

(9.51)

where χ′R is the Rosseland mean mass extinction coefficient (dimensions cm2 gr−1), i.e.
χR = χ′Rρ, and equation (9.29) describing hydrostatic equilibrium, we may obtain an explicit
formulation of the radiative gradient (9.49). We find

d log T

d log p

∣∣∣∣
rad

= − 3

16σ

χ′RFp
g?T 4

= − 3

16

χ′Rp
g?

(
Teff

T

)4

(9.52)

The atmosphere will thus become unstable for convection if the extinction becomes too large.
For increasing extinction it will be harder to transport energy by means of photons, since
radiation gets effectively trapped. The star has two ways to solve for this problem. One way
is to increase in size, as (d log T/d log p)rad ∝ p/T 4 ∝ ρ/T 3, and therefore the value of the
radiative gradient can go down if at the position of temperature T the density would be lower.
In other words, the star needs to swell. The second possibility is for the star to switch to a
transport of energy by convection the moment that criterion (9.49) is fulfilled.

It is more likely for convection to take over if the adiabatic gradient is small. This may hap-
pen when changes in the ionization or in the chemistry of the gas occur. We first discuss the
effects of chemistry. Stars of relatively late spectral type (G or later) show a strong increase
in molecular abundances. The formation of molecules changes the adiabatic index γ from 5/3
for a fully mono-atomic gas toward 7/5 for a fully di-atomic gas. The result is that the factor
(γ− 1)/γ in eq. (9.49) goes down from 0.4 to 0.29. The presence of molecules thus increases
the chance for convection to occur. The adiabatic gradient is also lower in regions where hy-
drogen (or helium) gets ionized. Here the gradient d logµ/d log p is negative, lowering the
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threshold at which convection starts. Progressing from deep layers towards the surface, i.e.
in the direction of decreasing temperature, the extinction of hydrogen will increase strongly
in the zone in which this element recombines, notably due to bound-free processes. This
requires a steeper temperature gradient for energy to be transported by radiation, and thus in-
creases the likelihood that convection takes over. The effect of recombination in a convective
cel (that does not exchange heat with its environment) is that extra energy is added to the
gas (13.6 eV per recombination of electron and proton), causing the bubble to expand fur-
ther, which sustains convection. Zones of molecule formation in extremely cool stars cause a
similar effect. Such zones are therefore advantageous for two reasons, both for initiating and
sustaining convection.
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Exercise 9.1

a) Start with eq. (9.10) and show that in planar geometry the time-dependent continuity
equation is given by

1

ρ

∂ρ

∂t
+
∂vz
∂z

+
vz
ρ

∂ρ

∂z
= 0 (9.53)

b) Start with eq. (9.10) and show that in spherical geometry the time-dependent continuity
equation for radial flow is given by

1

ρ

∂ρ

∂t
+ v

[
1

v

∂v

∂r
+

2

r
+

1

ρ

∂ρ

∂r

]
= 0, (9.54)

where v is the velocity in the radial direction.

c) Start with eq. (9.14) and show that for a stationary radial flow the continuity equation is
given by

1

v

∂v

∂r
+

2

r
+

1

ρ

∂ρ

∂r
= 0 (9.55)

Exercise 9.2

The total number of particles of species k is given by

Nk =
∑
i

nik (9.56)

If the mass of the individual particles of species k is mk, then

ρ =
∑
k

mkNk (9.57)

a) Give the continuity equation of species k

b) Show that from a summation over all species one recovers the continuity equation (9.9)
for the mass density.

Exercise 9.3

a) Assume that in a planar geometry the only force field present is fz and that this field is
acting in the z-direction only. Start with eq. (9.26) and show that in this geometry the
time-dependent momentum equation is given by

ρ

[
∂vz
∂t

+ vz
∂vz
∂z

]
= −∂p

∂z
+ fz (9.58)
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b) Assume that in a spherical geometry the only force field present is fr and that this field is
acting along the radial direction only. Start with eq. (9.26) and show that in this geometry
the time-dependent momentum equation for radial flow is given by

ρ

[
∂v

∂t
+ v

∂v

∂r

]
= −∂p

∂r
+ fr (9.59)

Exercise 9.4

For general equations of state, the speed of sound is given by

v2
s =

∂p

∂ρ
(9.60)

where the derivative is taken with respect to adiabatic change. It follows from eq. (9.2)
that for an isothermal medium and a constant mean molecular weight µ, vs =

√
RT/µ.

Assume that the only force field present is gravity, such that fr = ρ g with g = −GM/r2.
Use the results eq. (9.55) and eq. (9.59) and show that for an isothermal medium in which
the mean molecular weight is constant, the equation of motion for a stationary radial flow
can be written as

1

v

∂v

∂r
=

[
2v2
s

r
− GM

r2

]
/
[
v2 − v2

s

]
. (9.61)

This equation has a singularity at the point where v(r) = vs, where the denominator is
zero and ∂v/∂r becomes infinite (which cannot be physical), unless the numerator is also
zero there. As this equation traces the change of velocity in only one direction, i.e. r, the
partial derivative ∂/∂r may be replaced by the total derivative d/dr. We return to this
equation in Chapter 17.

Exercise 9.5

a) Compute the density scale height of the Earth atmosphere at the surface. Assume our
atmosphere to be isothermal.

b) Compute the gas density at the Earth surface knowing that the surface pressure is 1.013×
106 barye (cgs unit) or 1.013× 105 Pa (SI unit).

c) Compute the total column mass m (Eq. 9.34) and total gas mass of Earth’s atmosphere.

Exercise 9.6
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We are concerned with the equation of hydrostatic equilibrium for a static, spherical
medium,

dp

dr
= −ρg = −ρGM?

r2
= −ρGM?

r2
?

(r?
r

)2

= −ρg?
(r?
r

)2

, (9.62)

where r? is a reference depth (think of it as being the stellar radius) and g? the acceleration
of gravity at the reference radius.

a) Show that for the isothermal case, i.e. T (r) = T?

ρ(r) = ρ(r?) exp

[
− (r − r?)

H?

r?
r

]
, (9.63)

where H? = RT?/µg? is the scale height at the reference depth.

b) Show that for a power-law temperature structure

T (r) = T?

(
r

r?

)−β
, (9.64)

with β the temperature profile exponent,

ρ(r) = ρ(r?)

(
r

r?

)β
exp

{
−r?

H?(β − 1)

[(
r

r?

)β−1

− 1

]}
(9.65)

Exercise 9.7

a) Derive that the acceleration due to the gradient in the radiation pressure, gR, is given by
equation (9.35).

b) Show that if g? = gR, the Eddington luminosity is given by equation (9.36), assuming
the continuum extinction is dominated by Thomson scattering.

Exercise 9.8

This could be a nice exam question. Consider a homogeneous isothermal planar atmo-
sphere, with temperature T = 6 000 K; mean molecular weight µ = 0.6, and a grav-
ity log g = 4.4 in c.g.s. units. The continuum mass extinction coefficient χ′cont =
0.6 cm2 gr−1. The atmosphere is in hydrostatic equilibrium. The gas may be considered
to be ideal. The gas constantR = 8.31× 107 (cgs).

a) Compute the density scale height in this atmosphere?
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b) Derive an expression for the optical depth at position z◦ in the atmosphere when it is
given that ρ(z◦) = ρ◦.

c) Compute the density in gr cm−3 at τcont = 1.

d) Explain why the (pressure broadened) hydrogen lines in supergiants are so narrow (flip
ahead to Section 13.2 for more information).

Exercise 9.9

Show that the local constraint of radiative equilibrium, eq. (9.42), is already contained in
eq. (4.30) and (4.31).
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Grey, planar, LTE atmosphere in
hydrostatic & radiative equilibrium

In this chapter, we combine all that we have discussed so far and construct a model for a
planar, LTE, grey atmosphere in hydrostatic and radiative equilibrium. To be able to do this
completely analytical, we apply the Eddington approximation. In this way, we can derive ex-
pressions for the temperature structure T (z) and density structure ρ(z). These two properties
are the essence of the model atmosphere.

The definition of a grey medium is that the extinction coefficient is independent of frequency,
i.e. χν = χ. In many cases this is a very unrealistic assumption. For instance, think about
absorption lines and ionization edges. These show an extreme frequency dependent behavior.
The only real example of a grey extinction is that of Thomson scattering on free electrons.
Still, studying the grey atmosphere problem is extremely useful. First, because the grey prob-
lem very nicely illustrates how the temperature structure is the result of a combined solution
of the transfer equation and the energy conservation equation. Second, because the end result
for T (r) compares remarkably well to those obtained from advanced models, and third, be-
cause the latter implies that this simple model may serve as an excellent starting model for the
iterative methods that are required to construct LTE and NLTE atmosphere models.

10.1 Description of the grey atmosphere

We assume that the atmosphere consists of planar layers. The equation of transfer for a grey
medium follows from eq. (4.36) and is given by

µ
dIν
dτ

= Iν − Sν (10.1)
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Note that the optical depth is no longer frequency dependent, as dτν = −χν dz = −χdz =
dτ . Integration of this equation over frequency yields

µ
dI

dτ
= I − S (10.2)

where I is the total specific intensity (eq. 3.3) and S the total source function (eq. 4.34).

We require the atmosphere to be in radiative equilibrium. From eq. (9.42) it follows that∫ ∞
0

χSν dν =

∫ ∞
0

χJν dν (10.3)

Because χ 6= χν , the equation reduces to S = J . If the source function can be written as
eq. (9.43) it also holds that J = B (see eq. 9.44), and therefore S = B. Using Stefan-
Boltzmann’s law (eq. 6.11) we finally obtain J = (σ/π)T 4. This implies that if we derive a
solution for J(τ), we may immediately couple it to the temperature, automatically fulfilling
the requirement of energy conservation.

Integration of the 0th order moment of the grey equation of transfer over frequency (eq. 4.43)
yields

dH

dτ
= J − S = 0 (10.4)

implying that the total Eddington flux H = constant = σT 4
eff/4π.

Integration of the 1st order moment of the grey equation of transfer over frequency (eq. 4.44)
results in

dK

dτ
= H (10.5)

which has an elementary solution K(τ) = H × (τ + constant)1. If we also integrate the
Eddington factor fν over frequency, which gives f = K/J , we find

3f(τ)J(τ) = 3H(τ + constant) (10.6)

and for the temperature as a function of optical depth

3f(τ)T 4(τ) =
3

4
T 4

eff(τ + constant) (10.7)

To know the exact behavior T (r) we thus need to determine the run of f(τ) throughout the
atmosphere. As we have seen in § 3.6, deep in the atmosphere, where the radiation field is
almost isotropic, f → 1/3, such that

J(τ)→ 3Hτ ∀ τ � 1 (10.8)

At depth, the mean intensity is a linear function of optical depth. Close to the surface we
expect that f(τ) 6= 1/3, and thus J(τ) can not be described by this simple relation. To account

1Do not get confused: the solution isK(τ) = Hτ+constant′. AsH is a constant one may define constant′ =
H × constant.
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for this, we could define a general relation for the exact expression of the mean intensity that
looks like

J(τ) = 3H (τ + q(τ)) (10.9)

where the anisotropy of the radiation field has been absorbed in the function q(τ). This q(τ)
is known as the Hopf-function. There is an elegant, though somewhat complex analytical
solution of the Hopf-function that requires numerical integration. We will return to this solu-
tion below. Using the Hopf-function we find for the general solution of the grey temperature
structure

T 4(τ) =
3

4
T 4

eff (τ + q(τ)) (10.10)

Eddington approximation

To get a fully explicit solution of the grey temperature structure we pursue an idea of Edding-
ton and assume that everywhere in the atmosphere f = 1/3. This assumption, you’ll never
guess, is called the Eddington approximation. For the total mean intensity we obtain from
eq. (10.6)

J(τ) = 3H(τ + constant) (10.11)

This is a linear function of optical depth, which therefore also holds for the source function,
as in a grey medium J = S. It implies that also the Eddington-Barbier approximation is valid
(see § 4.6). From an integration of eq. (4.56) over frequency we know that the emerging total
flux is given by

H+(0) = H =
1

4
S(τ = 2/3) (10.12)

Combining the above two equations one finds for the constant a value of 2/3. For the temper-
ature we find

T 4(τ) =
3

4
T 4

eff(τ +
2

3
) (10.13)

In the Eddington approximation, therefore, q(τ) ≡ 2/3. The real value of the Hopf function
smoothly varies between q(0) = 0.577 and q(∞) = 0.710, which is never that far off from the
Eddington approximation. Table 10.1 gives for a number of optical depths the exact solution
of the Hopf function.

Result 10.13 shows that in a grey atmosphere the temperature structure follows from the equa-
tion of transfer and the energy equation. The momentum equation, let us assume hydrostatic
equilibrium, does not enter in the problem. In other words, the temperature in a grey at-
mosphere, as a function of optical depth, does not depend on the gravity g?. However, the
equation of hydrostatic equilibrium does control the relation between optical depth and geo-
metrical depth. We will return to this below.

The grey temperature structure is a monotonous function of optical depth. Why is this so?
Actually, it follows from the condition of radiative equilibrium, which requires that the total
radiative flux is constant throughout the atmosphere. The relation between the radiative flux
and the mean intensity measures the degree of anisotropy of the medium (see § 3.6). With
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τ q(τ) τ q(τ) τ q(τ) τ q(τ)

0.00 0.577351 0.20 0.649550 0.8 0.693534 3.0 0.709806
0.01 0.588236 0.30 0.663365 1.0 0.698540 3.5 0.710120
0.03 0.601242 0.40 0.673090 1.5 0.705130 4.0 0.710270
0.05 0.610758 0.50 0.680240 2.0 0.707916 5.0 0.710398
0.10 0.627919 0.60 0.685801 2.5 0.709191 ∞ 0.710446

Table 10.1: The exact solution of the Hopf function q(τ) for a planar atmosphere. The limit value
q(0) = 1/

√
3.

increasing (optical) depth in the atmosphere the degree of anisotropy decreases. The only
means of keeping the flux constant is by increasing the energy density of radiation (which is
proportional to J). As J ∝ T 4, the temperature has to increase.

The Eddington approximation also predicts that T = Teff for τ = 2/3. This result confirms
that the “effective depth” of continuum formation is at τ ∼ 2/3 (see also eq. 4.56). Note that
a photon that is emitted at position τ = 2/3 in the outward direction has a chance of order
e−2/3 ∼ 0.5 to escape from the atmosphere by direct flight. This intuitively agrees with what
one would expect about the place where the continuum is formed. Finally: equation (10.13)
predicts that the temperature at the outer boundary T (0)/Teff = (1/2)1/4 = 0.8409. The
compares well with the exact value T (0)/Teff = 0.8114.

Limb darkening

In the Eddington approximation we obtain the angle dependence of the emerging radiation by
substituting S(τ) = 3H(τ + 2/3) in eq. (4.53) and doing the integration. One finds

I(0, µ) = S(τ = µ) = 3H

(
µ+

2

3

)
(10.14)

For the relative run of total intensity over the stellar disk we then get

I(0, µ)

I(0, 1)
=

3

5

(
µ+

2

3

)
, (10.15)

where I(0, 1) is the intensity at the center of the stellar disk. The total intensity at the edge
of the stellar disk (µ = 0) is thus 40 percent of that at the center of the disk (µ = 1). The
effect is referred to as limb darkening and the result we have obtained is in first approximation
in good agreement with the observed intensity change over the solar disk. It even agrees so
well, that it spurred Karl Schwarzschild in 1914 to propose that the outer layers of the sun
are in radiative equilibrium, and not in convective equilibrium as was expected on the basis of
observations of the solar granulation (see § 9.5).
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10.2 Constructing the grey atmosphere

Having obtained the temperature structure we still need to determine the pressure and density
structure. In a grey atmosphere the equation of hydrostatic equilibrium (see eq. 9.32 and 9.35)
reduces to

dpG

dm
= g? − gR(m) = g? −

4π

c
χ′H = g? −

σ

c
χ′T 4

eff (10.16)

For the relation between optical depth and column mass one gets

dτ = (χ/ρ) dm = χ′ dm (10.17)

where χ′ is the mean extinction coefficient in cm2 gr−1, which only depends on the abun-
dances Ak, for all chemical elements k, and the state of the gas. For the latter we will assume
LTE.

We define a reference point z◦ at the outer edge of the atmosphere, where the optical depth
τ(z◦) ≡ τ◦ is small. We are free to choose the value of τ◦ � 1, for instance 10−6. The
temperature at this position follows from eq. (10.10) or (10.13) and will be almost identical
to the limiting value T (0). In order to determine the state of the gas we need to know, in
addition to the temperature T (τ◦) ≡ T◦, the density ρ(τ◦) ≡ ρ◦. We now assume that beyond
z◦, so even farther out, the state of the gas no longer changes. As in these outer layers, for all
practical purposes, the temperature is constant, we obtain

τ◦ = χ′◦

∫ ∞
z◦

ρ(z) dz = χ′◦ ρ◦H◦ = χ′◦m◦ (10.18)

where we have used eq. (9.30), substituting ρ◦ = ρ(z◦), and (9.34), and where the density
scaleheight H◦ = RT◦/µ◦ geff , and geff = g? − gR(m◦). The quantities χ′◦ and µ◦ are not
known, after all, to know these requires knowledge of the state of the gas, for which we need
ρ◦, which is the very quantity we aim to determine. This means we need to iterate for a
moment at the position z◦ to get the correct ρ◦. Take as a starting solution an arbitrary mean
extinction, say χ′◦ = 0.5 cm2 gr−1. This yields by means of eq. (10.18) a value for the density
ρ◦. Set the mean molecular weight µ◦ equal to the mean atomic weight µa (see eq. 9.15). We
can then compute the state of the gas from N◦ = ρ◦/(µ◦mamu) and T◦ following the method
described in § 6.5. This results in new values for χ′◦ and µ◦, from which a new value of the
density can be obtained, which, in turn, can be used to derive a new state of the gas, etcetera;
until ρ◦ is converged. From the ideal gas law eq. (9.2) we find for the gas pressure at m◦

pG,◦ = N◦k T◦. (10.19)

We may now determine the structure of the entire atmosphere by integrating eq. (10.16) in
the inward direction using an integration scheme for normal differential equations, such as for
instance a 4th order Runge-Kutta method. Use the value χ′◦ to take a small step dm c.q. dτ ;
this yields pG(m◦+dm); determine using eq. (10.10) or (10.13) the value T (m◦+dm); from
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the ideal gas law we then find N(m◦+dm), which gives us all we need to determine the state
of the gas at m◦ + dm. Take the next step, etcetera. Stop the integration if the total optical
depth τ ∼ 100. This concludes the computation of the grey atmosphere.

However, there is one problem we have so far not discussed, which is how to determine a
mean (i.e. grey) extinction coefficient for a gas of which the excitation and ionization state is
known. This will be discussed in the next section.

10.3 Mean extinction coefficients

In a realistic situation, the extinction coefficient will be strongly frequency dependent. Espe-
cially so, when spectral lines are present. A grey extinction coefficient is therefore a quantity
that needs to be defined. It implies that a grey atmosphere can at most give a – to some degree
succesful or otherwise – approximation of reality. Still, it would be useful if we could pre-
serve some of the results of the grey atmosphere problem, by making a careful choice of mean
extinction coefficients. To start out, we restate the transfer equation and its first two moments
in both the monochromatic and frequency-integrated grey case:

µ
dIν
dz

= χν(Sν − Iν)

dHν

dz
= χν(Sν − Jν)

dKν

dz
= −χνHν

µ
dI

dz
= χ(J − I)

dH

dz
= 0

dK

dz
= −χH

The monochromatic equations are on the left; the frequency-integrated grey equations are
on the right. We will now discuss two means of defining a mean extinction coefficient, the
flux-weighted mean, and the Rosseland mean.

Flux-weighted mean extinction

Say, we are interested in a mean extinction such that the 1st order moment of the transfer
equation reduces to the grey case. Integration of the monochromatic equation over frequency
yields

−dK

dz
= −

∫ ∞
0

dKν

dz
dν =

∫ ∞
0

χνHν dν = χFH (10.20)

where

χF ≡
1

H

∫ ∞
0

χνHν dν (10.21)
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is the flux-weighted mean extinction coefficient. Note that the choice of χF does not reduce
the nongrey transfer problem completely to the grey case, for the transfer equation and its
0th order moment do not transform to their respective grey equivalents with this choice of
mean extinction. Furthermore, there is the practical problem that Hν is not known a priori,
and therefore χF cannot actually be calculated until after the transfer equation is solved. This
latter difficulty can be overcome by an iteration between the construction of the grey model
and the calculation of χF. Although the desired goal has not been fully attained, the fact that
the flux-weighted mean preserves the K-integral is important, for it implies that the correct
value is recovered for the radiation pressure pR, as well as for the radiation force dpR/dz =
gR(z). This is of relevance for the determination of the density structure from the equation of
hydrostatic equilibrium (see e.g. eq. 10.16).

Rosseland mean extinction

Say, we are interested in a mean extinction such that the correct value of the integrated flux
H is conserved. That is, that we fulfill the constraint of radiative equilibrium. Using the 1st

order moment of the transfer equation we obtain

−
∫ ∞

0

1

χν

dKν

dz
dν =

∫ ∞
0

Hν dν = H = − 1

χ

dK

dz
(10.22)

where
1

χ
=

∫∞
0 (1/χν) (dKν/dz) dν∫∞

0 (dKν/dz) dν
(10.23)

Again we face the practical difficulty that Kν is not known a priori, and therefore χ defined
according to the above definition can not be determined until the transfer equation is solved.

Still, it can be meaningful to use this definition of the mean extinction. However, we need to
make an assumption. To do so, we use that at great optical depth (i.e. τν � 1), where the
radiation field is almost isotropic and the properties of the material medium are (locally) very
close to thermodynamic equilibrium, Kν → 1/3Jν (see § 3.6), and Jν → Bν (see § 6.2). In
that case

dKν

dz
' 1

3

dBν
dz

=
1

3

dBν
dT

dT

dz
(10.24)

which yields for the mean extinction

1

χR
≡
∫∞

0 (1/χν) (dBν/dT ) dν∫∞
0 (dBν/dT ) dν

(10.25)

This is the Rosseland mean extinction coefficient, which was already introduced in § 4.6 in
the derivation of the diffusion approximation (see eq. 4.66). It is a harmonic mean, i.e. the
largest contributions are from frequency regions where χν is smallest and the transported flux
is largest. The use of the Rosseland mean optical depth scale τR will, at great optical depth,
recover the correct shape of the asymptotic transfer equation (eq. 4.65), and, therefore, the
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correct total flux (eq. 4.68). In regions of large optical depth the temperature structure of a
stellar atmosphere in radiative equilibrium is thus given by

T 4(τR) =
3

4
T 4

eff (τR + q(τR)) (10.26)

For small optical depths the above approximation is no longer valid, as flux conservation near
the stellar surface can no longer be guaranteed. Consequently, the temperature structure will
deviate from eq. (10.26).
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Exercise 10.1

Which fraction of the mass of the sun is in its atmosphere? Assume that the sun has an
isothermal gray atmosphere for which χ′(z) = 0.8 cm2 gr−1. We define the atmosphere
to reach down to τ = 20.

Exercise 10.2

Limb-darkening law Eq. (10.15) provides the specific intensity for angle µ relative to the
value I(τ = 0, µ = 1) at the center of the stellar disk.

a) Use the grey equivalent of Eq. (3.28) to compute the emergent grey flux as a function of
I(0, 1).

b) For which value of µ can the emergent grey flux be expressed as F(τ = 0) = πI(0, µ)?

c) You had of course expected the result obtained in b? Why?

Exercise 10.3

Show that at large optical depth eq. (10.26) reduces to diffusion equation 4.68. Use
table 10.1 to determine the behavior of q(τR) for τR � 1.

Exercise 10.4

Ponder on the results in this chapter and write down an expression for the Rosseland
optical depth from the surface to the center of a star. Estimate the total radial Rosseland
optical depth for the Sun, using information from the internet if needed.
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LTE model atmospheres

In this chapter we discuss the construction of the LTE model atmosphere. The field of LTE
atmospheres is dominated by the computer code ATLAS/SYNTHE and associated model grids
of Robert L. (Bob) Kurucz 1. We will therefore limit the discussion of LTE to this grid. Be
ware, however, that a number of other independent codes exist; see Section 11.3 for a short
overview.

11.1 Constructing the LTE atmosphere

We assume that the atmosphere consists of planar layers and that both hydrostatic and radiative
equilibrium hold, i.e. we disregard convective energy transport which becomes important at
temperatures below ∼ 9000 K. The relevant transfer equation is eq. (4.45), which we repeat
for clarity

d2(fνJν)

dτ2
ν

= Jν − Sν =
κν

κν + σν
(Jν −Bν) (11.1)

The second equality follows after substitution of the proto-type source function eq. (9.43).
The extinction coefficient κν is here the sum over all bound-bound, bound-free, and free-free
absorption cross sections that may occur; σν is the sum over all scattering processes. Recall
that we derived the left part of this equation using the moments of the transfer equation. Note
that we could also have obtained this result by integrating the 2nd order differential equation
for the symmetric average (eq. 5.17) over all solid angles. (In view of the definition of the
symmetric average this integration would have been over the angles 0 ≤ µ ≤ 1). With this in
mind, it is straightforward to derive the boundary conditions of eq. (11.1), i.e., we only need to
integrate the boundary conditions of the symmetric average eq. (5.20) and (5.21) in a similar
way. After having multiplied by µ, we obtain for the condition at the outer edge τν = 0

d(fνJν)

dτν

∣∣∣∣
0

= gν(0)Jν(0) (11.2)

1For how to download the model atmosphere code ATLAS and spectral synthesis code SYNTHE and a python
wrapper for ATLAS/SYNTHE, see the github package VidmaPy by Tomasz Różański

http://kurucz.harvard.edu/programs.html
https://ui.adsabs.harvard.edu/abs/2014dapb.book...39K/abstract
https://github.com/RozanskiT/vidmapy
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where the Eddington factor gν(0) = Hν(0)/Jν(0), which we, inspired by eq. (10.9) for the
grey problem, set to the initial value 1/

√
3 (see table 10.1). For the inner edge τν = τmax we

find
d(fνJν)

dτν

∣∣∣∣
τmax

=
1

3

(
1

χν

∣∣∣∣dBνdz

∣∣∣∣)
τmax

(11.3)

Discretization of these equations is done using the finite difference method as explained in
§ 5. In eq. (11.1) we obviously choose the outermost right-hand-side term (i.e. not middle
one) for discretization, as this allows us to account explicitely for the scattering term in the
source function.

The radiation quantities for which we solve directly are Jν and fν , therefore we choose to
write the equation of hydrostatic equilibrium as

dpG

dm
= g? −

4π

c

∫ ∞
0

d(fνJν)

dm
dν (11.4)

where we have used eq. (3.34), (3.36), (3.37) and (9.32). Discretization of this 1st order
differential equation yields

NdkTd −Nd−1kTd−1 +
4π

c

N∑
n=0

wn (fdnJdn − fd−1,nJd−1,n) = g? (md −md−1) (11.5)

where {md}, d = 0, ..., D is the set of column masses, such that d = 0 describes the outer
edge of the atmosphere, and d = D the inner edge; wn are the frequency integration weights
of the set {νn}, n = 0, ..., N frequency points.

If we use the grey result (eq. 10.10) as a starting value of the temperature structure, to which
we refer as T0(m), we may determine an initial value for the total particle density N0(m)
analogously to the way we have done this in the grey problem (see § 10.2). The only difference
is that we now need to assume a starting value for the mean intensity, for which we take
Jν(m) = Bν(T0(m)), and for the Eddington factor, for which we assume fν(m) = 1/3. At
each grid point we determine the state of the gas, based on the local values Nd and Td. This
then allows us to compute the extinctions κdn and σdn. Once we have derived the structure
in this way, the radiation field Jdn can be derived from a solution of the transfer equation
using the current values fdn. These Eddington factors can then be updated by doing a formal
solution, using first the new Jdn to update the total source function. This implies that we need
to solve eq. (5.17) for the symmetric mean udmn for each combination of frequency n and
angle of incidence m. The new Eddington factors follow from

fdn =
Kdn

Jdn
=

∑M
m=0wmµ

2
mudmn∑M

m=0wmudmn
, (11.6)

where wm are the angle integration weights of the set {µm},m = 0, ...,M . In a similar way
we may determine new values for g0n, required for the boundary condition (11.2).
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The new mean intensities are used to test the equation of radiative equilibrium. In LTE this is
eq. (9.44), which we here repeat

4π

∫ ∞
0

κν(z) [Bν(z)− Jν(z)] dν = 0 (11.7)

and which in discrete form is given by

4π
N∑
n=0

wnκdn(Bdn − Jdn) = 0 (11.8)

where again wn are the frequency integration weights of the set {νn}, n = 0, ..., N frequency
points. From this equation we determine a new value for the temperature Td at each grid point.
How to do this is discussed in the next section. With this new run of temperatures we redo
the above described process, and we keep iterating until Td is converged. This gives the LTE
model atmosphere.

Finally, the emerging spectrum of the LTE model is given by

Fν(0) = 4πHν(0) = 4π gν(0)Jν(0) (11.9)

The general source function for a gas

At the start of this section we have rather absentmindedly adopted the proto-type formal-
ism (9.43) for the total source function. But, what is the correct expression for the total source
function of a gas anyway?

From definition (4.32) we know that the total source function is nothing but the sum of all
emission processes divided by the sum of all extinction processes. In the most general case
we find for the total non-LTE extinction per centimeter

χν =
∑
k

∑
j

{∑
l

{∑
u>l

[
nljk −

gljk
gujk

nujk

]
αlu,jk(ν) + (11.10)[

nljk − n∗ljke−hν/kT
]
αl,j+1,k(ν)

}
+ αjk(ν, T )neNjk

(
1− e−hν/kT

)}
+ neσT

where αlu,jk and αljk are the extinction coefficients per particle, given by eq. (7.21) and
(8.1), respectively; αjk is defined as the leading part of eq. (8.17). The summation is over all
elements k, ionization states j and excitation states l. Here u denotes a higher excitation state
then l. The first term gives the line extinction, corrected for stimulated emission. The second
term represents the bound-free extinction, again corrected for stimulated emission. Why for
this last process the LTE population is used is immediately clear if one subtracts eq. (8.10)
from (8.1). The third term gives the extinction by free-free transitions and the last term is that
of electron scattering.
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For the total non-LTE thermal emission coefficient (dimensions erg cm−3 sec−1 hz−1 sr−1) it
follows that

ην =
2hν3

c2

∑
k

∑
j

{∑
l

{∑
u>l

nujk
gljk
gujk

αlu,jk(ν)+ (11.11)

n∗ljkαl,j+1,k(ν)e−hν/kT
}

+ neNjkαjk(ν, T )e−hν/kT
}

The three terms again describe bound-bound (i.e. line), bound-free, and free-free transitions.
The emission by scattering is treated seperately in the proto-type source function (and is given
by ην = neσTJν for an isotropic source function) and is therefore not included in ην .

LTE source function for a gas

If LTE holds, then the extinction and thermal emission per centimeter is given by

χ∗ν =
∑
k

∑
j

{∑
l

{∑
u>l

n∗ljkαlu,jk(ν) + n∗ljkαl,j+1,k(ν)

}
+ neNjkαjk(ν, T )

}
(11.12)

×
(

1− e−hν/kT
)

+ neσT (11.13)

η∗ν =
2hν3

c2
e−hν/kT × (11.14)∑

k

∑
j

{∑
l

{∑
u>l

n∗ljkαlu,jk(ν) + n∗ljkαl,j+1,k(ν)

}
+ neNjkαjk(ν, T )

}
(11.15)

That indeed this is equivalent to the proto-type source function eq. (9.43) and that the thermal
part of the source function fulfils the Kirchhoff-Planck relation (6.3) will be investigated in
exercise 11.1.

11.2 Obtaining the temperature structure

The determination of the temperature structure is, in fact, the very heart of the problem of
constructing LTE models. As discussed, we adopt the grey solution as the initial estimate of
T (m) in the LTE case. If we substitute this initial solution in eq. (11.7) we will normally find
that the newly determined radiation field (the solution of eq. 11.1, 11.2, and 11.3) does not ful-
fil the constraint of radiative equilibrium. It is therefore necessary to adjust T (m) iteratively
in such a way that the radiation field ultimately satisfies the requirement of energy balance.
There are basically two strategies we may use to make this happen: (A) temperature correc-
tion procedures, and (B) to intertwine the solution of radiative equilibrium and the transfer
equation. We will discuss the basic principle of each family of methods.
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(a) Lambda iteration

The solution of the mean intensity for frequency ν from the current value of the temperature
T (m) can formally be written as

TτνJν = Bν (11.16)

where Tτν is the (D × D) transfer matrix; Jν is the vector of mean intensities for all depth
points d, and Bν is the vector of local Planck functions (given by the temperature T (m)). The
transfer matrix can be constructed by discretization of eq. (11.1), and of its boundary condi-
tions (11.2) and (11.3). If we adopt the central difference representation (such as described in
section 5.2) we obtain for Tτν a tri-diagonal matrix à la eq. (5.30). Inversion of this equation
yields

Jν = T−1
τν Bν = ΛτνBν (11.17)

where Λτν is the lambda matrix or lambda operator. The iteration scheme described in sec-
tion 11.1 is therefore often refered to as lambda iteration because, formally, the mean intensity
is obtained by applying the Λτν operator to the current T (m), yielding Jν , which in turn is
used to improve T (m).

The most obvious method of lambda iteration is to improve the temperature after each iteration
step in the following way. We assume that the requirement of radiative equilibrium is fulfilled
if we correct the current temperature T (m) by ∆T (m), such that

4π

∫ ∞
0

κν(T ) [Bν(T (m) + ∆T (m))− Jν ] dν = 0 (11.18)

If we expand the Planck function to within first order, i.e.

Bν(T + ∆T ) ' Bν(T ) + ∆T
∂Bν
∂T

∣∣∣∣
T

(11.19)

we find

∆T =

∫∞
0 κν(T ) [Jν −Bν(T )] dν∫∞
0 κν(T )(∂Bν/∂T )T dν

(11.20)

It must be emphasized that the value of Jν in these equations denotes the value computed
from the old T (m) values. If one carries through this process and recomputes a new model
with the new temperature distribution, one usually obtains some improvement in satisfying
the requirement of radiative energy conservation. However, one often has to pass through
hell to achieve convergence. The main reasons for this are: (1) It is only with difficulty that
information on the non-local nature of the radiation field can penetrate regions of high optical
depth, after all it is damped by the term exp(−τν). If the initial values for T (m) are far from
the actual solution, it will typically take on the order of τν(D) iterations to propagate this
information (and, to be more specific: this is information about the boundary conditions of the
problem) through the medium. It takes so long for this information to seep through because the
mean optical photon path by which the radiation field can make itself be known (per solution
of the transfer equation, so per iteration) is only < τν >= 1 (see eq. 4.27). Therefore,
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if the solution of Jν(m) is vastly different from the local value of the Planck function, it
will take on the order of τν(D) iterations to correct for this. (2) The temperature correction
∆T (m) computed in the lambda iteration procedure may be complete nonsense because the
effect of the correction does not (ddirectly) affect the values Jν(m′), i.e. the radiation field
elsewhere in the medium. After all, the mean intensity is assumed constant when computing
the temperature corrections.

The need for other methods to solve the LTE atmosphere problem (and other transfer prob-
lems) appears obvious. One very succesful alternative method was first introduced in astro-
physics by C.J.Cannon (1973a, 1973b). This is the method of postponed corrections, better
known as operator splitting or approximate lambda iteration.

(b) Approximate lambda iteration

At the basis of the approximate lambda iteration is the realization that some parts of the physi-
cal coupling between medium and radiation field are more important than others. The method
aims to split the problem at hand in such a way that the problematic regions (those where
the optical depth is large) are seperated from those where no problems occur (the optically
thin regimes). The trick is to weave together the requirement of radiative equilibrium and the
solution of the transfer equation in those regions where problems occur. In other parts of the
medium we do not do anything special, we simply use the lambda iteration technique to come
to a solution. Because the optical depth in the problematic regimes is large (per definition) it
implies that the trick solution should act more or less locally. The splitting therefore focuses
on defining the local and non-local medium, and the separation of the two. So, lets do that.

The formal solution of the mean intensity can be considered as a linear operation on the source
function, i.e.

Jν = ΛνSν (11.21)

Note that for this more general discussion we have chosen to have the lambda operator act on
Sν (see the first equality in eq. 11.1) and notBν (see the second equality in the same equation).
This will be repaired once we return to the LTE atmosphere problem. We now formulate the
idea of the splitting as follows

Λν = Λ?ν + (Λν − Λ?ν) (11.22)

where Λ?ν is an appropriately choosen approximate lambda operator which acts on the state
of the medium and/or radiation field that still has to be determined. The operator (Λν − Λ?ν)
acts on the known, i.e. current state (in our LTE atmosphere problem this is the temperature
T (m)). In short

Jnew
ν = Λ?νS

new
ν + (Λν − Λ?ν)Sold

ν (11.23)

where “new” denotes that the source function is dependent on the state of the medium that
still has to be determined, and “old” refers to the state of the medium as determined in the
previous iteration. Note that any choice of Λ?ν that leads to convergence will provide the

https://ui.adsabs.harvard.edu/abs/1973JQSRT..13..627C/abstract
https://ui.adsabs.harvard.edu/abs/1973ApJ...185..621C/abstract
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correct physical solution. After all, if Snew
ν → Sold

ν then Jν → ΛνSν . To actually achieve
convergence, as discussed above, Λ?ν in regions of large optical depth should (locally) be a
good approximation of the exact operator Λν . Beware: not necessarily the best appromation,
good is in principle good enough.

Based on the above discussion it may be clear that for this problem the ideal choice of a strictly
local operator is

Λ?ν ≡ diag
[
T−1
τν

]
, (11.24)

for a diagonal matrix acts on the local source function. This definition has been proposed
in 1986 by Olson, Auer, & Buchler and is often called the OAB operator. The problem
with this definition seems, at first sight, that the explicit determination of this approximate
lambda operator is cumbersome and computationally expensive, as it needs inversion of the
transfer matrix Tτν , which requires order D3 computations. However, Rybicki & Hummer
(1991) have shown that for a tri-diagonal matrix system this type of problem can be solved in
order D computations if one combines the forward recursive sweep and back substitution (see
section 5.2) with a backward recursive sweep and back substitution.

We now return to the problem of LTE atmospheres (and switch back to using the second
equality in eq. 11.1). With the new radiation field given by

Jnew
ν = Λ?νB

new
ν + (Λν − Λ?ν)Bold

ν = Λ?νB
new
ν + ∆Jold

ν (11.25)

where Bnew
ν = Bν(T (m) + ∆T (m)) and Bold

ν = Bν(T (m)), one finds after substitution in
eq. (11.7)

4π

∫ ∞
0

κν

[
(1− Λ?ν)Bν(T (m) + ∆T (m))−∆Jold

ν

]
dν = 0 (11.26)

The term ∆Jold
ν describes the non-local contribution to the mean intensity; the local contri-

bution to Jν is, by means of this operator splitting, computed explicitly on the basis of the
“correct” temperature T (m) + ∆T . The constraint of radiative equilibrium is in this way
(partly) woven together with the solution of the equation of transfer. The temperature correc-
tions ∆T (m) again follow using a first order expansion of the Planck function (see eq. 11.19
and 11.20). We find

∆T =

∫∞
0 κν(T )

[
∆Jold

ν − (1− Λ?ν)Bν(T )
]
dν∫∞

0 κν(T )(∂Bν/∂T )T dν
(11.27)

The convergence properties of this approximate lambda iteration method are excellent. The
non-local radiation field, which in optically thick parts of the medium is only a small fraction
of the total radiation field, is isolated and “drives” as it were the solution towards convergence.
This is essential as it is this non-local radiation field that has to ensure that all points in the
medium become aware of the boundary conditions. Locally the radiation field is determined
in compliance with radiative energy conservation. In this way of dealing with the problem
the corrections ∆T (m) are reliable (recall that this need not be the case in standard lambda
iteration).

https://ui.adsabs.harvard.edu/abs/1986JQSRT..35..431O/abstract
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Other definitions of Λ?ν have been proposed in order to solve transfer problems. Examples
are the core saturation operator and the Scharmer operator, both introduced by Scharmer in
1981.

To actually compute detailed LTE model atmospheres we obviously need to know how to
describe the spectral lines in detail. This we will discuss in the next chapter. In anticipation of
this discussion we already discuss aspects of the end result in the next section.

11.3 LTE modeling codes: ATLAS, MARCS, PHOENIX, TLUSTY

The most renowned LTE codes are the planar ATLAS/SYNTHE model by Bob Kurucz and the
spherical MARCS model by the Scandinavian group led by Bengt Gustafsson. Note that most
of the NLTE codes can be used to calculate LTE models as well, e.g. PHOENIX and TLUSTY.

An extensive grid of LTE models is that of Kurucz and we will discuss it in some detail below.
A grid of 52 000 LTE MARCS models is computed by Gustafsson et al. (2008, A&A 486,
951). These span the effective temperature range 2500 K to 8000 K, surface gravity range
−1 ≤ log g ≤ 5, and metallicity range −5 ≤ [Metal/H] ≤ +1. A main difference with the
Kurucz models is the much more comprehensive treatment of molecular opacities. PHOENIX,
developed by the group of P. (Peter) Hauschildt, can be used to calculate atmospheres and
emerging spectra of stars all across the cooler part of the HR-diagram, including cool giants,
brown dwarfs and extrasolar giant planets. PHOENIX also has the option to compute (partial)
non-LTE models. An extensive library of PHOENIX stellar atmospheres and synthetic spectra
is also available. The parameter space of this grid covers 2300 K to 12000 K, surface gravity
0.0 ≤ log g ≤ 6.0, and metallicity −4.0 ≤ [Metal/H] + 1.0. TLUSTY/SYNSPEC, by Ivan
Hubeny and Thierry Lanz, is mostly used for hot stars, where NLTE is important. See also
Hubeny & Lanz (1995) and Hubeny et al. (2021) for details.

For an overview of hot star NLTE models that account for stellar winds, see Section 15.6 and
Table 15.1.

Kurucz models

In the Kurucz models it is assumed that LTE and hydrostatic equilibrium are valid, and that
the energy is transported by either radiation or convection. In the final set of models the
contributions of over 58,000,000 million spectral lines have been taken into account.

A very large standard grid op Kurucz models is available, in which for 19 different sets of
abundances, 76 effective temperatures and 11 gravities, the atmospheric structure and emerg-
ing spectrum have been computed (so a total of 15 884 models). The specification of the
abundance pattern is always such that the total mass fraction of all elements more heavy than
helium, the so-called metal abundance Z, are scaled to the solar abundances Z� = 0.018. In

https://ui.adsabs.harvard.edu/abs/1981ApJ...249..720S/abstract
https://ui.adsabs.harvard.edu/abs/1981ApJ...249..720S/abstract
http://kurucz.harvard.edu/programs.html
https://ui.adsabs.harvard.edu/abs/2014dapb.book...39K/abstract
https://marcs.astro.uu.se/
https://www.physik.uni-hamburg.de/en/hs/group-hauschildt/research/phoenix.html
http://tlusty.oca.eu/
https://marcs.astro.uu.se/
https://marcs.astro.uu.se/GEEJNP08.pdf
https://marcs.astro.uu.se/GEEJNP08.pdf
https://www.physik.uni-hamburg.de/en/hs/group-hauschildt/research/phoenix.html
https://www.aanda.org/articles/aa/full_html/2013/05/aa19058-12/aa19058-12.html
http://tlusty.oca.eu/
https://ui.adsabs.harvard.edu/abs/1995ApJ...439..875H/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv210402829H/abstract
http://kurucz.harvard.edu/
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this way the logZ/Z� value is varied between +1.0 and -5.0. The values for the effective
temperature range between 3 500 ≤ Teff ≤ 50 000 K, and that of the logarithm of the gravity
between 0.0 ≤ log g ≤ 5.0.

An extensive library of synthetic spectra based on Kurucz’s code that covers the 2500-10500 Å
wavelength range at resolving powers (see Eq. 13.3) 20,000, 11,500, 8,500 and 2,000 has been
presented by Munari et al. (2005). Their spectra are available as absolute fluxes as well as
continuum normalized fluxes.

The purpose of these models is to derive the important quantities Teff , log g, and the chemical
abundance pattern by comparing them to observed energy distributions. Also, these models
provide colors, bolometric corrections, ionizing fluxes – relevant for nebular studies – and
limb darkening profiles – relevant for studies of the light curves of eclipsing binaries and
exo-planet transits, of line profiles of rotating stars and proper interpretation of measurements
of stellar radii using imaging and interferometric techniques. After correcting for interstellar
extinction (see § 19.2), scaling of an appropriate model with an absolute measurement of the
flux (for instance the V magnitude or a part of the spectrum for which an absolute calibration
is available) then yields a value for the angular diameter (see eq. 3.31). If we know the distance
to the object, for instance from a parallax measurement, we then have a value for the stellar
radius. Using eq. (3.25) this yields a value for the luminosity, and, with eq. (9.28), the current
mass.

A comparison with evolutionairy tracks plotted in the Hertzsprung-Russell diagram of L?
versus Teff , then reveals the age, initial mass, and evolutionary stage of the star. The web
interface BONNSAI offers an easy tool to do just this and more (see also Schneider et al.
2014).

We briefly discuss some aspects of the Kurucz models.

Atmospheric structure

Table B.9 gives for a number of effective temperatures Teff and gravities log g a sampling of
the most important structural parameters as a function of the continuum optical depth at λ5000
Å. A gravity log g = 4 is typical for main sequence stars (luminosity class V); log g = 1
is characteristic for the rarefied atmospheres of giants (luminosity class III). Note that e.g.
the density ρ at τ ∼ 1 in the giant star is two orders of magnitude less than in the dwarf
star. Deep down (τ ∼ 10) in the atmospheres of cool stars convection is the most important
mode of energy transport; in higher layers – where the mean free path of the photons start
to become large – energy is transported by radiation. In stars with Teff ≥ 10 000 convection
does not occur anywhere in the atmosphere. In hotter stars hydrogen gets ionized, such that
ne ∼ NN , where NN is the H dominated number density of nuclei. In hot stars radiation
pressure becomes so important that pR > pG.

https://inspirehep.net/literature/675991
https://arxiv.org/abs/astro-ph/0502047
https://www.astro.uni-bonn.de/stars/bonnsai/
https://arxiv.org/pdf/1408.3409.pdf
https://arxiv.org/pdf/1408.3409.pdf
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Figure 11.1: Kurucz models with a solar abundance pattern and a micro-turbulent velocity of 2
km sec−1 for 10 000 K (left panel) and 6 500 K (right panel) and different values of the gravity. log g=
5.0 (that could be a dwarf star); 2.0 (a bright giant or supergiant), en 0.5 (a supergiant).

Energy distribution

Figure 11.2 shows examples of energy distributions computed by Kurucz. The wavelength
resolution of these spectral energy distributions (SEDs) is 10 Å, i.e. too poor to properly
resolve individual spectral lines. Still, some of the strongest lines can be identified, notably
the Balmer series lines of hydrogen.

U−B vs. B−V diagram

The Kurucz color-color diagram of U−B vs. B−V is given in figure 11.3. The top panel
gives this diagram on the same scale as that of figure 2.11 and 6.6; the bottom panel shows
an enlargement of the regime where these indices are the most sensitive to gravity. Labels
indicate the effective temperature and logarithm of the gravity of the grid of models. Notice
that a star that has Teff = 6 500 K is ’redder’ in its B−V color if the gravity is larger, but
is ’bluer’ in its U−B color. This is a reflection of the behavior of the optical spectrum as a
function of g. For the two extreme values of the gravity these spectra are plotted in the right
panel of Fig. 11.1. Remember that the U -filter is positioned mainly in the Balmer continuum
(i.e. at the short-wavelength side of 3646 Å; see Fig. 6.4) and the B- and the V -filter are not.
The star with the high gravity has a relatively high flux in U and low flux in B; therefore a
relatively ’blue’ U−B color. Comparison of the flux in theB- and V -filter shows that the high
gravity model has (relatively speaking) less flux in the B-filter than in the V -filter; therefore
a relatively ’red’ B−V color.
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Figure 11.2: Examples of the energy distributions of Kurucz models for mains sequence star with solar
abundances.
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Kurucz colors and bolometric correction BCV

An extensive set of synthetic colors can be found at one of the http addresses listed in the
beginning of this subsection, in the folder Grids of model atmospheres. In 2008 opaci-
ties and abundances have been updated. Color information regarding U−B, B−V , V−R,
V−I , V−J , V−K, V−L is supplied for various chemical compositions and a few micro-
turbulent velocities. For instance, for a solar composition and ξmicro = 2 km sec−1 the grid
P00ODFNEW and tables ubvp00k02odfnew.dat and rijklp00k2odfnew.dat sup-
ply the relevant information. The former table also provides bolometric corrections BCV in
the V -band. Recall that

Mbol = BCf +Mf , (11.28)

where Mf is the absolute magnitude of photometric filter f . The measured apparent magni-
tude mf and Mf are related by Eq. 2.6.

The Kurucz colors make use of measured filter transmissions in the Johnson system. For the
rest, they are fully synthetic in nature, i.e. they rely on the Kurucz models. Obviously, any
model is susceptible to uncertainties. For the Kurucz models these include an incomplete
line list, assumptions in the treatment of convection, turbulence and line broadening and the
assumption of LTE. For this reason, others have determined colors using ’more’ empirical
approaches. For instance, Worthey & Lee (2011) use a catalog of observed photometric data
of nearby stars that have been analyzed using (mainly) Kurucz models to yield Teff , log g,
and [Fe/H]. These tables, together with a fortran program that provides Johnson U−B, B−V ,
V−R, V−I , J−K, H−K, V−K and the bolometric correction, are available online.

Useful relations between B−V color and effective temperature and/or bolometric correction
have been derived by several authors. For instance, Flower (1996) provides polynomial fits
(see table 11.1) as well as an extensive table.

Limb darkening

The amount of information in the Kurucz-models on limb darkening, i.e. the run of specific
intensity from the center of the stellar disk to the edge, is immense. This information is
available for each viewing angle µ, for each frequency point. In practice this information
is usually described with a limb-darkening law (that describes the angle dependence) for a
number of photometric bands. The first to propose a limb-darkening law was Milne (1921)

Im(µ)

Im(1)
= 1− um(1− µ) (11.29)

where Im(µ) is the specific intensity in the photometric filter m (see § 2.6)

Im(µ) =

∫∞
0 Iν(µ)Sm(ν) dν∫∞

0 Sm(ν) dν
. (11.30)

https://ui.adsabs.harvard.edu/abs/2011ApJS..193....1W/abstract
http://astro.wsu.edu/models/
https://ui.adsabs.harvard.edu/abs/1996ApJ...469..355F/abstract
https://ui.adsabs.harvard.edu/abs/1921MNRAS..81..361M/abstract
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Figure 11.3: Relation between the color indices U−B and B−V for Kurucz models with solar abun-
dances and 2 km sec−1 micro turbulent velocity. Top: global view. Bottom: detail. Labels provide
Teff and log g.
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Table 11.1: Polynomial relations expressing the B−V color and BCV as a function of effective tem-
perature (Flower 1996). The B−V relation for supergiants is slightly different from that of other
luminosity classes.

B−V color Bolometric Corrections
B−V = a+ b logTeff + c(logTeff)2 + .. BCV = a+ b logTeff + c(logTeff)2 + ..

Coefficient V, IV, III I logTeff > 3.90 3.90 < logTeff < 3.70 logTeff < 3.70

a 3.979145 4.0125597 -0.188115 -0,370510 -0.190537
b -0.654499 -1.055043 -0.137146 0,385673 0.155145
c 1.740690 2.133395 -0.636234 -0,150651 -0.421279
d -4.608815 -2.459770 0.147413 0,261725 0.381476
e 6.792600 1.349424 -0.179587 -0,170624 –
f -5.396910 -0.283943 0.788732 – –
g 2.192970 – – – –
h -0.359496 – – – –

Im(1) is the specific intensity at the center of the stellar disk. Milne thus proposed limb-
darkening to be linear phenomenon. For a number of Kurucz-models the limb-darkening
coefficients um are give in table B.8. This linear description turned out to be a fairly good
approximation for solar-type stars. More accurate laws are the quadratic law: Im(µ)/Im(1) =
1 − am(1 − µ) − bm(1 − µ)2; de square root law: 1 − cm(1 − µ) − dm(1 − √µ); and the
logarithmic law: 1 − em(1 − µ) − fmµ lnµ. A very accurate description is given by Claret
(2000, A&A 363, 1081)2 for metallicities in the range −5.0 ≤ logZ/Z� ≤ 1.0

Im(µ)

Im(1)
= 1− a1,m(1− µ1/2)− a2,m(1− µ)− a3,m(1− µ3/2)− a4,m(1− µ2)

= 1− Σ4
k=1ak,m(1− µk/2) (11.31)

Limb darkening is extremely important in the study of the light curves of eclipsing binaries
and transiting extra-solar planets, the determination of stellar diameters, and the analysis of
line profiles from rotating stars.

2For the entire Kurucz grid all coefficients can be found at
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/363/1081.

https://ui.adsabs.harvard.edu/abs/1996ApJ...469..355F/abstract


11.3 LTE modeling codes: ATLAS, MARCS, PHOENIX, TLUSTY 195

Exercise 11.1

a) Show that, using κ∗ν = χ∗ν − neσT one recovers η∗ν = κ∗νBν(T ), as expected from the
Kirchhoff-Planck relation (6.3).

b) Show that in LTE the proto-type source function is given by eq. (9.43).

Exercise 11.2

In this computer exercise we make a model for the effect on the lightcurve of a star due
to the transit of an exo-planet. We model the transit as an eclipse of a spherical star by an
opaque, dark sphere. In what follows, a is the center-to-center distance between the star
and the planet, Rp is is the radius of the planet; R? is the stellar radius; z = a/R? is the
normalized separation of the centers, and p = Rp/R? is the size ratio of the two objects.
The flux relative to the unobscured flux Fν? is (Mandel & Agol 2002)

Fν(p.z)

Fν?
= 1−Ψ(p, z), (11.32)

where

Ψ(p, z) =


0, 1 + p ≤ z,
1
π

[
p2e0 + e1 − 1

2

√
4z2 − (1 + z2 − p2)2

]
, |1− p| < z ≤ 1 + p,

p2, z ≤ 1− p,
1, z ≤ p− 1,

(11.33)
and e0 = cos−1[(p2 + z2 − 1)/2pz] en e1 = cos−1[(1− p2 + z2)/2z].

a) Which four cases are described in eq. (11.33)

b) Give a relation that describes the effect of inclination. Use your computer program to
graphically show the effect of inclination and p.

Now add the effect of limb darkening to your model. Assume that the specific intensity
of the part of the stellar surface occulted by the planet disk is constant and given by the
specific intensity at the location of the center of the planetary disk. This approximation
is typically better than 2% of 1 − Ψ(p, 0) for p < 0.1. Assume that during ingress and
egress the specific intensity of the stellar surface blocked by the planetary disk is constant
as well and given by the value halfway between the edge of the star and farthest point of
the planet on the stellar disk.

c) Assume for the star Teff = 5 500 and log g = 4.5. Adopt a linear limb-darkening pre-
scription (see table B.8) for the relevant limb-darkening coefficient. Show graphically
the effect of inclination and p.

https://ui.adsabs.harvard.edu/abs/2002ApJ...580L.171M/abstract
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Planetary atmospheres

12.1 Introduction

Orbiting planets may have two sources of energy heating their atmospheres, a source of radia-
tive illumination by the host star and a source of interior energy. The amount of radiation from
the star reaching the planet surface is critical. It heats the planet, drives currents in the planet
atmosphere and ultimately governs the global energy balance. The internal source itself con-
sists of two components. First, a component due to the gradual loss of residual gravitational
potential energy from the planet’s formation. This source may be particularly important when
the planet is highly inflated, young, or far from its host star. For instance, Jupiter, being quite
far from the Sun, has an internal luminosity over twice as high as its luminosity from rera-
diated absorbed stellar energy. Second, a component due to radioactive decay of long-living
isotopes of predominantly uranium, thorium, and potassium. Of the two internal sources, this
one is the most important for Earth. Still, for many planets, including Earth and the hot exo-
planets in short-period orbits, illumination by the host star overwhelms the interior flux. For a
conceptual overview of the exoplanet atmosphere problem see, e.g., Heng & Marley (2017).

Before we embark on a discussion of the thermal and hydrostatic structure of exoplanet atmo-
spheres, let us first introduce and discuss some elementary concepts of planets and planetary
atmospheres.

Energy balance

As in stellar atmospheres, no energy is created or destroyed in planetary atmospheres. All
the energy in the planet atmosphere is either supplied by the host star in the form of absorbed
incident radiation or by the planetary interior. The energy balance can thus be described as

Lout(t) = (1−AB)Linc(t) + Lint(t), (12.1)

where Lout is the energy per second leaving the planet, Linc the stellar energy per second
incident on the planet, and Lint the energy per second transferred to the atmosphere from the

https://arxiv.org/abs/1706.03188
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planetary interior. The fraction of incident stellar energy scattered back into space is the Bond
Albedo AB (see below). Therefore, (1−AB)Linc is the part of the total incident stellar energy
per second absorbed to heat the atmosphere or surface and ABLinc the part reflected back into
space.

For a planet of radius Rp, the total energy incident per second on its surface is

Linc = πR2
pF?(a) = πR2

p

(
R?
a

)2

F?(R?) = πR2
p

(
R?
a

)2

σT 4
eff,? (12.2)

where a is the orbital separation and F?(a) is the total stellar flux at that distance. If planets
and their host stars are the focus of attention, it is custom to add a p subscript to planet
quantities and a ? subscript to stellar quantities.

The total irradiance at Earth (see also Sect. 3.4) is given by

R =
Linc

πR2
p

=

(
R?
a

)2

σT 4
eff,? = 1.362× 106 erg cm−2 sec−1 = 1362 W m−2 (12.3)

where we have used numbers from Table 16.1. By definition, the incoming radiation is im-
pinging the dayside of our planet. The average incoming solar energy per unit area of the
Earth’s surface is Linc/4πR

2
p = R/4.

Equilibrium temperature

The equilibrium temperature of a planet is the effective temperature of that planet assuming it
has no internal luminosity. It is derived from equating the energy per second emitted by the
planet with the energy per second absorbed by the planet

1

f
4πR2

p σT
4
eq = (1−AB)πR2

p

(
R?
a

)2

σT 4
eff,? (12.4)

Consequently

Teq = [f (1−AB)]1/4
(
R?
2a

)1/2

Teff,? =
[
f ′ (1−AB)

]1/4 (R?
a

)1/2

T? (12.5)

where f = 4f ′ is a correction factor to the term 4π and describes the effectiveness of atmo-
spheric circulation, i.e. the degree to which energy absorbed is transferred from the planet’s
dayside to nightside. In case of full heat circulation around the planet, f = 1. If the day-
side alone reradiates the incident energy (and the nightside remains cold), its higher resulting
equilibrium temperature is given by f = 2. Further adjustments of f are used to account for
the fact that the angle of incidence of the stellar flux decreases from the substellar point to the
terminator. For instance, if the atmosphere instantly reradiates the absorbed radiation (with no
advection), f = 8/3. For simplicity of notation, we have introduced T? = Teff,?.

Using f = 1 and the Bond Albedos given in Table 12.1, we find Teq = 254 K for Earth and
Teq = 229 K for Venus.
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Planetary albedos

The planetary albedo is a measure of the reflectivity of the planet’s surface and/or atmosphere.
One may define the albedo in several ways; here we focus on the conceptually simplest one –
the Bond albedo. AB is the fraction of incident luminosity scattered back into space by the
planet. Therefore, 0 ≤ AB ≤ 1. The Bond albedo includes back-scattered radiation in all
directions and radiation at all frequencies. The spherical albedo AS(ν) is the monochromatic
Bond albedo, hence

AB =

∫ ∞
0

AS dν (12.6)

Be ware that both the spherical albedo and the Bond albedo depend on the spectrum of the host
star, i.e. they are not intrinsic properties of the planet. They are essentially weighted by the

Figure 12.1: Bond albedos. From:
Wikipedia lemma Bond albedo.

incident radiation (see e.g. Del Genio et al. 2019.
Imagine an atmosphere in which Rayleigh scattering
is important. As, in that case, proportionally more red
photons are absorbed than blue photons (which scatter
16 times as easily; see Sect. 8.4), an identical planet
will have a lower AB under the light of a red star than
a blue one. Also take note that the Bond albedo may
change during the evolution of the host star and exo-
planet.

A planet with a high AB scatters efficiently, hence is
‘bright’ in the optical. Venus has a high AB due to its
complete coverage of H2SO4 clouds. The Saturnian
satellite Enceladus too has a high Bond albedo due
to water geysers constantly producing fresh ice lay-
ers, making its surface very reflective. Mercury and
the moon, in contrast, have no atmosphere, clouds, or

ice. This makes them ‘dark’, scattering only 0.1 of the incident radiation. Though the Bond
albedo of Jupiter is appreciable, this appears not the case for hot extrasolar giant planets. For
HD 209458b, which has Teff,p = 1442 K, it is found that AB < 0.12 (Rowe et al. 2008). This
low albedo rules out the presence of bright reflective clouds in this exoplanet’s atmosphere.
In the absence of clouds, all hot Jupiter models predict extremely low visible-wavelength (ge-
ometric) albedos, due to strong, broad absorption lines of neutral atomic Na and K. These
atoms are known to suppress the emitted visible-wavelength flux of brown dwarfs at similar
temperatures (Liebert 2001). Hot exoplanets are exposed to a much more intense UV radia-
tion field from the host star than is Jupiter. This strong incident UV flux can produce a rich
mixture of compounds from molecules producing a haze that can absorb incident UV photons
and will darken the appearance of the planet in the blue part of the spectrum (Marley et al.
1999).

https://ui.adsabs.harvard.edu/abs/2019ApJ...884...75D/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...689.1345R/abstract
https://ui.adsabs.harvard.edu/abs/2001udns.conf....3L/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJ...513..879M/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJ...513..879M/abstract
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Figure 12.2: A simple two-layer model to illustrate the difference between the atmosphere and surface
temperature and the concept of the greenhouse effect.

A simplified atmosphere – a toy model for the greenhouse effect

We consider a very simple model for a planetary atmosphere in which the atmosphere is
represented by a single layer of temperature Tatm and that has a surface at temperature Ts

(see Fig. 12.2). The absorbed stellar radiation is redistributed uniformly over the surface, i.e.
f = 1. The atmosphere (1) is completely transparant to the incoming stellar radiation (so
AB = 0). For solar-type stars the bulk of the incoming light is at optical wavelengths, so it is
optical light that reaches the ground, is absorbed, heats the surface, and is reemitted at longer
wavelengths. The atmosphere (2) is completely opaque to infrared radiation, i.e. it absorbs all
the IR photons radiating from the ground. This is characteristic for a planetary atmospheres
that is composed of mostly molecules as these absorb efficiently at IR wavelengths.

At its top, the opaque atmosphere radiates a flux σT 4
atm out to space. At its bottom, given the

symmetry of a homogeneous finite slab (see Sect. 4.6), the same amount is radiated toward
the surface. From energy balance, the radiation emerging from the top of the atmosphere must
be equivalent to the absorbed stellar radiation. Hence,

σT 4
atm = (1−AB)

(
R?
2a

)2

σT 4
? = σT 4

eq (12.7)

At the surface, energy balance too means that all of the absorbed incoming radiation is again
reradiated. There are two contributions to the absorbed radiation at the surface: the incoming
stellar radiation and the downward radiation from the atmosphere layer. This yields

σT 4
s = σT 4

eq + σT 4
atm = 2σT 4

eq (12.8)
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This gives
Ts = 21/4 Teq ' 1.19Teq (12.9)

Let us apply our model to Earth and Venus, for which the actual mean surface temperatures are
288 K and 730 K. Inserting the equilibrium temperatures computed above, we find Ts = 302 K
for Earth and Ts = 273 K for Venus.

12.2 Vertical thermal structure of planetary atmospheres

If we assume the direction of the host star to be (θ◦, φ◦) away from the surface normal, and
the incident radiation to be plane parallel at the planet surface, then

I?ν (0, µ) = I?ν δ(µ+ µ◦) δ(φ− φ◦) for 0 ≤ µ◦ ≤ 1 (12.10)

The ?-symbol denotes stellar quantities. Given our positive definition of µ◦, it being the
direction in which the star is seen from the atmosphere, the direction from which the light
is coming is −µ◦. Notice that because the host star illuminates the surface from a specific
direction, axial symmetry (see Sect. 3.1) is lost. Below we discuss how one might deal with
this added complexity. We may also write down the relationship between the incident stellar
flux and the incident stellar specific intensity. Writing F−ν = Fν? in Eq. 3.21 we find

Fν?(0) =

∫ 2π

0

∫ −1

0
µ I?ν δ(µ+ µ◦) δ(φ− φ◦) dµ dφ = µ◦ I

?
ν , (12.11)

where Fν?(0) is positive. Notice that integration proceeds from a higher value to a lower
value, which is why an extra negative sign enters. Integration over all frequencies yields

F? = µ◦ I
?, (12.12)

where I? is the total specific intensity (see Eq. 3.3) and F? the total incident stellar flux (see
Eq. 3.23). In section (3.4), we have gone through some length to prove the 1/r2 dependence
of the flux. The above equation implies a constant flux. How can that be? The reasons is that
in the current case the incoming radiation is planar; see question (12.1).

12.2.1 Temperature structure - the grey atmosphere revisited

To obtain an expression for the vertical thermal structure of a planetary atmosphere we again
resort to the grey, planar, LTE atmosphere where energy is transported only by radiation (see
Chapter 10).

In radiative equilibrium the total flux passing through the atmosphere is constant. The radiative
equilibrium temperature profile is the temperature profile that satisfies this constraint. The
total flux that exits at the top of the atmosphere is

F = Fint + µ◦ I
? = σT 4

int + µ◦ I
?, (12.13)
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where the first term is the total flux coming from the planetary interior that passes through
the planet atmosphere. Tint is the interior temperature. To be clear about this: the net flux
through the atmosphere is still only the internally generated flux Fint, since no energy from
the irradiation is permanently absorbed by the planet – it is all re-radiated.

12.2.2 Atmosphere heated from below

Let us first consider an atmosphere that is heated from below only. By this we mean an
atmosphere for which the source of radiation is from the interior or ground only. A good
example would be a giant planet atmosphere dominated by interior flux. In that case Tint =
Teff,p, where Teff,p is the effective temperature of the giant planet. Another example is a planet
with a thin atmosphere that is transparent for the radiation emitted by its host star. Mars is
such a case. The solar radiation is absorbed by and heats the Martian surface and is re-emitted
at longer infrared wavelengths. Terrestrial planets atmospheres are typically not transparant at
IR wavelengths where molecules can absorb and re-emit radiation. This way the atmosphere
is heated as radiation travels out to space. In such a scenario, Tint = Ts, where Ts is the
surface temperature.

Following exactly the same reasoning as in section (10.1), we find

T 4(τ) =
3

4
T 4

int(τ +
2

3
). (12.14)

Notice that at the top of the atmosphere (τ = 0), we have T (0) = 21/4 Tint. This matches our
result for the simple greenhouse model Eq. (12.9), identifying the surface temperature with
Tint and the equilibrium temperature with the temperature at the top of the atmosphere.

The emergent total specific intensity is given by Eq. 10.14, with H = σT 4
int/4π. The total

emergent flux is σT 4
int = σT 4

eff,p.

12.2.3 Atmosphere heated from above and below

We now turn to the case of an atmosphere heated from above and below. Again, the aim is
to develop an analytic expression for the temperature structure. In constructing this model we
want to include a crucial feature of heated planetary atmospheres, namely that the wavelengths
of the incoming stellar photons (typically visual light) are different from those of the re-
radiated photons (infrared light). In these two wavelength regimes, opacities and hence optical
depths may be very different. Moreover, the altitudes at which radiation is absorbed and
emitted are different.

So, let us introduce two characteristic wavelength regimes. Wavelength regime 1 for visual
light and 2 for infrared light. Strictly speaking, our model is now no longer grey (as we have
two wavelengths), but as we will treat this two-opacity model further along similar lines much
of the grey nature of the problem is preserved. As two energy flows are considered, it is also
referred to as a two-stream model.
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(Exo)planet atmospheres are by definition cool relative to the temperature of their host stars
– so cool that their emission is concentrated at infrared wavelengths. Therefore, we assume
that the planetary atmosphere exclusively emits light at infrared wavelength, i.e. the emission
of the planet at visual wavelength η1 = 0. So, radiation is absorbed at visual and infrared
wavelengths, and in this framework only emitted in infrared wavelengths. Consequently,

S1 = η1/χ1 = 0. (12.15)

Radiative equilibrium constraint Eq. 9.42 (see also Eq. 10.3) now implies that∫
1
χν Sν dν +

∫
2
χν Sν dν =

∫
1
χν Jν dν +

∫
2
χν Jν dν

χ1

∫
1
Sν dν + χ2

∫
2
Sν dν = χ1

∫
1
Jν dν + χ2

∫
2
Jν dν

χ2S2 = χ1J1 + χ2J2, (12.16)

where χi, Si, and Ji are appropriate (semi-total) opacities, source functions, and mean inten-
sities. Similar semi-total quantities will be introduced below without formally defining them.
The source function for wavelength regime 2 is then given by

S2 = J2 +
χ1

χ2
J1 = J2 + γJ1, (12.17)

where the ratio of the visible and infrared mean absorption coefficient γ is assumed constant
throughout the atmosphere. The value of γ links the optical depths in the visual and infrared,
as

dτ1 = −χ1 dz = −χ1

χ2
χ2 dz = γ dτ2. (12.18)

The two radiative transfer equations are given by

µ
dI1

dτ1
= I1 (12.19)

µ
dI2

dτ2
= I2 − S2 = I2 − J2 − γJ1 (12.20)

The zero-order moment equations (see Eq. 10.4) become

dH1

dτ1
= J1 (12.21)

dH2

dτ2
= J2 − S2 = −γJ1 = −dH1

dτ1
, (12.22)

where in the latter equality we have used Eqs. 12.18 and 12.21. This shows that the total flux
H = H1 +H2 is constant, as is required by radiative equilibrium. All flux removed from the
incoming beam in the visual re-emerges in the infrared beam.
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The first-order moment equation of the infrared radiative transfer equation is (see e.g. Eq. 10.5)

3
dK2

dτ2
=

dJ2

dτ2
= 3H2, (12.23)

where we have used the Eddington approximation Ji = 3Ki. To obtain the temperature profile
we focus on infrared wavelengths, which is where all emission occurs. Of course, the infrared
equations also depend on the visible wavelength radiation quantities – for instance, through
the constraint of radiative equilibrium (Eq. 12.16).

If the star is positioned at (µ◦, φ◦), attenuation of visual light from the incident beam is given
by

I1(τ2, µ) = I?(0, µ) eγτ2/µ = I? eγτ2/µ δ (µ+ µ◦) δ (φ− φ◦) , (12.24)

where we have used Eq. (12.18) to express the visual optical depth in infrared optical depth,
Eq.(12.10) to describe incident light, and have adopted τ2 as our measure of depth. The semi-
total mean intensity is given by (see Eq. 3.9)

J1(τ2) =
1

4π

∫ 2π

0

∫ 0

−1
I? eγτ2/µδ (µ+ µ◦) δ (φ− φ◦) dµ dφ

=
1

4π
I? e−γτ2/µ◦ (12.25)

=
1

4π

T 4
?

σ
e−γτ2/µ◦ (12.26)

where µ◦ is a positive value, see Eq. (12.10). In the final equality, we associate the stellar
intensity to a total stellar brightness temperature T? (see Eq. 6.43 for the monochromatic
equivalent). Integration of Eq.( 12.22) yields

H2(τ2) =
µ◦
4π

I? e−γτ2/µ◦ + constant, (12.27)

where the constant of integration follows from realising that (see Eq. 12.13)

H2(0) = H =
F
4π

=
µ◦ I

?

4π
+
σT 4

int

4π
, (12.28)

hence the constant is σT 4
int/4π.

With H2(τ2) known, we may integrate Eq. (12.23) to find

J2(τ2) = − 3

4π

µ2
◦
γ
I? e−γτ2/µ◦ +

3

4π
σT 4

int τ2 + A, (12.29)

where A is a constant. Using J2 = σT 4/π, we obtain

T 4(τ2) =
3

4
T 4

int τ2 −
3

4

µ2
◦
γ

I?

σ
e−γτ2/µ◦ +

Aπ

σ
(12.30)
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To obtain the constant A, we follow a procedure that is in principle identical to that used in
calculating the temperature structure for an atmosphere heated from below: we write down the
integral for the emergent flux, starting from the total flux equivalent of the outward directed
flux Eq. 3.21. (See also the convenient form Eq. 4.56 that we could use directly in the atmo-
sphere heated from below case; for our current problem Eddington-Barbier does not hold).
For the (total) specific intensity, we use Eq. (4.53), which features the source function – in our
case given by Eq. (12.17). Finally, we realise that the total flux is also given by Eq. (12.13).
All this can be condensed to the equation

F2 = 2π

∫ 1

0
µ

[∫ ∞
0

S2 e
−τ2/µ dτ2

µ

]
dµ

= 2π

∫ 1

0
µ

[∫ ∞
0

(J2 + γJ1) e−τ2/µ
dτ2

µ

]
dµ = σT 4

int + µ◦ I
?. (12.31)

This results in

T 4(τ2) =
3

4
T 4

int

[
τ2 +

2

3

]
+ (12.32)

µ◦T
4
?

[
−3

4

µ◦
γ
e−γτ2/µ◦ + 1 +

3

2

(
µ◦
γ

)2

− 3

2

(
µ◦
γ

)3

ln

(
1 +

γ

µ◦

)]

Figure 12.3 shows temperature profiles at a range of angles µ◦ for the cases γ = 0.1 and
γ = 10 and assuming T?/Tint = 1000.25 = 3.16. For γ = 0.1 optical extinction is small
and stellar light is absorbed at an optical depth that is larger than τ2 = 2/3, i.e. the depth
where we expect the infrared photosphere to be. In the case γ = 10 the stellar energy is
deposited above the infrared photosphere. For the latter model the temperature profile looks
pretty similar to the un-irradiated case, although the asymptotic value of the temperature as
τ2 → 0 is higher the closer one gets to the substellar point (at µ◦ = 1). In the case γ = 0.1 we
find that the temperature profile has two regions where T is almost constant – the traditional
one at low optical depth but also a second one at τ2 > 1, where the bulk of the incoming flux
is absorbed. This second plateau is the result of the superposition of two independent effects.
First, the standard solution of radiating the internal flux Fint with no irradiation. Second, the
case Tint = 0, i.e. a zero net energy solution (i.e. F = 0) where the incoming stellar radiation
is re-radiated. The temperature profile arising from this second effect consists of a gentle
transition between two asymptotic temperatures, a relatively low one at low optical depth and
a relatively high one at high optical depth. The difference between these two asymptotes is
∆T/T? = (3µ2

◦/4γ)1/4, and so is larger for smaller γ. At τ2 > µ◦/γ the temperature rise of
the zero net energy solution quickly dwindles, which is the plateau seen in the the left panel.
At even higher optical depth, the normal thermal profile due to transport of internal energy
takes over. In principle, a plateau also occurs in the case γ = 10, however, it can barely be
discerned in the figure.
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Figure 12.3: Temperature profiles for the case γ = 0.1, i.e. where the irradiation penetrates to below
the re-radiation photosphere, and γ = 10, i.e. where the irradiation is absorbed high in the atmosphere.
In all cases (T?/Tint)

4 = 100. For µ◦ = cos θ◦ = 0 light falls in tangentially (so, we are at the
terminator). In that case, the atmosphere is heated from below only as no flux from the host star is
absorbed. From: Hansen 2008.

12.3 Aerosols, clouds, dust, and hazes

The definitions of the four terms in the title of this section is rather ambiguous; see a nice blog
by Sarah Hörst on this topic. Following her lead, we define them as follows. Aerosols are any
size and kind of particles suspended in a gas. Depending on properties and origin, aerosols
can be subdivided in clouds, hazes, and dust1. A cloud is a visible mass of liquid and/or
solid particles suspended in an atmosphere that form from condensation of atmospheric gases.
Cloud material can move back and forth between gas and solid/liquid phase. Cloud droplets
prefer to form on pre-existing particles. An example of such pre-existing particles are dust
particles, which are solid particles suspended in the atmosphere that did not originate in the
atmosphere. On Earth, sources of atmospheric dust are soil particles lifted by weather, vol-
canic eruptions, and pollution. Haze particles are particles produced from (photo-)chemistry
in the atmosphere that results in the formation of in-volatile solids, i.e. that form and persist,
unlike cloud material.

The diversity of aerosol materials on different planets is huge, in terms of composition and
size- and shape properties, and vertical (and likely lateral) distribution. Earth’s clouds are
made of liquid water droplets or frozen water crystals ranging from 10 to 100µm in size.
The Venusian atmosphere contains clouds made of sulphuric acid (H2SO4). Titan has clouds

1Living material, i.e. viruses and bacteria, may be another aerosol category.

https://ui.adsabs.harvard.edu/abs/2008ApJS..179..484H/abstract
https://www.planetary.org/articles/0324-clouds-and-haze-and-dust-oh-my
https://www.planetary.org/articles/0324-clouds-and-haze-and-dust-oh-my
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Figure 12.4: Vertical temperature structure of Earth’s atmosphere. From: University of Waikato (2014).
For a discussion of the four main layers: troposphere, stratosphere, mesosphere, and thermosphere, see
text.

likely composed of liquid methane. Hot Jupiter-like exoplanets may have clouds composed
of liquid iron droplets (as they are far too hot to have water clouds). A single planet can have
different cloud layers if its atmosphere spans a temperature range that includes more than one
condensible gas.

Clouds contribute to the atmospheric energy balance, e.g. because they may reflect part of
the incident light back to space. Some clouds are highly reflective, contributing to a high
albedo, such as Earth’s water clouds and Venus’s sulfuric acid clouds. Hazes on Jupiter and
Saturn are strongly absorbing at short wavelengths. Cloud formation is intricately coupled
to atmospheric dynamics and temperature. Clouds can block the atmosphere beneath them,
weakening the emergent spectral features (see Fig. 2.8). Modelling cloud patterns is extremely
challenging.

12.4 The temperature profile of Earth’s atmosphere

Figure 12.4 shows the vertical stratification of Earth’s atmosphere. It is divided in regions,
the lower four corresponding to altitudes of temperature reversals. The troposphere, where
we live, extends up to an average height of about 9-17 km, depending on latitude (it reaches

https://www.sciencelearn.org.nz/images/240-vertical-structure-of-the-atmosphere
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highest at the equator). The troposphere is mostly heated through energy transfer from the sur-
face, and its temperature decreases with increasing altitude. The density drops exponentially
with height, essentially due to hydrostatic equilibrium (see Sect. 9.3). Half of the total mass
of the atmosphere is located in the lower 5.6 km of the troposphere. Nearly all water vapor or
moisture is found in the troposphere, hence it is the layer where most of Earth’s weather takes
place.

The stratosphere defines the layer in which temperatures rise with increasing altitude. This
phenomenon did not arise naturally from our models of planetary atmospheres and shows that
conditions can be more complex than we assumed. The rise in temperature is caused by the lo-
cal absorption of ultraviolet sunlight by the ozone layer, particularly in the lower stratospheric
layers where the overal density is highest and most of the UV radiation is absorbed. At the
troposphere-stratosphere boundary or tropopause the temperature may be 210 K, the top of
the stratosphere is much warmer, and may be near 0 ◦C (or 273 K). The stratospheric temper-
ature profile creates very stable atmospheric conditions and lacks the weather-producing air
turbulence that is so prevalent in the troposphere.

The mesosphere extends from the stratopause at an altitude of about 50 km to the mesopause
at 80-85 km. Temperature again drops with increasing altitude due to decreasing absorption of
solar radiation by the rarefied atmosphere and increasing cooling by CO2 line emission. The
top of the mesosphere, called the mesopause, is the coldest part of Earth’s atmosphere. The
mesosphere is the layer where most meteors burn up upon atmospheric entrance.

Above the mesosphere is the thermosphere, starting at about 80-85 km and extending to a 500-
1000 km height, depending on solar activity. The temperature of the thermosphere gradually
increases with height as almost all the solar x-ray and extreme ultraviolet (EUV) at wave-
lengths < 170 nm is absorbed by the most abundant molecules. Though only a very small
fraction of the solar energy is in this spectral range, the density of molecules in the thermo-
sphere is so low that it leads to significant heating. Temperatures are variable, however, and
depend on solar activity (e.g. x-ray bursts associated with solar flares; see Sect. 16.4). The
low densities cause Kinetic Equilibrium to break down in these layers. The thermosphere is
completely cloudless and free of water vapor. The International Space Station orbits in this
layer, between 350 and 420 km.

Not shown in Fig. 12.4 is the exosphere, which is the outermost layer of Earth’s atmosphere.
It extends from the exobase, the thermosphere-exosphere boundary at 500-1000 km to about
10 000 km where it merges into the solar wind. The exobase is defined to be the altitude at
which the atmosphere becomes collision-less, i.e. where the particle’s mean free path (the
average distance between particle collisions) is greater than the particle-specific atmospheric
scale height.
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Convection

Terrestrial planets with thin atmospheres are expected to have convection zones just above the
solid surface. The reason is that most of the incident light is absorbed at this surface, and
only some in the atmosphere. This causes the surface to be hotter than the overlying atmo-
sphere, i.e. a significant temperature discontinuity arises at the atmosphere-surface boundary.
This discontinuity will drive convection. On Earth convection is occurring in most of the
troposphere, but this may be different in exoplanets with different atmospheric conditions.

Atmospheric layers with temperature inversions are very stable against convection because
the restoring force to a perturbed, lifted air parcel is very strong. As a convective bubble rises,
it expands and cools. Being cooler – and hence denser – than the surrounding temperature-
inverted atmosphere, the air parcel will sink again.

12.5 Vertical density structure of planetary atmospheres

Planetary atmospheres are – like stellar atmospheres – often assumed to be in hydrostatic equi-
librium. The considerations discussed in Sects. 9.3 and 10.2 therefore also apply to planetary
atmospheres.

Atmospheric escape

Mercury hardly has an atmosphere, though likely did have so at formation. It appears that
over time the inner planet lost its atmosphere to space. Atmospheric escape involves three
major stages. First, transport of gases from the lower to the upper atmosphere where escape
can take place. Second, conversion from the atmospheric gas (usually in molecular form)
to the escaping form (usually atomic or ionic). Third, the actual escape process itself. Any
one of these stages can be the bottleneck, that is, the limiting process for atmospheric escape.
The actual escape mechanism may differ. Three types of processes are identified: thermal
hydrostatic escape, thermal hydrodynamic escape, and non-thermal escape.

Thermal escape or hydrostatic escape. In thermal escape, the thermal velocity exceeds the
escape velocity of the planet, (

2kT

m

)1/2

=

(
2GM

R

)1/2

, (12.33)

where the left-hand-side is the most probable velocity of the Maxwell distribution (see Eq. 6.17)
for a particles of mass m and the right-hand-side is the surface escape velocity vesc, with M
the planet mass and R the planet radius. Of course, the Maxwell distribution Eq. 6.16 spreads
out over a wide range of velocities, therefore in practice we may multiply the most proba-
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ble speed by a factor (larger than unity) to estimate the escape of gas species based on the
velocities of the high-velocity tail.

Loss of atmospheric particles by thermal escape occurs in the planetary exosphere, so the
relevant temperature in Eq. (12.33) is the temperature in the exosphere.

A more accurate description of escape is to properly account for the Maxwell distribution
Eq. 6.16 of the particle being considered. This is known as Jeans escape. The Jeans escape
flux of particles can be computed by integration over the direction and velocity appropriate
for escaping particles

ΦJeans = −nexob

∫ ∞
vesc(rexob)

∫ 2π

0

∫ π/2

0
f(v) cos θ sin θdθdφ, (12.34)

where the factor cos θ assures that the velocity component vz is considered and not the actual
value v. In this expression we consider escape to occur from the exobase radius rexob, hence
vesc(rexob) =

√
2GM/rexob. Integration yields

ΦJeans =
nexob

2
√
π
B

(
2kTexob

m

)1/2

(1 + λexob) e−λexob , (12.35)

where Texob = T (rexob). The escape parameter

λexob =
GMm

kTexobrexob
=
rexob

H
=

Eesc

kTexob
, (12.36)

where the escape energy Eesc = mv2
esc/2. The factor B accounts for the time lag of repopula-

tion of the high-velocity tail of the Maxwellian distribution and has a value of the order unity
(B ∼ 0.5−0.8). The total mass loss rate of the species being considered is Ṁ = 4πR2 ΦJeans.

Hydrodynamic escape. Hydrodynamic escape occurs when escape is so fast that a planetary
wind develops. Actual calculations of hydrodynamic escape are based on the equations of fluid
dynamics (see Chapter 9). A hydrodynamic escape state is reached when sufficient energy is
deposited in the upper atmosphere of the planet by incident EUV radiation from the host star
to drive an outflow. See for instance McCann et al. 2019 (ApJ 873, 89) for such calculations.

Non-thermal escape. In general, a wide variety of processes are included in this type of
escape. Generally it refers to collisional processes between charged species that produce
atoms energetic enough to escape from a planetary atmosphere to space.

Ablation of the planetary atmosphere by the stellar wind may also be considered a type of
non-thermal escape, as well as planetary atmospheres undergoing Roche lobe overflow.
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     Laser

 Io
R

R

Exercise 12.1

Consider a laser that emits perfectly parallel beams of light

I = I◦ δ(µ− 1) (12.37)

The radiating surface of the laser is a square of R times R
cm. We observe the laser from a distance dwith a telescope
that is pointed in the direction of the laser source, is large in
comparison to the laser and can spatially resolve the laser.

b) Give the flux at the surface of the laser.

a) Give an expression for the luminosity L of the laser.

We now place the laser at a distance 3d of the telescope. For this new situation:

c) Give the flux as measured by the observer.

Figure 12.5: Leaky greenhouse model

Exercise 12.2

This could be a nice exam question. Let us construct a
slightly more realistic greenhouse model compared to the
one discussed in Sect. 12.1. In this so-called ’leaky’ green-
house model (see Fig. 12.5), the single atmospheric layer
may be partly optically thin. We assume that a fraction
α = [0, 1] of the infrared radiation emitted by the surface
is absorbed by the atmospheric layer.

b) Derive the relation between Ts and Teq.

a) Briefly discuss the limiting cases α = 0 and α = 1.

c) If the optical depth for IR radiation for the atmospheric layer is τ , how are α and τ related?



12.5 Vertical density structure of planetary atmospheres 211

Figure 12.6: Transient spectroscopy.

Exercise 12.3

Transmission spectroscopy is concerned with measuring the
attenuation of beams of stellar light illuminating and (par-
tially) passing through the limb of the planet. Figure 2.8 shows
observations using this technique. Plotted on the vertical axis
is a measure for the thickness of the atmosphere as a func-
tion of wavelength. As this thickness is essentially measured
at the planetary limb, it is the vertical thickness relative to
some reference value. We are here concerned with deriving
an expression that gives this thickness ∆R(λ) (relative to the
density scale height H) as function of the measured transit ra-
dius RT(λ). For convenience, we no longer refer explicitly to
wavelength.

We assume that the equation of state is that of an ideal gas (e.g. Eq. 6.66) and make use of
the fact that the absorption occurs high up in the atmosphere, where the temperature profile is
essentially isothermal. The temperature of the atmosphere is T , the surface gravity is g, the
mean molecular weight µ, and the mass extinction coefficient is χ′(λ). The density scale height
is H (see Eq. 9.31).

a) Use the solution for the vertical density structure Eq. 9.30 to show that the optical depth is given
by

τ = τ◦ e
−r/H , (12.38)

where r is radial height. In this equation, r◦ = 0 is where we calibrate our reference height. At
this height ρ(r◦) = ρ◦ and τ(r◦) = τ◦. Determine τ◦.

b) Give an expression for the optical depth τν(p), as function of r, for a beam passing along the
limb, i.e. a beam passing through the atmosphere of the planet at fixed impact parameter p. This
expression contains an integral; use r as the integration variable.

c) Evaluate the integral obtained in (b). Note that the scale height is small compared to the radial
and impact parameter scales for the atmospheric base. As such, the exponential in the integrand
will limit significant contributions to scales such that (r − p) . H . Recall that∫ ∞

0

x−1/2 e−x dx =
√
π. (12.39)

Notice that your result in (c) implies that τz(p = r◦)/τ◦ = (2πr◦/H)1/2 � 1 because p/H �
1. This means that the τz(p) = 1 surface as seen by the observer will lie higher in the atmosphere
than r◦, where τ < 1.

d) We define the transit radius RT as the radius for which τz(p = RT) = 1. Show that

RT = H ln

[(
2πRT

H

)1/2

τ◦

]
. (12.40)
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e) Show that the radial distance ∆R between the transit radius and the radius for which τ = τref

(in the radial direction) is given by

∆R =
H

2
ln

[
2πRT τ

2
ref

H

]
. (12.41)

Like ∆R, the reference optical depth is wavelength dependent. Using models, one may for
instance choose it to be the value which corresponds to the depth τRoss = 2/3. For the scale
height, Sing et al. (2016) adopt H = Heq = RTeq/µg.
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Spectral lines

The intensity distribution in the spectral line primarily reflects the run of the source function
throughout the stellar atmosphere: in the line core one ‘sees’ layers that are relatively high up
in the atmosphere; in the line wings one sees much deeper (see § 4.6). This coupling exists
due to the profile function φν , which causes the opacity in the line core to be much higher than
in the line wing. In this chapter we will study the line profile in more detail. We first define
a means to describe the strength of a spectral line. Next, the processes that shape the spectral
line are reviewed. We end with a discussion of the curve-of-growth method.

13.1 Describing the line profile

The most complete description of the spectral line is given by its profile. The relative depres-
sion or absorption depth of the profile is strickly speaking defined as

dλ ≡ 1− Iλ
Ic
λ

(13.1)

where Ic
λ is the continuum intensity at the wavelength λ. In the presence of a spectral line it is

by definition impossible to measure the continuum intensity, therefore its value is determined
by interpolation of the continuum intensity at both sides of the line profile. In case the absorp-
tion depth is positive, the line is an absorption line; in case dλ is negative, we are dealing with
an emission line.

As for almost all stars one can only measure the flux – and not the specific intensity as a
function of position on the stellar disk – the absorption depth is often described by

Dλ ≡ 1− Fλ
Fc
λ

(13.2)

where Fc
λ is the continuum flux at wavelength λ. Also the continuum flux at a wavelength in

the line profile can not be measured directly, and therefore it also follows from interpolation
of the continuum flux at both sides of the line.
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Before the absorption profile can be used as a diagnostic of the stellar atmosphere it needs
to be corrected for instrumental distortions. This distortion, which always leads to degrada-
tion of the line profile, is described by the instrumental profile. Say a light source emits an
emission line of infinitesimal width. The profile of this line can be described by a δ-function.
Measurement of this line by an instrument shows a smeared profile (typically a Gaussian pro-
file), of which the sharpness is determined by the quality and/or settings of the spectrograph.
A measure of this sharpness is the spectral resolution or resolving power

R ≡ λ/∆λ (13.3)

Here ∆λ is the bin-width of the flux measurement. For excellent instruments R can be larger
than 100 000.

Equivalent width

The concept of equivalent width of a spectral line was developed by Marcel Minnaert (1893-
1970)1. The equivalent width is the line profile integrated absorption depth, i.e.

Wλ(line) ≡
∫

line
Dλ dλ =

∫
line

(
1− Fλ
Fc
λ

)
dλ (13.4)

and is – in case of an absorption line – equivalent to the width of a fully blackened rectangular
profile of identical surface area (see figure 13.1). Though the cgs unit of equivalent width in
the above formula is cm, it is custom to measure Wλ in (milli-) Angström or in the velocity
unit km sec−1. In case of an absorption line Fc

λ ×Wλ is equal to the total continuum energy
that is removed by the line. In case of an emission line Wλ will be negative, and −Fc

λ ×Wλ

describes the total energy that is added by the line to the continuum. The equivalent width is
a suited measure for the strength of the spectral line, as it is, for instance, much less sensitive
to smearing of the profile as a result of the finite resolution of the spectrograph, than is, for
instance, the central absorption depth. For an accurate measurement of Wλ it usually suffices
to have a spectral resolution of R ∼ 8 000 if the signal-to-noise ratio is at least several tens2 .
The equivalent width offers a quantitative measure of the line profile in cases where the flux
levels are too low to observe a detailed line profile. Finally, the equivalent width is independent
of interstellar extinction (see § 19.2).

If the source is spatially resolved, one can determine the equivalent width from

wλ(line) ≡
∫

line
dλ dλ (13.5)

The value of wλ(line) may vary over the (projected) surface of the source being studied.

1Born in Ghent, Belgium, Minnaert worked at the Utrecht astronomical observatory Sonnenborgh from shortly
after World War I. From 1937 until 1962 he was the director of the observatory.

2See Vollmann & Eversberg 2006 for a discussion on how to estimate the error in equivalent width

https://arxiv.org/pdf/astro-ph/0606341.pdf
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Figure 13.1: Schematic representation of the flux behaviour of a spectral line (i.e. the profile). The
equivalent width Wλ is equal to the surface area of the spectral line divided by the continuum flux.
Figure: Edward Jenkins.

Total line flux

The line profile integrated flux or total line flux in erg cm−2 sec−1 is

F(line) ≡
∫

line
(Fν −Fc

ν) dν =

∫
line

(Fλ −Fc
λ) dλ (13.6)

The total line flux (measured at distance d) is especially important in studies of emission
lines, and therefore is defined such that a positive value results if Fν > Fc

ν . One obtains
F(line) = −Fc

λ × Wλ = −Fc
ν × Wν . In, for instance, planetary nebulae the continuum

flux can be so low that it can not be measured (accurately), i.e. Fν � Fc
ν . The continuum

contribution can then simply be omitted when computing the total line flux. Note that the total
line flux – in contrast with the equivalent width – is dependent on the amount of interstellar
extinction.

Related to the total line flux is the luminosity in the line, in erg sec−1, i.e.

L(line) = 4πd2F(line) (13.7)
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13.2 Line broadening

There are several processes that can influence the shape of the line profile. We first briefly list
these processes, then we discuss each of them seperately:

• natural broadening or radiation damping, due to the finite lifetime of excited states

• Doppler broadening due to the thermal motions of particles

• collisional or pressure broadening, due to the physical interaction of atoms and ions

• broadening due to the rotation of the star

• broadening due to the presence of a stellar wind

Natural broadening

Spontaneous de-excitations cause the lifetime of an excited state to be statistically distributed
around a finite value. The Heisenberg uncertainty principle implies that the uncertainty in
lifetime ∆t must be coupled to an uncertainty in the energy ∆E of the transition, such that
∆E · ∆t ≥ h/4π = ~/2. In other words, one expects a broadening of the line, which is
refered to as natural broadening or radiation damping. The term “natural” implies that this
broadening occurs even if no other particles are present; the term “damping” results from
the classical description of the atom as a driven-damped classical oscillator. It is custom to
correct the classical result for quantum mechanical effects using the oscillator strength (see
§ 7.3). Without its formal derivation we give that the profile that belongs to natural broadening
is a Lorentz profile, i.e.

φ(ν − νlu) = φ(∆ν) =
1

π

γcl/4π

(ν − νlu)2 + (γcl/4π)2
=

1

π

∆νL

∆ν2 + (∆νL)2
(13.8)

where

γcl =
8π2e2ν2

lu

3mec3
=

8π2e2

3mecλ2
lu

(13.9)

is the classical damping constant (dimensions s−1) and ∆νL is the Lorentz width, defined as
the half width at half maximum in hz

∆νL ≡
γcl

4π
(13.10)

Trivially, the full width at half maximum or FWHM = 2∆νL. In the line wings the Lorentz
profile drops of as ∆ν−2. Using φ(ν) dν = φ(x) dx, we may write the Lorentz profile in its
dimensionless form as

φ(x) =
1

π

1

x2 + 1
(13.11)
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where x = ∆ν/∆νL. The Lorentz profile fulfils the normalization requirement eq. (7.4). Note
that the characteristic natural line width in wavelength units, i.e. ∆λL = λ2

luγ
cl/4πc cm−1,

is constant and given by 6 10−5 Å. This is a very small value. Usually, other line broadening
mechanisms are more important.

The quantum mechanical equivalent of the damping constant is given by

Γ = Γu + Γl =
∑
i<u

Aui +
∑
i<l

Ali (13.12)

It is the sum of all possible spontaneous de-excitations from the upper level plus those from
the lower level (per second). Also the lower level plays a role because the width of the spec-
tral line is determined by the uncertainty in energy of both levels. One may simply add the
contributions of the upper and lower level as a convolution of two Lorentz profiles with half
width Γu and Γl yields again a Lorentz profile of which the half width is Γu + Γl. To get an
impression of how the classical values of the half width compare to the quantum mechanical
values: for the strong Hα-line of hydrogen we find ∆λL = 6.5 10−4 Å or 0.03 km sec−1.
This is about an order of magnitude larger than the classical value. Weak lines, with smaller
values of the Einstein coefficients Aul will have smaller natural line widths. For an idealized
two level atom it holds that Γ = Aul.

Doppler broadening

The motion of a radiating particle along the line of sight will cause a Doppler shift given by

∆ν

ν
= −∆λ

λ
=
ξ

c
(13.13)

Here ξ is the velocity component in the line of sight. A photon of frequency ν in the reference
frame of the observer and that is moving toward the observer, is seen to have a frequency

ν ′ = ν

(
1− ξ

c

)
' ν − νlu

ξ

c
(13.14)

by the moving particle. It can therefore only absorb this photon if frequency ν is such that
ν ′ corresponds to a line frequency in the rest frame of the particle. For a minute think of the
profile function as a delta function at ν ′ = νlu. Is the particle moving towards us (in which
case ξ is positive), the observers frame frequency ν needs to be bluer than νlu for the particle
to be able to absorb it. Likewise, for a particle that is moving away from us (in which case ξ
is negative), ν needs to be redder than νlu.

The distribution of thermal velocities in the line of sight is given by the one dimensional
Maxwellian velocity distribution (see eq. 6.14)

n(ξ)

N
dξ =

1

ξD
√
π

exp
[
− (ξ/ξD)2

]
dξ (13.15)
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where

ξD =

(
2kT

m

)1/2

= 12.895

(
T

104A

)1/2

km s−1 (13.16)

is the Doppler velocity, with m the mass and A the atomic weight (in amu) of the particle.

If thermal Doppler broadening is the only source of line broadening, such that in the co-
moving frame the profile function may be replaced by a delta function δ(ν ′ − νlu) – as in this
case the energy levels of the transition are infinitely sharp and the extinction will occur only
at a single (shifted) frequency – then one finds for the profile function in the reference frame
of the observer

φ(ν − νlu) =

∫ +∞

−∞
δ
(
ν ′ − νlu

) n(ξ)

N
dξ =

∫ +∞

−∞
δ

(
ν − νlu

ξ

c
− νlu

)
n(ξ)

N

dξ

dν
dν

=
n((ν − νlu)c/νlu)

N

c

νlu
(13.17)

where in the second right hand side we have switched to the usual unit of the profile function
(i.e. hz−1) and in the third right hand side we have taken ξ = (ν − νlu)c/νlu, such that
dξ/dν = c/νlu. One finds

φ(ν − νlu) = φ(∆ν) =
1√
π∆νD

exp
[
− (∆ν/∆νD)2

]
(13.18)

where

∆νD ≡
ξD

c
νlu =

νlu
c

(
2kT

m

)1/2

(13.19)

is the Doppler width. Equation (13.18) is referred to as the Doppler profile. The FWHM of
this profile is 2

√
ln 2 ∆νD. In a stellar spectrum one observes the combined effect of a large

number of atoms, that each have their own thermal velocity projected along the line of sight.
As ξD is proportional to A−1/2 large differences in the characteristic width of thermal profile
functions may exist. For a star like the sun (T ∼ 6000 K) the Doppler width for hydrogen
is typically 10 km sec−1, while for iron it is only 1.3 km sec−1 – more than seven times as
small.

The dimensionless Doppler profile function follows after introducing x = ∆ν/∆νD

φ(x) =
1√
π

exp(−x2) (13.20)

This function is properly normalized to unity.

Collisional broadening

Radiating or absorbing atoms and ions in a gas can not be treated as strictly independent
particles. The densities are usually so high that the atoms and ions will “feel” other particles,
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Table 13.1: Overview of collisional broadening mechanisms, and an indication of the type of stars for
which these are relevant (adapted from Rob Rutten).

p Mechanism Profile Atom/Ion Perturbers Spectral Types
2 linear Stark Holtzmark H, hydrogenic ions early-type

Lorentz? H, hydrogenic electrons early-type
3 resonance Lorentz atom A (read: H) atom A (read: H) solar
4 quadratic Stark Lorentz non-hydrogenic electrons, ions early-type
6 van der Waals Lorentz atom B atom A (read: H) late-type

even if this does not result in an extinction or emission of a photon (such as e.g. in a free-free
interaction). These other particles can be electrons, ions or atoms of the same kind, or also,
in case of cool stars, molecules. In the simplest representation, the energy levels of the atom
or ion that absorbs a photon will be somewhat disturbed by Coulomb interaction with other
nearby particles, such that (temporarily) their energy will be modified. The extend by which
these energy levels will be affected is a function of distance to, and the amount and nature of
the perturbing particles. The perturbation of the energy levels leads to a line broadening. This
process is refered to as collisional broadening or pressure broadening.

In many cases the perturbation of the level energies as a function of distance to the particles
that are responsible for it can be approximated by a powerlaw, i.e. ∆E ∝ r−p where p is
an integer number which depends on the type of interaction. One may expect that the upper
level of the transitions is more severely affected by the interaction than is the lower level. The
perturbation of the spectral line is simply the difference between the two independent levels,
i.e.

∆Eu −∆El = h∆ν =
Cp(l, u)

r(t)p
(13.21)

The interaction constant Cp needs to be measured or computed for each transition and type of
interaction (see table 13.1).

The lowest order broadening, p = 2, is the linear Stark effect. It is particularly important for
neutral hydrogen and causes the broad line wings of the Balmer lines, such as Hα, Hβ, Hγ
and Hδ, in main sequence stars (see § 2.1). Also hydrogen-like lines, such as the He II and
Rydberg lines – i.e. lines between levels with high main quantum numbers – are sensitive for
the linear Stark effect. The nature of the interaction is based on the fact that neutral hydrogen
has a permanent dipole character as the electron is not capable of fully shielding the proton.
The perturbing particles are protons and electrons. The decline of the interaction force is the
same as that of the Coulomb field of a point source, which implies that the perturbation of the
level energies is dependent on the field strength in the ambient medium.

Resonance broadening describes the mutual interaction between neutral hydrogen atoms, and
is based on the permanent dipole nature of these atoms. For this broadening mechanism the
decay is described by p = 3. The effect plays a role in those stars in which neutral hydrogen
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itself is the main perturbing particle. This is the case for solar type stars, where it is relevant
for the broadening of the Hα line.

Lines of atoms and ions that are not hydrogen-like, and that therefore do not have a dipole
moment, feel a quadratic Stark effect because of interactions with protons and electrons. For
this effect p = 4. In early-type stars interactions of non-hydrogenic atoms and ions with
electrons are the dominant cause of collisional broadening.

Interactions of non-hydrogen like atoms with neutral hydrogen are the dominant cause of
collisional broadening in solar-type or even cooler stars, brown dwarfs and gas giant planets.
This type of collisional broadening is called Van der Waals broadening and has p = 6.

 = (ρ 2+

ρ

v 2t2)1/2r(t)

r(t)

v

Figure 13.2: Schematic representa-
tion of the collision parameter ρ

It is beyond the scope of these lecture notes to give a
detailed description of the theory of collisional broad-
ening. We mention that there are formalisms to de-
scribe the problem in two limiting cases. In the impact
approximation the duration of the perturbation is short
compared to the time between collisions. It is a mean-
ingful way of describing perturbations that are effec-
tive over a short distance (i.e. the type of interactions
that have high values of p). The result of the pertur-
bation is described as a phase jump in the wave train
emitted by the exciting or de-exciting atom. This Lind-
holm approximation causes a broadening that is de-
scribed by a Lorentz profile – similar to natural broad-
ening – with a damping constant Γp that may be added
to eq. (13.12). The effective duration of the perturba-

tion is typically of the order ∆ts ∼ ρeff/v, where ρeff is the effective collision parameter (see
figure 13.2) and v is the velocity of the perturbing particle. The time interval between two col-
lisions is given by ∆tb = (Nπρ2

effv)−1 whereN is the density of the perturbers; v the velocity
of these particles, and πρ2

eff the effective collision cross section of the particle that suffers the
collision. The cross section depends on the type of interaction potential (see eq.13.21). The
validity of the impact approximation therefore also depends on the density of the impacting
particles. Only when this is sufficiently low, the approximation may be applied, as expected.

For increasing density the interaction time ∆ts will become shorter and shorter. At some
point the particles that are being perturbed will feel a continuous interaction due to (partly)
overlapping collisions. This allows for a statistical approximation, which is the other extreme
of describing the collisional broadening problem. The linear Stark effect is described in this
way because, due to the relatively slow decay of the interaction potential (∆E ∝ r−2), the
effective cross section is very large. In this approximation the profile function will deviate
from the Lorentz profile and has a so-called Holtzmark shape. In the line wings this profile
decays as ∆ν−5/2, whereas the Lorentz profile shows a ∆ν−2 dependence.
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Turbulent broadening

The profiles of spectral lines are often broader than one would expect on the basis of the known
broadening mechanisms. Examples of physical processes that might cause this broadening are
(several types of) waves and turbulent convection. One collectively refers to the motion fields
caused by these effects as turbulence. We implicitly ignore these turbulent motions when we
assume that the stellar atmosphere is time-independent and consists of homogeneous layers.
To “compensate” for this simplification we use two ad-hoc fit parameters, first introduced
by Otto Struve (1897–1963). These are the microturbulent velocity and the macroturbulent
velocity.

It is assumed that the microturbulent motions are random in nature and that they show a Gaus-
sian velocity distribution and correspond to characteristic length scales that are significantly
smaller than the geometrical thickness of the line-forming layer in the atmosphere. The effect
of microturbulence is a broadening of the profile function. Convolution with the thermal ve-
locity distribution (which truly is Gaussian in nature) yields a new Gauss distribution with a
Doppler width

∆νD ≡
νlu
c

√
ξ2

D + ξ2
micro (13.22)

where ξmicro is the microturbulent velocity. Micro turbulence may cause an increase in the
equivalent line width. If “saturation” occurs at line centre – i.e. all fotons that can be absorbed
at line centre are indeed absorbed – the presence of microturbulent velocity fields will have the
effect that the available wavelength regime over which fotons can be absorbed is increased.
In other words, more particles will be able to absorb line (wing) fotons, such that Wλ can
increase further (see section 13.4).

Also the macroturbulent velocity distribution is often assumed Gaussian. Here, however, one
assumes that the characteristic length scales of the gas elements that experience macroturbu-
lence is larger than the geometrical thickness of the line-forming layer. If one could observe
the stellar disk with sufficient spatial resolution, the macroturbulence would manifest itself
as small “wiggles” on the spectral lines. During excellent atmospheric conditions this has
indeed been observed for the sun (one finds velocity amplitudes of ∼ 0.3 to ∼ 3 km sec−1).
The surface integrated effect of macroturbulence is that the line profiles become broader and
less deep; the equivalent line width of the spectral line is not affected. The assumption of a
Gaussian distribution of the moving elements responsible for the macroturbulent motion field
is only justified when the velocity fluctuations are not coupled to temperature fluctuations,
such as could occur if rising gas elements have a higher temperature relative to those that sink
(think about granulation on the solar surface). If this is the case, then one should apply a
“multiple-stream model” for which asymmetric line profiles may occur.

Macroturbulence is (most simplistically) accounted for by convolving the computed absorp-
tion depth with a Gaussian velocity distribution

Dλ = Dcomp
λ ∗ 1

ξmacro
√
π

exp(−ξ2/ξ2
macro) (13.23)
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Figure 13.3: The Hjerting functionH(a, x) as function of x for different values of the damping param-
eter a. The dashed line gives the approximation H(a, x) ' a/

√
πx2 for the damping wings.

Voigt profile function

If the collisional broadening may be described by a Lorentz profile (such as in the impact ap-
proximation) the total damping profile will again be a Lorentz profile, with damping constant
γ = Γ+Γp. Assuming the collisional broadening and the thermal broadening are independent
processes, the final profile function will be a convolution of a Lorentz and a Doppler profile.
As the damping profile is properly normalized we may replace the δ-function in eq. (13.17)
by a Lorentz profile. This yields the Voigt profile

φ(ν − νlu) =

[
1√
π∆νD

exp
[
− (∆ν/∆νD)2

]]
∗
[

γ/4π2

(ν − νlu(ξ/c)− νlu)2 + (γ/4π)2

]

=
1√
π∆νD

∫ +∞

−∞

(γ/4π2) exp
[
− (∆ν/∆νD)2

]
(ν − νlu(ξ/c)− νlu)2 + (γ/4π)2

dν

=
1√
π∆νD

H(a, x) (13.24)

where

H(a, x) ≡ a

π

∫ +∞

−∞

exp(−y2)

(x− y)2 + a2
dy (13.25)
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y ≡ ξ

ξD
=
ξ

c

νlu
∆νD

(13.26)

x ≡ ∆ν

∆νD
=
ν − νlu
∆νD

(13.27)

a ≡ ∆νL

∆νD
=

Γ

4π∆νD
(13.28)

The function H(a, x) is the Hjerting function. Examples of Hjerting profiles are given in
figure 13.3. The Hjerting profile is not normalized, but has a surface

√
π in units of x. The

maximum value at profile centre is aboutH(a, x = 0) ∼ 1−a for a < 1. In most astrophysical
circumstances the value of a is between 10−3 and 10−1. For a� 1 the Hjerting function can
be approximated quite accurately by the sum of a Gaussian core and the damping wings of the
Lorentz profile, i.e.

H(a, x) ' exp(−x2) +
a√
πx2

(13.29)

For a ∼ 10−2 the transition between the Doppler core and the Lorentz wings is near x = 2.7,
where H(a, x) ∼ 10−3. It shows that the Doppler core extends quite far. Consequently, the
fact that in most cases collisional broadening is poorly known is irrelevant; after all the profiles
are Doppler shaped until far in the line wings. Only for really strong lines the wings will be
sufficiently strong to be insensitive to the Doppler velocity:

φ(ν − νlu) ∼ 1√
π∆νD

a√
πx2

=
1√
π∆νD

γ

4π∆νD

∆ν2
D√

π∆ν2
=

γ

4π2∆ν2
(13.30)

13.3 Rotational broadening

Line broadening through motion of the stellar surface

We first discuss the general theory of line broadening through motion of the stellar surface
(following Underhill, 1968). The coordinate system adopted is shown in Fig. 13.4. Here the
(x, y)-plane is the plane of the sky and the z-axis points towards the observer. The origin, O,
of the coordinate system is at the centre of the star. The position of any point P on the surface
of a star is determined by the distance R which is the distance OP, the angle ϕ which gives
the rotation of the plane through the z-axis and the line OP about the z-axis, and the angle θ
which is measured in the plane zOP from the z-axis towards the xy-plane. The angle ϕ varies
from 0 to 2π; the angle θ varies from 0 to π/2.

Let ds be an element of surface around the point P perpendicular to the lineOP and let dsz be
the projected element of area perpendicular to the z-axis. Let Iz(λ′) be the specific intensity
at wavelength λ′ (as seen by someone at P who is co-moving with the rotating star) emergent
at the point P in a direction parallel to the z-axis. The flux emitted by the star (in its own

https://ui.adsabs.harvard.edu/abs/1968BAN....19..526U/abstract
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Figure 13.4: The coordinate system used in describing rotational broadening. From: Underhill (1968).

reference frame) in the direction of the observer is (see also the description of the ray-by-ray
solution in section 3.4)

Fλ′ =

∫
S
Iz(λ

′) dsz (13.31)

where the integration is carried out over the total surface S which faces in the direction of the
observer. In general dsz can be expressed as an analytical function of the angles ϕ and θ and
of a unit distance R◦. The exact form of the relation depends upon the shape of the star. For
a spherical star R(θ, ϕ) = R◦, where the latter is the stellar radius. The integration over the
surface is performed by letting ϕ and θ vary over their whole range. If the element of surface
at point P has a component of velocity vz(P ) in the z-direction, such that vz is positive for a
surface element moving away from the distant observer, radiation of wavelength

λ′ = λ
(

1− vz
c

)
(13.32)

as seen by a co-moving observer at P , will appear to a distant observer to have the wavelength
λ. To this external distant stationary observer the wavelength λ′ is a function of the position of
point P on the stellar surface. Thus the flux at wavelength λ, as seen by the distant observer,
may be found from

Fλ =

∫
S
Iz(λ

′) dsz (13.33)

The above equation is entirely general. Particular cases such as the change in shape of spectral
lines due to rotation of the star, to pulsation or to macro-turbulence can be investigated by
substituting in eq. (13.33) particular expressions for Iz(λ′) and for sz . In the following the
case of the line profile resulting from a rotating star will be investigated.

https://ui.adsabs.harvard.edu/abs/1968BAN....19..526U/abstract
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The particular case of a rigidly rotating star

Consider the case of a spherical star of radius R rotating about the y-axis as a rigid body with
an equatorial velocity vR. It follows that at point P (θ, ϕ)

dsz = R sin θ cos θ dθ dϕ (13.34)

and
vR(P ) = vR sin θ cosϕ. (13.35)

Futhermore one can write with adequate accuracy

λ′ = λ− vR

c
λlu sin θ cosϕ (13.36)

where λlu is the wavelength at the centre of the line and λ is any neighbouring wavelength
such that ∆λ = λ − λlu is small with regard to λlu. The emergent intensity in the direction
of the z-axis, Iz at the point P is a function of the angles θ and ϕ as a result of, for instance,
limb darkening or effects of rotation. It also depends on the angles θ and ϕ through the
wavelength λ′, see eq. (13.36). In general, even for the case of a spherical star a numerical
approach is taken. However, if we assume the intrinsic profile of the line to be infinitely
narrow and independent of position on the stellar disk and when the limb darkening in the
continuum spectrum may be represented by a linear function of µ (such as the limb darkening
law proposed by Milne, see vgl. 11.29) the line broadening may be treated analytically. This
has first been shown by Shajn & Struve (1929). Following Unsöld (1955), we introduce the
rotational displacement of the line

∆λ =
λlu
c
ω x sin i (13.37)

where the angular velocity ω is a vector in the (y, z)-plane that is inclined at an angle i from
the z-axis towards the observer in the direction of the y-axis. If i = 0◦, we see the star pole-
on; if it is 90◦, we see the star face-on. The angular speed is ω = |ω|. If we see the star
face-on, the rotational velocity at the equator is vR = ωR. If we see the star at an inclination,
this maximum rotational velocity is only vR sin i. The maximum velocity displacement is
therefore ∆λR = (λlu/c)ωR sin i = (λlu/c) vR sin i.

Let us introduce the normalized x and y distance x′ = x/R and y′ = y/R, such that

∆λ

∆λR
= x′. (13.38)

Following Unsöld, we adopt for the emergent intensity

I(µ) = α (1 + β cos θ) = α (1 + βµ) (13.39)

where, as usual, θ is the angle between the radial direction and that of the beam towards the
observer. The angle µ will be the same for each circle around O, i.e.

sin θ =
√
x′2 + y′2 (13.40)

https://ui.adsabs.harvard.edu/abs/1929MNRAS..89..222S/abstract
https://ui.adsabs.harvard.edu/abs/1955psmb.book.....U/abstract
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Figure 13.5: Rotational broadening profiles for a rigidly rotating spherical star assuming the intrinsic
profile of the line to be infinitely narrow and independent of position on the stellar disk. The adopted
limb darkening law is a linear function of µ, given by eq. (13.39). Plotted is the line flux relative to the
continuum, i.e. 1 − D(x′). Top panel: the horizontal axis shows the wavelength shift ∆λ in units of
∆λR (so in units of x′). Profiles for β = 0 (solid line), 3/2 (dashed line) and∞ (dashed-dotted line)
are shown. Bottom panel: the horizontal axis shows the wavelength in velocity units relative to line
center. For three values of vR sin i (and β fixed to zero) de profile of a line that has an equivalent width
in velocity space Wv of 100 km sec−1 is shown.

such that
I(µ) = α

(
1 + β

√
1− (x′2 + y′2)

)
. (13.41)

If we normalize the flux in the line to unity in x′ space, we find for the absorption depth

Dx′ =

∫ √1−x′2
0 I(x′, y′) dy′∫ +1

−1

∫ √1−x′2
0 I(x′, y′) dy′ dx′

=
2
π

√
1− x′2 + β

2 (1− x′2)

1 + 2
3β

(13.42)

For β = 0, i.e. no limb darkening, the line profile shape is that of an ellips. For the limb
darkening law derived for the gray atmosphere (eq. 10.15) the coefficients α = 2/5 and
β = 3/2. In figure 13.5 examples of rotationally broadened profiles are shown. The top panel
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shows the effect of the limb-darkening coefficient β. In the lower panel β = 0 is adopted, but
profiles are plotted as a function of velocity shift relative to line center. This shows the effect
of different values of vR sin i. Rotation of the stellar surface will not affect the equivalent
width of the spectral line as only the observed velocity (frequency) of line flux is changed.
The equivalent width in velocity space Wv = 100 km sec−1. Notice that analyzing rapidly
rotating stars seen fairly edge on tends to become more challenging as the lines will become
shallow and broad, making them more difficult to distinguish from the continuum, especially
so if the density of spectral lines in a given frequency interval is large and/or the spectrum has
a fairly low signal-to-noise ratio.

13.4 Curve of growth

In the not so distant past, the curve of growth analysis, developed by Marcel Minnaert (1934),
was a commonly used method to analyze stellar atmospheres as it provides a simple and quick
way to estimate a number of important parameters – such as column depths, excitation- and
ionization temperatures, and abundances – by only using equivalent line widths. Nowadays
the method is not often employed anymore in the analysis of starlight, as thanks to the rapid
development in computer technology it has become fairly easy and efficient to use LTE/NLTE
model atmospheres. However, the method is still very much used in the study of Quasi Stel-
lar Objects (QSOs) and Gamma Ray Burst (GRB) afterglows (see e.g. Zhang et al. 1997
and Prochaska 2006). We will discuss the curve of growth in detail as the method provides
important insight in the physics of the formation of line profiles.

We consider a simple model for a stellar atmosphere consisting of two components: a geo-
metrically deep layer responsible for the continuum, which emits at a brightness temperature
Tb; and a homogeneous layer that is located further out, where the spectral line is formed, and
that emits according to a Planck function at temperature TL. We will assume that TL < Tb,
such that an absorption line is formed. Note that if the temperature in the line forming layer
would be higher than Tb the following discussion will remain valid.

The emerging intensity follows from eq. (4.49) and is equal to

Iλ = Bλ(Tb)e−τλ +Bλ(TL)
[
1− e−τλ

]
(13.43)

where τλ is the optical depth in the spectral line. If we neglect the contribution of stimulated
emission in the line extinction coefficient, such that eq. (7.32) reduces to

χλ = αlu(λ)nl =
πe2

mec

λ2
lu

c
flu

1√
π∆λD

nlH(a, x) (13.44)

where we have specified the profile function by the Voigt profile eq. (13.24). If we define the
integrated column depth in cm−2 of particles in level l that are in the line of sight throughout
the line forming region as

Nl ≡
∫
nl(s)ds (13.45)

https://ui.adsabs.harvard.edu/abs/1997ApJ...485..496Z/abstract
https://ui.adsabs.harvard.edu/abs/2006ApJ...650..272P/abstract
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Figure 13.6: The curve of growth for a Lyα of H I with a Doppler velocity ξD = 30 km sec−1. The three
regimes discussed in the text, the linear (weak lines), flat (saturated lines), and damping part (strong
lines) are shown by thicker curves. The approximations describing these regimes are Eq. 13.49, 13.51,
and 13.53, respectively. Corresponding line absorption profiles are shown for each regime and their
locations on the COG are marked with filled dots. Figure: Chris Churchill.

we obtain for the line optical depth

τλ = αluNl =
πe2

mec

λ2
lu

c
flu

1√
π∆λD

NlH(a, x) =
τ◦

H(a, 0)
H(a, x) ' τ◦H(a, x) (13.46)

where ∆λD is the Doppler width, a and x the Voigt parameters as defined in eq. (13.28), and
τ◦ the optical depth at line centre. Often a � 1, such that H(a, 0) ' 1 − a, which justifies
the last equality. For the relative depression dλ we get

dλ = 1− Iλ
Ic
λ

=
Bλ(Tb)−Bλ(TL)

Bλ(Tb)

(
1− e−τλ

)
≡ dmax

λ

(
1− e−τλ

)
(13.47)

with dmax
λ the maximum depression. This yields for the equivalent line width

wλ = dmax
λ

∫
line

(
1− e−τλ

)
dλ (13.48)
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Figure 13.6 shows how the line profile and equivalent line width depend on optical depth τ◦ for
a line that has dmax

λ = 1, i.e. in case the source function in the line forming layer is negligibly
small compared to the continuum source function. The behaviour of the equivalent width may
be characterized by three regimes.

Weak lines

First, the regime of weak lines, for which τλ � 1. In this limit the relative depression reduces
to dλ ' dmax

λ τλ. Say, we can measure the absorption depth of the profile with an accuracy of
one promille of the continuum intensity. Figure 13.3 tells us that for a spectral line that has
a = 0.01 the Doppler core will extend up to H(a, x) ∼ 0.01. A weak line with a relative
depression of 0.1 at line centre would then reach the measurement noise level at the point
where the Lorentz wing is about to become dominant. For weak lines we may thus replace the
Hjerting function H(a, x) by exp[−(∆λ/∆λD)2], which has surface

√
π∆λD. This yields

wλ ' dmax
λ τ◦

√
π∆λD =

πe2

mec

λ2
lu

c
flu d

max
λ Nl (13.49)

The equivalent width of weak (unsaturated) lines increases linearly with column depth Nl and
is independent of the profile function.

Rearranging the above relation yields for the column depth in cm−2

Nl flu d
max
λ = 1.13× 1012

(
wλ[cm]

λ2
lu[cm]

)
= 1.13× 1020

(
wλ[Å]

λ2
lu[Å]

)
(13.50)

Saturated lines

If τ◦ > 1, the core of the line becomes saturated. The intensity at line centre approaches
the value Bλ(TL) reflecting the maximum depression dmax

λ . The width of the line wings still
increases, however, the corresponding increase in the equivalent width is no longer linear with
τ◦, but proceeds at a slower pace. It approximately holds that

wλ ≈ dmax
λ Q(τ◦) ∆λD. (13.51)

For increasing optical depth, Q(τ◦) increases from about 2 to 6 in this “shoulder part” of the
curve of growth. An approximate analytical expression for this function is Q(τ◦) = 2

√
ln τ◦,

valid from τ◦ & 3. This regime of the curve of growth is therefore (also) often refered to as
the “logarithmic part”.

Strong lines

For very strong lines, i.e. lines for which τ◦ � 1, the line core is completely saturated and
does not react to a further increase of τ◦. However, the far line wings will still have τλ < 1. For
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a sufficiently large τ◦ both wings will contribute significantly because they are formed in the
damping part of the Voigt profile, i.e. whereH(a, x) ' a/(

√
πx2) = (a/

√
π)(∆λD/∆λ)2 ∼

1/∆λ2. This decrease with wavelength is much less dramatic than the exponential decay of
the Doppler core. In the damping part of H(a, x) we may write

τλ = τ◦
a√
πx2

= τ◦
a√
π

∆λ2
D

∆λ2
(13.52)

Using the transformation u2 = 1/τλ, we obtain after substitution in eq. (13.48) for the equiv-
alent width

wλ ' dmax
λ ∆λD

√
τ◦

a√
π

∫
line

(1− e−1/u2
) du

= dmax
λ ∆λD

√
τ◦a 2π1/4 (13.53)

For the last equality we used the standard integral∫ +∞

−∞

(
1− e−1/x2

)
dx = 2

√
π (13.54)

The assumption that we have used here to derive the curve of growth, i.e. an atmosphere
consisting of a homogeneous layer that is in LTE, such that S` = Bλ(TL), placed in front of
a layer from which a continuum is emitted that is also a Planck field, is called the Schuster-
Schwartzschild model. It will not come as a surprise that this model does not provide a very
realistic representation of the stellar atmosphere. An improvement that can still be done an-
alytically is the Milne-Eddington approximation. Here it is assumed that the source function
is a linear function of the continuum optical depth, that LTE holds, and that the profile func-
tion φ(λ − λlu) and the ratio between the line and continuum extiction ℘λ = χλ/χc are
independent of depth in the atmosphere. The result wλ(τ◦) turns out to be identical to the
Schuster-Schwartzschild result if τ◦ is replaced by ℘λ. We therefore do not discuss details of
this approximation.

Empirical curve of growth

In real life the curve of growth method is applied somewhat different than described above.
On the vertical axis one plots logWλ/λ. One therefore does not divide by ∆λD = λξD/c,
after all the Doppler and microturbulent velocities ξD are not known, but by the wavelength,
such that we obtain a quantity that is independent of wavelength of the applied set of lines.
The horizontal axis, in principle, contains the column depth of the particles responsible for the
spectral line, i.e. Nl =

∫
nljk ds. Splitted out in terms of excitation, ionization, and elemental

abundance, one obtains for the particle density

nljk =
njlk
Njk

Njk

Nk

Nk

NN
NN

=
gljk

Ujk(Text)
e−Eljk/kTextqjk(Tion)AkNN (13.55)
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where we have adopted the LTE formalism. The excitation fraction is described by eq. (6.22)
and the ionization fraction qjk by eq. (6.33). Text is the excitation temperature and Tion the
ionization temperature. In LTE these are locally equivalent. However, the curve of growth
measures column densities, implying that Text and Tion represent temperatures that corre-
spond to excitation and ionization fractions that are averaged over this entire column. These
mean temperatures need not be equal, therefore they both are introduced.

In many applications of the curve of growth the excitation energy is expressed in electron volt.
Using that the temperature associated with 1 eV is equal to E/k = 11604.5 K, one finds

e−Eljk(erg)/kT = e−11604.8Eljk(eV)/T = 10−5039.9Eljk(eV)/T (13.56)

Taking the energy in eV, the horizontal axis of the curve of growth becomes

logX = logC + log(gljkfluλlu)− 5039.9Eljk/Text (13.57)

where

C =
πe2

mec

Dmax
λ√
πξD

qjk(Tion)AkNN (13.58)

and NN is the column density of nuclei; Dmax
λ the saturation absorption depth as measured in

the flux; ξD is the thermal plus turbulent velocity averaged over the line forming region (see
eq. 13.22), and qjk is the mean ionization, averaged over the same region, and described by
the temperature Tion.

A systematic (practical) method is to build up the curve of growth in several steps. First, one
could plot only those lines that originate from the groundlevel of one particular ion. These
lines differ in gf -value (see § 7.3) but not in any other parameter. The next step is to plot
lines from a different lower level. Because of the excitation term 5039.9Eljk/Text this new
curve of growth will will be shifted relative to the first one. By shifting both curves on top
of each other as best as possible the excitation temperature may be derived. The ionization
temperature is derived by comparison of the curves for different ions with model predictions.
Note that the ionization equilibrium will be a function of temperature and electron density
(see eq. 6.24). The latter implies that the shifting due to ionization is, at least in principle, also
a measure of the total particle density, and therefore of the surface gravity. Abundances may
then be determined by shifting curves of growth for different elements, and comparing these
shifts with predictions.

In determining Text, Tion, and Ak, using the method described above, relatively weak lines
positioned on the linear part of the curve of growth may be used. In this regime the lines are
independent of Doppler and micro-turbulent velocity as each photon that can be absorbed by
the line will be extincted, regardless of whether it is a line centre or a line wing photon. For
saturated lines that are located on the logarithmic (or shoulder) part of the curve of growth this
is not so. Saturation implies that (at first) at line centre more potentially extincting particles are
present than there are continuum photons offered to the line forming layer. The value ofX for
which the equivalent width is no longer linear will depend on the value of the micro-turbulent
velocity. If ξmicro is relatively large, the flattening of the curve of growth will occur later.
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Figure 13.7: Schematic explanation of the way the curve of growth works. For a large turbulent velocity
ξD, proportional to ∆λD, the line will saturated later. Therefore the shoulder part of the curve of growth
is further to the right. For a large value of the damping constant, proportional to a, this shoulder part
will switch sooner to the

√
X dependence for strong lines.

This is so because for large turbulent velocities the intrinsic profile will be broader, therefore
less particles can extinct at line centre, such that saturation will occur later, at larger X . This
dependence of the curve of growth on ξmicro is pictured in figure 13.7. It may be clear that
from a comparison of these regions of the curve of growth with model predictions one may
determine the microturbulent velocity.

In principle, one may use the parts of the curve of growth that are caused by the damping
wings of strong lines to determine the gravity. In a star with a relatively large value of log g
the particle density in the line forming region will be larger. Therefore, the curve of growth
of a given line, such as the sodium D2 in the solar spectrum, will switch sooner from the
shoulder part to the

√
X dependence of strong lines. To use this part of the curve of growth

as a diagnostic it is essential that the damping constant γ is well known. After all, γ has a
similar effect on the curve of growth as has log g, such that a poorly known damping constant
will introduce a large uncertainty in the gravity. This is also pictured in figure 13.7.
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Exercise 13.1

Show that the equivalent width in frequency units is

Wν(line) ≡
∫

line

(
1− Fν
Fc
ν

)
dν (13.59)

and that it is related to the equivalent width in wavelength units as Wν = c/λ2Wλ.

Exercise 13.2

Is the equivalent width dependent on interstellar extinction? Why (not)? Is the total line
flux dependent on interstellar extinction? Why (not)?

Exercise 13.3

This could be a nice exam question. It is believed that the sun is inside a local bubble
of hot gas of about a million degrees and hydrogen density nH = 10−3 cm−3. This
gas is highly ionized and hence provides no significant opacity for observations within
100 pc or so. However, numerous investigations have shown that there is a minimum
column density of neutral hydrogen of about NH = 1018 cm−2 toward all stars observed.
Therefore it appears that we are embedded in a small, at least partially neutral cloud
with approximately this column depth towards its edge. The temperature of the gas in
this bubble within a bubble is 8 000 K and the neutral hydrogen density nH = 0.1 cm−3.
Assume all H I to be in the ground state. Furthermore, assume that the bubble of neutral
gas is spherical and that we are at its center.

a) What is the diameter of this bubble, assuming an atomic hydrogen density of nH =
0.1 cm−3.

b) Derive an expression for the optical depth in the Lyα line of hydrogen in terms of the col-
umn depth in hydrogen and a constant temperature in the local bubble. Use equation 7.22
and assume a Gaussian line profile function.

c) Is the local bubble optically thin or thick at the center wavelength of Lyα?

d) In spectra of distant quasars we do see numerous Lyα lines caused by intervening galactic
halos and gas clouds. How can this be?
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Exercise 13.4

In this exercise we will derive the Lorentz profile eq. (13.8) following the classical de-
scription of Hendrik Antoon Lorentz (1853 – 1928), professor in theoretical physicist at
Leiden University and winner of the Nobel prize in 1902. We assume the bound electron
in the atom may be described by a (one dimensional) damped harmonic oscillator suffer-
ing from periodic excitation with angular frequency ω in an electromagnetic fieldE◦eiωt.
The eigen angular frequency of the damped oscillations is ω◦; the damping constant is γ.
The equation of motion for this system is therefore given by

meẍ+ γmeẋ+meω
2
◦x = eE◦e

iωt, (13.60)

where we have introduced ∂x/∂t = ẋ and ∂2x/∂t2 = ẍ to simplify the notation and e is
the charge of the electron. The first term on the left hand side is the force due to inertia;
the second term is the damping force, the third term is the restoring force.

a) Using the ansatz x(t) = x◦e
iωt, first write down an expression for (the complex solution)

x(t) in terms of the unknowns of the problem.

As the solution is complex in nature, Larmor’s law (see eq. 8.16) implies that the radiated
power is given by

p(t) =
2

3

e2

c3
[<(ẍ(t))]

2
. (13.61)

To obtain the mean radiated power p requires us to average the radiated power over one
period, i.e. to determine [<(ẍ(t))]

2.

b) Derive the expression for p. Recall that

sinωt =
eiωt − e−iωt

2i
and cosωt =

eiωt + e−iωt

2
(13.62)

You will find that the average power yields an expression of the form

p =
2

3

e4E2
◦

3m2
ec

3
f(ν), (13.63)

where f(ν) is the function describing the frequency dependence of the radiation. To
obtain the normalized profile function or Lorentz profile φ(ν), fulfilling requirement
eq. (7.4), one should determine a normalizing constant C, such that, for instance, f(ν) =
φ(ν)/C.

c) Determine the constant C and derive the Lorentz profile φ(ν), realizing that ∆ν = ν −
ν◦ � ν ' ν◦. Recall that ∫ +∞

−∞

dx

1 + x2
= π. (13.64)

In the ‘classical’ picture of a driven-damped oscillator, the damping of the system must
be exactly compensated by the periodic excitation. This implies that the power associated
with the damping force Fdamp = γme ẋ(t), i.e. pdamp(t) = γme ẋ

2(t), and the mean
radiated power p(t) = (2e2/3c3) ẍ2(t) should cancel out.
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d) Use the ansatz x(t) = x◦e
iωt (again) to show that the classical damping constant is given

by eq. (13.9).

Exercise 13.5

Before model atmospheres became available it was customary to estimate an electron
density from the Inglis-Teller formula which relates the principal quantum number nmax

Balmer

of the “last spectrally resolvable line” of the hydrogen Balmer series (i.e. the line with
the highest frequency that still can be seen unblended by its neighbouring Balmer lines)
to the electron density ne according to the law

log ne = 23.26− 7.5 log nmax
Balmer (13.65)

For the A2 I star αCyg it is found that nmax
Balmer = 29; for the A3 V star Sirius one finds

nmax
Balmer = 18.

a) Explain why there is a relation between ne and nmax
Balmer.

b) Obviously, the electron density is a function of depth in the stellar atmospheres. Which
electron density is probed when applying the Inglis-Teller formula: ne at ...

1. the depth at which the continuum optical depth in the optical is about unity.

2. the depth at which the continuum optical depth in the infrared is about unity.

3. the depth at which the optical depth of optical Balmer lines is about unity.

4. the depth at which the optical depth of infrared Balmer lines is about unity.

Explain your answer.

c) Discuss why αCyg has a higher nmax
Balmer than Sirius.

Exercise 13.6

Derive the rotational broadening profile eq. (13.42). Remember that∫ √
a2 − x2 dx =

1

2

(
x
√
a2 − x2 + a2 arcsin

x

a

)
(13.66)
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Scattering

Arguably the most fundamental physical complication inherent in solving radiation transfer
problems is that of scattering. Scattering has the effect that the radiation field gets decoupled
from local source and sink terms. Because of scatterings, photons may travel large distances
through the medium without interacting with this medium. Therefore, due to a strongly de-
viant radiation field generated at some distant place, the local radiation field may be com-
pletely different from the radiation that is produced locally (by the local thermal source func-
tion). It is therefore scattering that makes that radiation transfer is a global problem and that
communicates to regions of large optical depth that the medium has an open edge, through
which photons escape. The above states that even at large optical depth, scattering may cause
the mean intensity Jν(r, t) to be strongly deviant from the locally produced thermal radiation
Bν(T (r, t)).

We will investigate the effect of scattering using (1) continuum formation, and (2) line forma-
tion in a homogeneous semi-infinite medium. It may be clear that we – in order to determine
the effect of scattering – can no longer assume the relevant (continuum or line) source function
to be given by the local Planck function. For the line formation example this implies that we
may no longer assume LTE. The source function now needs to include a scattering component,
therefore it will have the more general form of eq. (9.43). Working out this proto-type source
function in some more detail, to get a sense of what to expect, we get

Sν =
κνBν + σνJν
κν + σν

= ενBν + (1− εν)Jν (14.1)

where

εν =
κν

κν + σν
(14.2)

Here εν is the thermal coupling parameter or destruction probability. In case only thermal
emission processes play a role, one has εν = 1, therefore Sν = Bν . If only scatterings occur,
such that εν = 0, one finds Sν = Jν .
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14.1 Continuum scattering

For several types of stellar atmospheres the thermal coupling parameter εν for continuum
radiation may be very small in a large fraction of the atmosphere. For instance, scattering
of light by free electrons is the dominant source of extinction in the outer layers of hot stars.
For hot stars even relatively deep layers may show εν values of the order of only 10−4, until,
finally, for ever increasing density, free-free processes (recall χff

ν ∝ ρ2) win from Thomson
scattering (recall: χe ∝ ρ). In cool stars that have a low metal abundance, hydrogen will be
neutral in the upper part of the atmosphere and free electrons will be scarce. Here Rayleigh
scattering on H and H2 will dominate the H− extinction and εν will be almost zero up to
large depth (when finally hydrogen will rather abruptly excite and ionize, and εν will quickly
approach unity).

We will now show that if εν → 0 the continuum radiation field may (will!) differ from the
local Planck function up to large optical depth. To do so we adopt a geometry of planar layers
and assume that the Planck function is a linear function of optical depth, i.e.

Bν(τν) = aν + bντν (14.3)

Below, we will even assume the medium to be homogeneous, i.e. bν = 0. Until then we
keep things somewhat more general. We do already assume that εν is constant. The 0th order
moment of the transfer equation (eq. 4.43) can be written as

dHν

dτν
= Jν − Sν = εν(Jν −Bν) (14.4)

If we use the Eddington approximation (we embark on a journey towards large optical depth,
where fν → 1/3) to re-work the 1st order moment (eq. 4.44) to

dKν

dτν
=

1

3

dJν
dτν

= Hν (14.5)

we find after substitution

1

3

d2Jν
dτ2
ν

=
1

3

d2(Jν −Bν)

dτ2
ν

= εν(Jν −Bν) (14.6)

where the second equality is allowed because of the particular form of eq. (14.3). The general
solution of this differential equation is

Jν −Bν = ανe
−
√

3εν τν + βνe
+
√

3εν τν (14.7)

As we require that Jν → Bν for τν → ∞ it must hold that βν = 0. To determine αν we
use the boundary condition Hν(0) = gν(0)Jν(0). The value of the Eddington factor depends
on the geometry of the problem. In the case of a sharply peaked radiation field gν(0) = 1
(see § 3.6). However, here it is much more appropriate to adopt the solution of the grey
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atmosphere: gν(0) = 1/
√

3 (see eq. 10.9 and table 10.1). The boundary condition equation
then becomes (see eq. 14.5)

Jν(0) =
√

3Hν(0) =
1√
3

dJν
dτν

∣∣∣∣
0

(14.8)

such that we find for the mean intensity

Jν(τν) = aν + bντν +
bν/
√

3− aν
1 +
√
εν

e−
√

3εν τν (14.9)

and for the source function

Sν(τν) = aν + bντν + (1− εν)
bν/
√

3− aν
1 +
√
εν

e−
√

3εν τν (14.10)

As already implied by eq. (14.1) for small εν the source function will be almost equal to
the mean intensity. Note that for τν → ∞ one recovers Jν → Bν and Sν → Bν , as one
should. The above solutions clearly show the physics of the scattering problem. First, at the
surface Jν is remarkably different from Bν . If we assume for simplicity that the medium is
homogeneous, i.e. bν = 0, we find that at τν = 0

Jν(0) =

√
εν

1 +
√
εν
Bν (14.11)

For very small thermal coupling parameters εν one obtains Jν(0) → √ενBν , i.e. the mean
intensity becomes much smaller than the Planck function. The run of the source function in a
homogeneous medium is given in figure 14.1. It holds that Sν(0) =

√
ενBν (a result that is

much more general than one would expect given the rather rigorous approximations we have
made here). For εν � 1 we obtain Jν(0) → Sν(0). This illustrates that the mean intensity
follows the source function, and not the Planck function. We also see that the discrepancy
between Jν andBν reached up to large depth in the medium. The exponential term shows that
only Jν → Bν if τν & 1/

√
εν . For media that are dominated by scatterings this can be a very

large optical depth. When eventually the mean intensity approaches the Planck function we
say that the radiation field is thermalized. τν = 1/

√
εν is called the thermalization depth.

The following physical insight may help in gaining a beter understanding of the concept of
thermalization optical depth: the thermal coupling parameter εν = κν/(κν + σν) is simply
the probability that a photon that is interacting with a particle is destroyed (i.e. converted into
thermal energy). To be absolutely sure that the photon is destroyed it has to experience on
the order of n = 1/εν interactions. If the trajectory of the photon through the medium is
described by a random walk, with a mean optical photon path ∆τν ∼ 1 (see § 4.3), the total
optical depth it can travel before being destroyed will given by

τν =
√
n∆τν = 1/

√
εν ∆τν ∼ 1/

√
εν (14.12)

Photons that are emitted at a larger optical depth most probably will not be able to escape
without begin thermalized first (which is why Jν → Bν), while photons that are generated
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Figure 14.1: The continuum source function in a homogeneous semi-infinite medium as a function
of the optical depth τν . Sν is normalized to the Planck function Bν . The curves give solutions for
different values of the destruction probability εν .

at a smaller optical depth most likely are able to escape (causing Jν to become less than the
thermal value Bν). Note that if εν = 1, i.e. in each interaction the photon is destroyed, the
thermalization optical depth τν ∼ 1, as expected, because in this case the optical depth scale
is the same as the thermal optical depth scale (dτν = dτ therm

ν ≡ κνdz).

14.2 Line scattering in a two-level atom

One of the best examples showing that the source function is composed of a thermal and
a scattering contribution is that of the two-level atom. The two-level atom is an idealized
problem. Real atoms have many energy levels, therefore, at first sight, this approximation may
seem to be grossly inadequate. However it actually provides a surprisingly good description
of line formation in a number of cases of interest. This is why we will discuss it here in certain
detail.

The general formulation of the line source function in a two-level atom is given by eq. (7.27).
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If we assume complete redistribution this reduces to

S`ν =
nuAul

nlBlu − nuBul
=

2hν3
lu

c2

1

(gunl)/(glnu)− 1
(14.13)

The last equality is identical to eq. (7.28). Note that the source function is dependent on the
population ratio nl/nu. In LTE we assume that the line source function is equal to the local
Planck function, i.e. S`ν = Bν , implying that the ratios between level populations are given
by the Boltzmann excitation equation. Consequently, it also implies that in LTE scattering
processes do not play a role in determining the behaviour of the line source function. By that,
the state of the gas can not depend on a radiation field that is generated elsewhere – where
conditions may be completely different.

To study the effects of scatterings we must therefore not assume LTE. Rather, we must derive
the ratio of the population of lower level 1 and upper level 2 from the statistical equilibrium
equation (9.19). This equation states that the number of transitions into state 1 (or 2) should
be equal to the number of transitions out of state 1 (or 2); phrased differently

n1 (R12 + C12) = n2 (R21 + C21) (14.14)

Here R is the radiative- and C the collisional rate per particle per second. The radiative
excitation rate is given by eq. (7.5); that of radiative de-excitation is the sum of eq. (7.3) and
(7.6). The collisional excitation rate is given by eq. (7.7). The relation between C12 and C21

follows from eq. (7.9), and for our two-level atom is given by

C21

C12
=

(
n1

n2

)∗
=
g1

g2
exp (hν12/kT ) (14.15)

Source function of the two-level atom

Armed with the above knowledge, it follows, after substitution of the SE ratio for n1/n2 in the
outermost right hand side term of equation (14.13), and using the Einstein relations eq. (7.15)
and eq. (14.15), that

S` = (1− ε)J12 + εBν12 (14.16)

where

ε =
ε′

1 + ε′
in which ε′ =

C21 [1− exp(−hν12/kT )]

A21
(14.17)

The two-level approximation provides a good approximation for resonance lines. These usu-
ally occur in the ultraviolet part of the spectrum where the frequency is relatively high, there-
fore hν/kT � 1. This implies that ε may be approximated by

ε ≈ C21

C21 +A21
(14.18)
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which shows that it simply represents the thermal coupling parameter or destruction probabil-
ity, i.e. the probability that an absorbed photon is destroyed by a collisional de-excitation pro-
cess (C21) rather than being conserved by re-emission in a spontaneous de-excitation (A21).
Equation (14.16) is the most fundamental equation of the problem. The first term at the right
hand side reflects the creation of photons by scattering, i.e. by emission following the absorp-
tion of photons. The second term reflects the thermal creation of photons, i.e. by emission
following collisional excitations.

We will assume that the profile function is given by a pure Doppler profile, i.e. we neglect
natural line broadening and accept that the only broadening is due to the thermal motions
of atoms. For a description of this profile we use its dimensionless form eq. (13.20). The
absorption in the line can then be described as

χx = χφ(x) (14.19)

By analogy we obtain for the emission ηx = ηφ(x). Note that the extinction χx is not equal
to the extinction at line centre, χ0. In case of a Doppler profile it holds that χ0 = χ/

√
π. The

optical depth τ corresponding to the frequency-independent opacity χ is called the frequency-
averaged opacity in the line, and is the logical optical depth scale in terms of which we will
discuss the two-level atom. The optical depth τ and the monochromatic optical depth are
related by

τx = τφ(x) (14.20)

Interpretation of the two-level atom

From a mathematical point of view the source function (eq. 14.16) is still a linear function of
the mean intensity. This implies, that although there is a global coupling between the radiation
field and the material medium, the problem is still relatively simple and can, for instance, be
solved with the Feautrier method. This solution method will be presented in some detail at the
end of this section. We first take a closer look at the meaning of the solution of the two-level
atom, presented in figure 14.2. To obtain this solution we have used the fact that the medium
is homogeneous, ε, Bν , and χ are independent of τ .

What do we learn from this result? In the limit τ → 0 the source function S` →
√
εBν12 . This

result is valid regardless of the exact shape of the profile function. Several rigorous mathe-
matical proofs of this result exist, but these will not be discussed here. For us it is important
that S`(0) < Bν12 . Why is this so? In a homogeneous medium departures from LTE (i.e.
S`ν 6= Bν) arise only because of the presence of a boundary through which photons escape. In
regions of high opacity, where the line photons do not yet “feel” the presence of the boundary,
all microscopic processes depicted in figure 7.1 are in detailed balance. Phrased differently:
LTE holds. However, as soon as photons do start to feel the edge, radiative excitations will
no longer be balanced by radiative de-excitations. Since the absorption rate depends on the
number of photons present, while the spontaneous emission rate does not (we neglect for sim-
plicity the stimulated emission), the number of radiative excitations drops below the number
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Figure 14.2: The source function of the two-level atom in a homogeneous semi-infinite medium as a
function of the frequency averaged optical depth τ . S is normalized to the Planck function Bν12 . The
curves give solutions for different values of the destruction probability ε, labeled in the figure.

of de-excitations as soon as photons start to escape. The lower level will consequently start to
be depopulated with respect to LTE, while the upper level will be underpopulated. Since the
source function measures the number of photons created per unit optical depth, and since the
number of created photons is proportional to the population of the upper level (because this is
the level from which the atomic transitions accompanied by the photon emission occur), the
source function has to drop below the Planck function, i.e. S` will be less than Bν12 .

At some optical depth the source function will start to deviate from the Planck function. This
optical depth is called the thermalization depth τth. Figure 14.2 shows that for a Doppler
profile τth ∼ 1/ε. Note that for a typical value ε = 10−6 the optical depth at which this occurs
is very large: τ ∼ 106. Why is this so? After all, one would expect that the boundary is first
felt by an “average” photon when τ ∼ 1.

The reason is that in a spectral line it is not the “average” photon that is responsible for
the transfer and escape of photons. To better understand this, let us follow the trajectory
of a photon from the point where it is created by a thermal emission. We assume that this
happens at large optical depth. It is very likely that the newly created photon has a frequency
that is close to that of line center. After all, this is where the profile function φ(x) has its
maximum. For this frequency the monochromatic optical depth τx = τφ(x) is large and
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Figure 14.3: Schematic representation of a trajectory of a photon in a gas of two-level atoms (from
Hubeny, in Stellar Atmospheres: Theory and Observation).

therefore the geometrical distance the photon will travel – i.e. the distance corresponding to
∆τx ∼ 1 – will be small (see § 4.3). Probably a similar scenario will unfold in the next
scattering events. This yields the following picture of the path a photon will follow in case
of complete redistribution: the particle of light will experience many successive scatterings,
all at a frequency close to line center; the geometrical distance the photon will cover in all
these interactions is, however, small. But, in the rare occasion that the photon is emitted in the
wing of the profile function, where the optical depth is orders of magnitude less, it suddenly
can travel a large distance. This situation is schematically shown in figure 14.3. Phrased
differently: the transfer of photons in the core of the line is very inefficient; the crossing of
geometrical space occurs during the rare excursions of the photons into the line wings. It is
now clear why the thermalization optical depth is so large: it is determined by photons in the
line wings that have an average mean free path that is much larger than that of photons in
the line core. However, realize that it is the line core photons that define the frequency mean
optical depth τ .

Why is the thermalization depth a function of destruction probability? The total number of
successive scatterings is of the order 1/ε; if the photon has not escaped before it has experi-
enced 1/ε scatterings it will be destroyed by means of a collisional deexcitation. It will not
have been aware of a boundary to the medium. This illustrates that ε must play a role in de-
termining the thermalization depth. But why is τth ∝ 1/ε, and not, for instance, proportional
to 1/

√
ε as is to be expected in case the photon distances itself from its point of creation by

means of a random walk (see § 14.1)? Essentially, the answer is already given above: if the
photon escapes, it does so in the line wing by means of one long flight in the right direction,
i.e. in the direction of the surface. (As long as the photon has a frequency close to that of
line center it follows a more or less “random walk”, however, as discussed, it does not travel
a significant geometrical distance.)
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We may quantify the above consideration using the escape probability formalism.

Escape probability

The probability that a photon with frequency ν and propagating in the direction specified by
angle µ escapes in a single flight is given by

pνµ = e−τνµ (14.21)

This follows from the physical meaning of optical depth (see section 4.3). In a plane-parallel
medium it holds that τνµ = τν/µ. The angle-averaged escape probability is thus given by

pν =
1

2

∫ 1

0
e−τν/µdµ (14.22)

where the integration only extends for angles µ ≥ 0, since photons moving in the inward
direction (µ ≤ 0) cannot escape. The angle- and frequency-averaged escape probability for
photons in a single spectral line is given by

pesc =

∫ +∞

−∞
φxpx(τx)dx (14.23)

where we have switched to the frequency variable x and the frequency averaged optical depth
τ . Notice that at the surface pesc(0) = 1/2, because a photon is either emitted in the outward
direction, in which case it certainly escapes, or in the inward direction, in which case it does
not escape.

We now need to compare the escape probability pesc to the photon destruction probability
pdes = ε. If pesc � pdes, photons are likely thermalized before escaping from the medium.
In other words: the line photons de not feel the presence of the boundary, and therefore S` ∼
Bν12 . If pesc � pdes, photons likely escape before being thermalized. It is therefore natural to
define the thermalization optical depth τth, as

pesc(τth) ≡ pdes = ε (14.24)

i.e. as the optical depth for which photon escape (by direct flight) is equally probable as the
destruction of photons by a collisional process.

Substitution of (14.23) in (14.24) yields the sought-after relation between τth and ε. This
relation for the escape probability may be a bit too abstract to give a clear physical picture.
To obtain a deeper understanding we will approximate the intergral in equation 14.23 using
a dichotomous model. To do so we divide the frequencies x in two categories: the “optically
thick” frequencies, for which τx > 1, and the “optically thin” frequencies, for which τx < 1.
The critical frequency that divides the two regimes is given by

τφ(xc) = 1 (14.25)
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For the Doppler profile (13.20) it follows that

xc =

√
ln(τ/

√
π) (14.26)

i.e. the critical frequency is a function of the frequency averaged optical depth τ . In our
dichotomous model we now assume that all photons having an “optically thick” frequency
will be absorbed, while all frequencies have an “optically thin” frequency will escape by a
direct flight in the outward direction. The photon has a probability 1

2φ(x)dx to be emitted in
the outward direction with a frequency in the interval (x, x + dx). In this picture the total
escape probability of the photon is given by

p(τ) =
1√
π

∫ ∞
xc

exp(−x2) dx =
1

2
erfc(xc) ≈

exp(−x2
c)

2
√
πxc

(14.27)

where erfc(x) is the complimentary error-function. The asymptotic behavior of this function
is given by the expression at the far right hand side. Finally, substition of (14.26) in (14.27)
yields

p(τ) ≈ 1

2τ
√

ln(τ/
√
π)

(14.28)

which within a factor of two (it is twice as large) is equal to the exact asymptotic expression,
i.e. if we would not have adopted the dichotomous model. Equating the obtained result to the
escape probability ε we get

τth =
1

2ε
√

ln(τth/
√
π)
≈ constant

ε
(14.29)

where the constant is of the order unity. This, finally, yields the anticipated result: the ther-
malization optical depth scales as τth ∝ 1/ε.

Numerical solution using Feautrier

We will now describe a way to numerically solve the two-level atom. In doing so we will
assume the line to be formed in a homogeneous semi-infinite medium, i.e. ε, Bν en φ(x) do
not depend on τ . However, each of these parameters may be choosen to be depth-dependent
without causing additional complications. The source function (14.16) can be written as

S`(τ) = (1− ε)
∫ ∞
−∞

φ(x)J(τ, x)dx+ εB (14.30)

= (1− ε)
∫ ∞
−∞

φ(x)dx

∫ 1

0
u(τ, µ, x)dµ+ εB (14.31)

with u the symmetric average of the specific intensity (see equation 5.13). Notice that we have
dropped the frequency subscript of the Planck function; Bx will not change significantly over
the width of the line profile and may be computed once at, say, x = 0.
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In order to switch to the difference representation, we introduce a set of optical depth points
{τd}, d = 0, ..., D for which τ0 < τ1 < ... < τD; a set of angle points {µm},m = 0, ...,M ;
and a set of frequency points {νn}, n = 0, ..., N . Using this grid notation we obtain for the
difference form of the source function

Sd = (1− ε)
N∑
n=0

an

M∑
m=0

bmudmn + εB (14.32)

where an and bm are the quadrature weights of frequency and angle, respectively. In other
words ∫ +∞

−∞
φ(x)f(x)dx →

N∑
n=0

anf(xn) (14.33)

∫ +1

0
f(µ)dµ →

M∑
m=0

bmf(µm) (14.34)

The transfer equation can again be reduced to the standard 2nd order differential form

µ2
m

d2umn
dτ2

= φ2
n (umn − S) (14.35)

The source function connects all frequencies and angles. Important to realize is that the source
function is a linear function of the specific intensity. The set of equations (14.35) therefore
represents a system of linear differential equations.

For ease of notation we can group all angles and frequencies in a single set of grid points i for
which (µi, νi) = (µm, νn) for i = m+ n×M . We choose to introduce a column vector ud,
with dimension I = M × N , consisting of the angle-frequency components at depth d, i.e.
(ud)i = udi. Transfer equation (14.35) can then be written as a matrix equation

−Adud−1 + Bdud −Cdud+1 = Ld (14.36)

This equation is identical to (5.29), however the meaning of ud and the coefficients Ad, Bd

and Cd is different. In the Feautrier scheme eq. (5.30) Ad are Cd are now (I × I) matrices of
which the diagonals contain terms given by the difference form of the transfer equation. Bd is
a full (I × I) matrix of which the diagonal again contains terms given by difference form of
the transfer equation, but which also has off-diagonal terms that represent the integral over the
angle-frequency points of the source function (14.32). Ld is a vector that contains the thermal
sources. The total system has a blok tri-diagonal structure for which the solution proceeds
with a forward-backward recursive sweep, as discussed in § 5.2.

However, to obtain the matrix coefficients Dd and Ed (the matrix analogs of (5.32) en (5.33)
respectively) requires the actual inversion of the full matrices Fd ≡ Bd −AdDd−1. In real
problems the number of frequency- and angle points I tends to become quite large quite easily
making matrix inversions very CPU intensive. Therefore, this method – though very elegant
– is often not very practical, not even for linear problems.
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The alternative is to solve the problem by means of iteration. In an iterative procedure the
approach is to simply solve transfer equation (14.35) by means of the standard Feautrier algo-
rithm, i.e. with Ad, Bd and Cd being scalars for every angle-frequency point seperately, using
a given source function. In other words: we do a formal solution. The given source function
is based on the specific intensity values obtained in the previous iteration. This method is
known as lambda iteration. The drawback of the lambda iteration method is that in problems
in which scattering processes play an important role – as is the case for the two-level atom
– the convergence properties of the iteration procedure are very poor. However, there is a
method, refered to as approximate lambda iteration – see e.g. Chapter 11.2 – that overcomes
this problem in normal lambda iteration.



248 Scattering

Exercise 14.1

Let us consider a geometry of planar layers. The source function is given by eq. (14.1)
and the behaviour of the Planck function by eq. (14.3).

a) Show that the Eddington flux is given by

Hν =
1

3
bν −

√
εν
3

bν/
√

3− aν
1 +
√
εν

e−
√

3εν τν (14.37)

b) Show that the flux is given by the diffusion approximation (vgl. 4.65) if τν →∞

Exercise 14.2

Let us consider a geometry of planar layers. The source function is given by eq. (14.1)
and the behaviour of the Planck function by eq. (14.3). We assume that the medium is
homogeneous and that εν = 1.

a) Show that the mean intensity is given by

Jν(τν) = Bν

[
1− 1

2
e−
√

3τν

]
(14.38)

b) Explain why Jν(0) = 1/2Bν .

Exercise 14.3

a) Derive the line source function of the two-level atom, i.e. equation (14.16)
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NLTE mechanisms and models

15.1 LTE versus NLTE

As discussed in § 6.7 one assumes that in LTE the state of the material medium in an el-
ementary volume dV (r) is controlled by the local values of the temperature and density1:
nijk = nijk(N(r), T (r)) of nijk(ρ(r), T (r)) of nijk(ne(r), T (r)). The remarkable thing
here is that in LTE the radiation field J(r) does not seem to play a role in setting the state
nijk of the gas. In section 6.7 we pointed out that this is because in LTE it is assumed that
collisional processes dominate the transitions of electrons between energy levels causing the
line source function to equal the local Planck function, i.e. S`ν = Bν(T (r)). In that case,
the general equation for determining nijk, the statistical equilibrium equation, reduces to the
Boltzmann equation for the description of the excitation state (eq. 6.21) and the Saha equa-
tion for the description of the ionization state (eq. 6.24). We therefore already arrived at the
conclusion that deviations from LTE will arise if

i) collisional processes no longer dominate over radiative processes, and

ii) the radiation field deviates from the local Planck function, i.e. Jν(r) 6= Bν(T (r)).

The first situation occurs if the density in the medium is low, as the rate of collisions scales
with the electron density: C ∝ ne (see eq. 7.7). The interstellar medium (ne ∼ 10−2 −
10−1 cm−3) in general and nebulae (ne ∼ 103 − 106 cm−3; see also section 2.5) in particular
are environments in which the (electron) density is extremely low. Also in chromospheres and
coronae and in stellar flares (ne ∼ 108 − 1010 cm−1) around cool stars and in stellar winds
the density of the outflowing gas is low enough to cause departures from LTE. The typical
nature of these departures are that the absence of an effective (collisional) coupling of the

1Note that in LTE there can be (and will be) a non-local indirect coupling between the radiation field and the
material medium through the equation of radiative equilibrium (see eq. 9.42) and to a lesser extent the equation of
hydrostatic equilibrium, which contains a contribution from forces related to the gradient in the radiation pressure
(see eq. 11.4).
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levels leads to a depopulation of excited levels through spontaneous radiative de-excitations2

and an overpopulation of the ground level. This raining down of electrons is referred to as
electron cascade.

Can departures from LTE occur in the photosphere of stars? To evaluate this question we use
the handy (but rough) relation describing the density at τ ∼ 1 in the photosphere that we
derived in section 10.2 (see eq. 10.18), i.e.

ρ(τ = 1) ∼ 1

χ′H
∝ g

T
(15.1)

Consultation of table B.9 shows that densities are relatively high for cool main-sequence stars,
such as the sun (ne ∼ 1012 − 1015 cm−3). This is one of the reasons why for solar-like stars
LTE is in general a fine approximation (for a second reason, see below). Also in white dwarfs,
which have extreme values for the surface gravity g, the density is such that LTE is a good
approximation. Yet even in these cases LTE may break down in the very outer layers of the
atmosphere. This situation may not affect the continua and weak lines, which are formed deep
in the atmosphere, but may produce deviations in the strengths of strong lines (e.g. hydrogen
Balmer and Lyman transitions, the He I triplets, and the Ca H and K lines), mainly in the line
cores.

The atmospheres of giants and supergiants (with their low g; yielding ne ∼ 1010−1013 cm−3,
see again table B.9) require, in general, NLTE treatment of both continuum and line formation.
The dividing line is not well defined, but a rule of thumb is that the resonance lines of the
dominant ions are likely formed under NLTE conditions for log g . 3.5 or so for most Teff .
For the O and early-B dwarfs (with their high T ) it is also necessary to adopt NLTE.

Let us now reflect on the second situation. The mean intensity Jν(r) will differ from Bν(r)
if the radiation field at r is significantly affected by photons that are produced elsewhere, at
a place where the conditions are substantially different from those at r. We first consider the
situation in a photosphere.

In the stellar photosphere

The photospheres of solar-like stars differ fundamentally from those of hot O stars. In solar-
like stars the contribution of scatterings to the total extinction is small. In other words, the
thermal coupling parameter εν = κν/(κν + εν) (eq. 14.1) is almost unity. This is the second
reason why LTE works so well in the sun3. In O stars scatterings contribute considerably to
the total extinction (through Thomson scattering) such that εν becomes small. Consequently,
by means of scattered photons a radiation field that is produced elsewhere may reach r and
dominate Jν(r).

2However, levels very close to the continuum remain in LTE. See paragraph COLLISIONAL COUPLING OF

HIGH LEVELS WITH THE CONTINUUM in section 8.1.
3The two reasons mentioned are so important that the effect of a lower degree of ionization in the solar photo-

sphere (ne/NN ∼ 10−4) relative to that in the photosphere of O stars (ne/NN ∼ 1) is compensated.
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Let us characterize the non-local radiation field by the radiation temperature TR. To illustrate
the situation we will describe the radiation field in this chapter by assuming that

Jν(r) = W (r)Bν(TR), (15.2)

where we have made use of equations (3.11) and (3.12) and of eq. (6.43). W (r) is the geo-
metrical dilution. In the atmospheres of giants and supergiants, and in those of O and early-B
dwarfs, it is the condition Jν 6= Bν(T ) that causes departures from LTE. It can be either
because Jν > Bν(T ) or Jν < Bν(T ).

Away from the stellar surface

Far away from the stellar surface, in the direction of the interstellar medium, W (r)� 1. The
temperature in the interstellar medium is only 10 − 20 K in molecular clouds and may reach
∼ 10 000 K in gas that is ionized by a nearby O star. This implies that the radiation field Jν(r)
in the ISM will deviate very strongly from Bν(TR) and one may expect the state of the gas in
the ISM to differ from LTE in important ways.

— — —

In the following sections we provide an overview of the mechanisms of a number of NLTE
processes. Though we will deal with the principles of NLTE only, the title of a number of these
sections could have been ‘NLTE mechanisms as diagnostics of low density media’ because
a number of these processes an sich are interesting as they provide very usable diagnostics
for the study of (rarified) gaseous media. In the discussion we especially aim at mechanisms
for which only a limited number of transitions need to be considered, such as to provide a
clear insight in the NLTE process. We first adress NLTE radiation mechanisms in ionized gas
clouds in interstellar space; only then do we consider the situation in stellar atmospheres.

15.2 Photo- and collisional ionization in a low density medium

So one may expect NLTE conditions in a low density medium, such as a gas cloud. Let us
consider a gas cloud (often called gaseous nebula) at some distance from a hot star. Such
clouds often show emission lines of hydrogen, for instance Hα. The emission arises because
the hot star ionizes the nebular gas, after which the free electrons again recombine to arbitrary
levels. It is almost certain (see below) that a hydrogen atom in an excited state will de-excite
to a lower energy level by means of a spontaneous de-excitation, before it can absorb a photon
that may bring it into a higher excited state, or (again) ionizes the atom. As a result, the
electrons ‘rain down’ into the ground level. For instance, an electron that enters the atom
at excitation level i = 6 may first cascade to level i = 3 emitting a Paschen γ photon at a
wavelength of 10938 Å (see figure 6.4 en tabel 7.1). Next, it may rain down into level i = 2
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emitting an Hαλ6562 photon and subsequently end up in the ground level after emitting a
Lyα photon.

It may be surprising that a hot star is capable of ionizing nebulae, for the dilution of the
radiation fields is considerable even if the cloud is nearby. If we formulate the dilution factor
as (see eq. 3.12)

W (r) ' 1

4

(
R?
r

)2

= 1.272× 10−16

(
R?/R�
d/pc

)2

, (15.3)

and the star has a radius of 10 R� and is positioned at a distance of 0.1 pc from a nebula,
we find that the geometrical dilution of the radiation field is a factor W = 1.3 10−12. So,
even though the color temperature of the radiation field may be 30 000 K or higher, the energy
density (see eq. 3.15) is weakened by a factor ∼ 1012. Atomic processes that depend on
radiation, such as photoexcitation and photoionization, therefore proceed at a rate that is a
factorW lower compared to thermal equilibrium. This explains why excited states are ‘almost
certain’ to experience spontaneous de-excitations rather than photo-excitations. Consequently,
the excitation will strongly deviate from the Boltzmann equation (6.21) as the NLTE departure
coefficients b0 � 1 and bi < 1 ∀i > 1 (see vgl. 6.27; but see Sect. 8.1 once i ∼ 100).

The rate of recombinations is independent of W . Still, this does not mean that the recombi-
nation rate is high. The reason is that it is proportional to the electron density ne. As this is
very low ‘the gas recombines only laboriously’. This is why in the surroundings of a hot star
conditions may arise in which hydrogen is highly ionized. These regions of ionized hydrogen
are referred to as H II regions. If the temperature of the star is lower than ∼ 30 000 K, the
stellar radiation field will simply fail to supply sufficient ultraviolet photons with λ < 912 Å
to ionize the hydrogen gas at all.

Photoionization equilibrium

The above implies that the ionization equilibrium of hydrogen is given by

n0 4π

∫ ∞
ν◦

αbf
ν

Jν
hν

dν = N+ne αA(T ), (15.4)

where

αA(T ) =

∞∑
i=1

αRR
i,H (T ) (15.5)

is the total recombination coefficient and αRRi,H the recombination coefficient in cm3 per sec
into level i of neutral hydrogen (see eq. 8.8). Values for αA(T ) are given by, for instance, Os-
terbrock & Ferland (2006); see Table 18.1. The subscript A indicates Case A recombination;
we will return to this in chapter 18.

The ionization fraction q = n0/N
+ (see eq. 6.33). Equation 15.4 describes the photo-

ionization equilibrium, and not the Saha ionization equation 6.24 that specifies this equilib-
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rium in LTE conditions. Note that only photo-ionizations, spontaneous recombinations and
spontaneous de-excitations feature in the photo-ionization equilibrium.

Collisional ionization equilibrium

Do collisional ionizations play a role in nebulae? Equation (8.13) shows that the rate of
collisional ionizations per cm3 sec−1 is proportional to

Ciκ ∝ ne x
−2T−3/2e−x. (15.6)

Using eq. (13.56) it follows that

x =
∆E

kT
=
Eıκ

kT
=

11604.8Eiκ(eV)

T
(15.7)

Notice that, as discussed at the end of section 8.1, this rate is a sensitive function of x. For
x � 1 we find that Ciκ ∝ T 1/2. For x � 1 the probability of occurrence of collisional
ionizations is strongly reduced because of the e−x dependence, reflecting that in this case only
a small part of the velocity distribution of the free electrons (given by Maxwell) can be used
for collisional ionization processes. For the hydrogen Lyman continuum the ionization energy
is 13.6 eV (see figure 6.4) and one finds x = 157 825/T . Applying the effective temperature
for T we find that even for the hottest stars x is considerably above unity. In combination with
the low electron density (Ciκ ∝ ne) it follows that collisional ionizations are not important.

The situation is different in the (proto-typical case of the) solar corona, where the electron
density ne ∼ 109 and the temperature T > 106 K (see section 16.2). For these conditions
x � 1. The rate Ciκ is therefore orders of magnitude larger than in nebulae. As will be
discussed in chapter 16, the corona already starts some thousands of kilometers above the
solar surface. At first sight, one might think that therefore the radiation field of the sun might
also play a role in (photo)ionizing the corona. But the effective temperature of the sun is
only 5 570 K. The regime λ < 912 Å is thus located far in the Wien part of the spectrum,
where the flux has dropped exponentially (see Fig. 6.2). Therefore, photoionization by the
relatively ’cold’ solar radiation field has no appreciable effect on the ionization balance of the
highly charged coronal gas. The solar corona is hence characterized by a collisional ionization
equilibrium, for hydrogen given by

n0C0,H(T ) = n0 ne q0,H(T ) = N+ne αA(T ). (15.8)

15.3 Excitations in a low density medium

In the previous section it was discussed that relatively nearby stars, provided their radiation
temperature TR is sufficiently high, are capable of ionizing gaseous nebulae. Is this nebular
material also excited, and if so, by what mechanism? We discuss the excitation of gas in a
medium of low density using the oxygen O III ion as an example.
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Figure 15.1: Left: Grotrian or energy level diagram of O III. Right: detail of the lowest levels of
O III and the forbidden oxygen transitions (denoted by dashed lines) that are prominently visible in the
emission spectra of nebulae. The 3P term of the 2p2 level has three fine structure levels, i.e. 3P0,1,2.
The relative energy differences between these fine structure levels have been strongly exaggerated for
clarification purposes.

Forbidden transitions

Figure 15.1 shows the Grotrian diagram or energy level diagram of O III. Note that this ion
has two energy levels that are fairly close to the 2p2 3P ground level, i.e. the 2p2 1S level
with an excitation potential of 5.25 eV and the 2p2 1D level with excitation potential 2.51 eV.
Transitions between the same configuration (here 2p2) are called ‘forbidden’ as they violate
Laporte’s parity rule and are denoted with square brackets, e.g. [O III]λ5007. Forbidden
transitions mostly have small Einstein coefficients Aul. For instance, for [O III]λ4959 and
λ5007 these are 0.007 and 0.014 sec−1. This implies that the mean lifetime of the 1D2 level of
O III is < t >= 1/0.021 = 36 sec (see eq. 7.31). This is extremely long, and these levels are
therefore referred to as meta-stable. Situations comparable to O III exist for other abundant
ions, some of which have even lower transition probabilities.

We consider an H II region with a kinetic (electron) temperature of T ∼ 10 000 K and an
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electron density ne ∼ 103−106 cm−1. To describe the rate of collisional excitations we apply
Van Regenmorter’s formula eq. (7.8), which we repeat for convenience:

Clu ∝ ne x
−1T−3/2e−x. (15.9)

Here x = hνlu/kT = 11604.8Elu(eV)/T . For the two excited O III levels we find x = 6.21
and x = 2.91. The Maxwell velocity distribution eq. (6.16) shows that a considerable fraction
of the electrons will have energies of a few eV, and even quite some having 5 to 7 eV, but that
energies of, for instance, 20 eV will be rare. In other words, there will be a reservoir of free
electrons capable of exciting ions to meta-stable levels. The allowed transitions can not profit
from this collisional excitation mechanisms as their excitation potentials are high (typically
10 to 50 eV). The collisional ionization of O III requires electrons with energies of at least 55
eV and is excluded as well.

What about radiative excitations in the 2p2 3P − 2p2 1S and 2p2 3P − 2p2 1D transitions of
O III? There are two reasons why these are unimportant relative to collisional excitations.
First, because the interstellar radiation field at these wavelengths is extremely weak. Ana-
logues to eq. (15.2) we may write (see also eq. 7.5)

Jν(r) = W (r)

∫ ∞
0

Bν(TR)φ(ν) dν (15.10)

where φ(ν) is the profile function. Because the profile function is extremely narrow (i.e. it
has the width of a spectral line) much less photons will be available for excitation compared
to, for instance, that in the Lyman continuum discussed in the previous section. Second, we
are here concerned with forbidden transitions. This implies that the chance that a photon from
the already very weak radiation field is actually absorbed is very small.

Critical electron density

So, how do collisional processes impact the 3P, 1D, and 1S levels of O III? To assess this, we
consider the statistical equilibrium equation (see eq. 9.19) for a two-level system that is not
exposed to radiation. We find

nu
nl

=
Clu

Cul +Aul
=

ne qlu
ne qul +Aul

=
ne qlu
Aul

(
1

1 + (ne qul/Aul)

)
(15.11)

Two limiting cases can be considered, with a high and low density of electrons. In the low
density limit we find

ne qul � Aul →
nu
nl

=
ne qlu
Aul

(15.12)

Similarly, for the high density limit we get

ne qul � Aul →
nu
nl

=
qlu
qul

=
gu
gl

exp [−hν/kT ] (15.13)
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The last equality employs for instance eq. 7.10 and links qlu/qul to the Boltzmann distribution.
Therefore the distribution only depends on the (local) temperature and hence will be in (local)
TE.

We can now introduce an important concept in nebular gas analysis, namely that of the critical
density. This is the density for which spontaneous de-excitations are equally important as
collisional de-excitations, i.e.

ncrit ≡ Aul
qul

. (15.14)

The physical meaning of the critical density is clear: for ne < ncr collisional de-excitations
will be unimportant, and most de-excitations will be spontaneous, resulting in the emission
of a photon. The strength of such emission lines will therefore be a good measure of density.
For densities much above ncr de-excitation will be mainly through collisions, producing no
photons; we expect to approach LTE. The critical density is determined by the quantumme-
chanical properties of the transition under consideration: small Einstein Aul values result in
low critical densities. This is why forbidden lines are so important for nebular studies. We
can generalize the expression for the critical density to multilevel systems where the critical
density now compares radiative transitions to all lower levels with the collisional transitions
to all levels

ncrit =
∑
l<u

Aul

/∑
l<u

qul , (15.15)

where we have summed over all levels lower than u. The principle is the same: LTE ensues
when the density is larger than the critical density.

For the 1D2 level of O III the critical electron density ncrit
e = 6.8 × 105 cm−3. It is quite

typical in gaseous nebulae that the electron density is below the critical limit, explaining the
presence of the (strong) forbidden lines [O III]λ5007λ4959, and λ5007. The forbidden lines
(one could also refer to them as collisionally excited lines) are discussed in more detail in
chapter 18. It turns out that they are excellent diagnostics of the electron temperature T and
electron density ne in nebular gas.

15.4 Fluorescence

Insofar the discussion of NLTE processes in low density media dealt with excitations, these
were collisional excitations. In case the nebular gas is ionized by the ultraviolet radiation field
of a nearby star, relatively many photons of the resonance lines of hydrogen and helium will be
present. As discussed in section 15.2, such photons will be created in recombination processes
of H and He. If the density is not extremely low the nebular medium will be optically thick
for H and He Lyman series photons. These photons are ‘trapped’ and can only escape if they
happen to reach the edge of the nebula. The radiation field in these optically thick lines will
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Figure 15.2: The Bowen fluorescence mechanism: ‘resonant’ excitation of O III lines by He II.

be much stronger than suggested by equation 15.10, where it is assumed that the medium is
optically thin at the line frequencies.

For a nebula that is irradiated by an early O star there will be a zone in the medium in which
helium is predominantly present as He III. Obviously, there will be some He II in this zone,
after all, there is a photo-ionization balance (á la that of hydrogen, see eq. 15.4). In case this
balance implies that the amount of He II is such that the He II Lyα photons that are created by
the recombination process are scattered many times before they can escape (i.e. the He II Lyα
line is optically thick), there will be a strong radiation field at 303.78 Å, the wavelength of the
He II Lyα line.

Now again consult the Grotrian diagram for O III in figure 15.1. Notice that, by coincidence,
the wavelength of the 2p2 3P−2p3d 3P ◦ transition is almost identical to that of He II Lyα. To
be precise, the most probable transition (having a relative probability of occurence of 0.74) is
the 2p2 3P2−3d 3P◦2 line at 303.80 Å; the next most likely transition (with a relative probabil-
ity of 0.24) is the 2p2 3P1 − 3d 3P◦2 line at 303.62 Å. The many photons at these wavelengths
created through the process of recombination and cascading of He III are used to populate
the 2p3d 3P◦ level from the ground level. Using an alternative phrasing, these transitions are
‘resonating’ with the He II Lyα line. Many of the de-excitations in O III will proceed through
the same transitions back to the ground level (again ‘the resonance’), but some will cascade
via other (intermediate) levels. This is depicted in figure 15.2. These optical transitions are
observed in many planetary nebulae.

With a very small relative probability of 0.02 the 2p3d 3P2 level (labeled 4 in figure 15.2)
will rain down in one of six levels 2p3p (3S1,

3 P◦1,2,
3 D◦1,2,3) (label 3) producing photons with
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wavelengths between 2809 Å en 3444 Å. From these levels 14 possibilities arise for further
cascading. A number of these occur by way of the 2p3s level (label 2), with associated line
transitions between 3024 Å en 3811 Å, into the 2p2 3P ground level (label 1). This mechanism,
producing near-ultraviolet and violet lines between 2809 Å en 3811 Å, is called the Bowen
resonance fluorescence mechanism, first described by Ira Sprague Bowen (1898 –1973) in
1947.

The line-fluorescence mechanism shows that NLTE effects can be subtle.

Continuum fluorescence

When considering fluorescence one usually means line fluorescence. However, it is possible
to have a fluorescence effect in rarefied media by continuum radiation from a nearby star.
Unlike the case of line fluorescence, in which one specific level is excited, continuum fluo-
rescence is likely to excite a range of levels of an ion (or of multiple ions). The pumping of
the levels usually occurs from the ground level through strong allowed transitions. For it to
be considered a fluorescence process the radiation field in the line (or lines), BluJ̄lu, must
dominate over collisional excitations, neqlu.

An example of continuum fluorescence is the excitation of [Ni II]λ7379 in the circumstellar
ejecta surrounding the Be star P Cygni. The ionization potentials of Fe and Ni are very similar,
7.9 and 16.2 eV for the ground level of Fe I and Fe II, and 7.6 and 18.2 eV for Ni I and Ni II.
One may thus expect these ions to co-exist in the same region. It is therefore quite remarkable
that the emission in the [Ni II]λ7379 line in the shell surrounding P Cygni is much stronger
than that of apparently comparable lines of [Fe II] in the same spectral regime; sometimes
even by up to a factor of 1000 stronger over what is expected on the basis of the abundance
ratio between nickel and iron (AFe/ANi ∼ 20; see table 16.2).

Figure 15.3: Energy-level diagram illustrating the [Ni II]
continuum fluorescence. From: Pradhan & Nahar,
Atomic Astrophysics and Spectroscopy.

The fluorescence mechanism causing
the strong [Ni II]λ7379 Å is schemat-
ically drawn in figure 15.3. Multiple
channels are possible, but here we fo-
cus on the channel shown by the ar-
rows. Continuum photons with a wave-
length of 1742 Å from the star P Cygni
(Teff = 20 000 K), at a distance
of 0.08 pc from the shell-like neb-
ula, pump electrons from the a 2D5/2

ground level (level 1 in the figure) to
the z 2D◦5/2 level (level 3). A sponta-
neous de-excitation from this level to

the excited a 2F7/2 level (level 2) through the emission of a UV photon of wavelength 2279 Å
causes the population in level 2 to increase. The last step in the fluorescence mechanism is the
emission of a photon of wavelength 7379 Å in the forbidden transition a 2D5/2−a 2F7/2 when
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the electron cascades down from level 2→ 1. Two other forbidden lines in the system drawn
in figure 15.3 are pumped in the same way: a 2D3/2−a 2F5/2 at 7413 Å and a 2D5/2−a 2F5/2

at 6668 Å. The transition a 2D5/2 − a F
7/2 is much weaker.

The critical electron density for this process is ncrit
e ∼ 107 cm−3. Only at lower densities

continuum fluorescence will occur.

For Fe II the fluorescence process is much less important because the levels corresponding to
level 2 in the case of nickel can not be reached by means of allowed transitions (in the case
of Ni, transitions 1 → 3 en 3 → 2). Allowed transitions that could correspond to the 1 → 3
transition turn out to have substantially lower critical electron densities compared to the value
mentioned for Ni II, which is also unfavorable for the occurrence of fluorescence.

15.5 The NLTE behavior of hydrogen in the atmosphere of O stars

We now study the NLTE behavior of hydrogen in the atmosphere of a hot O star. As discussed
in the introduction to this chapter we may expect NLTE effects to play a role, especially
because of the relatively low gravity. As an example we will focus on a pure-hydrogen planar
atmosphere of an O4 V star, with gravity log g = 3.6 (in cm s−2) and Teff = 45 000 K. The
run of the NLTE departure coefficients bi (see eq. 6.27) of the first four levels of hydrogen is
given in figure 15.4 as a function of Rosseland optical depth τR (see section 10.3). Deep in the
atmosphere, where densities are high and the contribution of scatterings tot the total source
function is small, such that εν = κν/(κν + εν) → 1 (zie vgl. 14.1), the gas is in LTE. For all
four levels bi = 1. Moving in the outward direction, i.e. the the direction of decreasing τR,
we first reach the layer in which the continuum is formed. At τR ∼ 0.1 radiation processes
dominate the ionization. To understand the behavior of bi we consider the ratio of the local
radiation field to the local Planck function. Applying approximation eq. (15.2) we may write

Jν(r)

Bν(r)
= W (r)

ehν/kT (r) − 1

ehν/kTR − 1
= W (r)

ex − 1

exR − 1
. (15.16)

We may distinguish the following limiting cases

Jν(r)

Bν(r)
=

{
W (r)e(x−xR) x� 1
W (r)(TR/T ) x� 1

(15.17)

The value x = 11604.8 ∆E/T for the Lyman continuum is x = 157 825/T ; for the Balmer
continuum x = 39 456/T . We estimate the temperature at τ = 0.1 to be 39 200 K from
eq. (10.13). The radiation temperature at this position is about 52 000 K due to scatterings.
For the limiting frequency of the Lyman continuum (912 Å) we find, using x = 4.03 and
xR = 3.04, that Jν/Bν = 2.78 × W (r) > 1, adopting W (r) ∼ 1/2. For the limiting
frequency of the Balmer continuum (3645 Å) it follows, using x = 1.01 and xR = 0.76, that
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Figure 15.4: The NLTE departure coefficients of the first four levels of hydrogen as a function of
Rosseland optical depth for an O star with effective temperature Teff = 45 000 K and gravity log g =
3.6. Source: Kudritzki, The atmospheres of hot stars: modern theory and observation, 1988.

Jν/Bν = 1.53 × W (r) < 1, adopting W (r) ∼ 1/2. The choice W (r) ∼ 1/2 implies
that we consider τR ∼ 0.1 as ‘far from the surface’, but that the atmosphere as a whole
is compact, i.e. H/R? << 1 (see section 3.3). For the Paschen continuum (n3 → ∞)
and the Brackett continuum (n4 → ∞) Jν/Bν will drop below unity even slightly further.
Because the radiation field in the Lyman continuum is stronger than the local Planck radiation
field electrons will be pumped from the ground level more efficiently compared to the LTE
situation, i.e. the population n1 will drop below the LTE value, therefore b1 < 1. For the
Balmer continuum the situation is reversed. Here the radiation field is weaker compared to
LTE, which leads to a (very weak) overpopulation of n2, i.e. b2 > 1. For n3 and n4 this
overpopulation is more prominent.

There is a second reason as to why the departure coefficient b2 does not reach as high a values
as that of the two higher levels: the Lyman lines are still optically thick at τR ∼ 0.1 and in
particular the levels 1 and 2 are strongly coupled to each other, the oscillator strength f12 being
large compared to f13 and f14 (see table 7.1). Because of this the n1 level has the tendency to
impose its departure coefficient on n2. If this coupling would be complete – one would then
state that the Lyα is in detailed balance – the value of b2 would even follow that of b1. The
latter is not the case in figure 15.4, but there is some degree of coupling. This explains why b2
does not rise as high as b3, which in turn does not rise as high as b4.

Proceeding further in the outward direction one will reach the regime where the Lyman lines
become optically thin. This happens at τR ∼ 0.01. High levels are now no longer (signif-
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icantly) populated by means of photoexcitations from the ground level. The main channel
through which these high levels attain electrons is by photoionisation from the ground level
followed by recombination and cascading to lower levels. The processes governing these lay-
ers therefore are similar to those of the photoionisation equilibrium discussed in section 15.2.
The upper levels will rain down in the ground level, causing b1 > 1 en bi < 1 ∀i > 1.

Statistical equilibrium, an example

The simple hydrogen model of the O4 V star lends itself well for a general discussion of the
solution of the equations of statistical equilibrium 9.19. To keep a clear view of the situation
(and to make sure that the formulae fit on one page) we reduce the number of bound levels
of hydrogen to three. For the principle of things this does not matter. Figure 15.5 provides
the energy level diagram of our model atom. As always the index κ represents the continuum
level, in this case ionized hydrogen. In the general sense nκ is the ground level of the ion that
forms if the ion under consideration is ionized. It therefore could have been the ground level
of Fe XX if we were to consider the model for Fe XIX.

!

n

n

n

n

1

2

3

Figure 15.5: A simple model of an H-atom con-
sisting of three bound levels and a continuum
level.

We assume that the local temperature T (z),
the local density ρ(z) and the local radiation
field Jν(z) are known. As in the LTE model
(see sections 11.1 and 11.2) the construction
of a NLTE model requires an iterative ap-
proach. The word ‘known’ in the one but last
sentence therefore implies: to use the current
values of the named parameters. For the hy-
drogen model the density can be easily cou-
pled to the number density of nuclei through
ρ(z) = mHNN (z).

For our four level atom we may write the following four statistical equilibrium equations:

−n1 (P12 + P13 + P1κ) + n2P21 + n3P31 + nκPκ1 = 0

−n2 (P21 + P23 + P2κ) + n1P12 + n3P32 + nκPκ2 = 0

−n3 (P31 + P32 + P3κ) + n1P13 + n2P23 + nκPκ3 = 0

−nκ (Pκ1 + Pκ2 + Pκ3) + n1P1κ + n2P2κ + n3P3κ = 0

(15.18)

where
Pij(z) = Rij(z) + Cij(z). (15.19)
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The coefficients Rij are given by equations (7.3), (7.6), (8.8) en (8.10) for i > j and by (7.5)
and (8.1) for i < j. The coefficients Cij are given by (7.10) and (8.15) for i > j and by (7.7)
and (8.12) for i < j.

This system of four equations is however redundant (the determinant equals zero) as one may
always reconstruct one of the equations from the remaining three. This is not the only problem,
we also still have to fulfill the requirement of particle conservation eq. (6.30). Both problems
can be resolved by, for instance, replacing the last equation by

n1 + n2 + n3 + nκ = AkNN (15.20)

whereAk is the number abundance of element k andNN is the nucleon density of nuclei. The
system of equations may be written in matrix format
−P12 − P13 − P1κ +P21 +P31 +Pκ1

+P12 −P21 − P23 − P2κ +P32 +Pκ2

+P13 +P23 −P31 − P32 − P3κ +Pκ3

1 1 1 1




n1

n2

n3

nκ

 =


0
0
0

AkNN


or

A~n = B (15.21)

where A is the transition probability matrix or rate matrix with dimension 4 × 4; ~n =
(n1, n2, n3, nκ) is the population vector, and B = (0, 0, 0, AkNN ) is a vector for which all
elements equal zero save one. The last element of this vector provides the number density of
element k. In our hydrogen model the number abundance Ak = A1 = 1. The values for the
populations follow from

~n = A−1 B. (15.22)

Inversion of the matrix A can for instance be done using a LU decomposition technique.

15.6 NLTE Model atmospheres

An overview of modern NLTE model atmospheres for hot luminous stars is provided in Ta-
ble 15.1. Several of these codes also account for a radially streaming trans-sonic stellar wind.
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16

The sun

16.1 Introduction

The study of the solar atmosphere is fundamental for multiple reasons: i) First, the properties
of the sun are vital to everything that happens in our solar system. The climate of plane-
tary atmospheres, for instance, is determined by the precise shape of the solar spectral energy
distribution. Realize too that our eyes have evolved to be sensitive to the part of the solar spec-
trum reaching the earth surface in which the most flux is emitted. ii) Second, obviously, to
learn more about the sun itself. For instance, to learn about its temperature and pressure strat-
ification; chemical composition, magnetic fields, and time dependent spatial structures and
velocity fields present at its surface. The basic solar properties are essential for determining
its current evolutionary stage. This is done through a confrontation of these properties with
models of stellar evolution, which also allows to study the history of our star as well as its
future. iii) Third, because the sun is by far the brightest star in the sky. It offers the opportu-
nity to study a plethora of processes that also occur in other stars, but at a much higher spatial
resolution, a higher signal-to-noise ratio – and related to this a much higher spectral resolution
– and a much higher time resolution. iv) Fourth, because the solar spectrum is the most stable
calibration source of spectral properties of atoms and molecules. Moreover, it provides such
information at temperatures that can not be (easily) achieved in laboratory experiments.

One can think of other reasons why the sun is so important – it is for instance the only star
for which the equilibrium neutrino luminosity can be measured – however, the above listed
reasons should be sufficient.

16.2 General information about the sun

In order to determine the fundamental parameters of the sun it is essential that its distance is
known. The mean distance, or astronomical unit, is 149 597 870 ± 2 km. This value is the
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mass M� 1.9889± 0.0003 ×1033 gr
radius R� 6.957± 0.001 ×1010 cm
luminosity L� 3.828± 0.010 ×1033 erg sec−1

effective temperature Teff 5 772± 4 K
age 4.57± 0.05 ×109 year
bottom convection zone rcv 0.713± 0.003 R�
mass fraction at surface
– hydrogen Xs 0.739± 0.005
– helium Ys 0.248± 0.005
– other elements Zs 0.012± 0.002

Table 16.1: Basic solar parameters.

mean distance between the centers of the sun and the earth. The “mean” is over the eccentric
anomaly, i.e. the angle between the sun-earth line and the direction to the perihelion of the
elliptical orbit of the earth around the sun.

Basic parameters

Fundamental or basic parameters of the sun are given in table 16.1. Here, the solar radius is
defined as the point in the atmosphere where the visual optical depth in the radial direction
τV = 2/3. What is actually measured is the angular diameter between the inflection points, at
both sides of the solar disk, of the visual specific intensity profile across the solar disk. Model
computations show that this is about 300 km above the layer where τV = 2/3, for which
the radius is corrected. The earth atmosphere absorbs and reflects a sizable fraction of the
solar light. For this reason the solar luminosity needs to be measured from space. Balloon,
rocket, and satellite observations show both short and long term variations in the bolometric
luminosity. Most pronounced is an 11 year cycle in which the maximum of the irradiance
corresponds to the number of sunspots. The peak-to-peak amplitude of this variation is about
0.09 percent. The mean luminosity and radius imply an effective temperature of 5 772 K. The
mass and radius imply a surface gravity g = 2.742× 104 cm sec−2 or log g = 4.438. The age
of the sun follows from radioactive decay of long living isotopes, such as U238, in meteorites.
The depth of the convection zone is determined from helioseismic measurements.

Abundances

Knowledge of the chemical composition of the sun is essential for the modeling of its at-
mosphere and internal structure. The sun, though being the best studied star, is considered
an ordinary star. This makes it very suited to serve as a reference in abundance studies of
other stars. It is also very interesting to compare the chemical composition of other objects
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in our solar system – such as planets, comets and meteorites – with those of the sun, as this
may give insight in the formation and evolution of the solar system as a whole. Other rea-
sons for studying the solar abundance pattern in great detail is its importance for theories of
nucleosynthesis, as well as for models of the chemical evolution of galaxies, our Milky Way
in particular, and of the universe itself. The first to perform a “quantitative” analysis of abun-
dances in the solar atmosphere was Henry Norris Russell, who in 1929 on the basis of by-eye
estimates determined the abundances of 56 elements.

The signature of 65 of the 83 stable elements is present in the photospheric absorption line
spectrum, that is observed at high signal-to-noise ratio from ultraviolet to far infrared wave-
lengths using high spectral resolution instruments. The remaining elements are also present
in the sun, but their lines are too weak to measure in the mentioned spectral range. Surpris-
ingly, helium is in the list of non-observable elements. Spectral analysis of the elemental lines
can be done well using LTE model atmospheres because in the solar photosphere collisional
processes dominate over radiative processes. The derived abundances are usually expressed
in logarithm of the number abundance normalized to 1012 particles of hydrogen, i.e.

Ael = log(Nel/NH) + 12.0 (16.1)

Table 16.2 lists these abundances for the most important elements. It is to be noted that the
above definition differs from that of Ak in eq. (6.30). The normalization relative to 1012 NH

was originally adopted in order to avoid negative numbers for the least abundant elements.
Alas, it later turned out that tantalum (ATa = −0.13) and uranium (AU = −0.52) are so rare
that they do not fulfill this rule.

Nowadays, extremely sophisticated models of the solar atmosphere are used to derive the
abundances. In 2005 Asplund and co-workers reported Ael values based on a 3-dimensional,
time-dependent, hydrodynamical solar model atmosphere (see table 16.2). Compared to ear-
lier work, significantly lower C, N, and O abundances were found. These low C, N, and
O abundances agree much better with the corresponding abundances in the local interstel-
lar medium and nearby B stars as well as the values measured in the solar corona/wind. A
major challenge for these revised solar abundances, however, is that the excellent agreement
achieved until now with helioseismology using standard solar evolution modeling is lost. The
solution to this problem has not yet been identified.

It is common to use square brackets to denote that a stellar abundance is given relative to the
solar value. The definition is

[X] ≡ logXstar − logXSun (16.2)

In particular this is done for iron, where

[Fe/H] = log (NFe/NH)star − log (NFe/NH)Sun (16.3)

is sometimes referred to as the metal abundance of the star. Do not get confused with Z =
1−X−Y , i.e. the mass fraction of all elements except hydrogen (X) and helium (Y), which is

https://ui.adsabs.harvard.edu/abs/2005ASPC..336...25A/abstract


16.2 General information about the sun 267

Element Symbol Atomic Photosphere Mass Mass Meteorites Phot -
mass Ak fraction Zs Ak Meteor

1 Hydrogen H 1.0079 12.00 0.735 8.25± 0.05 3.75
2 Helium He 4.0026 10.93± 0.01∗ 0.248 – –
3 Lithium Li 6.941 1.05± 0.10 5.68(-11) – 3.25± 0.06 -2.20
4 Beryllium Be 9.0122 1.38± 0.09 1.57(-10) – 1.38± 0.08 0.00
5 Boron B 10.811 2.70± 0.20 3.96(-9) – 2.75± 0.04 -0.05

6 Carbon C 12.011 8.39± 0.05 2.15(-3) 126.76 7.40± 0.06 +0.99
7 Nitrogen N 14.007 7.78± 0.06 6.15(-4) 36.28 6.25± 0.07 +1.53
8 Oxygen O 15.999 8.66± 0.05 5.33(-3) 314.53 8.39± 0.02 +0.27
9 Fluorine F 18.998 4.56± 0.30 5.03(-7) 0.03 4.43± 0.06 +0.13

10 Neon Ne 20.180 7.84± 0.06 1.02(-3) 60.11 – –

11 Sodium Na 22.990 6.17± 0.04 2.48(-5) 1.46 6.27± 0.03 -0.10
12 Magnesium Mg 24.305 7.53± 0.09 6.01(-4) 35.43 7.53± 0.03 0.00
13 Aluminium Al 26.982 6.37± 0.06 4.61(-5) 2.72 6.43± 0.02 -0.06
14 Silicon Si 28.086 7.51± 0.04 6.62(-4) 39.06 7.51± 0.02 0.00
15 Phosphorus P 30.974 5.36± 0.04 5.17(-6) 0.31 5.40± 0.04 -0.04

16 Sulpher S 32.066 7.14± 0.05 3.23(-4) 19.04 7.16± 0.04 -0.02
17 Chlorine Cl 35.453 5.50± 0.30 8.17(-6) 0.48 5.23± 0.06 -0.03
18 Argon Ar 39.948 6.18± 0.08 4.40(-5) 2.59 – –
19 Potassium K 39.098 5.08± 0.07 3.43(-6) 0.20 5.06± 0.05 +0.02
20 Calcium Ca 40.078 6.31± 0.04 5.96(-5) 3.52 6.29± 0.03 +0.02

21 Scandium Sc 44.956 3.05± 0.08 3.68(-8) – 3.04± 0.04 +0.01
22 Titanium Ti 47.88 4.90± 0.06 2.79(-6) 0.17 4.89± 0.03 +0.01
23 Vanadium V 50.942 4.00± 0.02 3.71(-7) 0.02 3.97± 0.03 +0.03
24 Chromium Cr 51.996 5.64± 0.10 1.59(-5) 0.94 5.63± 0.05 +0.01
25 Manganese Mn 54.938 5.39± 0.03 9.83(-6) 0.58 5.47± 0.03 -0.08

26 Iron Fe 55.847 7.45± 0.05 1.15(-3) 67.68 7.45± 0.03 0.00
27 Cobalt Co 58.933 4.92± 0.08 3.57(-6) 0.21 4.86± 0.03 +0.04
28 Nickel Ni 58.693 6.23± 0.04 7.27(-5) 4.29 6.19± 0.03 +0.04
29 Copper Cu 63.546 4.21± 0.04 7.51(-7) 0.04 4.23± 0.06 -0.02
30 Zinc Zn 65.39 4.60± 0.03 1.90(-6) 0.11 4.61± 0.04 -0.01

31 Gallium Ga 69.723 2.88± 0.10 3.86(-8) – 3.07± 0.06 -0.19
32 Germanium Ge 72.61 3.58± 0.05 2.01(-7) 0.01 3.59± 0.05 -0.01
33 Arsenic As 74.922 – 1.28(-8) – 2.29± 0.05 –
34 Selenium Se 78.96 – 1.48(-7) 0.01 3.33± 0.04 –
35 Bromine Br 79.904 – 2.48(-8) – 2.56± 0.09 –

36 Krypton Kr 83.80 3.28± 0.08 1.16(-7) 0.01 – –
37 Rubidium Rb 85.468 2.60± 0.15 2.48(-8) – 2.33± 0.06 +0.27
38 Strontium Sr 87.62 2.92± 0.05 5.31(-8) – 2.88± 0.04 +0.04
39 Yttrium Y 88.906 2.21± 0.02 1.05(-8) – 2.17± 0.04 +0.04
40 Zirconium Zr 91.224 2.59± 0.04 2.59(-8) – 2.57± 0.02 -0.02

56 Barium Ba 137.33 2.17± 0.07 1.48(-8) – 2.16± 0.03 +0.01

63 Europium Eu 151.96 0.52± 0.06 3.66(-10) – 0.49± 0.04 +0.03
90 Thorium Th 232.04 – 2.08(-10) – 0.06± 0.04 –
92 Uranium U 238.03 <-0.47 5.49(-11) – -0.52± 0.04 –

Table 16.2: Elemental abundances as determined from the solar photosphere and meteorites given in
number ratio relative to hydrogen: Aem = logNel/NH + 12. * The helium abundance is the current
value, and corresponds to Ys = 0.248 (see also table 16.1). For the initial value, i.e. at the time of
formation of the sun, AHe = 10.99± 0.02, which corresponds to Ys = 0.275 and Xs = 0.708. From:
Asplund et al. 2005.

https://ui.adsabs.harvard.edu/abs/2005ASPC..336...25A/abstract
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commonly refered to as the metallicity. Relatively young stars in the plane of the Milky Way
have about solar abundances (therefore [Fe/H] ∼ 0). “Metal poor” stars have [Fe/H] ∼ −1 to
−2. Population II halo dwarf stars have formed relatively early in the history of the Galaxy and
are “extremely metal poor”, showing [Fe/H] ∼ −3. Astronomers are vigorously searching
for stars with even less metals because these must have formed in the very early history of
the Milky Way. The abundance pattern of such hyper metal poor stars can tell us about the
properties of the first generations of stars in our galaxy, that must have been responsible for
the metals in these hyper metal poor objects. In 2002 Norbert Christlieb and collaborators
discovered that HE 0107-5240 (Christlieb’s star) has an iron abundance [Fe/H] = -5.3 (see
figure 16.1). Just as a side note, the mass of Christlieb’s star is only 0.8M�. In 2005, Anna
Frebel and collaborators discovered He1327-2326 (Frebel’s star) to have an even lower iron
abundance, [Fe/H] = -5.6. In 2014, the so far lowest metal abundance star was found, SMSS
J031300.36-670839.3, by Keller et al. (2014). The star is estimated to have an age of 13.6 Gyr,
i.e. to have formed some 0.1–0.2 Gyr after the Big Bang. The gas from which stars that have
[Fe/H] < -4.5 are composed are likely enriched by only a single supernovae. The abundance
pattern of Keller’s star is quite peculiar, with [C/H] = -2.6, [Mg/H] = -3.8, [Ca/H] = -7.0, and
[Fe/H] = -7.1. This abundance pattern is best reproduced if prior to the formation of this star
a supernova explosion of an initially 60 M� star occured in the immediate surroundings. It is
expected to have been a low-energy supernova, one that directly produces a black hole.

Although most of the matter of the solar system is concentrated in the sun, very useful infor-
mation concerning the chemical composition of the initial solar nebula can be obtained from
the study of other bodies of the solar system. A complicating factor in the study of such ob-
jects is that they may have suffered chemical fractionation, which is the sinking towards the
center of relatively heavy elements at times when such bodies were partly or fully melted.
Objects that experienced chemical fractionation include the terrestrial planets and (the parent
bodies of) meteorites. For this reason, earth is not suited for doing a representative abun-
dance analysis. The most suited objects turn out to be meteorites of the type CI carbonaceous
chondrites. These are formed early on in the formation of the solar system and appear to
have preserved the bulk composition of the nebula from which they condensed, except for the
highly volatile elements (H, C, N, O, and the rare gases) which partly escaped. Meteoritic
chemical composition can be measured with such high accuracy that it is better known than
the sun’s photospheric abundance pattern (of which the abundance of some elements suffer
from poorly known oscillator strengths). Meteoritic abundances are also given in table 16.2.

The abundance determination of helium warrants extra attention. In 1868, a new element
was discovered in the solar chromospheric spectrum obtained during an eclipse. The name
of the sun was given to this unknown element: helium. It was only discovered on earth
in 1895. The reason why helium is not present in the photosphere is because in a medium
with a typical temperature around 6000 K, no lines of helium (neutral or once-ionized) fall
within the visual spectral range. Until recently the He abundance was most commonly derived
from chromospheric observations. Now AHe is also being determined from stellar structure
calculations. This yieldsNHe/NH = 9.8±0.4 % (orAHe = 10.99) for the initial composition
of the sun and the proto-solar nebula. Inversion of helioseismic observations leads to a more

https://ui.adsabs.harvard.edu/abs/2002Natur.419..904C/abstract
https://ui.adsabs.harvard.edu/abs/2005Natur.434..871F/abstract
https://ui.adsabs.harvard.edu/abs/2005Natur.434..871F/abstract
https://ui.adsabs.harvard.edu/abs/2014Natur.506..463K/abstract
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Figure 16.1: Optical spectra of the sun and the hyper metal poor stars CD -38 245 ([Fe/H] = -4.0)
and HE 0107-5240 ([Fe/H] = -5.3). Clearly visible is that the strength of metal lines decreases with
decreasing metal abundance. In comparison to CD -38 245 the iron lines in the spectrum of HE 0107-
5240 are weaker (or absent) and nitrogen is not visible at all. The bottom spectrum is for a hypothetical
Population III star with a chemical abundance pattern as produced in the Big Bang, i.e. H, He and
traces of Li.

accurate, albeit lower abundanceNHe/NH = 8.5±0.07 %. The latter number (corresponding
to AHe = 10.93) is the present day solar abundance of helium in the outer convection zone.
The difference between these two values is explained by slow element diffusion at the base of
the convection zone during the solar lifetime.

Finally, the current solar abundance of lithium is about 160 times lower than is derived from
meteoritic data. This is a direct consequence of the low nuclear binding energy of Li, causing
the destruction of lithium at temperatures of only a few million kelvins by (in a thermonu-
clear sense: warm) proton collisions. The low ALi implies that gas is transported between
the surface and deeper, hotter layers. This probably occurs in convective motions, though
possibly mixing through internal (differential) rotation may also play a role. Li- as well as
Be-depletion is observed in F- and G-type stars. Also B kan become depleted through ther-
monuclear burning in layers that are connected with the surface. The behavior of the boron
depletion is, however, less well understood as its only potentially useful spectral line in the
optical spectral range is in de violet (B II λ3451), where detectors are not very sensitive.
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Figure 16.2: Temperature and density as a function of height for a model of the quiet sun. The zones
from which several continua and important spectral lines originate are indicated.

Structure of the atmosphere

The solar atmosphere can be divided in several zones (see figure 16.2). From inside out these
are: (1) the photosphere, from which the visual spectrum originates and where the temperature
decreases with height; (2) a zone around the temperature minimum at about 4 400 to 4 500 K;
(3) an extended chromosphere in which the temperature is increasing up to values sufficiently
high to cause (partial) hydrogen ionization; (4) a small transition region separating the chro-
mosphere from the corona, with a very steep temperature gradient. This gradient is relatively
large just above the chromosphere but flattens in higher regions; (5) a hot corona (T > 106

K) where hydrogen is fully ionized.

Suppose, we secure the spectrum of a quiet spot on the solar surface. As the extinction is
wavelength dependent, we can, by observing from X-ray through radio, probe different heights
in the solar atmosphere. For a wavelength at which the extinction is small we probe radiation
originating from a deep layer. Likewise, for a wavelength at which the extinction is large we
see a layer that is higher up. At 1.6 µm, i.e. the wavelength at which the H− extinction has
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a local minimum (see § 8.3 and the upper panel of figure 8.6), we can see deepest into the
sun. At the center of the solar disk the brightness temperature of this layer is 6 800 K. The
disk averaged Tb at 1.6µm is about 500 K lower due to limb darkening. At larger (infrared)
wavelengths the extinction increases implying that the radiation that we observe originates
from cooler layers. The brightness temperature reaches a minimum of about 4 500 K at λ =
150µm. Beyond this wavelength the extinction still increases, but the observed Tb increases
due to the increasing chromospheric temperature. At wavelengths shorter than 1.6µm we see
a decrease in the brightness temperature because of an increasing extinction. In the ultraviolet
at about 1600 Å Tb reaches a minimum of 4400 K. The extinction continues to increase for
even shorter wavelengths, but the brightness temperature runs up due to the chromospheric
temperature increase.

Spectral lines also contain information on the temperature structure in the solar atmosphere
as the extinction at line center is much larger than it is in the wings or in the continuum next
to the line. For instance, the strong Ca II resonance lines at λ3934 (Fraunhofer’s K line) and
λ3968 Å (H line) have two small emission peaks at both sides of line center because of the
temperature increase in the chromosphere (see figure 16.3). These peaks are observed to vary
in strength as a function of time and spatial position on the solar disk and are sensitive to local
velocity fields.

The temperature rise in the upper layers of the chromosphere and in the transition region be-
tween chromosphere and corona is the result of a competition between two effects: a mechani-
cal heating and a strong cooling by resonance lines of hydrogen and helium. This competition
results in a flattening of the temperature in the uppermost layers of the chromosphere at about
8 000 K, such that hydrogen is only partly ionized. In even higher, more rarefied layers hy-
drogen gets fully ionized (see eq. 6.24 and realize that ne is decreasing further) and the line
cooling mechanism becomes inefficient. Consequently, the temperature shows a steep rise.
The amount of energy needed to let the temperature increase with distance is modest: only ∼
10−4 of the total luminosity of the sun is needed to heat the chromosphere. The energy that is
needed to heat the corona – which is even less dense – is extremely modest. It is an order of
magnitude less than that needed for the chromosphere, and the largest part of it is transported
back to the upper part of the transition region by means of thermal conduction, where it is
radiated away by H en He resonance lines.

Heating of chromosphere and corona

What mechanism heats the chromosphere and corona? Though solar physicists have been
investigating this seemingly simple question for several decades the answer is still poorly
known. Concerning the chromospheric heating some consensus appears to have been reached:
acoustic waves originating in turbulent convective layers below the photosphere could at least
heat the lower regions of the chromosphere. When these waves propagate outward through
the atmosphere, to regions of lower density, the pressure fluctuations grow and shock waves
develop. These shocks can heat the gas locally. In the sun, however, the dissipation of these
shock waves is so strong that they can not reach the upper regions of the chromosphere. In
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Figure 16.3: The Ca II K in the solar spectrum. This resonance transition, by Fraunhofer refered to as
the ‘K’ line, is the strongest line in the visual part of the solar spectrum. Many weak spectral lines are
superposed on the broad wings of the line (so called blends); most are from neutral metals such as Fe I.
In its line core the K line shows two minuscule peaks. The K line is just sufficiently strong for the line
source function to feel the onset of the temperature rise towards the chromosphere before other effects
start to dominate that cause a decoupling from the local Planck function.

other stars, notably in M dwarfs, circumstances can be significantly better and acoustic waves
may ‘survive’ into the upper chromosphere. In M dwarfs acoustic waves (of the longest wave-
lengths) may even heat part of the lower coronal regions. Though our knowledge of coronal
heating is still limited, it seems logical to expect that magnetic processes play a dominant role.
A possible mechanism may be waves propagating outward along magnetic field lines.

16.3 Solar spectrum

Irradiance at the top of the earth atmosphere

The mean total solar irradianceR = (1.365±0.002) 106 erg cm−2 sec−1 or 1365±2 W m−2.
This number used to be called the solar constant, however, as we now know that R is not
constant the term total irradiance is prefered. The mean spectral energy distribution of this



16.3 Solar spectrum 273

Figure 16.4: The spectrum of the solar irradiance as observed from above the earth atmosphere. The
gray curve provides an estimate of the natural variation of the irradiance during a recent 11 year solar
cycle. The variation in the total irradiance is at most 0.2 percent. At 1.6 µm (or 1600 nm) one can see
deepest into the solar atmosphere; these layers are the most stable, hence fluctuations in Rν are the
smallest. The EUV emission (λ < 912 Å) is due to non-thermal processes in the chromosphere and
corona; at these wavelengths the irradiance shows the largest variations.

light, i.e. the irradiance (see § 3.4), is shown in figure 16.4.

For different reasons the total and monochromatic irradiance fluctuate. Obviously there is
a variation as a result of the elliptical path of the earth around the sun causing the distance
earth-sun to vary between 1.0167 and 0.9833 AU. This effect, causing a 3% fluctuation on
R, is not intrinsic but geometric in nature and officially is not included in the variation of
R or Rν . Precise measurements of the (total) irradiance show that fluctuations occur that
reach 0.2% on timescales of days to weeks, mainly due to changes in the number of dark
spots and bright faculae on the part of the solar surface that we observe. These variations
of 0.2% are recorded in visual and near-infrared light, i.e. at the wavelengths where the
sun emits most of its energy; for x-ray and radio emission such short period variations can
lead to fluctuations exceeding a factor of two. During recent epochs of relatively high solar
activity, near maxima in the 11 year solar cycle, the mean level of the total irradiance was
about 0.1 to 0.15% higher than during cycle minima. A comparison of these relatively recent
data to historical observations of the sun (for instance of sunspots), geomagnetic activity and
cosmogenic isotopes (e.g. from 13Be in ice-cores and 14C in growth rings of trees) shows that
the total irradiance has increased by a few tenth of a percent (between 0.2 and 0.5%, depending
on the method used) relative to an epoch of anomalously low solar activity in the seventeenth
century, named the Maunder minimum. This epoch of exceptional low solar activity is possibly
only the most recent one in a series of comparable periods the sun has experienced in previous
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Figure 16.5: Reconstruction of solar activity events from changes in the 14C isotoop abundance relative
to an unspecified calibration. The last datapoint is for 1950. Several periods of low solar activity are
labeled. Figure © Leland Mcinnes.

millennia (see figure 16.5). The Maunder minimum caused a noticeable change in the earth
climate. For a thorough understanding of antropogenic (originating in human activity) effects
on our climate it is essential to correct for this type of natural variation.

Irradiance at the earth surface

Figure 16.6 compares the irradiance at the top of the atmosphere (light grey / yellow) and that
of direct sunlight at sea level (dark grey / red). The spectrum at sea level is significantly attenu-
ated by absorption by the constituents of the earth atmosphere, primarily molecular bands due
to water, oxygen and ozone. Water vapor in the atmosphere absorbs much of the radiation past
1µm via molecular transitions in H2O. However, water also allows a considerable amount of
solar radiation to be transmitted through the atmosphere in certain ‘windows’ where it has in-
efficient absorption. Compare these windows to Fig. 2.10, showing photometric transmission
curves and identify the location of the J , H and K bands.

Another interesting feature is the difference in radiation above and below the atmosphere on
the UV-blue side, where the Wien part of the spectrum starts. This is a combination of the
ozone effect, as O3 prevents the life-threatening UV radiation from reaching the surface of our
planet, and Rayleigh scattering (see section 8.4).

16.4 Solar activity
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Figure 16.6: Sunlight as received at the top of the Earth atmosphere (yellow area) and at sea level after
attenuation by atmospheric constituents, primarily ozone, oxygen, water and carbon dioxide (red area).
The radiation measured at sea level is that of direct sunlight (so not that of diffuse sunlight). The yellow
area is the same as that under the black body spectrum, i.e., they represent the same effective tempera-
ture. Figure from Robert A. Rhode, http://globalwarmingart.com/wiki/Image:Solar Spectrum.png.

Active regions

At almost every moment the part of the solar surface that can be observed from earth shows
a number of active regions. Near the minimum of the 11 year solar cycle there are only very
few, sometimes even none; in the solar maximum there can be as much as five to ten. The
structure of these active regions is extremely complex, and we suffice by providing only a
general description. Active regions form when the top part of loops of magnetic flux in the
solar interior reach into and above the solar atmosphere, where they (thus) can be observed.
The shape of such a loop is somewhat similar to the Greek letter Ω. It is thought that the
magnetic loops are generated by the solar dynamo, deep in the solar interior.

The shape and appearance of an active region depends sensitively on the observed wavelength
and the angle at which it is seen. To give an example: in an active region near the solar rim,
seen against the dark sky background, the loop-shaped structure of the magnetic fields can be
seen clearly in x-ray line emission of highly ionized gas streaming along the field lines. These
loops of intensely heated gas are refered to as coronal arcs or coronal loops (see figure 16.7).
High resolution x-ray imaging of active regions near the center of the solar disk show a fine-
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Figure 16.7: An active region at the edge of the solar disk, observed in a spectral line of highly ionized
iron. The temperature of the emitting gas is about 1.5 MK. Photo © NASA TRACE satellite.

structured pattern of magnetic strings connecting the point where the beam of magnetic flux
breaks through the photosphere and chromosphere (the north pole) to the point where the field
again enters the sun (the south pole). These points are called the footpoints and each active
region consists of a collection of such bi-polar footpoints, connected by coronal loops. The
high density of magnetic field lines in footpoints is what sets active regions apart from quiet
regions on the solar surface. The effect of these field lines on the (local) temperature and den-
sity structure depends on a) the strength of the magnetic field, b) the fraction of magnetized
relative to unmagnetized gas in the footpoints, and c) the topology of the area, i.e. the way
in which each point (inside a footpoint) is connected to another point. Regions in which the
magnetic field has a 10 to 100 times larger density compared to the surrounding quiescent
regions are referred to as plage (see figure 16.8). In Hα we see the chromospheric emission
from this plage (at temperatures of about 10 000 K) as bright regions, provided that one does
not observe it at a too high spatial resolution, as in that case individual chromospheric arcs can
be seen. In sunspots the field lines are so closely packed that there are (almost) no unmagne-
tized regions left. This inhibits energy transport through convection, explaining why sunspots
appear cooler and darker than their surroundings. Figure 16.8 also shows irregular dark strings
or filaments. These filaments mark regions of opposite polarity on the solar surface. At a con-
siderable height (in the corona) the field lines will arc over these filaments, creating a sort of
tunnel. In this tunnel, along the dividing line of magnetic polarity, referred to as the filament
channel, magnetic field lines cross the channel allowing clouds of ionized gas to be captured



16.4 Solar activity 277

Figure 16.8: An image of the solar disk in Hα, identifying gas at a temperature of about 10 000 K. An
extended active region is visible somewhat to the right of the center of the disk, with sunspots, plage,
and filaments. Photograph © the National Solar Observatory.

above the photosphere. These clouds emit in continuum light, but not in Hα or Ca II (hence,
appear as dark lines in an Hα image, such as Fig. 16.8). Filaments that are seen in profile
at the edge of the solar disk are called prominences. Prominences are somewhat similar to
coronal loops, but do not show a clear arc structure (they are clouds).

Active regions come and go, with a characteristic lifetime that depends on their size. There
is no preferential size for an active region, but they do show a continuous distribution in
their sizes. The smallest can barely be resolved with a telescope (and probably this implies
that smaller regions exist that we can not detect with the current arsenal of instruments);
the largest ones occupy 1–2 % (or 50 000 to 100 000 Mkm2) of the total solar surface. It is
typically these large regions where sunspots and solar flares are seen. The lifetime of the large
regions is roughly two months, i.e. one to two rotation periods. The smaller regions have
shorter lifetimes.

Solar flares and coronal mass ejections

Like most dynamic phenomena on the sun, the occurrence of solar flares is closely related to
the presence and evolution of solar magnetic fields. As a simple introduction (which is all we
will do here), we compare flares with earthquakes. The occurrence of earthquakes involves
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two steps: energy build-up and energy release. The stress and energy are build up by relative
motions of two tectonic plates along fault lines. When the stress reaches a critical point,
two plates cannot slide further, the equilibrium brakes down and a section of the fault line is
restored to its original position of minimum energy. The excess energy is released in the form
of kinetic energy and is propagated away from the epicenter as seismic waves.

A flare can be described by a very similar scenario. We start with two magnetic regions of
opposite polarities, such as for instance is marked by filament structure. The line dividing two
polarities is called the magnetic neutral line. In the starting- or potential configuration the
field lines run perpendicular to the magnetic neutral line. If, for some reason, magnetic re-
gions slide, the field lines will start to move away from perpendicular to the neutral line. This
is called the sheared configuration. In an extremely sheared configuration, the magnetic field
lines are nearly parallel to the neutral line. A sheared magnetic field has more magnetic en-
ergy than the corresponding potential field configuration and the extra energy is called the free
magnetic energy. When the fields are extremely sheared, an instability may occur. Fields tend
to be restored to the potential configuration and the extra energy is released by the process of
magnetic reconnection. The free magnetic energy is converted to thermal and non-thermal en-
ergy. This causes a solar flare, in which thermal radiation is emitted and non-thermal particles
are accelerated.

Solar flares are wonderfully complex phenomena and are observed across the electromagnetic
spectrum as well as via energetic particles in space. They are classified according to their size,
duration, morphology or magnetic topology and the composition of their associated energetic
particles. Despite the seemingly infinite variety in solar flare characteristics, one may identify
two basic types – impulsive and gradual. Impulsive flares have time scales of the order of a
few minutes or less while gradual flare durations range from tens of minutes to several hours.
These two basic types are combined in fully developed flares in which an impulsive phase
is followed by a gradual main phase. Long-duration gradual flares are also characterized by
coronal mass ejections.

A coronal mass ejection can carry 1015 to 1016 gram of plasma into space. The source region
within the sun’s atmosphere can be hundreds of thousands of km across and the resulting
ejection can expand into space at many hundreds of km sec−1. The rate of coronal mass
ejections varies with the solar cycle; one may expect of the order of 0.1 event per day during
solar minimum, upto more than one a day during maximum. They represent a very significant
disturbance of the solar wind. Given their size and mass, combined with the fact that the
expanding clouds carry a frozen-in magnetic field, such events can engulf the Earth system
and their arrival at the Earth can generate significant geomagnetic storms.

Solar cycle and sunspot cycle

Important properties of active regions vary with the 22 year solar cycle or the 11-year sunspot
cycle. Only few active regions, together with the sunspots they contain, are visible during
the solar minimum – sometimes (for a few weeks) none are seen at all. During a sunspot
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Figure 16.9: Coronal mass ejection observed by the SOlar and Heliosphere Observatory (SOHO) on
March 9 2004. Direct sun light is blocked; the position of the solar disk is given by the half circle. Foto
© SOHO satellite.

maximum typically five and sometimes ∼ ten active regions are seen from earth and the mean
level of the irradiance is found to be about 0.1 to 0.15% higher than during cycle minima.

At the start of a sunspot cycle spots appear at about 30◦ (sometimes even 40◦) north and south
of the equator. The sunspot occurrence locations slowly migrate towards the equator. During
maxima, about 4 to 5 years later, spots appear in a strip with an average latitude of about
15◦. Near the end of the cycle, close to minimum, the strip has narrowed and is centered
around 8◦ and new sunspots start to appear at ∼ 30◦. In every bi-polar pair of sunspots the
one that is in front – in the sense of the rotation direction of the sun – is called the leader,
and its trailing companion the follower. During an entire cycle, from minimum to minimum,
all leaders on the northern hemisphere have equal polarity (say +) as do all leaders on the
southern hemisphere, though the polarity of these southern leaders will be opposite to that of
the leaders on the northern hemisphere (in this case −). At the end of each cycle the pattern
of polarity is reversed (so, in our example, + to − on the northern hemisphere and − to + on
the southern hemisphere). A complete magnetic cycle thus consists of two solar cycles of 11
year, and lasts 22 years.

The sunspot cycle is part of a larger wider-ranging cycle in which all aspects of the solar
activity, including sunspots, plages, prominences, solar flares and coronal mass ejections, as
well as the shape, size and structure of the chromosphere and corona, show a cyclic variability
with a period of 11 years. The number and the dimensions and energies of prominences, flares
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Figure 16.10: Top: the latitude of sunspots as a function of time. At the start of the 11 year cycle
sunspot appear at the circles of latitude at +30◦ and −30◦ distance from the equator. At maximum
solar activity, about 4 to 5 year later, sunspots also emerge at the equator. After 11 years the last
sunspots of the cycle form near the equator while new ones again appear at 30◦, starting a new cycle.
The distribution of spots appears symmetrical around the equator and is known as the butterfly diagram.
Bottom: the average percentage of the visible solar surface that is covered by sunspots as a function of
time. Notice that the current cycle (cycle 24) appears not to develop itself as prominently as previous
cycles. Source: http://solarcyclescience.com.

and coronal mass ejections reflect the increase and decrease of the number of sunspots, the
corona being brighter, more extended and more symmetric during minimum activity.

Solar wind

The solar wind is a continuous, more or less spherical outward flow of charged particles –
mostly protons and electrons – from the sun into interplanetary space. The outflow “blows”
past the planets at speeds that fluctuate between 200 and 900 km sec−1, and cause the sun to
loose about 2 × 10−14M� of mass per year. At at distance of 1 AU from the sun, the mean
density of the solar wind is about 5 particles per cm3 and its temperature is about 105 K. Close
to the plane of the ecliptic, the average wind speed is about 400 km sec−1. The particles
that comprise this relatively slow wind emerge predominantly from streamer-like structures in
the solar corona that tend to be located relatively close to the solar equator. A relatively fast
wind, with a mean speed of about 750 km sec−1, flows out of coronal holes that are centered
permanently on the solar poles. When coronal holes (temporarily) extend down to, or across,
the solar equator, high-speed streams flow out past the Earth and planets (such that the wind
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Figure 16.11: Left: Schematic picture of ionized solar wind particles streaming past Earth. Some are
trapped in the Earth magnetosphere in so called radiation belts. Variations in the strength of the solar
wind can give some radiation belt particles enough energy to spiral into the atmosphere along the Earth
magnetic field and create aurorae in the northern and southern polar regions. Right: image from space
showing the aurorae borealis. Source: NASA.

speed shows a period modulation with the solar rotation period). This explains the fluctuation
in the solar wind speed.

The solar wind carries with it lines of magnetic force, which spread out to form the weak
interplanetary field. The sun’s rotation, combined with the radial outward flow of the solar
wind, cause the interplanetary field lines to take up a spiral form. The solar wind outflow
is eventually stopped when the pressure of the solar wind equals that of the interplanetary
medium. This boundary is at about 120 AU and is referred to as the heliopause; the enclosed
region is the heliosphere. The radius of the heliosphere is expected to vary with the solar
cycle. The Voyager 1 spacecraft passed the heliopause on August 25, 2012, and became the
first manmade object to enter interstellar space.

16.5 Aurora Borealis

The bulk of the solar wind particles impinging on the Earth magnetic field are deflected and
stream past our planet. Some, however, leak into the magnetosphere to get trapped in radiation
belts. Radiation belt particles may spiral into the atmosphere along the Earth magnetic field
lines and create aurorae in the northern and southern polar regions (see Fig. 16.11).

When these protons and electrons reach the upper atmosphere they excite (through a collision
shower) atoms and molecules. Almost all auroral light consists of emission lines and bands
of neutral or ionized N2, O, O2, and N. The origin of the most copious green emission was
established by McLennan and Schrum in 1925 (see Ireton 1925) as due to the metastable
(forbidden) transition of atomic oxygen from the 1S state to 1D state (see Fig. 16.12). The

https://articles.adsabs.harvard.edu//full/1925JRASC..19..289I/0000289.000.html
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Figure 16.12: Excited states of the oxygen atom that give rise to forbidden transitions prominent in
auroral emissions, and their lifetimes (after Roach and Smith, 1967).

lifetime of this state is 0.74 s. An even longer-lived transition is the red-line triplet 1D→ 3P
at 6300−6364 Å with a lifetime of 110 s. This means that the 1D excited atoms can move
a significant distance after their excitation and, consequently, the red auroral light is more
diffuse than the green light at 5577 Å.

Auroras typically occur in the thermosphere at altitudes between 100 km and 1000 km. The
visual aurorae appear in a great variety of forms, including arcs, spirals and curls, and on
spatial scales from kilometers to the size of the entire auroral oval with a circumference of the
order of 10 000 km. Sometimes the structures remain static for tens of minutes, but often there
are rapid variations and motions. These variations are linked to variability of the solar wind –
a phenomenon referred to as space weather.

The critical density (see eq. 15.14) of the two 1D lines are ncrit
e = 1.4× 106 cm−3 (for the red

λ6300 line) and 4.6×105 cm−3 (for the red λ6364 line). These lines are effectively quenched
below 200 km where ne > ncrit. The critical density of the green line is about two orders of
magnitude larger (7.4×107 cm−3), and it can be seen at altitudes as low as about 100 km. The
typical energies of the primary auroral electrons range between 1 and 10 keV, which allows
them to penetrate to a height range between 150 and 100 km. It is therefore the green light
at 5577 Å that dominates the visual appearance of auroral arcs. For very soft electron spectra
(for energies < 1 keV, say) the red emissions above 200 km become prominent.

https://ui.adsabs.harvard.edu/abs/1967auai.conf...29R/abstract
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Figure 16.13: The cosmic production of the elements from Galactic chemical evolution models by
Kobayashi et al. (2020). In the background of each element box in the periode table the main producers
of the element are shown as a function of cosmic time (see legend). The amounts returned via mass
loss are also included for Asymptotic Giant Branch (AGB) stars and stars ending as core-collapse
supernovae. The x-axis of each box shows time from t = 0 (Big Bang) to 13.9 Gyrs, while the y-axis
shows the linear abundance relative to the sun, X/X�. The dotted lines indicate the observed solar
value, i.e., X/X� = 1 and 4.6 Gyrs for the age of the sun (measured back from the present time).

Exercise 16.1

Determine the mass of the sun from Newton’s gravitation law and the centrifugal force.
Use the Earth as a test particle and assume that the Earth orbit is circular and the Earth
mass to be negligible compared to the solar mass. The gravitational constant is G =
6.67× 10−8 dyn cm2 gr−2.

Exercise 16.2

The ten most important elements in life on Earth are H, C, N, O, Na, P, S, Cl, K, and Cl
(see An introduction to Astrobiology, Revised edition 2011, Cambridge University Press).
By percent mass they contribute about 9.5, 18.5, 3.2, 65, 0.2, 1.0, 0.3, 0.2, 0.4, and 1.5 %,
respectively, to the human body.

a) Which percentage do these building blocks of life, save H, represent of the total of ele-
ments heavier than helium?

b) Are stars ‘geared’ towards producing the elements necessary for life on Earth or are these
elements only a byproduct of stellar nucleosynthesis?

https://ui.adsabs.harvard.edu/abs/2020ApJ...900..179K/abstract
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Table 16.3: Atomic data for transitions in the 2p4 configuration of O I. The data is compiled by Pradhan
& Nahar (2011). The average collisional strength Υ (see eq. 7.12) is given for several temperatures
in units of 104 K. In the lower parts of the thermosphere, where most of the auroral light originates,
T ∼ 200 K. We estimate that Υ(0.02) ∼ Υ(0.5)/3.4. For ⇓, use the number give above ⇓.

Ion Transition λ (Å) Aul [s−1] Υlu(0.5) Υlu(1.0) Υlu(1.5) Υlu(2.0)

O I 1D2 − 3P0 6393.5 7.23× 10−7 1.24× 10−1 2.66× 10−1 − 5.01× 10−1

1D2 − 3P1 6363.8 2.11× 10−3 ⇓ ⇓ ⇓
1D2 − 3P2 6300.3 6.34× 10−3 ⇓ ⇓ ⇓
1S0 − 3P1 2972.3 7.32× 10−2 1.53× 10−2 3.24× 10−2 − 6.07× 10−2

1S0 − 3P2 2959.2 2.88× 10−4 ⇓ ⇓ ⇓
1S0 − 1D2 5577.3 1.22 7.32× 10−2 1.05× 10−1 − 1.48× 10−1

3P0 − 3P1 1.46× 106 1.74× 10−5 1.12× 10−2 2.65× 10−2 − 6.93× 10−2

3P0 − 3P2 4.41× 105 1.00× 10−10 1.48× 10−2 2.92× 10−2 − 5.36× 10−2

3P1 − 3P2 6.32× 105 8.92× 10−5 4.74× 10−2 9.87× 10−2 − 2.07× 10−1

c) Figure 16.13 shows the time evolution (in Gyr) of the origin of the elements in the peri-
odic table. Estimate (roughly) which percentage of the human body (by mass) originates
from Big Bang nucleosynthesis, AGB stars, core-collapse Supernovae (so, from massive
stars) and Type Ia supernovae (so, from low-mass stars).

Exercise 16.3

The Ca II K line, at λ3933 Å, is the strongest line in the visual spectrum of the sun. At
both sides of the line core, within one Angström from line centre, the K line shows two
minuscule peaks (see figure 16.3) that have been discussed extensively in the literature.
Can you draw four panels as in figure 4.5 that explain these minuscule peaks? Assume
that the profile shape of the K line has the standard “clock” shape.

Exercise 16.4

a) Use the data in table 16.3 to compute the critical densities (see eq. 15.14) for the au-
roral lines of O I at λ5577 Å (green), λ6300 Å and λ6364 Å (both red). Recall that the
statistical weight gJ = 2J + 1.

https://ui.adsabs.harvard.edu/abs/2011aas..book.....P/abstract
https://ui.adsabs.harvard.edu/abs/2011aas..book.....P/abstract
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Stellar winds

A stellar wind is a continuous outflow of matter from a star. This outflow plays an important
role in the life cycle of gas and dust in the interstellar medium and in the evolution of stars.

After a short introduction we discuss the most characteristic signature of mass loss in a stellar
wind, i.e. the P Cygni profile. From these profiles one can easily determine the terminal
velocity of the stellar wind. Next, we focus on several methods to determine the rate of mass
loss from stellar winds from spectroscopic and/or photometric observations. For hot stars
there are three such approaches that use, respectively: i) non saturated P Cygni profiles, ii)
emission lines, and iii) infrared and radio excess.

The most sensitive diagnostics of stellar winds are the P Cygni profiles of resonance lines in
the ultraviolet part of the spectrum. Saturated profiles of these lines only yield lower limits to
Ṁ . Intrinsically strong resonance lines of stars with mass loss can already display a P Cygni
shape if Ṁ ∼ 10−9 M�yr−1. If the line is not saturated one can derive the number density
of absorbing particles nijk as a function of distance from a comparison of the observed pro-
file with model predictions, and by that the mass-loss rate. For resonance lines it holds that
n0jk ' Njk. To accurately derive the mass loss it is therefore necessary that the ionisation
properties qjk(r) are known. Sometimes, if it is safe to assume that the relevant ion is dom-
inant throughout the entire wind, i.e. qjk(r) ' 1, the required computations are relatively
simple and a reliable mass loss is found. In most cases the ion responsible for the P Cygni
profile being studied is not the dominant ion. Sometimes it is even far from it. In that case
there is no other option than to do a proper computation of the state of the gas in the stellar
wind. These computations are extremely complex as both NLTE effects, line-blanketing ef-
fects, the stellar wind, non-thermal radiation as a result of instabilities in the stellar wind (read:
shocks), and structure in the outflow (read: clumps) need to be included in a self-consistent
way. This is such a complicated and extensive problem that it is at (or even beyond) what we
are currently capable of.

The emission line method for mass loss determinations usually employs the wind emission
in the Hα profile (though for very hot stars also He II λ4686 may be a useful diagnostic) and
yields reasonably reliable results. The most reliable way to derive Ṁ is that based on radio
flux measurements. In §§ 17.4 and 17.5 we will discuss the principles of these latter two
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methods.

For completeness, in the case of cool stars the diagnostics of mass loss and terminal velocity
are: iv) molecular emission lines, and v) infrared and (sub-)millimeter continuum radiation
by dust that condenses in the stellar wind outflow. These methods will not be discussed in
these lecture notes.

17.1 Historical introduction

The P Cygni profiles that are so characteristic for stars with a stellar wind were, you never
guess, first seen in the star P Cygni. This star – to provide a nice trivia – was discovered as a
“new star” in the summer of 1600 by the Dutch chartographer Willem Janszoon Blaeu (1571 –
1638). The discovery of the characteristic profiles and insight in their meaning followed only
much later.

Beals (1929) noticed that both the spectra of Wolf-Rayet stars (see § 2.2) and of novae showed
P Cygni profiles. Photographic plates of novae, first that of Nova Aurigae in 1891, showed
that these events were associated with the formation of shells of gas centered around the
star that experienced the outburst. Continued observations of these shells, over periods of
years, showed that the diameters of the shells increased, associating P Cygni profiles with the
outward expansion of gaseous envelopes. An important difference between Wolf-Rayet stars
and novae was that the P Cygni profiles in the WR-stars do not change over time. This led
Beals to propose that a continuous outflow occurs from Wolf-Rayet stars. This was confirmed
by Chandrasekhar (1934), who developed a solid footing for interpreting P Cygni profiles as
arising in expanding atmospheres (see § 17.2). Korisev (1934) used the diagnostics developed
by Chandrasekhar to estimate the mass loss and maximum outflow velocity of a Wolf-Rayet
star and found, respectively, ∼ 10−5 M�yr−1 and ∼ 1000 km sec−1.

In the case of cool stars, it was more difficult to find evidence for mass loss. The crucial
evidence was presented by Deutsch (1956), who showed that the M5 giant in the binary system
α Hercules looses mass at a rate of ∼ 10−7 M�yr−1 and at a maximum flow speed that
reached ∼ 10 km sec−1. Deutsch noticed that the spectrum of the accompanying G5 star
contained a set of shifted lines that are also present in that of the M star. He realized that the
orbit of the G-dwarf is embedded in the expanding envelope of the M giant, making the G-
dwarf serve as a “probe” of the velocity and density in the remoter parts the M giant outflow.
As the measured velocity in these remote parts of the M giant atmosphere was in excess of the
local escape speed he concluded that the gas would escape from the M giant.

In addition to spectroscopic evidence, Wilson (1960) realized from stellar structure consider-
ations that stellar mass loss must occur. For stars with initial masses in excess of the Chan-
drasekhar limit of 1.4 M�, it was necessary that mass was lost in order for these objects to
evolve to the white dwarf phase.

https://ui.adsabs.harvard.edu/abs/1929MNRAS..90..202B/abstract
https://ui.adsabs.harvard.edu/abs/1934MNRAS..94..522C/abstract
https://ui.adsabs.harvard.edu/abs/1956ApJ...123..210D/abstract
https://ui.adsabs.harvard.edu/abs/1960ApJ...132..136W/abstract
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Research into the properties and nature of stellar winds expanded dramatically in the 1960s.
In 1962 the existence of a solar wind was observationally confirmed by the Mariner 2 inter-
planetary probe. In 1967, Morton, using a balloon experiment, secured UV spectra of several
O and B supergiants. These showed P Cygni profiles, a telltale signature of stellar winds.
Since that time many observations, ground based as well as from rockets, balloons and satel-
lites, have conclusively shown that stellar winds occur in many different types of stars. The
evidence is found in almost all wavelength domains, from X-ray to extreme-UV, UV, optical,
infrared, sub-millimeter to the radio regime. Space observatories that have contributed very
significantly to these studies include the Copernicus satellite, the International Ultraviolet
Explorer (IUE), the Einstein röntgen observatory, the Dutch-American Infrared Astronomy
Satellite (IRAS), Extreme Ultraviolet Explorer (EUVE), Hubble Space Telescope (HST), the
partly Dutch Infrared Space Observatory (ISO), and the Herschel Space Observatory.

17.2 P Cygni profiles

In general one can easily distinguish spectral lines that are formed in a stellar wind from those
that orginate in the photosphere. The wind lines have a much larger width, a result of the
acceleration of the outflowing gas, compared to the photospheric lines that are formed in the
(more or less) hydrostatic parts of the atmosphere and which are only affected by thermal
and turbulent broadening. The wind lines have either absorption or emission profiles, or a
combination of these two: the so called P Cygni profile.

P Cygni profiles usually occur if the line forms through the process of resonance scattering.
This occurs if the transition is between the groundlevel (or a meta-stable level) and an excited
level. Often, the upper level is the first excited level, however this is not strictly required. In a
scattering the extinction of a photon in a photo excitation is followed by the spontaneous emis-
sion of a photon of (virtually) equal frequency. The photon is therefore not lost, but has only
changed direction. Examples of resonance lines are N V λλ1239,1243, C IV λλ1548,1551,
and Si IV λλ1394,1403 in the spectra of O and early B-type stars; C II λλ1335,1336 in late B-
and A-type stars, and Mg II λλ2796,2803 in late B- to M-type stars. Notice that these are all
lines of relatively abundant elements. Of course, Lyαλ1216 will be strong in all these types
of stars.

Schematic explanation of the formation of a P Cygni profile

Figure 17.1 provides a schematic representation of the formation of a P Cygni profile. We
assume a spherically symmetric outflow in which the velocity of the gas increases monoton-
ically, reaching a maximum outflow velocity or terminal velocity v∞. A distant observer can
identify four regions that each contribute in a specific way to the line profile.

a) The photosphere of the star, emitting the continuum “on top of which” the line is
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Figure 17.1: Schematic representation of the formation of a P Cygni profile. The observer can identify
four regions: a) the photosphere of the star, from where the continuum originates; b) the ‘tube’ in front
of the stellar disk, where blue shifted absorption occurs; c) the ‘tube’ behind the stellar disk, which
can not be observed, and d) the halo surrounding the stellar disk from which the symmetrical emission
profile originates. In a fully developed P Cygni line the contributions from the regions b and d dominate
the profile. In first order, the P Cygni profile is the sum of a, b, and d.
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formed. In almost all cases the photosphere is formed in a layer that has an outflow
velocity that is very low compared to the local thermal Doppler velocity, i.e. v � ξD.
Therefore, a “normal” absorption profile will form at the rest wavelength λlu of the line.
This absorption profile may not be visible as such because the more outward stellar wind
may “deform” the profile.

b) A tube like or cylindrical region in front of the stellar disk, where gas is moving in the
direction of the observer with velocities that range between v ' 0 and the maximum
outflow velocity +v∞. In this tube, continuum photons at the blue side of λlu, i.e.
photons with shorter wavelength, will be scattered out of the line of sight towards the
observer. If v∞ � ξD a broad blueshifted absorption profile will form.

c) A tube like or cylindrical region behind the stellar disk, where gas is moving away from
the observer. As the stellar disk is occulting this tube, radiation emitted in this region
can not be observed. It implies that, at least in principle, the maximum redshift of line
photons, i.e. those corresponding to the velocity v = −v∞, can never be seen. In
practice, however, this effect is so small that it can not be identified.

d) The region next to the stellar disk that the observer would see as a halo surrounding
the stellar disk if one would be able to spatially resolve the wind outflow. The gas in
this halo can have both positive (i.e. blue shifted) as well as negative (i.e. red shifted)
velocities relative to the observer and causes a symmetric emission profile with Doppler-
shifted velocities between −v∞ and +v∞.

In shaping the observed profile the contributions of regions b and d are dominant, proviso
the stellar wind is not very weak (in which case a will dominate). The net effect of all four
contributions – which in a simplistic way of thinking one might view as the sum of four
independent profiles – yields the P Cygni profile (see figure 17.1).

The determination of the terminal flow velocity

The maximum outflow velocity can easily be determined from P Cygni profiles that have a
strongly saturated blue shifted absorption. To give an example of such saturated P Cygni
profiles we show in figure 17.2 a number of UV resonance lines of the O4 If star ζ Puppis.
This star at a distance of 450 parsec is the closest early-O supergiant.

If we neglect the thermal velocity ξD (see eq. 13.16), gas that is approaching us with the ter-
minal velocity will cause the most blue shifted absorption in the line profile. The wavelength
of this maximum Doppler shift is, using eq. (13.13)

λedge = λlu (1− v∞/c) (17.1)

If the line is so strong that even at (read: very close to) the terminal velocity all stellar light is
extincted there will be no flux at the long wavelength side of λedge, i.e. the line is saturated,
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Figure 17.2: Merged spectrum of Copernicus and IUE ultraviolet high-resolution observations of the
O4(f) supergiant ζ-Puppis. The most important wind lines of the light elements are identified and
marked. Also marked are the large number of lines from iron group elements (e.g. Fe V) which
are especially present between 1250 and 1500 Å. Most of these iron-group lines are formed in the
photosphere and in the lower part of the outflow. The resonance P Cygni profiles of O VI, N V and C IV
are saturated and can be used to measure the terminal velocity. Figure from Pauldrach et al. (1994).

while suddenly at the short wavelength side the stellar continuum will be visible again. By
simply measuring the wavelength at this abrupt transfer from no flux to the full continuum
flux, the terminal velocity is found using eq. (17.1).

Though the above is a trivial procedure, there are a number of effects that can complicate the
determination of v∞. These are: a) The P-Cygni profile is not saturated. In this case the bluest
wavelength showing line extiction no longer corresponds to that of the terminal velocity, and
only a lower limit for v∞ can be measured; b) The ionisation of the ion responsible for the
P Cygni profile may at some point in the outflow suddenly decrease. If this happens, the same
scenario as in case a applies, i.e. one measures a lower limit for the terminal velocity; c)
The stellar wind is turbulent. Both observations and theory point to the presence of strong
turbulent motions in stellar winds. At the radial distance where v ∼ v∞ these motions can
reach an amplitude ξmicro ∼ 0.05 − 0.15 v∞. If this turbulence is not taken into account the

https://link.springer.com/article/10.1007/BF00771052
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terminal velocity will be overestimated by roughly 10 to 30 percent; d) At the blue side of the
P-Cygni profile, just past the wavelength corresponding to v∞, some absorption lines of other
elements may be present. If one would not be aware of the presence of such lines, one would
overestimate the terminal velocity.

Velocity law

Observations and theory of stellar winds both show that the behaviour of the outflow speed
can be approximated by a β-type velocity law, first introduced by Castor and Lamers

v(r) = v◦ + (v∞ − v◦)
(

1− R?
r

)β
(17.2)

This law describes a monotonic increase of the outflow velocity with distance from v◦ at
the photosphere (r = R?) to a maximum velocity v∞ at large distance. For O- and B-type
stars the starting velocity is subsonic, whereas the terminal velocity v∞ is highly supersonic.
It actually holds that v◦ � v∞. The parameter β is a measure of the velocity gradient or
“steepness” of the velocity law. For early-type stars β ' 1, so that 80 percent of the terminal
velocity is reached at 5 R?, i.e. 4 R? above the surface. For increasing β, the velocity gradient
in the wind becomes smaller. An alternative way of describing the velocity law is

v(r) = v∞

(
1− r◦

r

)β
(17.3)

where

r◦ = R?

[
1−

(
v◦
v∞

)1/β
]

(17.4)

This representation is often prefered as it is easier to handle in analytical considerations.
Sometimes, for practical reasons, the velocity law is normalised to the terminal velocity, i.e.

w(x) ≡ v(x)/v∞ (17.5)

where the distance measure x ≡ r/R? is in units of the stellar radius.

17.3 Flat topped and parabolic line shapes

We consider line formation in a stellar wind with an outflow velocity v(r) that is monotoni-
cally increasing. An observer views the system along a line of sight that passes the center of
the star at a distance p (see Figure 17.3); p is referred to as the impact parameter. The distance
z on the impact beam is measured such that the positive z-direction is toward the observer and
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z = 0 in the plane of the sky through the center of the star. The geometry is identical to that
shown in Figure 3.6. Obvious relations are

r2 = z2 + p2,
z

r
=
vz
v

= µ, and p = r

√
1−

(vz
v

)2
, (17.6)

where µ = cos θ is the cosine of the angle between the radial direction and the beam direction
(see also Figure 3.1).

Line-of-sight optical depth in a fast moving flow

The optical depth in the line, along this beam, is given by

τlu =

∫ ∞
−∞

αlu(ν)nl dz

=

(
πe2

mec

)
flu

∫ +∞

−∞
nl

[
1− nu gl

nl gu

]
φ(∆ν) dz, (17.7)

where we have used Eq. (7.21) (more specifically Eq. 7.32) to express the cross section,
and φ(∆ν) is the line profile function. The profile function may, for instance, be given by
Eq. (13.18). The frequency ∆ν in the profile function depends on z through the Doppler
relation (see Eq. 13.14)

∆ν = ν
(

1− vz
c

)
− νlu. (17.8)

We now assume that the geometrical zone along the z-axis in which the line is able to absorb
the frequency ν is small. If the typical line width due to thermal broadening and turbulence is
∆v, the extent of this zone is ∆z = ∆v/(dvz/dz). For ∆z to be small, ∆v should be small
and the flow speed v should be large, such that dvz/dz is large. If this zone is small, the level
populations, source function, and line of sight velocity gradient (see below) will hardly vary
and may be taken as constant. We refer to this zone as the resonance zone and may write

τlu =

(
πe2

mec

)
flu nl

[
1− nu gl

nl gu

] ∫ +∞

−∞
φ(∆ν) dz (17.9)

(17.10)

The spatial integral can be reformulated in∫ +∞

−∞
φ(∆ν) dz =

∫ −∞
+∞

φ(∆ν)
dz

dvz

dvz
d∆ν

d∆ν =
c

νlu

dz

dvz

∣∣∣∣
r

∫ +∞

−∞
φ(∆ν) d∆ν

= λlu
dz

dvz

∣∣∣∣
r

, (17.11)

where dvz/d∆ν = −c/νlu follows from inverting the derivative d∆ν/dvz in Eq. (17.8) and
taking ν = νlu. The last equality holds because the profile function is normalized to unity
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Figure 17.3: Geometry in which the line flux is computed; identical to that shown in Figure 3.6.

(see Eq. 7.4). Because we have assumed that in the resonance zone the line-of-sight velocity
gradient dvz/dz is constant, it may be taken out of the integral and evaluated at r.

For the optical depth, we then find

τlu =

(
πe2

mec

)
flu λlu nl

[
1− nu gl

nl gu

]
dz

dvz

∣∣∣∣
r

= A(r)
dz

dvz

∣∣∣∣
r

. (17.12)

A(r) is a function of radius because nl and nu are. The velocity gradient dvz/dz is given by

dvz
dz

=
d

dz

(
v
z

r

)
=
v

r
+
z

r

dv

dr

dr

dz
− vz

r2

dr

dz

=
v

r

[
1 + µ2

(
r

v

dv

dr
− 1

)]
≡ v

r

[
1 + µ2σ

]
, (17.13)

where we have used that dr/dz = z/r = µ. For a constant velocity stellar wind, we find that

dvz
dz

=
v p2

r3
. (17.14)

An optically thin line in a constant velocity flow→ flat-topped profile

To obtain the observed flux in the spectral line, we need to solve Eq. (3.30) for each line fre-
quency. Note that an explicit reference to the frequency ν has disappeared from the expression
for the optical depth and is replaced by a reference to the line-of-sight velocity vz . This is typ-
ical for a moving medium. Think of an infinitely small resonance zone (we can do this easily
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by assuming the intrinsic line profile function to be a delta function). In that case, a photon
of frequency ν will be correspond to a unique line-of-sight velocity vz (see Eq. 17.8 for the
case ∆ν = 0). It is therefore the expression Fν(vz) that will tell us how the flux changes
throughout the line profile, i.e. what the line profile shape is.

Because the line source function in the resonance zone is constant, we have

Fν =
2π

d2

∫ R

0
Ivz(p) p dp =

2πSν
d2

∫ R

0

(
1− e−τlu

)
p dp, (17.15)

where we have used Eq. (4.49) to write down the last equality and have assumed that the line
source function Sν is constant throughout the wind, i.e. Sν 6= Sν(r). The medium beyond
radius R does not contribute to the line flux. Note that strictly speaking, the above expression
is not correct as we have assumed that none of the lines of sight hit the star. As long as the
star is small compared to the volume of the wind envelope in which the line is formed, this
will not be an issue. Instances in which this assumption is valid are ionic lines in Wolf-Rayet
winds and molecular lines in the outflow of AGB stars and red supergiants. Because there is
no background intensity for any of the beams, an emission line will form.

For a wind flow moving at constant velocity v, we may assume that (see Eq. 9.17)

A(r) =
A◦
v r2

. (17.16)

We then find for an optically thin line

Fν =
2πSν
d2

∫ R

0
τlu p dp =

2πSν
d2

∫ R

0
A
r3

v p2
p dp

=
2π A◦ Sν
v2 d2

∫ R

0

1

r2

r3

p

p

r
dr =

2π A◦ Sν
v2 d2

∫ R

0
dr

=
2π

3

A◦RSν
v2 d2

, (17.17)

where we have inserted result Eq. (17.14) and used that for constant v, dp/dr =
√

1− (vz/v)2 =√
1− (z/r)2 = p/r. The flux does not depend on vz and therefore is constant for all line ve-

locities [−v,+v]. The emission line is said to be block shaped or flat topped.

An optically thick line in a constant velocity flow→ parabolic shaped profile

For an optically thick line in a flow moving at constant velocity, Eq. (17.15) reduces to

Fν =
2πSν
d2

∫ R

0
p dp =

2πSν
d2

∫ R

0

p2

r
dr

=
2πSν
d2

∫ R

0

[
1−

(vz
v

)2
]
r dr =

2πSν
d2

[
1−

(vz
v

)2
] ∫ R

0
r dr

= πSν

(
R

d

)2 [
1−

(vz
v

)2
]
. (17.18)
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The emission line has a parabolic shape over the velocity range [−v,+v].

17.4 The determination of mass loss from Hα

We assume that we may consider the star and the stellar wind as two seperate entities. This
is called the core-halo approximation. In reality, there obviously will be a fluent transition
from photosphere to stellar wind. The star has a stellar radius R? and emits a spectrum that
is given by Fν(R?). We may expect the photospheric profile of Hα to be an absorption line.
A spherically symmetric stellar outflow will either partly, fully, or more than fully fill in this
this profile by Hα line emission. We assume that the Hα transition in the wind is optically
thin such that all photons emitted in the spectral line will escape, save for those that happen to
be emitted in the direction of the stellar disk. The latter photons will be absorbed by the star.
Given the above assumptions the luminosity of the wind in Hα is given by (see eq. 7.16)

L(Hα) =

∫ ∞
R?

[1−W (r)] hνlunu(r)Aul 4πr
2 dr (17.19)

where u=3 and l=2 and νlu is 6563 Å. In this equation W (r) is the geometrical dilution
(eq 3.12), which corrects the volume integral for the fraction of total solid angle in which
photons can not escape (as they will find the star on their way). The term hνlunuAul is the
total energy that is emitted by the transition, in all directions and for all line frequencies,
in erg cm−3 sec−1 (see § 7.3). The number density of particles in level n=3 can be written
in terms of the electron density ne and the proton density np, using Saha-Boltzmann equa-
tion (6.26) and the NLTE departure coefficient of the upper level bu (see eq. 6.27). Manipu-
lating a number of equations presented in § 6.5 we find (see eq. 6.32)

ne =
∑
k

Jk∑
j=1

jNjk = NN

∑
k

Ak

JK∑
j=1

jqjk ≡ NNγ (17.20)

We further assume that the wind consists of a fully ionised hydrogen gas, such that γ = 1.
The proton density is the product of the hydrogen ionisation fraction, the hydrogen number
abundance and the number density of nuclei, i.e. np = N11 = Njk = qjkAkNN (see § 6.5).
In our case np = NN . This results in

L(Hα) = 4π hνluAul

∫ ∞
R?

[1−W (r)] bu Φu(T )N2
N r

2 dr (17.21)

where bu is the departure coefficient of the upper level of the line (see eq. 6.26 and 6.27). The
relation between the density of nuclei and the mass loss rate is described by eq. (9.17). If we
also assume that the wind is isothermal and that the NLTE departure coefficient is constant
throughout the wind, equation eq. (17.21) simplyfies to

L(Hα) =
hνluAul
4πm2

amu

buΦu(T )
Ṁ2

µ2
a

∫ ∞
R?

[1−W (r)]

r2v2(r)
dr (17.22)
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In assuming a pure hydrogen gas we have fixed the mean atomic weight to µa = 1. If we
normalize the velocity law to the terminal velocity (eq. 17.5) and switch to a dimensionless
distance x ≡ r/R?, it follows, after substition of constants, that

L(Hα) = 35.57 buT
−3/2 exp(17538/T )

Ṁ2

R?v2
∞

∫ ∞
1

[1−W (x)]

x2w2(x)
dx L� (17.23)

where Ṁ is in M�yr−1; R? in R�, and v∞ in km sec−1. The integral at the right side of
this equation can easily be computed and is only a modest function of the free parameters
w◦ ≡ v◦/v∞ and β in the normalized velocity law (see eq. 17.2). For the wind temperature T
we adopt a certain fraction of the effective temperature. Typically, it holds that T/Teff ∼ 0.5
to 1. To be fair, a constant value for b3 throughout the wind is a poor approximation, but, as
we have chosen to go down this road, let us assume b3 ∼ 1.3. For O-type stars this is a fair
compromise.

One can ”measure” the quantity L(Hα) with relative ease: From the relations given in § 13.1
it follows that the luminosity in Hα produced by wind emission is given by

L(Hα) = 4πd2Fc
Hα

[
W phot(Hα)−W (Hα)

]
= 4πd2Fc

HαW
net (17.24)

where Fc
Hα is the continuum flux at the wavelength 6563 Å; W phot is the absorption equiv-

alent with of the photospheric Hα profile, and W is the measured equivalent width. The net
equivalent width, W net, i.e. the difference between the photospheric and measured equiva-
lent width, provides a measure of the filling in of the spectral line by wind emission. If the
effective temperature and gravity of the star are known we may obtain, for instance from Ku-
rucz models, values for Fc

Hα and W phot. The stellar radius follows from the distance d. The
terminal velocity may be determined from P Cygni profiles (see § 17.2).

Let us make a rough estimate of the photospheric flux in order to establish the way in which
the net equivalent width depends on basic stellar parameters. For hot stars the Hα line is more
or less in the Rayleigh-Jeans part of the spectrum. In that case we may use as a first order
approximation of the photospheric flux

Fc
λ ∼ 4πR2

?πBλ(Teff) ∝ R2
?Teff (17.25)

If we assume the wind temperature to be a constant fraction of the effective temperature and
that for hot O- and B-type stars the exponential term in eq. (17.23) is about unity, it follows
that

W net ∝

(
Ṁ

R
3/2
? v∞T

5/4
eff

)2

(17.26)

For an optically thin wind line the equivalent width is thus proportional to the square of the
mass loss rate. The essence of the derived proportionality can easily be grasphed by realizing
that the assumptions imply that Hα is formed by recombination processes, and that therefore
the columns density will be proportional to ∼ ρ2R?. Applying continuity equation (9.14) the
derived dependence is explained (save for the Teff part).
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17.5 The determination of mass loss from radio measurements

In 1975 Panagia & Felli and Wright & Barlow almost simultaneously pointed out that the mass
loss from hot stars should also be measurable in infrared- and radio light. If a hot star has a
stellar wind, it must be surrounded by an ionized plasma that can absorb and emit through
bound-free and free-free transitions. The emission of the wind medium will cause the spectral
energy distribution (SED) in the IR and radio to be flatter than the Fν ∝ ν2 one expects for
a star without a wind (see eq. 6.9). In this section we concentrate on the radio as for this
wavelength regime the observed flux can easily (read: analytically) be related to the mass
loss.

For radio frequencies one may apply the Rayleigh-Jeans approximation (hν/kT � 1). More-
over, free-free processes are dominant. For a gas mixture the free-free extinction coefficient
per cm is given by (see eq. 8.19)

χff
ν = 1.772× 10−2 gIII(ν, T )

Z2γ

T 3/2ν2
N2
N (17.27)

≡ K(ν, T )N2
N (17.28)

where we used eq. (17.20) to describe the electron density and

Z2 ≡
∑
k

Ak

JK∑
j=1

Z2
jkqjk (17.29)

for the quadratic mean of the charge of the ions. We also assume that the wind consists of a
fully ionized hydrogen gas, such that Z2 = 1 and γ = 1 (For this reason we have not added
Z2 en γ to the list of dependencies of K).

The optical depth along the line-of-sight at a projected distance p > R? to the center of the
stellar disk is (see § 3.4)

τff
ν (p) = K(ν, T )

∫ +∞

−∞
N2
N (p, z) dz (17.30)

Using eq. (9.17) we get for the density of nuclei

NN (r) =
Ṁ

4πmamuµar2v(r)
' Ṁ

4πmamuµar2v∞
≡ A

r2
(17.31)

For our hydrogen gas µa = 1. In our case the almost equal sign in the above equation is
justified because the bulk of the radio radiation will be emitted at large distances from the star.
The optical depth further simplifies to

τff
ν (p) = K(ν, T )A2

∫ +∞

−∞

dz

r4
= K(ν, T )A2

∫ +∞

−∞

dz

(p2 + z2)2 = K(ν, T )A2 c2

p3
(17.32)

https://ui.adsabs.harvard.edu/abs/1975MNRAS.170...41W/abstract
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In the last equality c2 = π/2, which follows from∫
dz

(p2 + z2)2 =
1

2

z

p2 (p2 + z2)
+

1

2

arctan(z/p)

p3
(17.33)

To obtain the emerging specific intensity along a beam specified by impact parameter p > R?
we assume that the wind is isothermal. In that case (see eq. 4.49)

Iν(p) = Bν(T )
[
1− e−τff

ν (p)
]

(17.34)

The flux at distance d is given by (see eq. 3.30)

Fν(d) =
2π

d2

∫ ∞
0

Iν(p)p dp

' 2π

d2
Bν(T )

(
K(ν, T )A2c2

)+2/3
∫ ∞

0

[
1− e−1/y3

]
y dy (17.35)

where
y ≡ p

(
K(ν, T )A2c2

)−1/3 (17.36)

The the last term in eq. (17.35) is not identical to the previous term because the optical depth
along lines of sight intercepted by the star, i.e. for p ≤ R?, are strictly speaking, not given by
eq. (17.32) (in this case the integration should run from

√
R2
? − p2 to +∞), and Iν(p) should

not be represented by eq. (17.34); see eq. 4.49). However, as the radio radiation is produced in
a large volume around the star this introduces a negligible error. The y-integral can be solved
numerically, from which results C2 = 1.339. For the radio regime (hν/kT � 1) we obtain

Fν(d) = 23.454
ν2/3

(d/ kpc)2

(
gIII(ν, T )γZ2

µ2
a

)2/3
(
Ṁ/M�yr−1

v∞/ km sec−1

)4/3

Jy (17.37)

The flux is given in jansky. Notice that in our isothermal windFν , save for a weak dependence
which enters through the Gaunt factor, is independent of the temperature of the gas. This is
important in view of uncertainties in the temperature structure of stellar winds. If we also
neglect the modest frequency dependence of gIII we find for spectral slope or spectral index
n ≡ ∂ logFν/∂ log ν = 2/3, i.e.

Fν ∝ ν2/3 (17.38)

A good approximation for the Gaunt factor in the radio domain is provided by

gIII = 9.77
(

1 + 0.13 log[T 3/2/νZ]
)

(17.39)

Corrected for this behaviour we obtain Fν ∝ ν0.6. In the infrared gIII is almost independent
of frequency and the spectral slope remains as implied by eq. (17.38). Inversion of eq. (17.37)
yields for the mass loss

Ṁ = 0.094
(d/ kpc)3/2

ν1/2

µa

(γgIII)
1/2Z

(
v∞/ km sec−1

)
(Fν/Jy)3/4 M�yr−1 (17.40)
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The insensitivity of the radio flux for the temperature of the wind and the stellar radius make
that mass loss rates derived from radio measurements are among the most reliable. Unfortu-
nately, the number of stars for which we can use the radio method is small as the fluxes are low,
therefore difficult to measure. For a star at a distance of 1 kpc, having Ṁ = 10−6 M�yr−1

and v∞ = 2000 km sec−1, the flux at 6 cm is Fν ' 0.3 mJy. The detection limit of large
radio telescopes is near 0.1 mJy. The radio method can therefore only be applied for relatively
nearby stars (d . 1 kpc) with relatively high mass loss (Ṁ& 10−6 M�yr−1).

Effective radius at radio wavelengths

Based on the measured ratio Ṁ /v∞ we can assign to a star an effective radius at radio wave-
lengths. The value for the radius is a function of wavelength at which it is measured and
depends on the exact definition of rff

ν .

The optical depth at the effective radius rff
ν is (compare to eq. 17.32)

τff
ν (rff

ν ) = K(ν, T )A2

∫ ∞
rff
ν

dr

r4
=

KA2

3(rff
ν )3

(17.41)

We discuss two possible definitions of the effective radius. In the first case we focus our
attention to the medium above the radio surface of the star and assume that this radiating
medium is optically thin; in the second case we require the emission to come from an optically
thick radiating sphere.

If we require the observed flux to be equal to the total emission in the wind above a certain
effective radius rff

ν , i.e.

Lν = 4πd2Fν(d) = 4π
(
rff
ν

)2
Fν(rff

ν ) =

∫ ∞
rff
ν

4πηff
ν 4πr2 dr (17.42)

we find using ηff
ν = χff

νBν(T ), substitution of eq. (17.41) and equating with eq. (17.35), that
the effective radius should be measured at τff

ν = 0.247. Notice that in this definition we have
implicitely assumed that the radiating medium is optically thin. Substitution of constants and
inversion of eq. (17.41) leads to

rff
ν = 3.633× 1017 1

(τff
ν )1/3

1

ν2/3T 1/2

(
gIII(ν, T )γZ2

µ2
a

)1/3
(
Ṁ/M�yr−1

v∞/ km sec−1

)2/3

R�

(17.43)
If we again take Ṁ = 10−6 M�yr−1 en v∞ = 2000 km sec−1 and assume that the tem-
perature of the wind T = 30 000 K we find at the wavelength of 6 cm an effective radius
rff
ν = 1308R�. The typical stellar radius of an O star (measured at optical wavelengths) is

about 15 R� (see table B.5) which shows that the radio radius rff
ν � R?.

We may also define the effective radius at radio wavelengths by equating the measured radio
flux with the total amount of radiation emitted by a spherical surface of radius rff

ν , i.e. (see
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vgl. 3.27)

Fν(d) = πBν(T )

(
rff
ν

d

)2

(17.44)

After substitution of eq. (17.41) and equating to eq. (17.35) it follows that the effective radius
should be measured at τff

ν = 0.0484. Note that in this definition the emission is thought
to originate from an optically thick surface. The reason why the “optically thick” effective
radius is larger than the “optically thin” one has to do with the fact that the latter requires an
integration over a large volume.
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Exercise 17.1

Measure the terminal velocity of the wind of ζ Puppis, using the spectrum displayed in
Fig. 17.2, from the saturated C IV λλ1448,1551 doublet resonance line. Use the pdf
version of these lecture notes to zoom in on the profile to enlarge the region around the
C IV profile to improve the accuracy of your measurement.

Exercise 17.2

Sketch the profile of an inflow sensitive line, formed through resonance scattering, of a
star that is accreting material through spherical infall. In this process, the gas accelerates
from a negligibly small infall velocity v ∼ 0 far away from the star to a maximum infall
velocity v∞ at the stellar surface. Assume that the radius of the star is much smaller than
the volume surrounding the star from which the emission originates.

Exercise 17.3

Let us consider a spectral line that is formed in an extended stellar wind. The line forma-
tion volume is so large that the star may be considered a point source. The line is formed
through pure scattering and shows a P Cygni profile.

a) Is the emission equivalent width of this line (i.e. the part of the profile surface above the
stellar continuum larger/equal/smaller to the absorption equivalent width (i.e. the part of
the profile surface that is below the stellar continuum? Explain your choice.

Let us now consider a case where the line formation volume is small compared to the
dimension of the star.

b) Is the emission equivalent width larger/equal/smaller than the absorption equivalent width?
Explain your choice.

Exercise 17.4

This could be a nice exam question. In this exercise we aim to determine the velocity
law for a stationairy, i.e. time-independent, radial stellar wind that is driven solely by
the force due to the gradient of the radiation pressure (see eq. 9.35). We assume that
the extinction can be expressed using the flux-weighted mean extinction (see eq. 10.21).
This implies that we focus on continuum driven winds as it is not allowed to express the
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radiation pressure on spectral lines using a grey extinction. At the stellar radius, the flow
has velocity v(R?) = v◦. The equation of motion is given by Eq. 9.26, i.e.,

ρ
dv

dt
= ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ f , (17.45)

where d/dt is the fluid-frame time derivative (see Eqs. 9.14 and 9.24) and ∂/∂t the partial
time derivative at a fixed point in space. For a time-independant radial flow this implies

dv

dt
=
∂v

∂t
+ v

∂v

∂r
= v

dv

dr
, (17.46)

where we have switched to total derivative notation (d/dt) in the last equality as changes
in velocity are only traced in one direction.

a) Give an expression for the ratio, Γ, between the acceleration due to radiation pressure
and gravity

b) Show that the equation of motion of our problem is given by

v
dv

dr
= −GM?(1− Γ)

r2
(17.47)

c) Solve the equation of motion.

d) Take v◦ = 0. (Why is this not physical?). Give the solution v(r) in terms of the escape
velocity, vesc, at the stellar radius. Which value of β describes the steepness of the
velocity law?

e) Give an expression for the terminal flow velocity in terms of Γ and vesc. Which values of
Γ assure a physical solution?

Exercise 17.5

Assume a geometrically thin, homogeneous shell of radial thickness ∆r moving at con-
stant velocity v at distance r � R? from the central star having radius R?. This is so far
from the star that for practical purposes we may consider the star to be a point source.
What will be the profile shape of an emission line formed in this shell?

Exercise 17.6

Assume a geometrically and optically thin shell at distance r � R? from a central star
having radius R?, moving at radial velocity v. Show that emission from all redshifted
velocities −v to −v [1− 1/2 (R?/r)

2] is obscured by the stellar disk.
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H II regions

In this chapter we move away from the stellar surface into the ambient interstellar medium
of O- and early B-type stars. As we have seen in chapter 2 these massive stars are both
extremely luminous (L? & 104L�) and extremeley hot, with surface temperatures Teff &
20 000 K. The extreme ultraviolet radiation that is the result of these stellar properties causes
ionization of the surrounding gas. As the ionized gas is predominantly hydrogen these regions
are known as H II regions. The balance between photo-ioniziation and radiative recombination
determines the degree of ionization. The kinetic energy of the photo-electrons (those kicked
out of the atom or ion during ionization) is quickly shared with other free electrons in the
nebula, establishing a Maxwellian energy distribution. Electrons from the thermal pool can
excite low-lying levels of metals, such as O III, and downward radiative transitions cool the
nebula. This energy balance sets the temperature of the gas.

The processes setting the ionization and temperature structure of nebulae represent extreme
NLTE conditions; studying these conditions provides important insight in NLTE physics and
for this region this topic is part of these lecture notes. We first give a brief historical introduc-
tion. This is followed by a discussion of what sets the size of an H II-region. We continue with
a discussion on hydrogen line radiation and hydrogen free-free radio continuum emission. Fi-
nally, we discuss emission from metal lines.

18.1 Historical introduction

In the 19th century an animated debate ensued on the question whether the diffuse objects
seen through telescopes, loosely termed ‘nebulae’, were in fact unresolved stellar associations
or gas clouds. The answer came when these objects were studied using spectroscopy. The
small ‘white nebulae’, those located primarily outside of the plane of the Milky Way, fea-
tured spectra typical for that of stars. These are stellar associations or star clusters. Other
nebulae showed a pronounced line spectrum, sometimes accompanied by an underlying con-
tinuum that did not appear to be of stellar origin. These are the gas clouds, including planetary
nebulae, H II regions, and supernova remnants.
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Figure 18.1: The Orion Nebula (also known as Messier 42, M42, or NGC 1976) at a distance of
∼400 pc is the closest region of massive star formation to Earth. The dimensions of this image are
65 × 60 arcmins, corresponding to a physical scale of 7.5 × 7.0 pc. The open cluster of stars in the
heart of the Orion Nebula contains several O-type stars of which the O6pe V star θ1 Orionis C is the
most massive. The optical light we see is the result from line emission of hydrogen (Balmer lines) and
reflection of star light on dust grains.

The spectrum of the brightest of these nebulae, the Orion nebula (see Fig. 18.1), was observed
in 1863 by William Huggins. Soon after, Balmer lines were recognized in this and other
nebulae. After it was discovered in the Sun, also helium was found. Surprisingly enough,
the identification of the by far strongest lines in many nebular spectra – in green light at 4959
and 5007 Å – and those of other strong transitions, turned out to be an enormous challenge.
Some even speculated that these unidentified lines were produced by a new and hypothetical
element ‘nebulium’. Progress in the understanding of atomic structure eventually led to the
identification of these lines as forbidden transitions of O III. Other strong nebular lines were
found to be of a similar nature, and due to known elements such as nitrogen, neon, sulfer and
argon. The complexity of the spectrum of H II regions is nicely illustrated in Fig. 18.2, that
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Tielens, page 252

Figure 18.2: The infrared spectrum of the H II region K3-50, measured by the Infrared Space Observa-
tory. This spectrum shows a multitude of components. The continuum emission is due to warm dust.
Superimposed, are IR emission bands due to PAH molecules. Absorption bands due to silicates and
ices located in a foreground cold molecular cloud are also visible. The line spectrum shows hydro-
gen recombination lines and far-IR ionic fine structure lines originating in the H II regions, as well as
those originating in the photo-dissociation region. The jump in the spectrum reflects the difference is
aperture size between ISO’s short wavelength and long wavelength spectrometer and is not intrinsic.
Adapted from: Peeters et al. (2002).

shows the IR spectrum of K3-50.

H II regions are formed when massive stars reach the main sequence and suddenly ‘switch
on’ their UV radiation field. The gas and dust that remains from the star formation process
is often still around and will be ionized by the UV radiation. Regions of ionized gas around
O and B stars are therefore often called H II regions. Planetary nebulae have many things in
common with H II regions: there too a gas/dust mixture (the stellar wind which was ejected
when the star was still an asymptotic giant branch star) is ionized by the UV photons of the
hot white dwarf. White dwarfs can reach much higher temperatures than main sequence stars,
so in general one can expect higher ionization of the gas in planetary nebulae.

https://www.aanda.org/articles/aa/pdf/2002/02/aah3073.pdf
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18.2 The primary radiation mechanism in nebulae

The first thing to realize when identifying the relevant physical processes in a gaseous nebula
is the large distance of the nebula to the hot star (or stars) that irradiates (or irradiate) the gas.
This causes the radiation field, though very ‘hot’, to be very diluted.

Atomic processes that depend on radiation, such as photoexcitation and photoionization, thus
proceed at a rate that is a factorW (see eq. 3.12, or for a more practical version eq. 15.3) slower
than in thermodynamic equilibrium. However, the rate of recombinations is independent of
W and is controlled by local properties only, that is, the electron and ion densities and the
temperature of the medium (see vgl. 8.8). To give an example, a hydrogen atom in an excited
state will almost certainly experience a spontaneous de-excitation to a lower level before it can
absorb a photon that could bring it in a higher excited state, or cause ionization. The result is
that almost all the neutral hydrogen will be in the ground state. All H ionizations by photons
having λ < 912 Å will thus arise from the ground level, whilst recombinations may happen
to any level. When the capture of a free electron leads to a recombination to the ground level,
a Lyman continuum photon will be emitted. When recombination to n = 2 takes place, a
Balmer continuum photon will be released (λ < 3646 Å), followed by a Lyα photon when the
atom returns to the ground state. An electron captured in level n = 3 will discharge a Paschen
continuum photon (λ < 8204 Å). There are now two possibilities. Either the atom de-excites
to n = 2 by emitting a Hα photon and subsequently to n = 1 by releasing a Lyα photon, or it
cascades directly to the ground level by emitting a Lyβ photon. Scenarios for recombinations
to n = 4 or higher levels can easily be worked out (see figure 6.4).

18.3 Ionization equilibrium

The ionization equilibrium of the elements is determined by the balance between photoioniza-
tions and recombinations of electrons with ions. Let us assume that the nebula is composed
of hydrogen only. What then is the ionization condition of H? Given the strong dilution of the
radiation field (see above) and the large excitation energies of hydrogen, it is safe to assume
that all the neutral hydrogen is in the ground state, i.e. n0 = N0. Using Eq. (8.1), (8.3) and
(8.8), we may write (see Eq. 15.4)

n0 4π

∫ ∞
ν◦

αbf
ν

Jν
hν

dν = N+ne αA(T ) (18.1)

where ν◦ corresponds to 912 Å, and αA denotes the total recombination coefficient of hydro-
gen to all levels (see Table 18.1). If q0 = N0/N is the fraction of neutral hydrogen, it then
follows that N+ = ne = (1 − q). We further assume that the radiation field in the nebula is
completely controlled by a star at a large distance. If we adopt the star to be an isotropically
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radiating sphere, it follow from Eq. (3.11) and (3.27) that

Jν(r) =
1

4π
Fν(r) =

1

4π

Lν
4πr2

(18.2)

Writing for the total number of Lyman continuum photons leaving the star each second

Q0 ≡
∫ ∞
ν◦

Lν
hν

dν (18.3)

and approximating the extinction coefficient of photoionization with a constant (frequency
independent) value αbf

ν , we obtain for the fraction of neutral hydrogen

q

(1− q)2 =
4πr2αAN

αbf
ν Q0

. (18.4)

Let us consider a point in the nebula with a typical particle densityN = 10 cm−3, at a distance
of 5 pc from an O7 V star having logQ0 = 48.7. We then find – using αbf

ν ∼ 6 × 10−18

(see Eq. 8.3) and αA ∼ 4 × 10−13 (see Table 18.1) – for the fraction of neutral hydrogen
q ∼ 4× 10−4. In other words: hydrogen is almost completely ionized.

The recombination time of nebular gas

The recombination time of the nebular gas is given by

trec =
1

ne αA
(18.5)

For ne = 10 cm−3 (assuming near complete hydrogen ionization) the recombination time
is ∼ 3 × 1011 sec or ∼ 104 yr for a typical nebular temperature (see Table. 18.1). Thus, in
such a region, if a neutral hydrogen atom is photoionized, it stays ionized for a long time
before recombining. Once it recombines, it is relatively quickly ionized again, and so the
instantaneous neutral fraction in this region should be very small.

18.4 Strömgren sphere

A source that is producing a finite number of ionizing photons can of course not ionize an
infinitely large volume. Therefore, if the star is located in a sufficiently large gas cloud, there
must be a boundary to the H II region. Somewhere there will be a zone in which hydrogen
is recombining and outside of which there is an H I region. The thickness of the transition
zone will be small because when hydrogen starts to recombine the optical depth in the Lyman
continuum rapidly increases, effectively preventing ionizing radiation to penetrate deeper into
the medium. Hence we may estimate the thickness of the recombination zone by equating it



308 H II regions

Table 18.1: Recombination coefficients of hydrogen as a function of temperature in cm3 sec−1: αA ≡∑∞
i=0 α

RR
i,H gives the total number of recombinations to all levels; αB ≡

∑∞
i=1 α

RR
i,H gives the total

number of recombinations to all levels above the ground level. From: Storey & Hummer (1995), for
ne = 1000. The fit formula is from Draine (2011), in which T4 = T/10 000 and Z the net charge of
the ion. It provides good approximations in the range 30 K ≤ T/Z2 ≤ 30 000 K.

T αA/ 10−13 αB/ 10−13

3 000 9.74 6.74
5 000 6.83 4.53

10 000 4.17 2.59
15 000 3.11 1.84
20 000 2.51 1.43
30 000 1.84 0.991

T ∼ 4.15 (T/10 000 K)−0.72 ∼ 2.60 (T/10 000 K)−0.80

to the mean free path at the point where half of the hydrogen is recombined, i.e. at q = 0.5.
We find (see Eq. 4.28) using the numbers that we have used above

∆r ∼ 1

αbf
ν N

0
=

1

αbf
ν q N

∼ 0.01 pc. (18.6)

This is much smaller than the typical radius of an H II region. H II regions thus have a sharp
boundary, referred to as the ionization front. Inside of the boundary hydrogen is almost com-
pletely ionized; outside of the boundary hydrogen is almost completely neutral.

A source that is producing a finite number of ionizing photons can of course not ionize an
infinitely large volume. Therefore, if the star is located in a sufficiently large gas cloud, there
must be a boundary to the H II region. Somewhere there will be a zone in which hydrogen
is recombining and outside of which there is an H I region. The thickness of the transition
zone will be small because when hydrogen starts to recombine the optical depth in the Lyman
continuum rapidly increases, effectively preventing ionizing radiation to penetrate deeper into
the medium. Hence we may estimate the thickness of the recombination zone by equating it
to the mean free path at the point where half of the hydrogen is recombined, i.e. at q = 0.5.
We find (see Eq. 4.28) using the numbers we have used above

∆r ∼ 1

αbf
ν N

0
=

1

αbf
ν q N

∼ 0.01 pc. (18.7)

This is much smaller than the typical radius of an H II region (see below). H II regions thus
have a sharp boundary, referred to as the ionization front. Inside of the boundary hydrogen is
almost completely ionized; outside of the boundary hydrogen is almost completely neutral.

https://ui.adsabs.harvard.edu/abs/1995MNRAS.272...41S/abstract
https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
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Strömgren sphere – optically thin Lyman continuum

How big is an H II region? Let us assume a homogeneous spherical cloud of hydrogen gas
with a star in the center, and that the cloud is transparent for Lyman continuum photons. In
very good approximation, the sphere up to the ionization front is almost fully ionized. We can
thus write N+ ' ne ' N . If RS is the radius of the H II region, the balance between the
number of ionizations per second and the number of recombinations per second is

Q0 =
4π

3
R3

S αA neN
+ =

4π

3
R3

S αAN
2. (18.8)

Hence, the radius of the sphere is

RS =

(
3

4π

)1/3 (Q0

αA

)1/3

N−2/3. (18.9)

This radius is referred to as the Strömgren radius, in honor of the pioneer of this field, and the
volume encompassed by RS as the Strömgren sphere. It shows that the higher the gas density,
the smaller is the N II region.

If we fill in the numbers of our standard example (see above), we find RS = 10.1 pc. Indeed,
the Strömgren radius is much larger than the thickness of the ionization front.

Strömgren sphere – optically thick Lyman continuum

In the previous discussion we assumed the Strömgren sphere to be optically thin and the
radiation field in the nebula to be completely controlled by the central star. However, at Lyman
continuum frequencies ν ≥ ν◦ the nebula very likely is not optically thin. Therefore, we now
allow the mean intensity to have a diffuse component as a result of Lyman continuum radiation
emitted in the nebula. The local volume emission coefficient ην for radiation generated by
recombinations to the ground state is given by

4π

∫ ∞
ν◦

ην
hν

dν = N+ ne α
RR
1,H , (18.10)

where αRR1,H is the recombination coefficient to the ground level of hydrogen.

Suppose the nebula is optically thick for Lyman radiation, such that no Lyman continuum
photons can escape. Each and every Lyman photon produced by the diffuse radiation field
will be absorbed elsewhere in the nebula. For the mean intensity of the diffuse component of
the radiation field, Jd

ν , this implies

n0 4π

∫
nebula

αbf
ν

Jd
ν

hν
dV = 4π

∫
nebula

ην
hν

dV (18.11)

where the integration is over the entire volume of the nebula. If the mean free path of the
photons is small, that is, if the photons are absorbed close to where they are created, one may



310 H II regions

even write
Jd
ν =

ην
n0 αbf

ν

. (18.12)

This is referred to as the on-the-spot approximation. For nebulae having particles densities
that are not too small this is a reasonable assumption.

As a result of absorptions (read: photo-ionizations) Lyman continuum radiation that originates
directly from the star gets weakened by a factor exp[−τν(r)], where τν is the radial optical
depth

τν(r) =

∫ r

0
n0 α

bf
ν dr. (18.13)

In a formal sense, the integration of course needs to start at R? in stead of at the origin.
However, as we will show below, things work out more elegantly if we accept this minute
error. For the mean intensity of the stellar component of the radiation field we may write
(using also Eq. 18.2)

J s
ν(r) =

1

4π

Lν
4πr2

e−τν . (18.14)

The total radiation field in the nebula is then the sum of the stellar and the diffuse component,
i.e. Jν = J s

ν + Jd
ν . Substituting Eq. (18.12) and (18.14) in ionization equilibrium (18.1) then

yields

n0

∫ ∞
ν◦

αbf
ν

Lν
hν

e−τν

4πr2
dν = N+ ne

[
αA − αRR1,H

]
= N+ ne αB, (18.15)

where we have used Eq. (18.10). We have introduced the recombination coefficient αB =∑∞
2 αRR

i,H to represent the total number of recombinations to all levels above the ground level
(see Table 18.1). The physical meaning of the above equation is that in an optically thick
nebula ionizations caused by the stellar radiation field are in equilibrium with recombinations
to excited levels of hydrogen. Recombinations to the ground level produce Lyman continuum
photons that (in the on-the-spot approximation) are almost on-the-spot reabsorbed and thus
have no effect on the ionization equilibrium.

To determine the radius of the ionized region we use that dτν = n0 α
bf
ν dr (see Eq. 18.13) and

integrate over distance. This yields∫ ∞
ν◦

Lν
hν

[∫ ∞
0

e−τν dτν

]
dν =

∫ ∞
ν◦

Lν
hν

dν =

∫ ∞
0

N+ ne αB 4πr2 dr (18.16)

By letting the optical depth run from zero to infinity we have assured that all Lyman continuum
photons are ‘used up’. To find a simple expression for the size of the ionized region we again
assume that the gas is fully ionized up to the Strömgren radius RS, and that the gas outside
of this region is neutral. As we have seen, we expect a classical H II region to have a sharp
boundary implying that our assumption is quite reasonable. Using Eq. (18.3) it follows that

Q0 =
4π

3
R3

S αBN
2 (18.17)
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The meaning of this result is that the total number of ionizing photons emitted by the star
(per second) is exactly balanced by the total number of recombinations to excited states of all
hydrogen atom within a Strömgren sphere. For the Strömgren sphere we find

RS =

(
3

4π

)1/3 (Q0

αB

)1/3

N−2/3 = 1.6 pc

(
Q

1050 s−1

)1/3 ( N

103 cm3

)−2/3

(18.18)

If we again fill in the numbers of our standard example (see above) and adopt αB = 2×10−13

cm3 s−1, we find RS = 12.7 pc.

The two assumptions that we have made to estimate the size RS of the H II region are the
on-the-spot approximation and that the medium is either fully ionized (within the Strömgren
sphere) or fully neutral (outside of the Strömgren sphere). In doing so we could avert having
to solve the equation of transfer explicitly.

Ionization bounded and density bounded

Note that we have assumed that the ionizing star is in a sufficiently large gas cloud, that is, that
the edge of the Strömgren sphere is determined by the region where hydrogen recombines.
This is referred to as ionization bounded. It is however possible that the nebula contains
insufficient hydrogen for all Lyman continuum photons to ‘be used’. In that case we refer to
the H II region as density bounded.

What is the total mass of ionized hydrogen gas in an ionization bounded nebula. This is

M =
4π

3
R3

S mamuN =
Q0 mamu

αBN
' 417M�

(
Q

1050 s−1

) (
103 cm−3

N

)
, (18.19)

where we have adopted Case B. For our standard example we find M = 2089 M�.

Case A and Case B recombination

While we are in the process of defining things: in case the nebula is optically thin in all
recombination lines, i.e. all radiation produced by recombination processes in the nebula is
able to escape freely, one speaks of Case A. H II regions that fulfill the Case A requirement
can only contain a relatively small amount of gas. So little gas, as a matter of fact, that they
will be hard to observe.

Nebulae containing appreciable amounts of gas will rapidly develop large optical depths in the
hydrogen Lyman lines. We can easily estimate this from the ratio of the extinction coefficients
per particle in the ground state for line- and continuum radiation. For the extinction coefficient
of lines we have

χν = αlu(ν)nl =
πe2

mec
flu φν nl =

hν

4π
Blu φν nl, (18.20)
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where (πe2/mec) = 0.02654 cm2 hz and flu is the oscillator strength (see Sect. 7.3). Com-
parison of the collisional cross section at line center αlu(ν◦), assuming a Doppler function for
the profile function φν , with the continuum cross section Eq.(8.3) at the ionization boundary
yields, after substitution of constants

τ(Ly n)

τ(Ly−edge)
= 14.68

λ1n

[
Å
]
f1n

gII(ν◦, n) (T/10 000)1/2
, (18.21)

where n is the principle quantum number of the upper level of the line that is considered. For
a characteristic temperature T = 10 000 K and gII ∼ 1 we find that Lyα has about a 104 times
larger optical depth than the continuum at the Lyman ionization boundary. For an ionization
bounded nebula with τ (Ly-edge) ∼ 1 one thus obtains τ (Lyα) ∼ 104, τ (Lyβ) ∼ 103, τ (Ly8)
∼ 102, and τ (Ly18) ∼ 10. For a typical nebula a better approximation than Case A therefore
is the opposite assumption, i.e. that it is optically thick in all Lyman lines. This assumption is
called Case B.

The above two limiting cases have been described in 1938 by Menzel and Baker and are
therefore often called Menzel & Baker Case A and Case B. It should not be forgotten that
the realistic situation in a nebula is likely in between these two limits. For fairly low lying
transitions in the Lyman series Case B will hold, while for the higher transitions, i.e. n→∞
and small τ(Ly n), the situation will be more similar to Case A.

18.5 Gas density diagnostics: the emission measure

Let us assume that the fraction of all recombinations that lead through the transition u→ l is
pul. Then, the volume emission coefficient for the line u→ l is (see also Eq. 18.1)

ην =
hν

4π
pul αA np ne φν = η◦ φν (18.22)

where we have replaced N+ with np, the number of free protons, for the case of hydrogen.
The expression is the multiplication of the number of de-excitations from u → l per cm3 per
second, per unit solid angle – which is why we need to devide by the total solid angle Ω = 4π
– multiplied by the energy of the photon that is emitted hν, where ν = νlu. To get the emitted
energy per hz, we need to multiply by the profile function for spontaneous emission φν (which
has dimension hz−1).

Though to determine the temperature dependent pul requires a general approach, it is found
that pHα ∼ 0.3, i.e. only about 30 percent of hydrogen recombinations produce an Hα photon.
Similarly, pHβ ∼ 0.1, so only about 10 percent of hydrogen recombinations produce an Hβ
photon.

https://ui.adsabs.harvard.edu/abs/1995MNRAS.272...41S/abstract
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If we observe an H II region along a line-of-sight where there is negligible background specific
intensity, and if the emission from the H II region is optically thin, then (see Sect. 4.6)

Iobs
ν '

∫
Sν(τν) dτν =

∫
ην(s) ds, (18.23)

where Iobs
ν is the observed specific intensity and s is the spatial coordinate along the line-of-

sight. It follows that the specific intensity integrated over the line proflle is

Iobs =

∫
Iν dν =

∫ [∫
η◦ ds

]
φν dν =

∫
η◦ ds =

hν

4π
pul αA

∫
np ne ds, (18.24)

assuming the emitting medium has uniform temperature T (recall αA = αA(T )). The integral
in the last equation is called the emission measure of the line-of-sight

EMH =

∫
np(s)ne(s) ds. (18.25)

If the emitting medium has uniform density, then EMH = np neD, where D is the length of
the intercept which the line-of-sight makes with the emitting medium.

Thus a measurement of the total line specific intensity Eq. (18.24) enables us to estimate the
emission measure of the emitting medium. Suppose, we also have an independent estimate
of the linear size D of the emitting region, say from its distance d and its angular size α, via
D = dα. This assumes spherical symmetry, which is often a reasonable approximation. Then
we can combine this with the emission measure to obtain 〈np ne〉 = EMH/D. Typically in
an H II region we have np ∼ ne. Therefore

〈n2
e〉 = 〈n2

p〉 =
EMH

D
. (18.26)

So, from the study of hydrogen recombination lines, we can estimate the density of gas in an
H II region and the total mass of ionized gas

MH II =
4π

3

(
D

2

)3

mamu np. (18.27)

18.6 Gas temperature diagnostic: free-free radio continuum emission

How does the continuum spectrum from an H II region look like? As the part of the continuum
spectrum that is typically observed is at long wavelengths and the region is almost completely
ionized, the extinction is dominated by free-free processes. Therefore, if we look at an H II

region with uniform temperature T and the background intensity is negligible, we should
observe free-free radiation with specific intensity given by (see Eq. 4.49)

Iobs
ν = Sν

[
1− e−τν

]
= Bν(T )

[
1− e−τν

]
. (18.28)
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Figure 18.3: The free-free continuum spectrum from an H II region, showing the transition from op-
tically thick at ν � νturnover to optically thin at ν � νturnover. Figure: Ward-Thompson & A.P.
Whitworth (2015).

Typical H II regions have temperatures T ∼ 104 K and almost always one finds 7 000 K. T .
14 000 K. Assuming the medium consists of fully ionized hydrogen only, the free-free optical
depth integrated over the H II region is (see Eq. 8.19)

τν = 1.772× 10−2 gIII(ν, T ) T−3/2 ν−2

∫
np ne ds (18.29)

= 1.772× 10−2 gIII(ν, T ) T−3/2 ν−2 EMH

in the Rayleigh-Jeans limit. Recall that in the Rayleigh limit the Planck function reduces to
Eq 6.9.

The spectrum of free-free radiation has different asymptotic forms if the medium is optically
thick or optically thin. As the optical depth is frequency dependent, we can identify a criti-
cal frequency νturnover that marks the boundary between these two asymptotic forms of the
spectrum. νturnover corresponds to the frequency at which the optical depth equals unity.

At high frequencies, the emission is optically thin, so we can write, for ν � νturnover and
τν � 1

Iobs
ν ' Bν(T ) τν ∝ gIII(ν, T )T−1/2 EMH , (18.30)

where the Gaunt factor for free-free processes at long wavelengths is given by Eq. 17.39,
scaling approximately as gIII ∝ ν−0.1.

Conversely, at (relatively) low frequencies the emission is optically thick, so we can write, for

https://ui.adsabs.harvard.edu/abs/2015isf..book.....W/abstract
https://ui.adsabs.harvard.edu/abs/2015isf..book.....W/abstract
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ν � νturnover and τν � 1

Iobs
ν ' Bν(T ) ' 2kTν2

c2
. (18.31)

Figure 18.3 illustrates a typical free-free continuum spectrum from an H II region. One can
clearly identify the two asymptotic forms, and the turnover frequency νturnover.

From the intensity at low frequencies, where the emission is optically thick, we can obtain an
estimate of the gas kinetic temperature (see Eq. 6.44)

T ' c2

2kν2
Iobs
ν , (18.32)

for ν � νturnover.

We can also obtain an estimate of the emission measure from the turnover frequency. The
optical depth at the turnover frequency is unity. Hence

EMH '
56.43

gIII(T, νturnover)
T 3/2 ν2

turnover (18.33)

Applying Eq. 18.26 we once again have an estimate of the gas density. Remember that these
estimates of np and ne are strictly speaking root-mean-square values averaged along the line-
of-sight.

18.7 Collisional excitation of meta-stable levels and forbidden line emission

The strongest lines in the optical spectrum of many H II regions and planetary nebulae are the
forbidden transitions in the ground 2p2 configuration of O III (see figure 15.1 and 18.4). The
transition of the excited 1D2 level to two terms of the ground level, 3P1 and 3P2, produce the
eye-catching lines at, respectively, 4959 and 5007 Å. The excitation-potential of the 1D2 level
is only 2.51 eV. The highest term of this configuration is 1S at 5.35 eV above the ground level.
Other levels of O III have considerably higher excitation potentials. Transitions between levels
in the same configuration are called ‘forbidden’ because they break Laporte’s parity rule and
are denoted by straight brackets, e.g. [O III]λ5007. Forbidden transitions usually have small
Einstein coefficients Aul. For [O III]λ4949 en λ5007 for instance these are 0.007 and 0.014
sec−1. This implies that the average lifetime of the 1D2 level of O III is< t >= 1/0.021 = 36
sec (zie vgl. 7.31). This is extremely long, therefore these excited levels are referred to as
meta-stable. Similar conditions as for O III occur for other ions, sometimes with even lower
transition probabilities.

Why are the forbidden lines in nebulae so strong compared to allowed transitions? To answer
this question we must first consider the formation mechanism of these lines. These lines will
certainly not be formed by recombination followed by cascade, as in that case one would have
expected both lines from high and low levels. However, save for the O III lines that are caused
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Figure 18.4: The low-lying energy levels of O II, O III and N II. Excitation energies are relative to the
ground level of the ion and are given in electron volt. Figure from Bowers & Deeming (1984).

by the Bowen fluorescence mechanism (see section 15.4), all O III lines involving higher levels
are extremely weak or absent. Note that the meta-stable levels are only a few eV above the
ground level, while all other levels that may cause optical transitions need a high excitation
energy. The typical energy of a free electron in the plasma is of the order of an electron volt.
The Maxwellian velocity distribution (see figure 6.3) shows that in that case there will still be
ample numbers of electrons that have energies of a few electron volts, and even some that will
have 5 to 7 eV, though energies of say 20 eV will be extremely rare. In other words, there is a
reservoir of free electrons that is capable of exciting ions to meta-stable levels. Once excited
these ions can fall back through collisional de-excitation or through forbidden line emission.

Now it may be clear why forbidden lines in the optical spectrum of nebulae dominate. It is
because the occupation of the meta-stable levels is relatively high. So high even, that it is only
a few orders of magnitude below the TE value – given by Boltzmann equation (6.21). The
allowed transitions can not use this collisional excitation mechanism as the relevant excitation
potentials are too high (typically 10 to 50 eV). These lines can thus only be formed by means
of the ionization/recombination/cascade mechanism. However, this process depends on the
strongly diluted stellar radiation field (and not exclusively on local conditions as does the
collisional process). The number of recombinations (or ionizations) per second is thus many
order of magnitude lower than in TE; roughly a factor of W . This difference is so large that
even though there are thousands of times as many H II ions than O III ions, the Balmer lines
are not capable of dominating the [O III] lines. No, observations show that the green [O III]

https://ui.adsabs.harvard.edu/abs/1984avis.book.....B/abstract
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lines in nebular spectra can even be ten to twenty times as strong as Hβ.

Gas temperature diagnostics: collisionally excited forbidden lines

The forbidden emission lines of O III at λ4363, 4959 and 5007 Å (see figure 15.1 and 18.4)
turn out to be very suited for constraining the temperature of the nebular gas. We assume that
the electron density of the gas is much less than the critical density (see section 15.3), such
that collisional excitations are negligible.

To keep a clear view of the situation we refer to the ground state 3P0,1,2 as level 1, the first
excited level 1D2 as level 2, and the second excited level 1S0 as level 3. This notation ignores
that there are two1 possible transitions from level 2 to 1, namely 3P1 − 1D2 (λ5007 Å) and
3P2 − 1D2 (λ4959 Å), however, we will repair that later. The statistical equilibrium equa-
tion (9.19) for level 2 is

n2A21 = n1C12 + n3A32

' n1C12. (18.34)

This reflects that the n2 level can be populated either by collisional excitations from the ground
level (n1C12) or by spontaneous radiative de-excitations from level 3 (n3A32). Note that the
second process is negligible relative to the first and can be safely ignored, simplifying the
derivation. For level 3 it follows that

n3 (A31 +A32) = n1C13. (18.35)

This level can be populated by collisional excitations from the ground level (n1C13) or be
de-populated by cascade to level 2 (n3A32) or level 1 (n3A31). Note that in this case we do
not ignore the process n3A32 as here it contributes significantly to the depopulation of level 3.
The ratio of the populations of levels 2 and 3 is now given by

n2

n3
=

(A31 +A32)

A21

C12

C13
=

(A31 +A32)

A21

Υ12

Υ13

e−E12/kT

e−E13/kT
=

(A31 +A32)

A21

Υ12

Υ13
e+E23/kT ,

(18.36)
where we have used the Maxwellian averaged collisional strength Υlu(T ) (see section 7.1) to
describe Clu.

In our spectrum we measure the total line flux (eq. 13.6) of each of the three lines. If we
assume that each of the lines is optically thin (such that we do not have to solve the equation
of transfer and the situation is similar to, for example, that discussed in section 17.4 for the
case of Hα emission in stellar winds) the observed line profile integrated flux is given by (see
also eq. 7.16)

Flu =
1

4πd2

∫
V
ηlu dV =

1

4πd2

∫
V

hνlu
4π

nuAul dV, (18.37)

1There is a third possibility, namely 3P0 − 1D2 (λ4931 Å), that can only occur by means of a quadrupole
transition, but that is so weak that it can be ignored altogether.
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where d is the distance to the nebula. The line profile integrated emission coefficient ηlu (see
also Eq. 7.16) multiplied by the total solid angle (Ω = 4π) is the total energy emitted in by
the spectral line per cm−1 per second. It thus needs to be integrated over the entire volume V
of the nebular gas. If we assume a constant temperature, the ratio of the line strengths 21 and
32 is the same in each cubic centimeter of the nebula and we need not integrate over the full
volume to obtain this ratio. We get

η4959 + η5007

η4363
=

hν4959A4959 + hν5007A5007

hν4363A4363

n2

n3

=
A2321 +A4363

A4959 +A5007

ν4959A4959 + ν5007A5007

ν4363A4363

Υ12

Υ13
e+E23/kT

=
A2321 +A4363

A4363

ν

ν4363

Υ12

Υ13
e+E23/kT , (18.38)

where ν is the Einstein A averaged frequency of the 21 transition. Notice that we have again
split up the 21 transition in the lines 3P1 − 1D2 (λ5007 Å) and 3P2 − 1D2 (λ4959 Å).

This diagnostic is useful for temperatures ranging from 5 000−20 000 K (or∼ 0.5−2 eV; see
eq. 15.7) and earns this sensitivity to the fact that the energy levels 2 and 3 are some distance
apart. If indeed the distance between these levels would have been small, exp(E23/kT ) ∼ 1
and consequently the line flux ratios would have been insensitive to temperature. There are
other ions that have a similar favorable positioning of energy levels and that can be used in
a similar fashion to constrain the temperature of warm gaseous nebulae, for instance [N II],
[O I], [Ne III], [S III]. Figure 18.5 provides an overview of the relevant lines and shows the
sensitivity of these diagnostics in the limit of low electron densities.

Equation 18.38 is a good approximation up to ne ∼ 105 cm−3. At higher electron densities
collisional de-excitations start to play a role (see also the discussion on the critical density in
section 15.3). The 1D term has a considerably longer lifetime than 1S, and therefore will be
de-populated at a lower ne by collisional de-excitations, causing a weakening of the λ4959 and
λ5007 lines. What starts to play a role at electron densities above the value given previously
are collisional excitations from 1D to 1S. This strengthens the emission from λ4363. A proper
description of this problem requires the solution of the statistical equilibrium equation (9.19),
however, an analytical solution that is correct to within first order in exp(−∆E23/kT ) is

η4959 + η5007

η4363
=

7.90 exp(3.29× 104/T )

1 + 4.5× 10−4 ne/T 1/2
(18.39)

In the second edition of Osterbrock & Ferland similar approximations are given for [N III],
[Ne III], en [S III]. Note that the correction term for the electron density is very small. Even
if only a rough estimate of ne is used, very reasonable estimates for T can be made. Giving
eq. (18.39) some thought one must admit that it is a fascinating result: the temperature of the
nebular gas can be derived without any knowledge of the local radiation field, the distance to
the nebula, and (often) the local electron density.

https://ui.adsabs.harvard.edu/abs/2006agna.book.....O/abstract
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Figure 18.5: Five temperature sensitive forbidden line ratios as function of the electron temperature.
The [O I] (solid line) and [N II] (dashed line) are almost superimposed, partly because they have very
similar excitation potentials. All ratios shown are in the limit ne � ncrit

e (ne = 1 cm−3). Figure from
Osterbrock & Ferland (2006).

Gas density diagnostics: fine-structure emission lines

An estimate of the electron density ne in the rarefied nebular gas can be made by determining
the ratio of the line strengths of forbidden transitions in the ground configuration of ions
with very comparable excitation energy (contrary to what is required for a good T -diagnostic,
see the above discussion on [O III]). The two best examples of such a situation are [O II]
λ3729/λ3726 en [S II] λ6716/λ67312.

We again take oxygen as an example. To keep a clear view of the situation we refer to the
ground level 4S◦3/2 as level 1, the first excited level 2D◦5/2 as level 2, and the second excited
level 2D◦3/2 as level 3. The two highest terms in the ground level configuration, 2P◦1/2,3/2,
need not be considered. In formulating the relevant statistical equilibrium equations (9.19)
we consider collisional excitations, collisional de-excitations and spontaneous de-excitations.
Note that we ignore the (forbidden) transition 2D◦3/2 −

2D◦5/2. Though this is a good approx-
imation for the radiative transition between these two fine structure levels it is not so for the
collisional coupling. However, in the two limiting situations ne → 0 and ne →∞ this is not a
problem: in the first instance these collisions are indeed negligible; in the second instance the

2Notice that for the oxygen line the line ratio is longest wavelength / shortest wavelength of the doublet while
this is reversed in case of sulpher. This is because in these ions the 2D◦3/2,5/2 are interchanged, see figure 18.7.

https://ui.adsabs.harvard.edu/abs/2006agna.book.....O/abstract
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Figure 18.6: Statistical equilibrium calculation of line ratios for [O II] (solid line) and [S II] (dashed
line) as a function of ne for a temperature T = 10 000 K. At other temperatures the relations shown are
nearly correct if one assumes the horizontal scale represents ne(104/T )1/2.

two levels (2 and 3) will be in LTE relative to each other. This is automatically taken care of
by considering the collisional transitions between 1 − 2 and 1 − 3. The situation of arbitrary
ne, however, do require a consideration of the 2D◦3/2 −

2D◦5/2 coupling.

We get for level 2 is
n2 (A21 + C21) = n1C12, (18.40)

and for level 3
n3 (A31 + C31) = n1C13. (18.41)

For the ratio between the line strengths 21 and 31 it follows that

η21

η31
=
η3729

η3726
=

n2A21hν21

n3A31hν31
' A21

A31

C12

C13

(A31 + C31)

(A21 + C21)
=
A21

A31

C12

C13

C31

C21

(A31/C31 + 1)

(A21/C21 + 1)

' A21

A31

g2

g3

(A31/C31 + 1)

(A21/C21 + 1)
. (18.42)

The approximately equal sign denotes that ν21 ' ν31. For the last equality we have used
eq. (7.9) and realized that E12 ' E13.

In the low density limit (ne → 0), each collisional excitation is followed by the emission of a
photon. One obtains η3729/η3726 = C12/C13 = Υ12/Υ13. In the high density limit, that for
2D◦5/2 is reached at ncrit

e ∼ 3× 103 cm−3 and for 2D3/2 at ncrit
e ∼ 1.6× 104 cm−3, it follows

that η3729/η3726 = A21 g2/A31 g3 = 0.34.
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Figure 18.7: Energy-level diagram of the 2p3 ground configuration of O II and 3p3 ground configura-
tion of S II, relevant for the formation of forbidden [O II] and [S II] lines. Note that the fine-structure
levels 2D◦3/2,5/2 and 2P ◦1/2,3/2 (the energy separation of the different J-levels is exaggerated for clar-
ity) are switched around in these two ions.

Figure 18.6 shows the behavior of η3729/η3726 as function of ne for the exact solution of the
statistical equilibrium equations, also accounting for collisional excitations to the 2P◦1/2,3/2
levels.
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Figure 18.8: Composite color image of the Herschel PACS 70, 100, 160µm images of the Red Su-
pergiant Betelgeuse (αOrionis) and its surroundings. Betelgeuse travels through its local intersteller
environment at a speed of 25 km sec−1, plowing up material forming an asymmetric arc or bow shock.
The apex of the arc is at 5.75’ from the star. Notice to the left a dust filament, thought to be unassoci-
ated with the bow shock. From: ESA-Herschel-PACS / Decin et al. 2012.

Exercise 18.1

The Red Supergiant star Betelgeuse in the constellation of Orion travels through its local
interstellar environment at a speed of v? = 25 km sec−1, creating a bow shock. The apex
of this arc-like structure has a radius of 5.75 arcmin from the star which is at 200 pc. We
assume the bow shock is observed edge on.

a) Compare the apparent apex radius in arcmin to the apparent radius (also in arcmin) of the
moon.

b) Compute the apex radius in pc.

For a bow shock, the standoff distance Rso is where the ram pressure of the stellar wind
of the moving star balances that of the surrounding material. Rso is measured in the
direction of motion of the star. The mass-loss rate is given by

Ṁ = 4π r2 ρw(r) vw, (18.43)

where r is radial distance, ρw the wind density and vw the wind velocity. For Betelgeuse
vw = 17 km sec−1. We assume the ambient medium to be a neutral gas, for which the
mean molecular weight is µ = 1.27, and adopt a canonical value for the particle density
n◦ = 1 cm−3.

https://arxiv.org/pdf/1212.4870.pdf


18.7 Collisional excitation of meta-stable levels and forbidden line emission 323

c) Derive a formula for the mass-loss rate of Betelgeuse as a function of Rso and other
relevant quantities.

d) Calculate the mass-loss of Betelgeuse in solar masses per year. The literature value is
Ṁ = (3± 1)× 10−6M�yr−1. How well does your result compare to this value? Which
assumption(s) may contribute to the cause of the difference.
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ISM and IGM

The medium in-between the stars of our Milky Way is filled with interstellar matter. About
99 percent of the mass of this material is due to gas and about 1 percent due to solid state
particles. The gas may be in an atomic, ionized, or (ionized) molecular state. The typical sizes
of interstellar solid state particles are 0.01 to 0.1 µm, although grains up to a few micron in
diameter may be present as well. Though only responsible for a very small fraction of the mass
of interstellar matter, it is the extinction properties of these dust particles that most affect the
stellar light traveling through interstellar space. We briefly discuss the impact of interstellar
gas on the appearance of the spectra of stars. Most of the chapter, however, concentrates on
the effect that interstellar dust can have on the stellar energy distribution. We will not care
much about the origin and nature of this dust, nor the processes that shape its properties.

19.1 Introduction

Interstellar and intergalactic absorption lines

Stellar spectra may contain lines that originate from material in the interstellar medium. These
interstellar absorption lines become stronger in more distant stars as the result of superposi-
tioning of an increasing number of interstellar clouds. When the spectral resolution and signal-
to-noise are high enough to resolve these multiple structures one often finds differences among
lines of different elements, demonstrating that there are differences between clouds.

The interstellar lines originate from ground-level (resonance) transitions. Examples of well
known interstellar lines are Lyαλ1216, C IV λλ1548,1551, Mg II λλ2796,2803 in the ultravi-
olet part of the spectrum, and Ca I λ4227, Mg I λ4571, and Na I λλ5890,5896 in the optical.
Interstellar lines may also be due to molecules, such as, in the optical, NH, CH, CH+, CN and
C2.

It is not always trivial to distinguish interstellar lines from the, often, plentiful stellar lines.
Hints that point to lines originating in the interstellar medium, rather than in the stellar atmo-
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sphere or in a strictly circumstellar region are:

- Certain absorption lines are seen in the spectra of distant stars, but are not seen in the
spectra of otherwise very similar nearby stars.

- Certain absorption lines seen in stellar spectra are due to species which are not antici-
pated to be present in the atmosphere of the background star. Usually they are species
expected to be in a lower or higher stage of ionization or to be dissociated at the tem-
peratures and densities of the background source.

- Certain absorption lines seen in stellar spectra are too narrow to have been produced in
a stellar atmosphere. The thermal width of a spectral line is given by Eq. 13.19. The
typical temperatures in stellar atmospheres are much higher than those of the bulk of
the interstellar medium, that is rather cold. Additional broadening may cause the stellar
lines to be even wider. Perhaps the easiest way to separate the interstellar lines from the
stellar lines is to observe stars that are rotating rapidly enough to make their lines wash
out (see Sect. 13.3).

- The central frequency of an absorption line may indicate that the absorbing gas has
a different radial velocity from the background star. The existence of interstellar gas
was first unambiguously confirmed from observations of a spectroscopic binary. The
central frequencies of the absorption lines produced in the stellar atmosphere shifted
with a regular period, as the star orbited its companion. The central frequencies of the
absorption lines produced in the intervening interstellar medium were constant.

- Often close groups of absorption lines are observed, with all the lines in a group being
attributable to the same transition in the same species. The inference is that the ab-
sorbing particles are not distributed uniformly along the line of sight to the background
star, but are concentrated in discrete clouds having different bulk radial velocities. The
number of lines in a group tends to be larger for more distant stars as, on average, the
number of intervening clouds increases with the distance to the background star.

The most prominent intergalactic absorption line is Lyαλ1216. Fig. 19.1 shows a high-
resolution spectrum (R ∼ 37 500) of the quasar QSO Q1422+231. This active galactic nu-
cleus produces strong emission in Lyα centered at 5622 Å, from which a redshift z = 3.625
is derived. At shorter wavelengths the emission is eaten away by a great number of sharp
absorption lines. Most of these are single Lyα lines formed in galactic halos and gas clouds
located between the quasar and us. They appear at many discrete redshifts between z = 3.625
and 0 and are collectively known as the Lyα forest. They are an important probe of physical
conditions in galaxies and the ISM at early times in the evolution of the universe.

Discrete Interstellar Bands

In the optical part of the spectrum there are over a hundred rather weak absorption bands.
Though these bands are already known since the 1930s, their carriers are still not identified.
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Figure 19.1: Left: Spectrum of the high redshift quasar QSO Q1422+231, obtained with the High Reso-
lution Echelle Spectrograph on the Keck telescope in Hawaii. The strong and broad Lymanα emission
at 5622 Å is produced in the galaxy itself and indicates that the quasar is at a redshift z = 3.625.
The numerous Lyman absorption lines at larger wavelengths are produced by intervening galaxies and
clouds and are collectively referred to as the Lymanα forest. Right: detail of the Lymanα forest. Each
100 Å wide stretch of continuum normalized spectrum contains more than 50 individual absorption
components. From: Ellison (2000).

The bands are known as the Diffuse Interstellar Bands or DIBs. The wavelengths of the DIBs
range from the blue (for instance the strongest one at 4428 Å) to the far red (e.g. the one at
8650 Å). There are indications for different sets of bands. This may imply that not all bands are
caused by the same material. In many cases the strength of the diffuse bands are correlated
with the amount of interstellar absorption by dust. This suggests that the material that is
responsible for the interstellar absorption is also responsible for the diffuse bands, or that the
material that caused the DIBs is well mixed with the interstellar dust. Surprisingly enough,
there is no evidence for the presence of DIBs in circumstellar dust, i.e. dust in the direct
surroundings of a star, or in comets. Apparently the diffuse bands are a purely interstellar
phenomenon.

The prevailing suspicion at the moment is that the carriers are complex, carbon-based (i.e.
‘organic’) molecular structures, possibly Poly-Aromatic Hydrocarbons (PAHs); they are prob-
ably ionized and perhaps protonated. Strangely enough, PAHs features are seen in spectra of
circumstellar envelopes and cometary tails, where DIB features are conspicuously absent.

Interstellar dust

The existence of solid state material between the stars was first proposed by Otto Wilhelm
von Struve in 1847 based on the analysis of star counts which suggested that the number of
stars per unit volume decreased with increasing distance from the sun. Struve proposed that
the starlight was experiencing absorption proportional to distance. It was not until 1909 that

https://ui.adsabs.harvard.edu/abs/2000PhDT.........1E/abstract
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Figure 19.2: The spectral region containing the diffuse band at 4428 Å in both weakly and strongly
reddened stars. Spectral types andE(B−V ) values appear on the right. All spectra have been shifted in
wavelength so that their stellar lines coincide. For similar spectral type and luminosity class unreddened
and reddened spectra have been included. The broad λ4428 feature is more apparent in the reddened
stars, as is the DIB at λ4501, although the latter is blended with stellar Ti II lines in the B stars.
The lowermost star, HD 229196, is a double-line spectroscopic binary with a line splitting of about
400 km sec−1. From: Herbig, G.H., 1995, ARA&A 33, 19.

Jacobus Cornelius Kapteyn realized the full significance of this interstellar extinction. Shortly
thereafter Barnard documented the irregular variations in the distribution of the absorbing mat-
ter. The identification of small solid state particles as the source of this extinction was finally
accepted in the 1930s through the work of Trumpler and Stebbins, Huffer, and Whitford.

The properties of the interstellar particles can be studied through their emission, scattering,
and absorption properties. The most abundant dust particles are composed of either amor-
phous silicates or carbon. The latter probably is in the form of graphite. The silicates have a
chemical composition that is about that of olivine (MgxFe2−xSiO4 where 0 ≤ x ≤ 1) and can
be spectroscopically identified by emission or absorption bands at ∼ 9.7 and 18 µm, though
these grains absorb quite effectively over a wavelength interval that extends from the ultravi-
olet to the far-infrared. The graphite grains too show this broad continuum absorption and are
likely responsible for an absorption band at 2175 Å. In regions where the interstellar particle
density is relatively high, i.e. in molecular clouds, water ice may freeze on the dust particles,
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causing an absorption at ∼ 3.08 µm. Absorption by solid carbon monoxide at ∼ 4.08 µm is
often observed in molecular clouds.

19.2 Continuum extinction by interstellar dust

We consider the line of sight towards a star that emits an intensity I?λ. If the optical depth in
the ISM in between us and the star is τλ, the observed intensity will be given by

Iλ(0) = I?λe
−τλ (19.1)

The amount of extinction of starlight is often expressed in magnitudes. If we introduce

Aλ ≡ m−m◦ (19.2)

where m◦ is the intrinsic magnitude of the stellar light, we find for the relation between ex-
tinction and optical depth

Aλ = −2.5 log

[
Iλ(0)

I?λ

]
= 1.086 τλ (19.3)

This equation shows that the extinction of starlight by dust expressed in magnitudes is almost
equal to the optical depth (at the chosen wavelength).

Interstellar extinction law

The wavelength dependence of the interstellar extinction in the direction of three stars is shown
in figure 19.4, where Aλ/AV is the interstellar extinction normalized to the photometric V
band. The functional behaviour of this quantity is refered to as the interstellar extinction law.
It only depends on the (mean) intrinsic properties of dust particles in the beam towards the star,
and not on the length of the beam. The use of AV , the extinction in the V band (see § 6.6)
to normalize the extinction law is arbitrary and one could argue that it is more meaningful
to use, for instance, the extinction in the K filter (centered around ∼ 2.14 µm) as for these
wavelengths the extinction is almost independent of the direction in which we look. Detailed
analysis of the extinction law in many directions shows that the behaviour of Aλ/AV can well
be described with only one free parameter, the total-to-selective extinction

RV ≡
AV

AB −AV
=

AV
E(B−V )

(19.4)

The selective extinction is formally defined as E(λ1 − λ2) ≡ Aλ1 − Aλ2 (see also eq. 19.6).
Observed values of RV are inbetween ∼ 2.75 and 5.5. As this number is always positive, it
implies that the extinction in the B band is always larger than that in the V band. This can
also be seen in figure 19.4. We will return to this below. For dust particles in the diffuse
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Figure 19.3: Aλ/AV at optical and near-
IR wavelengths for RV = 3.1 following
Cardelli et al. (1989).

(read: typical) interstellar medium one typically de-
rives RV ∼ 3.1. Larger values of RV are found
in lines of sight towards dense molecular clouds. A
larger value for RV implies a decrease of AB/AV .
This is equivalent to an increase of the “greyness” of
the extinction. A grey(er) extinction is characteristic
for relatively large dust grains, and the tendency to find
relatively large values of RV in directions in which
the interstellar medium has a larger density therefore
strongly suggests that the dust particles in these clouds
are relatively large. How large is relatively large? The
behaviour of the extinction of light on solid state par-
ticles is dependent on the value 2πa/λ, where a is the

radius of the grain. For 2πa/λ � 1 the extinction is grey as the cross section of the particle
reaches its geometrical surface πa2; for 2πa/λ . 1 the extinction properties are complex,
however usually they are proportional to λ−2 to λ−1; only for 2πa/λ � 1 the wavelength
dependence becomes that of Rayleigh scattering, i.e. λ−4. Relatively large therefore implies
a ∼ 1–2 µm. The “growth” of dust particles occurs through coagulation, i.e. the sticking of
grains in collisions.

The strongest spectroscopic feature in the extinction curve is a conspicuous “bump” at 2175
Å or 4.6 µm−1. This feature is visible for all values of RV . Its origin is not well understood.
In view of the prominent nature of the bump it must be formed by an abundant material.
Graphite, an ordered and stable form of carbon, has a strong resonance at 2175 Å with about
the correct width and strength to explain the bump. While identification of the 2175 Å bump
is still not certain, many ascribe it to graphite or perhaps a somewhat less ordered form of
carbon.

Cardelli, Clayton, and Mathis (1989) in a seminal paper derived an empirical expression for
the behavior of Aλ/AV . These ratios are given in table 19.3 for wavelengths centered on
photometric passbands. In the near-infrared wavelength range between 0.9 and 3.3µm −
where the photometric filters I (0.9 µm), J (1.25 µm), H (1.65 µm), and K (2.20 µm) are
positioned − the extinction can be well described by a power law

Aλ
AK

=

(
λ

2.20µm

)−1.61

. (19.5)

This behavior implies, for instance, that E(J −K) = 1.52E(H −K).

Unlike the large differences from sightline to sightline in the ultraviolet and optical part of
the spectrum, the relative extinction properties in the near-IR are the same irrespective of the
chosen line of sight. The universal nature of the extinction law in the near-IR implies that the
size distribution of the largest grains is similar in all directions. For wavelengths larger than
∼ 5 µm the extinction is not well known. Beyond a wavelength of 20 µm the uncertainty in
the extinction is probably a factor of two. Realize that this far into the infrared the extinction
is often negligible anyway.

https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
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Figure 19.4: The measured wavelength dependence of the interstellar extinction for three directions
into the ISM (dashed lines). The extinction is normalized to the value in the V band (5500 Å). The
extinction in the direction of Herschel 36 – the ionizing star in the H II region M8 – is considered
“peculiar”. The full lines are fits to the measured Aλ/AV . From: Cardelli, Clayton & Mathis (1989).

Interstellar reddening

We saw that at wavelengths larger than 2175 Å the extinction decreases with increasing wave-
length. Blue starlight therefore suffers more from dust in the ISM than does red starlight,
causing a reddening of the spectral energy distribution emitted by the star. The amount of
reddening is often expressed in terms of the visual selective extinction or color excess

E(B−V ) = AB −AV = (B − V )obs − (B−V )◦ (19.6)

where (B−V )obs is the measured and (B−V )◦ the intrinsic color of the star. In our Milky
Way the interstellar dust is concentrated in the galactic plane, with an effective scaleheight of
about 100 pc. The mean reddening in the plane is about 0.61 magn kpc−1. If we take RV =
3.1 we get an AV = 1.9 magn kpc−1. Beware that in reality the distribution of dust is very
patchy, i.e. concentrated in small and large interstellar clouds, and that there are directions in
which the reddening deviates a factor of 5 to 10 from the mean. Measurements of the corre-
lation between the column density of gas and the interstellar reddening yield an average gas-
to-color-excess ratio N (H I + H2) /E(B−V )= 5.8 1021 atoms cm−2 magn−1, where N (H I +

https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
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H2) = N (H I) + 2N (H2). For atomic hydrogen only the mean value is N (H I) /E(B−V )=
4.8 1021 atoms cm−2 magn−1.

In view of the distribution of dust in our Milky Way interstellar reddening is particularly prob-
lematic for stars located in the galactic plane, i.e. population I stars, and that are at reasonably
large distances. However, also (young) stars in star forming regions can suffer from a large
extinction due to dust grains in the molecular clouds from which these stars have recently
(up to a few million years ago) formed. Part of the extinction of starlight in star forming
regions can be caused by circumstellar dust, i.e. dust in the direct surroundings of a young
star. The extincion curve of this circumstellar dust can deviate strongly from that of ISM dust.
The reason for this is that the proximity of the central star and the potential high density of
the circumstellar material can lead to chemical alteration, crystallization or coagulation of the
grains. This affects the extinction properties. A different category of stars that may suffer
strongy from circumstellar extinction are red giants and supergiants. In the stellar winds of
these cool stars dust may actually condense. The (super)giants with extremely strong stellar
winds (Ṁ ∼ 10−4 à 10−3 M�yr−1) can form such large amounts of circumstellar dust that
they can no longer be observed in the optical – though they can still be observed in the infrared.
One may expect that the extinction curves of these so-called OH/IR stars differ strongly from
that of ISM dust.

Reddening in the color-color diagram

For the typical interstellar medium, which has RV = 3.1 magn, the color excess E(U−B)
scales linearly with E(B−V ), following

E(U−B) = 0.72E(B−V ) (19.7)

Consequently the quantity
Q = (U−B)− 0.72(B−V ) (19.8)

for any star is independent of the reddening in the direction of the star, provided the star suffers
no additional circumstellar extinction.

Affection of the spectrum by interstellar reddening

The effect of interstellar reddening on the color indices U−B and B−V is shown in fig-
ure 19.5. As an example we show the effect that corresponds to a visual extinction AV = 1.
The open symbols denote the intrinsic colors; filled symbols are for reddened colors. If, say,
the only thing we have available for a star are photometric measurements in UBV , and if
we would assume that interstellar extinction is negligible, we would, for instance, wrongly
classify an F2 V star as a G5 V star if in reality AV = 1 magn. Phrased differently, if one
erroneously neglects interstellar reddening one will underestimate the effective temperature
of the star.
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Figure 19.5: Relation between the color indices U−B and B−V for dwarf stars (luminosity class
V). The open symbols denote the intrinsic colors; the filled symbols are the observed colors for an
interstellar extinction AV = 1 magn. To a certain extent, one could say that interstellar reddening
simulates a lower Teff .

Figure 19.6 shows the effect of interstellar reddening on the spectrum of a G5 V star. In the
top panel the flux is plotted on a linear scale, such that it is clearly visible that for AV = 1
magn the observed optical flux at 5500 Å (i.e. in the V band) is only exp (−1/1.086) ∼ 0.4
times the intrinsic value, i.e. the starlight at this wavelength is weakened by a factor 2.5.
The lower panel (in which the flux is given on a logarithmic scale) again shows that due to a
more efficient extinction at short wavelengths the stellar spectrum will be reddened, and that
if the extinction is very large only stellar light at infrared or even longer wavelengths can be
observed.

There are different ways to measure the amount of interstellar extinction towards a star. In
all cases it is important that the optical spectrum of the star is available, such that its spectral
type, and, ideally, its luminosity class can be determined.

- If the spectral type and luminosity class are known, the intrinsic (B−V )◦ can be ob-
tained from table B.5. Measurement of B−V then yields E(B−V ) (see eq. 19.6). This
method does not constrain the value of RV .

- A Kurucz or other model, or an observed spectrum of a nearby non-reddened star that is
characteristic of the spectral energy distribution of the star of interest (to be determined
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Figure 19.6: Examples of the effect of interstellar reddening on the energy distribution of a G5 V star.
The top panel shows the flux on a linear scale; the bottom panel on a logarithmic scale. To describe the
extinction curve we adopted the fit formula by Cardelli et al. (1989) using RV = 3.1.

from the known spectral type & luminosity class), is artifically reddened and fitted to
the measured UBVRI broadband photometry. The interstellar extinction can e.g. be
described by the fit formula given by Cardelli et al. (1989). In principle, this method
can also provide some information on the value of RV .

- A measured spectrum, from the UV to the near-IR, is divided by a representative in-
trinsic spectrum (observed or predicted – see previous method). This provides detailed

https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
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Figure 19.7: The equivalent width of the diffuse interstellar band at 8620.4 Å as function of reddening.
The dashed lines is the best fit, E(B−V ) = 2.72(±0.03) × W8620. The typical error bar on the
individual points is given in the lower right corner. From: Munari et al. (2008).

information on the interstellar extinction curve in the line of sight towards the target star
(see eq. 19.3).

- An independent measurement of extinction may be obtained from the strength of the
diffuse interstellar bands. As an example, figure 19.7 shows the correlation between the
strength of the DIB at λ8620.4 Å and reddening in our Galaxy.

19.3 Dust in and in-between galaxies

Dust not only resides in the interstellar medium of our Milky Way, but is a property of galaxies
in general. Just as the dust in our galaxy betrays its presence by causing dark silhouette
structures (by blocking the light from stars located behind these structures), dust in other
galaxies also produces such silhouettes (see figure 19.8). If we observe individual stars in other
galaxies, and we correct for dust in our Milky Way, we also see the wavelength dependent
extinction that is so characteristic for small solid state particles. A third way to prove the
presence of interstellar dust in other galaxies is to focus on the thermal emission that this
material produces. Heated by the stars in the galaxy, or by non-thermal radiation from the
central parts of the system, dust will emit at infrared wavelengths. This last detection method
of dust in other galaxies has shown itself to be especially succesful in the study of distant
galaxies, that can not be resolved spatially.

https://arxiv.org/pdf/0808.1456.pdf
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Figure 19.8: The irregular galaxy NGC 5128 (Centaurus A), at a distance of 4.6 Mpc, shows a dark
band that is the result of the absorption of starlight by interstellar dust grains present in the system.
The dust lane is possibly the remnant of the merging of this system with a smaller spiral galaxy, a
few billion years ago. The collision also caused an explosive increase in the star forming activity (a
so-called starburst). From: ESO

The study of the dust extinction laws in the Magellanic Clouds is especially intriguing as the
interstellar gas in both these satellite galaxies has elemental abundances that are different from
those in our Galaxy. For instance, the abundance of oxygen in the Large Magellanic Cloud is
about a factor of two lower than in our Milky Way, while that in the Small Magellanic Cloud is
even lower by about a factor of five. Such differences in the chemical abundance pattern of the
interstellar gas may hint to possible differences in the interstellar dust population, and hence
in the extinction laws of our two satellites. It is found that the shape of the extinction law is
strongly dependent on the line of sight that is probed (even within the LMC or SMC). For the
Large Magellanic Cloud some lines of sight show a similar extinction curve as derived for our
galaxy. But there are also directions within the LMC for which the bump in the extinction
around 2175 Å is weaker and the rise in extinction to the far ultraviolet is steeper. In the case
of the SMC the extinction law lacks the 2175 Å bump. For this system the extinction law in
the near infrared, optical, and ultraviolet is reasonably well represented by a single power law.

Is there intergalactic dust, i.e. are there solid state particles residing in the space between



336 ISM and IGM

galaxies? The existence of such dust could have severe consequences for, for instance, the
cosmological distance scale, and potentially be an important source of dark matter. So far,
however, it has not been found. The search for any intergalactic dust can – as in the case of
dust in the ISM – be conducted in three ways: by looking at effects of extinction, obscuration,
or infrared emission. There might be dust grains between galaxies that are part of a cluster
of galaxies. It would be relatively easy to look for this intracluster dust (that following our
definition should also be classified as intergalactic dust) if only for the fact that one knows
where to look for it. One possibility is to investigate whether distant galaxies seen through
a nearby cluster seem fainter and/or redder compared to distant galaxies in lines of sight that
do not cross the cluster. Alternatively, one could use the idea that extinction by intracluster
gas may render distant background galaxies so faint that they are no longer visible. If so, one
would detect a deficiency of faint galaxies in the direction of nearby clusters.

If intergalactic dust truly exist, it may lead to a relation between intrinsic brightness and/or
color of galaxies as a function of distance. For example, do quasars of higher redshift appear
redder than those of lower redshift? A complicating problem in detecting dust grains in inter-
galactic space is disentangling the effects of such IGM dust from evolutionairy effects in the
systems used as probes. After all, changes in the colors of galaxies on very long timescales
(billions of years) may also be caused by changes in, for instance, the stellar population and/or
amount of interstellar dust in these systems. An alternative method to detect IGM dust would
be to use the scattering properties of dust grains at röntgen (X-ray) wavelengths. Quasars,
for instance, are very bright in X-rays and should possess detectable X-ray halo’s if the inter-
galactic medium contains a sizeable amount of grains. Such haloes have yet to be searched
for. One might also study the distribution of galaxies on the sky: are there “holes” in this
distribution (akin to those originally found by Herschel in the distribution of stars). The distri-
bution of nearby galaxies do indeed show such gaps. However, if these gaps are due to clouds
of intergalactic dust one ought to find that they are also devoid of more distant galaxies. This
is not the case, which is contrary to what one would expect if the gaps were due to clouds of
intergalactic dust. One problem with the above described method to search for IGM dust is
that on very large scales the three-dimensional distribution of clusters of galaxies is far from
uniform and consists of large so-called voids with clusters draped around these voids. Clearly
this means of searching for intergalacitic dust is not likely to be fruitful.
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Figure 19.9: Panels showing a hypothetical spectral window containing stellar and one interstellar
line. The spectral resolution of the spectrum in panel A is very high; that of the other panels is so
low that the line broadening is dominated by the spectral resolution of the instrument. Hints: In panel
A the interstellar cloud in front of the star is cold relative to the stellar temperature. In panel B two
observations of the star are shown taken several days apart. In panel D the noisy stellar spectrum is
fitted with a model atmosphere.

Exercise 19.1

In Fig. 19.9, each panel shows a hypothetical spectral window containing stellar and
one interstellar line. Identify in each panel the interstellar line and briefly explain your
reasoning. The spectral resolution of the spectrum in panel A is very high; that of the
other panels is so low that the line broadening is dominated by the spectral resolution of
the instrument. Hints: In panel A the interstellar cloud in front of the star is cold relative
to the stellar temperature. In panel B two observations of the star are shown taken several
days apart. In panel D the noisy stellar spectrum is fitted with a model atmosphere.

Exercise 19.2

The total mass of neutral gas in the Galaxy is MnISM ∼ 4 × 109M�. Assume that it is
uniformly distributed in a disk of radius Rdisk = 15 kpc and thickness H = 200 pc, and
that it is a mixture of H and He with nHe/nH = 0.1. We further assume that 0.7% of
the interstellar mass is in the form of dust in spherical particles of radius a = 1000 Å =
0.1µm and material density ρs = 2 gr cm−3. For such a grain, let Qext be the ratio of
the visual (V band, λ = 0.55µm) extinction cross section (see Eq. 4.5) to the geometric
cross section π a2. Suppose that Qext ≈ 1.
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a) Compute the average number density of hydrogen nuclei within the disk.

b) Compute the average number density of dust grains in interstellar space.

c) Compute the visual extinctionAV in magnitudes between the Sun and the Galactic Center
(assumed to be L = 8.5 kpc away).

In reality, the interstellar medium is not homogeneous but interspersed with gas clouds.
We assume that 30% of the gas and dust mass is in spherical molecular clouds of radius
15 pc and mean density n(H2) = 100 cm−3.

d) What would be the mass of one such cloud? How many such molecular clouds would
there be in the Galaxy?

e) We consider the clouds to be distributed randomly according to a Poisson random point
field, i.e. each point (or cloud in our case) is stochastically independent to all the other
points in the process. The Poisson point process is related to the Poisson distribution,
which implies that the probability of a Poisson random variable N being equal to n is
given by

P{N = n} =
Λn

n!
e−Λ, (19.9)

where Λ defines the properties of the Poisson distribution. In our case, Λ is the expec-
tation value for the number of clouds that will be intersected by the line of sight to the
Galactic center. Compute Λ.

f) Compute the probability that our line of sight to the Galactic center happens not to inter-
sect any molecular clouds. Assuming hydrogen and dust in the inter-cloud medium to be
distributed uniformly throughout the disk volume, what will be the visual extinction to
the Galactic center?

Exercise 19.3

For the Cardelli interstellar extinction law the constant the color excess ratioE(U−B)/E(B−V )
is slightly different from the value 0.72 given in Eq. (19.7). Use Table 19.3 (where
RV = 3.1 is adopted) to compute this value for the Cardelli law.

Exercise 19.4

a) Show, using Eq. (19.7), that indeed the quantity Q in Eq. (19.8) is independent of red-
dening.

b) The extinction vector drawn in Fig. 19.5 is drawn such that, adopting RV = 3.1, for an
extinction AV = 1, the observed U−B reddens by 0.23 and the observed B−V by 0.32.
Verify that this is indeed what is to be expected.
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List of Tables

B.1 Criteria for spectral sub-type and luminosity class classification of O and B stars

B.2 B.3 B.4 Dwarf stellar, brown dwarf, and exo-planet calibrations of color, effective tem-
perature, luminosity, radius and mass

B.5 Calibration of the MK spectral type including their color indices.

B.6 Temperature calibration of the MK spectral types for different luminosity classes.

B.7 Luminosity calibration of the MK spectral types for different luminosity classes.

B.8 Limb darkening coefficients for Kurucz model atmospheres for solar-type stars.

B.9 Kurucz-model atmospheres for solar composition stars

B.10 The most important Fraunhofer lines from the Sun
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Table B.1: Criteria for classifying sub-spectral type and luminosity class of O and B stars. a Represents
emission lines; all others are absorption lines. b Means the lines strengthen with luminosity class from
V to I. From: Liu et al. (2019).

https://ui.adsabs.harvard.edu/abs/2019ApJS..241...32L/abstract
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Sp MV B−V U−B V−R R−I V−K J−H H−K K−L Teff BC logL
MAIN SEQUENCE, V
O5 -5.7 -0.33 -1.19 -0.15 -0.32 42 000 -4.40 5.940
O9 -4.5 -0.31 -1.12 -0.15 -0.32 -0.87 -0.14 -0.04 -0.06 34 000 -3.33 5.032
B0 -4.0 -0.30 -1.08 -0.13 -0.29 -0.83 -0.12 -0.04 -0.06 30 000 -3.16 4.764
B2 -2.45 -0.24 -0.84 -0.10 -0.22 -0.66 -0.09 -0.03 -0.05 20 900 -2.35 3.820
B5 -1.2 -0.17 -0.58 -0.06 -0.16 -0.42 -0.06 -0.01 -0.04 15 200 -1.46 2.964
B8 -0.25 -0.11 -0.34 -0.02 -0.10 -0.24 -0.03 0.00 -0.04 11 400 -0.80 2.320
A0 +0.65 -0.02 -0.02 0.02 -0.02 0.00 0.00 0.00 0.00 9 790 -0.30 1.760
A2 +1.3 +0.05 +0.05 0.08 0.01 0.14 0.02 0.01 0.01 9 000 -0.20 1.460
A5 +1.95 +0.15 +0.10 0.16 0.06 0.38 0.06 0.02 0.02 8 180 -0.15 1.180
F0 +2.7 +0.30 +0.03 0.30 0.17 0.70 0.13 0.03 0.03 7 300 -0.09 0.856
F2 +3.6 +0.35 +0.00 0.35 0.20 0.82 0.17 0.04 0.03 7 000 -0.11 0.504
F5 +3.5 +0.44 -0.02 0.40 0.24 1.10 0.23 0.04 0.04 6 650 -0.14 0.556
F8 +4.0 +0.52 +0.02 0.47 0.29 0.05 6 250 -0.16 0.364
G0 +4.4 +0.58 +0.06 0.50 0.31 1.41 0.31 0.05 0.05 5 940 -0.18 0.212
G2 +4.7 +0.63 +0.12 0.53 0.33 1.46 0.32 0.05 0.05 5 790 -0.20 0.100
G5 +5.1 +0.68 +0.20 0.54 0.35 0.06 0.05 5 560 -0.21 -0.056
G8 +5.5 +0.74 +0.30 0.58 0.38 5 310 -0.40 -0.140
K0 +5.9 +0.81 +0.45 0.64 0.42 1.96 0.45 0.08 0.06 5 150 -0.31 -0.336
K2 +6.4 +0.91 +0.64 0.74 0.48 2.22 0.50 0.09 0.07 4 830 -0.42 -0.492
K5 +7.35 +1.15 +1.08 0.99 0.63 2.85 0.61 0.11 0.10 4 410 -0.72 -0.752
M0 +8.8 +1.40 +1.22 1.28 0.91 3.65 0.67 0.17 0.14 3 840 -1.38 -1.068
M2 +9.9 +1.49 +1.18 1.50 1.19 4.11 0.66 0.20 0.16 3 520 -1.89 -1.304
M5 +12.3 +1.64 +1.24 1.80 1.67 6.17 0.62 0.33 0.29 3 170 -2.73 -1.928

GIANTS, III
G5 +0.9 +0.86 +0.56 0.69 0.48 5 050 -0.34 1.676
G8 +0.8 +0.94 +0.70 0.70 0.48 2.16 0.50 0.09 0.06 4 800 -0.42 1.748
K0 +0.7 +1.00 +0.84 0.77 0.53 2.31 0.54 0.10 0.07 4 660 -0.50 1.820
K2 +0.5 +1.16 +1.16 0.84 0.58 2.70 0.63 0.12 0.09 4 390 -0.61 1.944
K5 -0.2 +1.50 +1.81 1.20 0.90 3.60 0.79 0.17 0.12 4 050 -1.02 2.388
M0 -0.4 +1.56 +1.87 1.23 0.94 3.85 0.83 0.19 0.12 3 690 -1.25 2.560
M2 -0.6 +1.60 +1.89 1.34 1.10 4.30 0.87 0.22 0.15 3 540 -1.62 2.788
M5 -0.3 +1.63 +1.58 2.18 1.96 5.96 0.95 0.29 0.20 3 380 -2.48 3.012

SUPERGIANTS, I
O9 -6.5 -0.27 -1.13 -0.15 -0.32 -0.82 -0.05 -0.13 -0.08 32 000 -3.18 5.772
B2 -6.4 -0.17 -0.93 -0.05 -0.15 -0.40 -0.04 0.00 -0.07 17 600 -1.58 5.092
B5 -6.2 -0.10 -0.72 0.02 -0.07 -0.13 0.01 0.00 0.02 13 600 -0.95 4.760
B8 -6.2 -0.03 -0.55 0.02 0.00 0.07 0.07 -0.02 0.05 11 100 -0.66 4.644
A0 -6.3 -0.01 -0.38 0.03 0.05 0.19 0.09 -0.02 0.07 9 980 -0.41 4.584
A2 -6.5 +0.03 -0.25 0.07 0.07 0.32 0.12 -0.01 0.08 9 380 -0.28 4.612
A5 -6.6 +0.09 -0.08 0.12 0.13 0.48 0.13 0.02 0.07 8 610 -0.13 4.592
F0 -6.6 +0.17 +0.15 0.21 0.20 0.64 0.15 0.04 0.06 7 460 -0.01 4.544
F2 -6.6 +0.23 +0.18 0.26 0.21 0.75 0.18 0.05 0.06 7 030 -0.00 4.540
F5 -6.6 +0.32 +0.27 0.35 0.23 0.93 0.22 0.06 0.07 6 370 -0.03 4.552
F8 -6.5 +0.56 +0.41 0.45 0.27 1.21 0.28 0.07 0.07 5 750 -0.09 4.536
G0 -6.4 +0.76 +0.52 0.51 0.33 1.44 0.33 0.08 0.08 5 370 -0.15 4.520
G2 -6.3 +0.87 +0.63 0.58 0.40 0.08 5 190 -0.21 4.504
G5 -6.2 +1.02 +0.83 0.67 0.44 4 930 -0.33 4.512
G8 -6.1 +1.14 +1.07 0.69 0.46 1.99 0.43 0.11 0.09 4 700 -0.42 4.508
K0 -6.0 +1.25 +1.17 0.76 0.48 2.15 0.46 0.12 0.10 4 550 -0.50 4.500
K2 -5.9 +1.36 +1.32 0.85 0.55 2.43 0.52 0.13 0.12 4 310 -0.61 4.504
K5 -5.8 +1.60 +1.80 1.20 0.90 3.50 0.67 0.14 0.18 3 990 -1.01 4.624
M0 -5.6 +1.67 +1.90 1.23 0.94 3.80 0.73 0.18 0.20 3 620 -1.29 4.656
M2 -5.6 +1.71 +1.95 1.34 1.10 4.10 0.73 0.22 0.24 3 370 -1.62 4.788
M5 -5.6 +1.80 +1.60: 2.18 1.96 2 880 -3.47 5.528

Table B.5: Calibration of the MK spectral type including their color indices. The colors are for the Johnson-Glass
system, as described by Bessell & Brett (1988). Luminosity is in L�; temperature is in K. For K5-M supergiants
we have adopted a luminosity class Iab. Source: Cox (ed): Allen’s Astrophysical Quantities, 4th edition, p. 388–
389.

https://ui.adsabs.harvard.edu/abs/1988PASP..100.1134B/abstract
https://ui.adsabs.harvard.edu/abs/2000asqu.book.....C/abstract
https://ui.adsabs.harvard.edu/abs/2000asqu.book.....C/abstract
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Sp Ia+ Ia Iab Ib II III IV V
O3 4.642 4.650 4.667 4.673 4.660 4.639 4.618 4.699
O4 4.624 4.626 4.639 4.643 4.631 4.616 4.596 4.656
O4.5 4.614 4.614 4.626 4.629 4.617 4.606 4.588 4.638
O5 4.604 4.602 4.612 4.615 4.604 4.596 4.580 4.623
O5.5 4.593 4.590 4.599 4.601 4.592 4.587 4.574 4.609
O6 4.582 4.578 4.586 4.588 4.579 4.578 4.567 4.596
O6.5 4.570 4.565 4.573 4.574 4.567 4.570 4.562 4.585
O7 4.557 4.553 4.559 4.561 4.555 4.562 4.556 4.574
O7.5 4.544 4.540 4.546 4.548 4.543 4.553 4.550 4.564
O8 4.531 4.527 4.532 4.534 4.531 4.544 4.545 4.554
O8.5 4.517 4.513 4.519 4.521 4.518 4.536 4.539 4.545
O9 4.503 4.500 4.505 4.507 4.506 4.527 4.533 4.536
O9.5 4.457 4.457 4.462 4.465 4.467 4.497 4.511 4.508
O9.7 4.439 4.440 4.445 4.448 4.452 4.485 4.502 4.496
B0 4.410 4.414 4.419 4.422 4.427 4.465 4.486 4.477
B0.5 4.361 4.370 4.374 4.378 4.386 4.429 4.455 4.443
B1 4.312 4.326 4.330 4.334 4.343 4.389 4.420 4.405
B1.5 4.265 4.282 4.287 4.290 4.300 4.348 4.381 4.364
B2 4.219 4.241 4.245 4.247 4.257 4.305 4.339 4.320
B2.5 4.197 4.221 4.224 4.227 4.236 4.284 4.318 4.297
B3 4.175 4.201 4.204 4.207 4.216 4.262 4.296 4.274
B4 4.135 4.165 4.167 4.168 4.176 4.220 4.252 4.228
B5 4.098 4.131 4.132 4.132 4.139 4.179 4.208 4.182
B6 4.064 4.100 4.100 4.099 4.104 4.140 4.166 4.138
B7 4.033 4.072 4.071 4.068 4.072 4.103 4.125 4.096
B8 4.005 4.047 4.045 4.041 4.042 4.069 4.088 4.058
B9 3.980 4.024 4.021 4.016 4.016 4.038 4.053 4.023
A0 3.958 4.003 3.999 3.993 3.991 4.010 4.022 3.991
A1 3.944 3.990 3.985 3.978 3.976 3.992 4.002 3.973
A2 3.930 3.978 3.972 3.965 3.962 3.976 3.984 3.955
A4 3.905 3.954 3.947 3.939 3.936 3.946 3.952 3.926
A5 3.893 3.943 3.935 3.927 3.924 3.932 3.937 3.913
A6 3.880 3.931 3.923 3.915 3.912 3.919 3.924 3.901
A8 3.856 3.908 3.898 3.890 3.888 3.894 3.898 3.881
F0 3.831 3.883 3.873 3.865 3.864 3.869 3.875 3.864
F2 3.805 3.858 3.847 3.839 3.839 3.845 3.852 3.848
F4 3.779 3.831 3.819 3.811 3.813 3.820 3.828 3.832
F5 3.765 3.817 3.804 3.797 3.800 3.807 3.816 3.823
F6 3.751 3.802 3.790 3.782 3.786 3.794 3.804 3.815
F8 3.722 3.773 3.760 3.753 3.759 3.766 3.778 3.796
G0 3.694 3.744 3.730 3.723 3.730 3.738 3.751 3.774
G2 3.680 3.730 3.715 3.708 3.716 3.724 3.737 3.763
G4 3.666 3.715 3.700 3.694 3.702 3.710 3.723 3.751
G8 3.638 3.688 3.672 3.666 3.675 3.681 3.694 3.725
K0 3.625 3.675 3.658 3.652 3.663 3.668 3.679 3.712
K1 3.612 3.663 3.646 3.640 3.650 3.654 3.665 3.698
K3 3.586 3.639 3.622 3.617 3.628 3.629 3.637 3.671
K4 3.574 3.628 3.612 3.606 3.618 3.618 3.624 3.657
K5 3.561 3.618 3.601 3.597 3.609 3.607 3.611 3.644
K7 3.536 3.598 3.583 3.580 3.594 3.588 3.588 3.618
K9 3.509 3.579 3.567 3.566 3.582 3.573 3.568 3.595
M0 3.494 3.569 3.559 3.560 3.577 3.567 3.560 3.584
M1 3.461 3.549 3.543 3.548 3.569 3.556 3.545 3.564
M1.5 3.442 3.538 3.535 3.542 3.565 3.552 3.539 3.555
M2 3.422 3.526 3.527 3.536 3.561 3.549 3.533 3.547
M3 3.376 3.499 3.507 3.523 3.554 3.542 3.524 3.532
M4 3.322 3.467 3.485 3.507 3.546 3.536 3.516 3.517
M5 3.262 3.432 3.459 3.490 3.536 3.529 3.508 3.501
M6 3.200 3.395 3.433 3.471 3.526 3.522 3.498 3.482
M6.5 3.170 3.378 3.421 3.463 3.521 3.518 3.493 3.470
M7 3.143 3.363 3.411 3.456 3.517 3.514 3.487 3.457
M8 3.106 3.348 3.403 3.452 3.517 3.510 3.475 3.426
M9 3.109 3.365 3.422 3.472 3.534 3.515 3.465 3.388

Table B.6: Temperature calibration of the MK spectral types for different luminosity classes. The logarithm of
Teff is given in Kelvin. Source: de Jager & Nieuwenhuijzen (1987, A&A 177, 217). In the article a fit-formula is
given that provides the temperature as a function of a numerical spectral type and luminosity class. This formula
(based on a 20th order Chebychev polynomial) is not used to generate the tabels provided here and in the original
paper (that are based on a 40th order Chebychev polynomial).
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Sp Ia+ Ia Iab Ib II III IV V
O3 5.751 6.016 6.179 6.281 6.313 6.252 6.009 6.137
O4 5.822 5.997 6.114 6.177 6.159 6.047 5.807 5.904
O4.5 5.852 5.987 6.084 6.129 6.090 5.955 5.717 5.798
O5 5.880 5.977 6.055 6.084 6.025 5.870 5.635 5.698
O5.5 5.905 5.966 6.027 6.041 5.964 5.791 5.558 5.602
O6 5.927 5.955 5.999 6.000 5.905 5.715 5.485 5.510
O6.5 5.946 5.942 5.971 5.959 5.849 5.643 5.417 5.421
O7 5.962 5.929 5.943 5.919 5.794 5.574 5.351 5.335
O7.5 5.976 5.914 5.914 5.879 5.741 5.507 5.287 5.251
O8 5.987 5.898 5.886 5.840 5.689 5.442 5.225 5.168
O9.5 6.010 5.802 5.732 5.640 5.429 5.124 4.920 4.749
O9.7 6.009 5.775 5.693 5.590 5.366 5.046 4.845 4.661
B0 6.004 5.733 5.632 5.513 5.269 4.928 4.729 4.512
B0.5 5.986 5.658 5.526 5.381 5.103 4.723 4.527 4.258
B1 5.962 5.579 5.417 5.245 4.930 4.508 4.311 3.998
B1.5 5.934 5.499 5.306 5.106 4.752 4.282 4.081 3.733
B2 5.906 5.422 5.197 4.966 4.570 4.047 3.840 3.465
B2.5 5.892 5.384 5.144 4.897 4.479 3.927 3.716 3.332
B3 5.879 5.348 5.091 4.829 4.387 3.806 3.590 3.199
B4 5.854 5.280 4.991 4.696 4.206 3.562 3.335 2.936
B5 5.833 5.220 4.898 4.569 4.030 3.319 3.078 2.681
B6 5.815 5.167 4.814 4.451 3.860 3.080 2.824 2.436
B7 5.802 5.123 4.739 4.342 3.700 2.849 2.576 2.203
B8 5.791 5.087 4.674 4.244 3.550 2.628 2.337 1.985
B9 5.782 5.060 4.619 4.158 3.414 2.420 2.110 1.783
A0 5.773 5.039 4.574 4.083 3.291 2.228 1.898 1.596
A1 5.768 5.029 4.549 4.039 3.216 2.109 1.766 1.481
A2 5.761 5.021 4.528 4.000 3.149 1.999 1.641 1.373
A4 5.745 5.012 4.496 3.937 3.033 1.803 1.416 1.177
A5 5.735 5.009 4.484 3.911 2.984 1.718 1.316 1.089
A6 5.724 5.008 4.475 3.890 2.942 1.642 1.224 1.005
A8 5.695 5.007 4.464 3.859 2.876 1.517 1.067 0.853
F0 5.658 5.007 4.459 3.841 2.832 1.428 0.943 0.717
F2 5.613 5.007 4.458 3.833 2.809 1.373 0.852 0.590
F4 5.564 5.006 4.461 3.834 2.805 1.350 0.791 0.469
F5 5.539 5.005 4.464 3.837 2.809 1.350 0.771 0.409
F6 5.513 5.004 4.466 3.841 2.817 1.358 0.758 0.349
F8 5.465 5.003 4.473 3.854 2.842 1.395 0.750 0.226
G0 5.424 5.005 4.482 3.872 2.880 1.456 0.766 0.098
G2 5.408 5.007 4.488 3.882 2.903 1.496 0.782 0.031
G4 5.395 5.011 4.494 3.894 2.928 1.541 0.802 -0.038
G8 5.385 5.025 4.510 3.919 2.985 1.645 0.857 -0.183
K0 5.388 5.035 4.520 3.933 3.016 1.703 0.890 -0.258
K1 5.397 5.048 4.531 3.948 3.048 1.766 0.926 -0.336
K3 5.435 5.083 4.558 3.980 3.116 1.899 1.007 -0.497
K4 5.465 5.106 4.574 3.998 3.151 1.969 1.050 -0.580
K5 5.501 5.133 4.593 4.017 3.187 2.041 1.095 -0.665
K7 5.595 5.196 4.635 4.057 3.260 2.188 1.188 -0.839
K9 5.715 5.275 4.686 4.100 3.334 2.336 1.281 -1.019
M0 5.784 5.320 4.715 4.124 3.370 2.409 1.325 -1.111
M1 5.933 5.421 4.780 4.176 3.444 2.550 1.407 -1.299
M2 6.092 5.536 4.858 4.236 3.520 2.684 1.475 -1.492
M3 6.251 5.666 4.952 4.309 3.601 2.808 1.523 -1.692
M4 6.401 5.812 5.068 4.405 3.697 2.925 1.548 -1.901
M5 6.531 5.981 5.218 4.537 3.820 3.040 1.547 -2.122
M6 6.635 6.185 5.422 4.727 3.993 3.166 1.520 -2.356
M7 6.710 6.445 5.707 5.009 4.247 3.321 1.473 -2.604

Table B.7: Luminosity calibration of the MK spectral types for different luminosity classes. The logarithm of L
is given in L�. Source: de Jager & Nieuwenhuijzen (1987, A&A 177, 217). In the article a fit-formula is given
that provides the luminosity as a function of a numerical spectral type and luminosity class. This formula (based
on a 20th order Chebychev polynomial) is not used to generate the tabels provided here and in the original paper
(that are based on a 40th order Chebychev polynomial).
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Teff log g U B V R I J H K

3500 3.50 0.8051 0.8536 0.8265 0.7515 0.6551 0.4581 0.4371 0.3618
4.00 0.7690 0.7941 0.7736 0.7198 0.6242 0.3979 0.3409 0.2836
4.50 0.7440 0.7573 0.7380 0.6956 0.6014 0.3664 0.2887 0.2428
5.00 0.7252 0.7358 0.7130 0.6781 0.5853 0.3522 0.2693 0.2268

4000 3.50 0.8538 0.9011 0.8348 0.7786 0.6690 0.5307 0.4812 0.4083
4.00 0.8194 0.8728 0.8117 0.7618 0.6549 0.5136 0.4688 0.3961
4.50 0.7767 0.8131 0.7555 0.7132 0.6137 0.4628 0.4251 0.3545
5.00 0.7411 0.7525 0.6947 0.6565 0.5655 0.4048 0.3554 0.2962

4500 3.50 0.9213 0.8988 0.8078 0.7272 0.6263 0.5092 0.4439 0.3793
4.00 0.8987 0.8927 0.8040 0.7266 0.6258 0.5087 0.4443 0.3803
4.50 0.8704 0.8837 0.7990 0.7259 0.6255 0.5078 0.4439 0.3802
5.00 0.8359 0.8650 0.7846 0.7162 0.6178 0.4984 0.4359 0.3724

5000 3.50 0.9154 0.8588 0.7599 0.6803 0.5890 0.4676 0.3999 0.3439
4.00 0.9045 0.8567 0.7611 0.6817 0.5898 0.4700 0.4028 0.3466
4.50 0.8882 0.8536 0.7615 0.6830 0.5905 0.4721 0.4055 0.3491
5.00 0.8670 0.8485 0.7605 0.6834 0.5910 0.4732 0.4064 0.3501

5500 3.50 0.8767 0.8133 0.7067 0.6297 0.5453 0.4251 0.3574 0.3108
4.00 0.8779 0.8135 0.7097 0.6329 0.5483 0.4287 0.3622 0.3145
4.50 0.8745 0.8122 0.7117 0.6353 0.5507 0.4315 0.3659 0.3171
5.00 0.8658 0.8097 0.7132 0.6375 0.5531 0.4340 0.3687 0.3190

6000 3.50 0.8107 0.7687 0.6581 0.5819 0.5003 0.3851 0.3172 0.2765
4.00 0.8192 0.7682 0.6608 0.5857 0.5051 0.3899 0.3236 0.2818
4.50 0.8250 0.7673 0.6630 0.5887 0.5090 0.3937 0.3292 0.2860
5.00 0.8267 0.7653 0.6640 0.5904 0.5117 0.3959 0.3327 0.2883

6500 3.50 0.7410 0.7330 0.6236 0.5459 0.4642 0.3529 0.2850 0.2502
4.00 0.7497 0.7292 0.6233 0.5478 0.4682 0.3572 0.2913 0.2551
4.50 0.7586 0.7263 0.6233 0.5494 0.4719 0.3609 0.2973 0.2593
5.00 0.7661 0.7226 0.6222 0.5496 0.4742 0.3631 0.3021 0.2622

7000 3.50 0.6849 0.7070 0.6016 0.5207 0.4364 0.3275 0.2610 0.2319
4.00 0.6894 0.7003 0.5997 0.5215 0.4403 0.3315 0.2661 0.2358
4.50 0.6959 0.6942 0.5974 0.5216 0.4435 0.3346 0.2715 0.2393
5.00 0.7051 0.6894 0.5957 0.5221 0.4472 0.3383 0.2777 0.2430

7500 3.50 0.6487 0.7111 0.6067 0.5157 0.4214 0.3147 0.2490 0.2204
4.00 0.6397 0.6761 0.5793 0.4969 0.4131 0.3073 0.2448 0.2192
4.50 0.6471 0.6690 0.5790 0.5003 0.4204 0.3132 0.2517 0.2242
5.00 0.6541 0.6621 0.5765 0.5004 0.4244 0.3168 0.2573 0.2275

Table B.8: Limb darkening coefficients for Kurucz model atmospheres for solar-type stars. The limb
darkening is described by a linear law: Im(µ)/Im(1) = 1 − u(1 − µ), where m is the label for the
photometric passband. The models have a solar chemical composition and are for a micro-turbulent
velocity of 2 km sec−1 (Claret 2000, A&A 363, 1081).
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Table B.9: Kurucz-model atmospheres for solar composition stars

Teff

log g log τ log z T log pG logne logNN log ρ log pR Fconv/F

5 500 -3.0 6.79 4 282 3.23 11.35 15.47 -8.19 0.09 0.00
4 -2.0 7.65 4 487 3.84 11.91 16.05 -7.61 0.10 0.00

-1.0 7.92 4 846 4.41 12.49 16.59 -7.07 0.17 0.00
0.0 8.08 6 130 4.92 13.50 16.99 -6.66 0.54 0.01
1.0 8.14 8 176 5.10 14.94 17.04 -6.62 1.05 0.85

5 500 -3.0 10.65 4 104 1.28 9.53 13.52 -10.13 0.09 0.00
1 -2.0 10.98 4 444 2.09 10.35 14.30 -9.36 0.10 0.00

-1.0 11.14 4 846 2.73 11.08 14.91 -8.75 0.17 0.00
0.0 11.22 6 145 3.13 12.55 15.20 -8.46 0.56 0.00
1.0 11.24 8 431 3.18 14.06 15.07 -8.58 1.10 0.91

6 000 -3.0 7.60 4 667 3.29 11.48 15.49 -8.17 0.24 0.00
4 -2.0 7.90 4 891 3.87 12.04 16.04 -7.61 0.25 0.00

-1.0 8.08 5 293 4.42 12.62 16.55 -7.10 0.32 0.00
0.0 8.18 6 789 4.82 13.94 16.85 -6.81 0.70 0.05
1.0 8.22 8 709 4.95 15.12 16.86 -6.79 1.16 0.88

6 000 -3.0 10.75 4 489 1.26 9.72 13.47 -10.19 0.24 0.00
1 -2.0 11.03 4 869 2.02 10.62 14.19 -9.47 0.25 0.00

-1.0 11.17 5 318 2.59 11.44 14.72 -8.94 0.33 0.00
0.0 11.24 6 861 2.89 13.01 14.90 -8.75 0.75 0.00
1.0 11.25 8 981 2.92 14.11 14.73 -8.93 1.21 0.91

7 000 -3.0 7.63 5 458 3.10 11.87 15.22 -8.44 0.51 0.00
4 -2.0 7.95 5 726 3.67 12.45 15.77 -7.89 0.52 0.00

-1.0 8.12 6 190 4.17 13.13 16.23 -7.42 0.60 0.00
0.0 8.20 8 217 4.45 14.63 16.39 -7.26 1.02 0.20
1.0 8.24 9 911 4.55 15.37 16.37 -7.28 1.38 0.92

10 000 -3.0 8.34 7 586 1.71 12.84 13.63 -10.03 1.13 0.00
4 -2.0 8.48 8 030 2.36 13.42 14.36 -9.40 1.15 0.00

-1.0 8.58 8 982 2.86 14.08 14.67 -8.99 1.28 0.00
0.0 8.65 11 655 3.17 14.62 14.71 -8.95 1.68 0.00
1.0 8.83 16 287 3.75 15.08 15.12 -8.54 2.25 0.00

20 000 -3.0 8.70 13 060 1.38 12.81 12.84 -10.82 2.34 0.00
4 -2.0 8.90 14 067 2.09 13.49 13.52 -10.14 2.35 0.00

-1.0 9.02 15 560 2.71 14.07 14.08 -9.57 2.40 0.00
0.0 9.15 19 521 3.33 14.60 14.60 -9.05 2.63 0.00
1.0 9.28 27 451 4.03 15.15 15.15 -8.50 3.15 0.00

40 000 -3.0 9.48 28 059 1.19 12.31 12.29 -11.37 3.54 0.00
4 -2.0 9.66 31 336 2.16 13.24 13.21 -10.45 3.55 0.00

-1.0 9.77 34 855 2.93 13.96 13.93 -9.72 3.62 0.00
0.0 9.87 40 920 3.55 14.52 14.48 -9.18 3.85 0.00
1.0 9.97 53 682 4.21 15.06 15.02 -8.64 4.32 0.00

τ = continuum optical depth at λ5000 Å; z = geometrical depth in cm; T = temperature in K; pG = gas pressure; ne = electron

density in cm−3; NN = nucleon density in cm−3; ρ = density in gr cm−3; pR = radiation pressure; Fconv/F = fraction of the

flux that is transported by convection. All units in cgs. From: Cox (ed.): Allen’s Astrophysical Quantities, 4th edition, section

15.4.1., p. 393.

https://ui.adsabs.harvard.edu/abs/2000asqu.book.....C/abstract
https://ui.adsabs.harvard.edu/abs/2000asqu.book.....C/abstract
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λ Wλ Elem. Fr. λ Wλ Elem. Fr. λ Wλ Elem. Fr.
Å mÅ & Ion id Å mÅ & Ion id Å mÅ & Ion id
2795.4 Mg II 3709.256 573 Fe I1 4077.724 428 Sr II1

2802.3 Mg II 3719.947 1664 Fe I 4101.748 3133 Hδ h
2851.6 Mg 3734.874 3027 Fe I M 4132.067 404 Fe I1

2881.1 Si 3737.141 1071 Fe I 4143.878 466 Fe I
3067.262 663 Fe I1 3745.574 1202 Fe I1 4167.277 200 Mg I
3134.116 414 Ni I1 3748.271 497 Fe I 4202.040 326 Fe I
3242.007 270 Ti II 3749.495 1907 Fe I 4226.740 1476 Ca I g
3247.569 246 Cu I 3758.245 1647 Fe I 4235.949 385 Fe I1

3336.689 416 Mg I 3759.299 334 Ti II 4250.130 342 Fe I1

3414.779 816 Ni I 3763.803 829 Fe I 4250.797 400 Fe I1

3433.579 492 Ni I1 3767.204 820 Fe I 4254.346 393 Cr I1

3440.626 1243 Fe I 3787.891 512 Fe I 4260.486 595 Fe I
3441.019 634 Fe I 3795.012 547 Fe I1 4271.774 756 Fe I
3443.884 655 Fe I 3806.718 209 Fe I1 4325.775 793 Fe I1

3446.271 470 Ni I 3815.851 1272 Fe I 4340.475 2855 Hγ f
3458.467 656 Ni I 3820.436 1712 Fe I L 4383.557 1008 Fe I e
3461.667 758 Ni I 3825.891 1519 Fe I 4404.761 898 Fe I
3475.457 622 Fe I 3827.832 897 Fe I 4415.135 417 Fe I1

3476.712 465 Fe I1 3829.365 874 Mg I 4528.627 275 Fe I1

3490.594 830 Fe I 3832.310 1685 Mg I 4554.036 159 Ba II
3492.975 826 Ni I 3834.233 624 Fe I 4703.003 326 Mg I
3497.843 726 Fe I 3838.302 1920 Mg I 4861.342 3680 Hβ F
3510.327 489 Ni I 3840.447 567 Fe I 4891.502 312 Fe I
3515.066 718 Ni I 3841.058 517 Fe I1 4920.514 471 Fe I1

3521.270 381 Fe I 3849.977 608 Fe I 4957.613 696 Fe I1 c
3524.536 1271 Ni I 3856.381 648 Fe I 5167.327 935 Mg I1 b4

3554.937 404 Fe I 3859.922 1554 Fe I 5172.698 1259 Mg I b2

3558.532 485 Fe I1 3878.027 555 Fe I 5183.619 1584 Mg I b1

3565.396 990 Fe I 3886.294 920 Fe I 5250.216 62 Fe I1

3566.383 458 Ni I 3899.719 436 Fe I 5269.550 478 Fe I1 E
3570.134 1380 Fe I 3902.956 530 Fe I1 5328.051 375 Fe I
3578.693 488 Cr I 3905.532 816 Si I 5528.418 293 Mg I
3581.209 2144 Fe I N 3920.269 341 Fe I 5889.973 752 Na I1 D2

3586.990 532 Fe I 3922.923 414 Fe I1 5895.940 564 Na I D1

3593.495 436 Cr I 3927.933 187 Fe I 6102.727 135 Ca I
3608.869 1046 Fe I 3930.308 108 Fe I 6122.226 222 Ca I
3618.777 1410 Fe I 3933.682 20253 Ca II1 K 6162.180 222 Ca I
3619.400 568 Ni I 3944.016 488 Al I 6302.499 83 Fe I1

3631.475 1364 Fe I 3961.535 621 Al I 6562.808 4020 Hα C
3647.851 970 Fe I 3968.492 15467 Ca II1 H 8498.062 1470 Ca II
3679.923 448 Fe I 4045.825 1174 Fe I 8542.144 3670 Ca II
3685.196 275 Ti II 4063.605 787 Fe I1 8662.170 2600 Ca II
3705.577 562 Fe I 4071.749 723 Fe I 10830 He I

Table B.10: The most important Fraunhofer lines from the Sun after Moore, Minnaert, and Houtgast
(1966). 1 Blended line. Adapted from: Lang (1980), 2nd edition, page 175. The column labeled
Fr provides the letter designation given originally by Fraunhofer to the most prominent absorption
features. From: Gray, 3rd edition, page 521.

https://ui.adsabs.harvard.edu/abs/1966sst..book.....M/abstract
https://ui.adsabs.harvard.edu/abs/1966sst..book.....M/abstract
https://ui.adsabs.harvard.edu/abs/1980afcp.book.....L/abstract
https://ui.adsabs.harvard.edu/abs/2008oasp.book.....G/abstract
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