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Physical Constants

Name Symbol CGS Value CGS units

Speed of light in a vacuum c 2.998× 1010 cm s−1

Planck constant h 6.626× 10−27 erg s
~ 1.055× 10−27 erg s

Gravitational constant G 6.673× 10−8 cm3 g−1 s−2

Atomic mass unit mamu 1.661× 10−24 g
Mass of hydrogen mH 1.673× 10−24 g
Mass of proton mp 1.673× 10−24 g
Mass of neutron mn 1.675× 10−24 g
Mass of electron me 9.109× 10−28 g
Avagadro’s number NA 6.022× 1023

Boltzmann constant k 1.381× 10−16 erg K−1

Radiation density constant a 7.565× 10−15 erg cm−3 K−4

Stefan-Boltzmann constant σ 5.671× 10−5 erg cm−2 K−4

Fine structure constant α 7.297× 10−3

Bohr magneton µB 9.274× 10−21 erg G−1

Rydberg constant R∞ 2.180× 1011 erg

Astronomical Constants

Name Symbol CGS Value CGS units

Astronomical unit AU 1.496× 1013 cm
Parsec pc 3.086× 1018 cm
Light year ly 9.463× 1017 cm
Solar mass M� 1.989× 1033 g
Solar luminosity L� 3.828× 1033 erg s−1

Solar radius R� 6.957× 1010 cm
Solar effective temperature Teff,� 5 772 K
Thomson scattering coefficient σT 6.652× 10−25 cm2

Conversion Factors

Name Symbol Value CGS units

Year yr 3.156× 107 s
Arcsec ” 4.848× 10−6 radians
Electron volt eV 1.602× 10−12 erg
Solar mass per year M�yr−1 6.303× 1025 g s−1
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Introduction to interstellar matter

Though the mass of most galaxies is primarily in the form of dark matter particles, it is the
baryons – accounting for perhaps ∼10 percent of the total mass – that determine the visible
appearance of galaxies. At early times, the baryonic mass in galaxies was primarily in the
gas in the interstellar medium (ISM). As galaxies evolve, the interstellar medium is gradually
converted to stars and stellar remnants, and some part of the ISM may be ejected from the
galaxy in the form of galactic winds. Infalling gas from the intergalactic medium may add to
the mass of the ISM. The mass flow of the baryons in our galaxy is schematically shown in
Fig. 1.1.

Donald Osterbrock states that ‘the interstellar medium is anything not in stars’. If that is so,
what then are the constituents of the ISM. We may distinguish (see Draine 2011):

� Interstellar gas: Ions, atoms, and molecules in the gas phase, with velocity distributions
that are very nearly thermal.

� Interstellar dust: Small solid particles, mainly less than ∼1µm in size, mixed with the
interstellar gas.

� Cosmic rays: Ions and electrons with kinetic energies far greater than thermal, often
extremely relativistic.

� Electromagnetic radiation: Photons from many sources, including the cosmic microwave
background (CMB); stellar photons; radiation emitted by interstellar atoms, ions, and
molecules; thermal emission from interstellar grains that have been heated by starlight;
free-free emission from interstellar plasma; synchrotron radiation from relativistic elec-
trons; and gamma-rays emitted in nuclear transitions and π0 decays.

� Interstellar magnetic field: The magnetic field resulting from electric currents in the in-
terstellar medium; it guides the cosmic rays, and in some parts of the ISM, the magnetic
field is strong enough to be dynamically important.

� The gravitational field: This is due to all of the matter in the galaxy – ISM, stars, stellar

https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
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Figure 1.1: The flow of baryons in the Milky Way. From: Bruce Draine, Physics of the Interstellar and
Intergalactic medium.

remnants, and dark matter – but in some regions, the contribution of the ISM to the
gravitational potential leads to self-gravitating and even collapsing clouds.

� Dark matter: Though gravitationally dominant, it is currently unknown whether, and
if so to what extend, dark matter particles interact non-gravitationally with baryons,
electrons, or magnetic fields. Nor is it known if they decay or annihilate into particles
that interact with baryons, electrons, or magnetic fields.

All these components of the ISM interact and influence each other. In addition, the ISM
interacts with stars. Stars form from dense interstellar clouds, and once formed the radiation
of stars affects the physical and chemical conditions of the ISM. Stellar winds and supernovae
return much of the stellar material back into the ISM, but these stellar ejecta are enriched in
metals due to nucleosynthesis. Furthermore, stellar ejecta carry energy and momentum into
the ISM. The enriched material mixes in the ISM and eventually will be incorporated in new
stars (and planets). This cycle of matter is an important aspect of the evolution of galaxies,
and motivates the study of the interstellar medium.

In the Milky Way galaxy today, perhaps 10 percent of the baryons are to be found in the ISM.
Interstellar matter is most often found in spiral galaxies such as our own, and (much) less in
elliptical galaxies. The gas and dust in the ISM of spiral galaxies is concentrated in clouds
along the spiral arms, and from these dense clouds new generations of stars are born. So
spiral arms stand out in images because they contain the young, luminous and blue stars (see
Fig. 1.2). The hot stars ionize the gas in their surroundings, causing easily visible H II regions.

https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract


10 Introduction to interstellar matter

Elliptical galaxies show much less interstellar gas. Probably most of the gas in these systems
has been converted into stars in the past, consequently the star formation rate in these galaxies
is much lower than in spiral galaxies.

1.1 Interstellar gas

Interstellar gas can have a wide range of temperatures and densities. Because the ISM is
dynamic, all densities and temperatures within these ranges can be found somewhere in the
Milky Way. However, it is observed that most of the gas particles have temperatures falling
close to various characteristic states or thermal phases (see also Table 1.1). In order from
coolest to hottest and explicitly referencing the chemical form of the dominant element, hy-
drogen, we distinguish:

1. Very cold and dense Molecular Clouds (MCs): H2

Very cold (T ∼ 10 K) and dense (particle number densities n > 300 cm−3) molecular
gas, distributed in molecular clouds. In our galaxy Molecular Clouds comprise ∼20
percent of the baryonic mass of the ISM, but occupy only ∼0.01 percent of its volume.
It is on account of the (relatively speaking) high densities in these clouds that molecules
can actually form, hence the name. More specifically, it is firstly because the processes
forming molecules in interstellar space – primarily two-body gas-phase reactions and
catalysis on the surface of dust grains – proceed faster at higher density, and secondly
because dust effectively shields the interior of a dense cloud from the ultraviolet radi-
ation which destroys molecules. These clouds are often ‘dark’ – with visual extinction
AV & 3 mag through their central regions. The main tracers of cloud structure, dynam-
ics, conditions and composition are millimetre-wavelength molecular emission lines
(for instance CO). Dust grains in dark clouds are often coated with mantles of H2O and
other molecular ices. Most molecular clouds are gravitationally bound. The densest
regions are likely unstable and sites of new star formation. Note that the gas pressures
in the densest regions would qualify as ultra-high vacuum in a terrestrial laboratory.

2. Cold Neutral Medium (CNM): H I, traced through spectral line absorption
Cold (T ∼ 100 K) gas is distributed in clouds, sheets and filaments of densities n ∼
30 cm−3 occupying∼1–4 percent of the ISM. The material is mainly neutral and atomic
(though species with low ionization potentials may be ionized). The densities are too
low for molecules to form abundantly. These clouds are typically detected through
the absorption of background stellar light in optical (e.g. Ca II, Na I and K I) and near
ultraviolet (e.g. Mg II) ground-level resonance lines.

When densities and column densities are sufficiently large, H2 may form and survive
due to H2 self-shielding. We refer to such clouds as diffuse molecular clouds. They
are similar to the CNM, though temperatures may be somewhat lower (∼ 50 K) and
densities somewhat higher (∼ 100 cm−3). We do not rank them as a separate phase (but
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Figure 1.2: M51a (NGC 5194, the Whirlpool galaxy) and its companion M51b (NGC 5195). Top
panels: Visible-light image, with conspicuous dark dust lanes located along the spiral arms, and bright
blue star forming regions. Near-infrared image in false blue (3.6µm) and false red (8µm) colors. The
dust lanes, dark in the left panel, are glowing in 8µm PAH emission. Note the numerous ‘holes’, where
PAH emission is weak. (From: NASA/JPL-Caltech / R. Kennicutt). Middle panels, from left to right:
Location of giant molecular clouds (GMCs) with masses > 4 × 105 M� (detected in CO 1–0). CO
1–0 line intensity image, smoothed over a 22” beam (circle in lower left corner); violet is 5 K km s−1,
red = 50 K km s−1. H2 fraction 2N (H2)/ [2N (H2) + N (H I) ]: green = 0.5, white = 1 (from Koda
et al. 2009). Bottom panels, from left to right: 5 GHz emission, mainly synchrotron radiation from
relativistic electrons. Magnetic field polarization of 5 GHz emission, revealing that the magnetic field
is aligned with the spiral arms. (From NRAO/AUI/NSF / R. Beck and C. Horellou).

https://www.spitzer.caltech.edu/image/ssc2004-19a-first-peek-at-spitzers-legacy-mysterious-whirlpool-galaxy
https://arxiv.org/pdf/0907.1656.pdf
https://arxiv.org/pdf/0907.1656.pdf
https://www.nrao.edu/archives/items/show/33567
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some do). They can be observed with the same diagnostics as the CNM and in addition
by CO 2.6-mm emission.

3. Warm Neutral Medium (WNM): H I, traced through spectral line emission
Warm neutral atomic hydrogen occupies ∼20–40 percent of the volume of the ISM and
is located mainly in the boundary layers between molecular clouds and H II regions.
It has characteristic temperatures of 5000–8000 K and densities of ∼0.5 cm−3, and is
traced by the H I emission line at 21 cm. These boundary layers are characterized by
the photo-dissociation of the H2 molecule and are therefore termed photodissociation
regions. Some older literature refers to the Warm Neutral Medium as ‘warm inter-cloud
medium’.

4. Warm Ionized Medium: H II, traced through spectral line emission
Extended and diffuse gas with temperatures of 6000-10000 K, and densities ∼0.3 cm−3

occupying about 15 percent of the volume of the ISM. While primarily photo-ionized
(to do so requires about 1/6th of all the ionizing photons emitted by the Galaxy’s O
and B stars), there is some evidence of shock or collisional ionization high above the
plane of the Galaxy. The diffuse H II is traced by low-surface brightness Hαλ6563 Å
emission.

Nearly 90 percent of the H II in the Galaxy resides in the Warm Ionized Medium, with
the remaining 10% in the bright high-density (compact, or at least localized) H II re-
gions that occupy a tiny fraction of the ISM and that arise from the ultraviolet radi-
ation of nearby, hot massive stars. In compact H II regions densities may increase to
∼ 104 cm−3. The Orion Nebula, measuring a few pc across, is an example of a bright
H II region. Its lifetime is essentially that of the ionizing stars, so 3–10 Myr.

In addition to the H II regions, photo-ionized gas is also found in planetary nebulae –
these are created when rapid mass loss during the late stages of evolution of stars with
initial mass 0.8M� < M < 8M� exposes the hot stellar core, creating a luminous
planetary nebula. Individual planetary nebulae fade away on a ∼ 104 yr time scale.

5. Coronal or Hot Ionized Medium (HIM): X-ray and O IV-VI absorption and emission
Hot, low-density gas heated by shock waves from supernovae, with temperatures ex-
ceeding > 3 × 106 K and very low densities of < 0.004 cm−3, occupies ∼50 percent
of the ISM. The vertical scale height of this gas is ∼3 kpc, so it is sometimes referred
to in the literature as the hot ‘corona’ of the galaxy. This hot gas is often buoyant and
appears as bubbles, with characteristic dimensions of∼20 pc, and fountains high above
and below the disk. The coronal gas volumes may be connected to other coronal gas
volumes. The gas is collisionally ionized and cools on ∼Myr timescales. Its primary
tracers are absorption lines seen towards hot stars in the far-ultraviolet (e.g. O IV, N V,
and C IV) in gas with T ∼ 105 K, and diffuse soft X-ray emission from gas hotter than
106 K. In the hottest coronal gas O VI is present.

To this list of phases of interstellar gas, some add a 6th phase, namely gas in stellar outflows.
Evolved cool stars lose gas at rates up to a few times 10−4 M�yr−1. This gas streams into
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Phase T (K) nH (cm s−3) Comments

Molecular clouds H2 10–50 103 – 106 Heating by photons from dust
fV ≈ 10−4 Ionization and heating by cosmic rays

< nH > fV ≈ 0.2 cm−3 Often self-gravitating: p > p(ambient ISM)
Cooling by:

– CO line emission
– C I fine structure line emission

Observed by:
– CO 2.6-mm emission
– dust far-IR emission

Cool H I (CNM) ∼100 30 Heating by photons from dust
fV ≈ 0.01 Ionization by starlight, cosmic rays

< nH > fV ≈ 0.3 cm−3 Pressure equilibrium
Cooling by:

– Fine structure line emission
Observed by:

– H I 21-cm emission, absorption
– Optical, UV absorption lines

Warm H I (WNM) ∼5000–8000 0.5 Heating by photons from dust
fV ≈ 0.2− 0.4 Ionization by starlight, cosmic rays

< nH > fV ≈ 0.2 cm−3 Pressure equilibrium
Cooling by:

– Optical line emission
– Fine structure line emission

Observed by:
– H I 21 cm emission, absorption
– Optical, UV absorption lines

(Diffuse) H II gas ∼ 104 0.3− 104 Heating by photons from O stars
fV ≈ 0.15 Photo-ionized by O stars

< nH > fV ≈ 0.002 cm−3 Either expanding or in pressure equilibrium
Cooling by:

– Optical line emission
– Free-free emission
– Fine structure line emission

Observed by:
– Optical line emission
– Thermal radio continuum

Coronal gas (HIM) & 3× 106 . 0.004 Shock-heated
fV ≈ 0.5? Collisionally ionized

< nH > fV ≈ 0.002 cm−3 Either expanding or in pressure equilibrium
Cooling by:

– Adiabatic expansion
– X-ray emission

Observed by:
– UV and X-ray emission
– Radio synchrotron emission

Table 1.1: Phases of the interstellar medium, ordered from coolest to hottest. fV is the volume filling
factor. Following: Draine, Physics of the Interstellar and Intergalactic Medium.

https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
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Phase T (K) nH (cm s−3) Comments

Cool stellar outflows H2 50–103 1 – 106 Observed by
– CO, OH, and other molecules
– dust IR emission

Hot stellar outflows H II 8000 – 30000 0.1 – 105 Observed by
– UV absorption lines
– Hα, He II 4686 emission
– Thermal radio continuum

Table 1.2: Gas in stellar outflows, ordered from coolest to hottest.

the ISM at velocities up to 30 km s−1, leading to relatively high density outflows. Hot stars
can have mass-loss rates as high as a few times 10−5 M�yr−1 and outflow velocities of sev-
eral 1000s of km s−1. Compared to cool stars, the winds of hot stars tend to be somewhat
less dense. The outflowing gas is often referred to as circumstellar matter and at some dis-
tance from the star will interact with interstellar matter. For completeness, let us complement
Table 1.1 with a table for gas in stellar outflows (see Table 1.2).

The co-existence of the different phases of ISM gas

The co-existence of these different phases is in many cases due to the presence of stars, e.g.
H II regions surrounding hot stars that are embedded in larger H I regions. The fact that H I

and H II regions can exist side by side and that warm and cold regions co-exist needs an expla-
nation. For a typical H I cloud with number density n = 50 cm−3 and temperature T = 80 K,
the product nT is 2 × 103 cm−3 K. This value is matched, within a factor of two, by the
corresponding product for the warm neutral medium (n = 0.5 cm−3; T = 8 000 K). The
numbers suggest that H I clouds and the warm neutral medium co-exist in pressure equilib-
rium. Indeed, an analysis of the processes that heat and cool the gas point to the cool and
warm neutral medium as representing thermally stable states. In a thermally stable state the
internal pressure increases when the gas is compressed.

H II regions that have a higher pressure than the surrounding medium, therefore expand, and
very dense cores of molecular clouds that are self-gravitating may not be in pressure equilib-
rium, and collapse.

Large interstellar molecules and Diffuse Interstellar Bands

The interstellar medium contains a population of large molecules, that reveal themselves by
conspicuous emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7µm. These emission features
are characteristic for polycyclic aromatic hydrocarbon (PAH) molecules. PAH molecules are
planar structures consisting of carbon atoms organized into hexagonal rings, so-called aro-
matic rings, with hydrogen attached at the boundary.
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Figure 1.3: Left panel: The near-IR spectrum of the reflection nebula NGC 7023, with prominent PAH
emission features. Adapted from: Cesarsky et al. 1996. Right panel: Structure of four PAHs, with their
characteristic aromatic rings. From: Draine, Physics of the Interstellar and Intergalactic Medium.

PAH molecules turn out to be quite omnipresent and are detected in H II-regions, reflection
nebulae (see Fig. 1.3), surfaces of dark clouds, diffuse interstellar clouds and cirrus clouds,
surfaces of proto-planetary disks, galactic nuclei, the interstellar medium of galaxies as a
whole (see Fig. 1.2), and star burst galaxies1. They are very abundant, ∼ 10−7 relative to
hydrogen, locking up to 20 percent of the total cosmic carbon abundance.

PAH molecules are also found in meteorites. When they are seen in meteorites, they almost
always have oxygen or deuterium attached to them. These modifications to the PAH molecules
probably occur as a result of chemical reactions on the surfaces of grains covered with water
ice that are exposed to ultraviolet light. This subclass of PAHs are referred to as quinones, and
receive considerable attention by the astrobiology community because they are common to all
life forms. They have been suggested to be potentially significant for the formation of life.

PAHs may just be one representative of the molecular universe. In fact, visible spectra of stars
usually show prominent absorption features that are too broad to be atomic in origin. These
so-called diffuse interstellar bands (DIBs) are generally attributed to absorption by moderately
large molecules (10–50 C atoms). There are in excess of 400 DIBs known, of which 50 are
moderately strong (Hobbs et al. 2009). Because, typically, the visible spectrum of a molecular
species is dominated by at most one strong transition, the DIBs implicate the presence of a
large number of different molecular species.

1PAHs too are very abundant in charbroiled hamburgers and engine soot.

https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
https://arxiv.org/ftp/arxiv/papers/0910/0910.2983.pdf
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Figure 1.4: Left panel: The λ5780 Å and λ5795 Diffuse Interstellar Bands (DIBs) in the line of sight
toward the galactic (MW) star β Sco and toward stars 63885 and 70817 in M31. Note that towards
70817, also a galactic λ5780 can be seen. The Local Standard of Rest (LSR) velocity scale has been
centered on the minimum of the λ5780 DIB. Notice that the width of DIBs is about the same as that
of stellar spectral lines, implying that DIBs may be hard to identify in stellar spectra. Right panel:
Distribution of main DIBs and their widths. From: N. Cox (left panel); Hoyle & Wickramasinghe
(1990) (right panel).

1.2 Interstellar dust

The most abundant elements, H and He, were formed just after the Big Bang. All other
elements formed later in the interiors of stars through nuclear fusion. Interstellar gas is con-
tinuously enriched with these heavier elements, through stellar winds and supernovae. We
know from observations of interstellar absorption lines in spectra of stars near the Sun that
the abundances of the elements in interstellar gas are (much) lower that those in the Sun.
This is called interstellar depletion. In Fig.1.5 we show the depletion as a function of the
condensation temperature of the element, which is the temperature at which that element will
‘freeze out’ from the gas phase to the solid phase upon cooling of the gas. This process of
condensation of solid material, also called dust formation, happens mostly in the cool stellar
winds of red giant stars and asymptotic giant branch stars, but also in supernova explosions.
The dust that forms in this way contains predominantly metals and very little hydrogen and
helium. The figure shows that condensation is in general more complete when it occurs at
high temperature. Elements such as titanium, sodium en calcium almost completely freeze
out onto grains.

https://ui.adsabs.harvard.edu/abs/2015enas.book..646C/abstract
https://ui.adsabs.harvard.edu/abs/1990clf..book.....H/abstract
https://ui.adsabs.harvard.edu/abs/1990clf..book.....H/abstract
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Figure 1.5: Gas-phase abundances (relative to solar) in the diffuse cloud toward ζ Oph, plotted versus
condensation temperature of the element. Solid symbols: major grain constituents C, Mg, Si, Fe.
The apparent overabundance of S may be due to observational error, but may also arise because of
S II absorption in the H II region around ζ Oph, skewing the solid sulpher abundance determination.
The depletion of the high temperature condensates reflects interstellar depletion. From: Bruce Draine,
Physics of the interstellar medium and intragalactic medium.

Dust manifests itself in the interstellar medium in various ways. Through their absorption
and scattering properties, small dust grains give rise to a general reddening and extinction
of the light from distant stars. Moreover, elongated large dust grains aligned in the galactic
magnetic field cause polarization of starlight. Near bright stars, scattering of starlight by dust
produces reflection nebula. Finally, the interstellar medium is bright in the infrared because
of continuum emission by dust grains.

Interstellar grains are known to contain several populations of very small or nano particles.
Nano diamonds have been isolated from meteorites with an isotopic composition that indi-
cates a presolar origin. Likewise, silicon nano particles may be the carrier of a widespread
luminescence phenomena, the so-called extended red emission (ERE)2. In a sense, large PAH

2Interstellar dust in nebulae and in the diffuse ISM of galaxies contains a component which responds to illumi-
nation by ultraviolet photons with efficient luminescence in the 500 nm to 1000 nm spectral range, known as ERE.
No completely satisfactory model for the ERE carrier / process exists at this time. See e.g. Witt & Vijh (2003).

https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
https://ui.adsabs.harvard.edu/abs/2011piim.book.....D/abstract
https://ui.adsabs.harvard.edu/abs/2003AAS...20311017W/abstract
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Component u (eV cm−3)
Cosmic microwave background TCMB = 2.725 K 0.265a

Infrared radiation from dust 0.31b

Starlight hν < 13.6 eV 0.54c

Thermal kinetic energy (3/2)nkT 0.49d

Turbulent kinetic energy (1/2) ρ v2 0.22e

Magnetic energy B2/8π 0.89f

Cosmic rays 1.39g

Table 1.3: Sources contributing to the mean total (i.e. frequency integrated) energy density in the solar
neighborhood. a Fixsen & Mather (2002); b and c, see chapter 6; d For nT = 3800 cm−3 K; e for
nH = 30 cm−3, v = 1 km s−1, or < nH >= 1 cm−3, < v2 >1/2= 5.5 km s−1; f for a median
Btot ∼ 6.0µG (Heiles & Crutcher 2005); g Draine (2011).

molecules seem to represent the extension of the nano grain size distribution into the molecu-
lar domain.

1.3 Energy sources

Energy is present in the ISM in a number of forms: thermal energy, bulk kinetic energy, cosmic
ray energy, magnetic energy, and energy in photons. Sources for the latter (see also below)
are the cosmic microwave background, far-IR emission from dust, starlight, and emission
by hot ionized gas. Table 1.3 provides an overview of the main sources contributing to the
energy density in the solar neighborhood. Beware that large fluctuations in for instance the
contribution of starlight may occur as a function of location in the galaxy.

Radiation fields

The ISM is permeated by various photon fields, which influence the physical and chemical
state of the gas and dust. Figure 1.6 provides an overview of the most important components of
the interstellar radiation field in the solar neighborhood. We briefly discuss these component,
from the most energetic to the least energetic. In doing so, we closely follow Tielens (2005).

At the shortest wavelengths, emission by hot plasma’s – the coronal gas in the halo of our
galaxy and in supernova remnants (SNRs) – dominate the radiation field. Numerous emission
lines contribute to this component. There is also an extra-galactic contribution at the hardest
energies. These X-ray components suffer from absorption by foreground gas, an effect that
is least important at the shortest wavelengths. At wavelengths longer than 91.2 nm (or 912
Å), hydrogen is not able to cause continuum absorption through photo-ionization from the
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Figure 1.6: The mean intensity in units of ergs cm−3 s−1 Hz−1 sr−1 of the interstellar radiation field in
the solar neighborhood. The Lyman continuum edge is at 9.12 × 10−6 cm or 91.2 nm. From: Xander
Tielens, Physics and chemistry of the interstellar medium.

ground level, and the intensity of the IS radiation field increases by some 5 to 6 orders of
magnitude. Stars now dominate this field. The stellar radiation field contains contributions
from O- and B-type stars, which dominate the far-UV wavelengths, A-, F- and G-type stars,
which control the visible region, and late-type stars, which are important at far-red to near-IR
wavelengths. These stellar photons are absorbed by dust grains that re-radiate this energy at
longer wavelengths – in discrete emission bands in the mid-IR and in continuum emission in
the far-IR and sub-millimeter regions. The 2.725 K cosmological background dominates at
millimeter wavelengths.

Magnetic fields

The interstellar magnetic field is an important source of energy and pressure in the ISM.
It consists of a uniform component and a non-uniform component. The uniform magnetic
field in the galactic disk generally follows the spiral structure, but with reversals of magnetic
field direction from spiral arms to inter-arm regions. The spiral arm magnetic fields are all
counterclockwise (as viewed from the North Galactic pole), while the inter-arm fields are
clockwise. The spiral arm magnetic field strength appears to be greater than the inter-arm
value by a factor of ∼1.5. At the location of the sun, at 8.5 kpc from the galactic center, the
uniform magnetic field is about 2 µG. At 2 kpc from the galactic center it has increased to
about 4 µG. There is also a considerable non-uniform magnetic field, partly associated with
expanding interstellar shells (super-bubbles) and their shocks. The total magnetic field in the
solar neighborhood is ∼5 µG.
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Inside dense clouds the strength of the magnetic field B increases, roughly with the square
root of the particle density. At n ' 104 cm−3 a typical value is B ' 30µG.

Cosmic rays

Cosmic rays (CRs) are very high-energy particles, that almost always originate from outside of
the solar system. The term ‘ray’ is a historical accident, as cosmic rays were at first mistakenly
thought to be mostly electromagnetic radiation. Cosmic rays are tied to the galactic magnetic
field and confined to a disk of radius ∼12 kpc with a thickness of ∼2 kpc.

Particles with energies & 100 MeV per nucleon contribute considerably to the energy density
of the ISM. Low-energy (' 100 MeV) cosmic rays are important for the heating and ionization
of interstellar gas. Unfortunately, it is difficult to measure the flux of low-energy CRs within
the heliosphere because of strong modulation by the solar wind. These low-energy cosmic
rays may ionize atoms in the interstellar medium, contributing in an important way to the
formation of simple molecules (such as OH).

Cosmic rays consist mainly of relativistic protons and α-particles with energies in the range
of 1–10 GeV. The abundance pattern of the elements in the cosmic rays is non-solar. A wide
variety of sources may be responsible for the production of these relativistic particles, includ-
ing supernovae, active galactic nuclei, quasars, and gamma-ray bursts. Part of the cosmic rays
may interact with interstellar matter to form other elements. For instance, carbon, nitrogen
and oxygen nuclei may collide with interstellar matter – gas, dust, or other cosmic rays – to
form lithium, beryllium and boron. This process is referred to as cosmic-ray spallation. In-
teraction of the cosmic-ray protons with interstellar gas may also produce gamma rays with
Eγ & 50 MeV through π0 meson decay emission. Likewise, the interaction of energetic (<
1 GeV) electrons with interstellar gas gives rise to gamma rays through bremsstrahlung and
inverse Compton scattering.

Kinetic energy of the ISM

Stellar outflows and supernovae explosions supply kinetic energy to the ISM. The expanding
shells blown by individual stars and the superbubbles blown by the concerted action of OB
associations shape the ISM. They sweep up and compress the ambient ISM and set it into
motion. These motions are often Rayleigh-Taylor and Kelvin-Helmholtz unstable and, in
general, are converted into turbulence. When clouds collide, shocks may be produced that
heat the gas. This gas may in turn cool through line radiation. Though important for the
energy density budget of the ISM, the total mechanical energy output of stars (outflows and
supernovae) is only small (∼ 0.5 percent) compared to the total stellar radiative energy output.

Turbulence in individual molecular clouds (so, we’re now looking at small scales, of fractions
of a parsec) is probably of a magneto-hydrodynamic nature. It helps to support these clouds
against self-gravity. This turbulent energy is tapped from the magnetic or rotational energy
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supporting the cloud or is supplied by powerful outflows driven by newly formed stars in the
nearby surroundings.

Equipartition of energy densities

It seems quite remarkable that the energy densities of the energy sources discussed above all
fall within the range 0.2− 2 eV cm−3 (see Table 1.3). Is this near-equipartition coincidental?
The fact that the energy density in the CMB is similar to the other energy densities is surely
accidental. The other energy densities likely are coupled. In this discussion we follow Draine
(2011).

The magnetic energy has been built up by fluid motions, so it is probably not a coincidence that
the magnetic energy densityB2/8π and the turbulent energy density (1/2)ρv2 are comparable
in magnitude. Similarly, if the cosmic-ray energy were much larger, it would not be possible
for the magnetized ISM to confine the cosmic rays, and they would be able to escape freely
from the Galaxy. This limits the cosmic-ray energy density to approximately equipartition
with the sum of the turbulent energy density and thermal energy density in the ISM.

That the energy in starlight is comparable to the gas pressure may be coincidental. However,
if the starlight energy density were much larger (by a factor ∼ 102), radiation pressure acting
on dust grains would be able to ‘levitate’ the ISM above and below the galactic mid-plane,
presumably suppressing star formation. This ‘feedback loop’ may play a role in regulating the
starlight energy density in star-forming galaxies.

The energy sources discussed so far heat the gas and dust. That the energy densities of these
(thermal kinetic energy and infrared radiation, respectively) are comparable to that of their
heating sources implies that this heating is quite efficient.

1.4 Galactic chemical evolution – gas and dust ejection into the ISM

The accretion of primordial gas from a reservoir in a halo is assumed to form a galaxy. The first
galaxies likely started their formation several hundred million years after the Big Bang, which
produced primordial baryonic matter in the form of hydrogen (H) and helium (He) in the first
15 minutes after the start of universe formation. Let us discuss the conceptual outline of a
galaxy formation model3 to get a rough idea of the physics involved. This physics describes
the formation of stars, the production of elements in their stellar centers en the partial return
of primordial and new elements to the interstellar medium (a process called nucleosynthetic
feedback) causing chemical enrichment of the interstellar medium of the galaxy. Then, let us
skip to the results of such a model to assess, over cosmic time, the production rate and origin
of the elements heavier then helium present in the interstellar medium of the galaxy.

3For more details, see Kobayashi et al. 2000, ApJ 539, 26.
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We assume the halo to contain a baryonic mass Mtot. The rate of infall of the primordial halo
gas to what is to become the galaxy is Rin (dimension [s−1]), for which often an exponential
form is assumed

Rin =
1

τin
e−t/τin . (1.1)

Here τin is a characteristic infall timescale. So, if fbd is the ratio of the gas mass in the galactic
bulge and disk to the total baryon mass of the galaxy (bulge, disk and halo), it holds that

dfbd

dt
= Rin. (1.2)

The star-formation rate ψ is assumed to be proportional to the gas fraction as

ψ =
1

τs
fbd, (1.3)

where τs is the star formation timescale. For (what is to become) elliptical galaxies this time
scale is likely quite short (∼ 0.1 Gyr); for spiral galaxies it is longer (∼ 2 Gyr). The gas mass
that is turned into stars reduces the gas mass of the bulge and disk. Feedback processes again
add (nucleosynthetically enriched) material to that gas mass. This results in

dfbd

dt
= −ψ + Ehigh + Elow +Rin, (1.4)

where Ehigh is the rate at which gas is ejected into the interstellar medium by mass loss
and type-II core-collapse supernovae from massive stars, and Elow is the rate at which gas
is ejected into the interstellar medium by mass loss and type Ia supernovae from low-mass
stars. Using input from stellar evolution models and supernova nucleosynthesis models one
may specify how each of these processes contributes to the mass fraction Zi of heavy element
i in the gas, such that one may derive the time variation of Zi in the galactic gas, i.e.,

d(Zi · fbd)

dt
= −Zi · ψ + Ehigh(Zi) + Elow(Zi) + Zi,in ·Rin, (1.5)

where the metallicity of the infall gas Zi,in is assumed to be zero when considering galaxy
formation at early cosmic times. The termsEhigh andElow depend on the initial mass function
(of single stars and primaries in binary systems), the mass ratio and period distribution in
binaries, and the SN Ia rate4, which is controlled by binary evolution. An additional term may
be introduced to describe element production and feedback in compact object mergers, such
as neutron star - neutron star mergers.

Figure 1.7 shows a model of the cosmic production of elements in the Milky-Way galaxy.
The results should be taken with care as much of the physics still is uncertain. Main un-
certainties are in the specifics of binary evolution, mass loss (through stellar winds, eruptive

4SN Ia occur in binary systems in which one component is a white dwarf. By accreting gas from its companion
(a main sequence star, giant, or more massive white dwarf) it may reach a critical mass (the Chandrasekhar mass)
that initiates a supernova explosion.
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Figure 1.7: The cosmic production of the elements from Galactic chemical evolution models by
Kobayashi et al. (2020, ApJ 900, 179). In the background of each element box in the periode table
the main producers of the element are shown as a function of cosmic time (see legend). The amounts
returned via mass loss are also included for Asymptotic Giant Branch (AGB) stars and stars ending as
core-collapse supernovae. The x-axis of each box shows time from t = 0 (Big Bang) to 13.9 Gyrs,
while the y-axis shows the linear abundance relative to the sun, X/X�. The dotted lines indicate the
observed solar value, i.e., X/X� = 1 (horizontal dotted line) and 4.6 Gyrs (vertical dotted line) for
the age of the sun (measured back from the present time). For H, He, and Li, the destruction of the
element is shown by either AGB or massive stars.

events, binary interaction, and SN explosions), and nucleosynthetic reaction rates (e.g., the
12C(α, γ)16O rate). The contribution of low mass stars (indicated in green) to the chemi-
cal enrichment occurs almost exclusively during the Asymptotic Giant Branch (AGB) phase
where the star may loose up to ∼ 85 % of its initial mass. The contribution of massive stars
is given in red and includes feedback in stellar winds and in their life ending core-collapse
supernovae. A complex set of channels produces the elements up to iron (Fe), including hy-
drogen burning in the p-p chain and CNO cycle, NeNa and MgAl cycles, the triple-α process,
C- and O-fusion, Ne-disintegration, and photo-disintegration and α-capture re-assembly5. El-
ements heavier than Fe are formed through recursive neutron capture processes. If the capture
rate of neutrons is ‘slow’ (passing decades between neutron captures) the rate at which an
iron-group seed particle captures neutrons is so low that there is sufficient time for β-decay
to occur before another neutron is captured, producing an element of the next higher atomic
number. Such processes occur in AGB stars (where the 13C(α, n)16O reaction is the neutron
source) and at the end of He- and C-burning in massive stars (where 22Ne(α, n)25Mg is the
neutron source). In explosive processes the neutron capture rate can be so ‘rapid’ (with sec-
onds in between) that unstable isotopes that are formed have no time to decay between neutron
captures. Captures ensue as long as the neutron flux is high enough, for instance, in the onset

5See, e.g., Lamers & Levesque, Understanding Stellar Evolution.
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Figure 1.8: Stellar sources of gas and dust. From: Barlow 2009, Astrophysics in the Next Decade.

of core-collapse supernova, SN Ia, or neutron star mergers. When the neutron flux stops the
neutron-rich isotopes will suffer a series of β-decays until a stable isotope is reached.

Notice that the figure 1.7 does not report on the origin of Beryllium and Boron. The dominant
production channel of these elements is cosmic ray spallation, i.e., the collision between an
atom in space (often carbon, nitrogen and oxygen) and a relativistic particle, a process not
considered by Kobayashi and co-authors.

Table 1.4 summarizes current gas and dust mass injection rates into the ISM of our own
Milky Way for a variety of stellar objects, following Tielens (2005). The dust budget has
been split out into two separate columns according to whether the surface layers of the stellar
source are more abundant in carbon than in oxygen (C/O > 1), which leads to carbonaceous
dust formation, or more abundant in oxygen than in carbon (C/O < 1), which leads to the
formation of oxides, notably silicates, or metals. Again, the quoted numbers are uncertain;
this remains a vivid field of research, and new developments have been known to change our
ideas considerably.

The relative importance of the gas and dust sources listed in Table 1.4 vary across the Galaxy,
for instance because of the general increase in metallicity towards the galactic center. This
causes the ratio of O-rich to C-rich (asymptotic) giants to increase towards the inner galaxy,
as well as the Wolf-Rayet star population.

The gas mass return rate is expressed in solar masses per million years per square kpc, so the
rate is integrated over the thickness of the galactic disk. It is dominated by evolved low-mass
(asymptotic) cool giants, as expected, since low-mass stars dominate the stellar mass of the
Galaxy. On the AGB low-mass stars inject much carbon formed by the triple-α process. Type
Ia supernovae, which also have low mass progenitors, inject considerable amounts of iron into
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Source Ṁ (gas) Ṁ (C dust) Ṁ (Silicate & metal dust)
M� kpc−2 Myear−1

C-rich (asymptotic) giants 750 3.0 –
O-rich (asymptotic) gians 750 – 5.0
Novae 6 0.3 0.03
SN type Ia – 0.3 2
OB stars 30 – –
Red Supergiants 20 – 0.2
Wolf-Rayet stars 100 0.06 –
SN type II 100 2 10
Star formation -3000 – –
Disk-Halo circulation 7000
Infall from satellite galaxies 150

Table 1.4: Injection and depletion rates of interstellar gas (2nd column) and dust (3rd and 4th column).
From: Tielens, The physics and chemistry of the interstellar medium.

the ISM. Massive stars are more efficient in producing and injecting elements such as oxygen
and silicon, into the ISM.

The disk of the Galaxy also exchanges material with the lower halo. The concerted action of
supernovae set up a galactic fountain, removing material from the galactic disk. Material from
the lower halo falls back to the galactic disk at about the same rate. At 7000M� kpc−2 Myear−1

this is about 5 M� of material per year adopting a radius of the galactic disk of 15 kpc (such
that the galactic disk surface is 700 kpc2). In terms of the mass flux, this circulation pattern
dominates the mass budget.

The Magellanic Stream, a gas stream from the Magellanic Clouds to our Milky Way as a result
of tidal effects, supplies some 150 M� kpc−2 Myear−1.

There are also some indirect arguments that suggest that the Galaxy may have been accreting
about 0.5M�yr−1 of metal-poor primordial gas over much of its lifetime (see Fig. 1.1) or
about an order of magnitude more than the Magellanic Stream accretion. This last component
has not been taken into account in Table 1.4.

1.5 The lifecycle of the galaxy

The origin and evolution of galaxies are closely tied to the cyclic processes in which stars
form from the gas and dust reservoir that is the interstellar medium, and return gas and dust to
this entity through outflows and explosions. We follow Tielens (2005) in this short discussion.
Winds from low-mass stars – the number of which is a function of the past star formation rate
– control the total mass balance of interstellar gas and contribute substantially to the injection
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of dust, an important opacity source, and PAHs, an important heating agent of interstellar gas.
Winds and supernovae explosions from high-mass stars – the number of which is a function
of the present star formation rate – dominate the mechanical energy injection into the ISM,
and thus the turbulent pressure that helps support clouds against galactic- and self-gravity.
Through the formation of the hot coronal phase (see section 1.1), massive stars regulate the
thermal pressure as well.

Massive stars also control the far-UV photon energy budget, which is an important heating,
ionizing, and dissociation source of the interstellar gas, and they are also an important source
of intermediate-mass elements (specifically oxygen and silicon) that are an important compo-
nent of interstellar dust. Eventually, it is the dust opacity – the ability of the grains to shield
the medium against UV photons – that allows molecule formation and survival. The cooling
capability of molecules is crucial in the onset of gravitational instability of molecular clouds.

In the star formation process, interstellar dust ends up in the disk around the forming stars.
These grains are the building blocks of planets, and potentially life.

Clearly, therefore, there is a complex system of feedback between star and planet formation
and the ISM. And it is this feedback that determines the structure, composition, chemical
evolution, and observational characteristics of the interstellar medium in the Milky Way and
in other galaxies all the way back to the first stars and galaxies that formed at redshifts z & 10.

If we want to understand this interaction, we have to understand the fundamental physical
processes that govern the ISM. These processes are the topic of these lectures.

1.6 Literature

No books fully cover what is presented in these lecture notes. However, we follow parts of:

• Spitzer (Lyman Jr.) Physical processes in the interstellar medium, 1998 Edition. Wiley.
Outstanding book discussing the physical processes in the interstellar medium and the
nature of interstellar matter, with a strong emphasis on basic physical principles.

• Waters (Rens), with contributions from Kama (Mihkel) Lecture notes of the master
course: Interstellar and Circumstellar Matter, 2013 version. Master course lecture
notes of the University of Amsterdam. Very clear and conceptual. Borrows from, and
used as a main guide to write several chapters of these lecture notes

• Lequeux (James): The Interstellar Medium, 2003. Springer. Excellent textbook with in
depth discussions of the derived formulae. Clear, consice and easy to read.

• Draine (Bruce T.): Physics of the interstellar and intergalactic mediam, 1st Edition
2011. Princeton University Press. Excellent new and accessible book with lots of useful
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data. Borrowed from, and used as a main guide to write several chapters of these lecture
notes.

• Tielens (Xander G.G.M.): The physics and chemistry of the interstellar medium, 1st
paperback edition 2010. Princeton University Press. Excellent book focussing on the
detailed physics of gas and dust, with special attention for polycyclic aromatic hydro-
carbons.

• Dyson (J. E.) and Williams (D. A.): The physics of the interstellar medium, 2nd revised
edition 1997 Taylor & Francis Ltd. Excellent book aiming at advanced undergraduates.

• Osterbrock (Donald E.) and Gerland (Gary J.): Astrophysics of gaseous nebulae and
active galactic nuclei, 2nd edition 2006 University Science Books. Standard textbook
on the physics of nebulae and AGNs. Beautifully written.

• Stahler (Steven W.) and Palla (Francesco): The Formation of Stars, 1st Edition 2004
(2nd Reprint 2011). Wiley-VCH Verlag GmbH & Co, KGaA. Excellent standard book,
focussing on star formation.

• Evans (Aneurin): The Dusty Universe, 1994 John Wiley & Sons Ltd. Introduction on
dust in the universe, written at an advanced undergraduate level, but very worthy of
reading.

• Bransden (B. H.) and Joachain (C. J.): Physics of atoms and molecules, 2nd Edition
2003 New York, Prentice Hall. This book deals with both atomic and molecular physics,
at an advanced undergraduate level.
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Exercise 1.1

The ten most important elements in life on Earth are H, C, N, O, Na, P, S, Cl, K, and Cl
(see An introduction to Astrobiology, Revised edition 2011, Cambridge University Press).
By percent mass they contribute about 9.5, 18.5, 3.2, 65, 0.2, 1.0, 0.3, 0.2, 0.4, and 1.5 %,
respectively, to the human body.

a) Which percentage do these building blocks of life, save H, represent of the total of el-
ements heavier than helium? (Use an abundance table from the literature). Are stars
‘geared’ towards producing the elements necessary for life on Earth or are these elements
only a byproduct of stellar nucleosynthesis?

b) Figure 1.7 shows the time evolution (in Gyr) of the origin of the elements in the periodic
table. Estimate (roughly) which percentage of the human body (by mass) originates from
Big Bang nucleosynthesis, AGB stars, core-collapse Supernovae (so, from massive stars)
and Type Ia supernovae (so, from low-mass stars).
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Radiation and matter

In this chapter we review the basic quantities describing the radiation field and aspects of
radiation transfer. The description of the coupling between the gas and dust and the radiation
field can be simplified considerably if the medium and the radiation field are in some type
of equilibrium. The most strict form of equilibrium is thermodynamic equilibrium (TE). We
discuss the properties of a TE medium, and briefly introduce local-TE (LTE) and non-local
TE (NLTE).

2.1 Characterizing radiation fields

In this section we give the basic definitions that characterize a non-polarized radiation field.

Specific intensity

The specific intensity or surface brightness Iν at position r and time t, traveling in direction n,
is defined such that the amount of energy transported by radiation of frequencies (ν, ν + dν)
across an element of area dS into a solid angle dω in a time interval dt is

dEν = Iν(r,n, t) n · dS dωdνdt
= Iν(r,n, t) cos θ dS dωdνdt (2.1)

where θ is the angle between the direction of the beam and the normal to the surface, i.e.
n ·dS = n ·sdS = cos θ dS (see figure 2.1). For a beam entering the medium at a polar angle
θ between the normal direction and the beam direction, we will frequently use the variable
µ = cos θ. The dimensions of Iν are erg cm−2 sec−1 hz−1 sr−1. From a macroscopic point
of view, the specific intensity provides a complete description of the (non-polarized) radiation
field.

The specific intensity is defined such that it is independent of distance if there are no sources
or sinks of radiation along the direction of the beam. This implies that the value for the specific
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Figure 2.1: Definition of the specific intensity as a beam of radiation into a solid angel dω, across a
surface dS oriented in direction s. The vector n is the direction of propagation of the beam which is at
an angle θ with s.

intensity at the source location can be obtained by measuring the amount of energy per unit
time and per frequency interval that hits a detector (with known efficiency) per unit detector
surface, when the solid angle subtended by the source is known. To be able to measure the
specific intensity it is therefore required that the source is spatially resolved.

The invariance of Iν

The specific intensity is defined such that it is independent of distance if there are no sources
or sinks of radiation along the direction of the beam. This implies that the value for the specific
intensity at the source location can be obtained by measuring the amount of energy per unit
time and per frequency interval that hits a detector (with known efficiency) per unit detector
surface, when the solid angle subtended by the source is known. To be able to measure the
specific intensity it is therefore required that the source is spatially resolved.

In other words: if we use our telescope to observe a fragment of an extended source (for
instance a nebula, a galaxy, a planet, or the sun) somewhere in the sky, then the intensity that
we derive from the amount of energy that reaches our detector, per unit frequency and time, is
the same as that is emitted by the fragment in our direction.

We can understand this property by considering a beam of radiation that passes through a sur-
face element dS at position r, as well as through an element dS′ at position r′ (see figure 2.2).
The amount of energy passing through both areas is

dEν = Iν cos θ dS dωdνdt = I ′ν cos θ′ dS′ dω′dνdt (2.2)
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Figure 2.2: Illustration of the proof of invariance of the specific intensity. The points r and r′ are
separated by a distance d. Area dS subtends a solid angle dω′ seen from position r′, and the area dS′

subtends dω at r. n and n′ are unit vectors normal to dS and dS′.

where dω is the solid angle subtended by dS′ as seen from position r, and dω′ is the solid
angle subtended by dS as seen from r′. Given that the distance between r and r′ is equal to d,
it follows from dω = 4π cos θ′dS′/4πd2 and dω′ = 4π cos θ dS/4πd2 that Iν = I ′ν .

Mean intensity

The mean specific intensity or mean intensity averaged over all directions is

Jν(r, t) =
1

4π

∮
Iν(r,n, t) dω (2.3)

The mean intensity is the zero-order moment of the specific intensity and has dimensions erg
cm−2 sec−1 hz−1. In spherical coordinates dω = sin θdθdφ = −dµdφ. (see figure 2.3). The
total solid angle Ω therefore is

Ω =

∮
dω =

∫ 2π

0

∫ π

0
sin θ dθdφ = 2π

∫ +1

−1
dµ = 4π (2.4)

This explains the normalization factor 4π in eq. (2.3). Solid angle is expressed in the dimen-
sionless unit steradian (sr). In the small angle limit, i.e. θ? → 0 or µ? = cos θ? → 1 of the
axially symmetric case (for instance, we observe a circular looking object in the sky), we find

Ω? = 2π

∫ θ?

0
sin θ dθ = 2π (1− cos θ?) ' 2π

(
1−

[
1− θ2

?/2
])

= π θ2
?, (2.5)

where θ? is in radians and the one-but-final equality follows from Taylor expansion of the
cos θ? term.

Notice that though the mean intensity is defined per steradian, through the factor 1/4π in
eq. 2.3, its dimension does not convey this. The reasoning behind this is that Jν is no longer
a function of solid angle; as solid angle is a dimensionless unit explicit reference to it may be
dropped.
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Figure 2.3: The infinitesimal solid angle dω expressed in spherical coordinates. The area A of a sphere
of radius r in the interval (θ, θ + dθ) and (φ, φ + dφ) is A = b · a = r2 sin θdθdφ = r2dω, so that
dω = sin θdθdφ. The total solid angle is 4π steradians.

We may now rewrite eq. (2.3) as

Jν =
1

4π

∫ 2π

0

∫ π

0
Iν sin θ dθdφ

=
1

2

∫ +1

−1
Iν dµ (2.6)

The mean intensity is e.g. used in the description of processes such as photoexcitation and
photoionization, which only depend on the number of photons at some position at some time
and do not depend on the direction of origin of these photons. For an isotropic radiation field
Jν = Iν .

Geometrical dilution

Consider a spherical star that emits an isotropic radiation field Iν(θ, φ) = Iν from its surface
at R?. We are interested in the mean intensity above the stellar surface, i.e. at r > R?.
Figure 2.4 shows the directions from which the point r receives the stellar intensity Iν . For
the mean intensity in this point we find

Jν(r) =
1

2

∫ 1

µ?

Iν dµ =
1

2
(1− µ?) Iν ≡W (r) Iν (2.7)
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Figure 2.4: Geometry showing the directions from which a point d receives the stellar intensity Iν .

where µ? =
[
1− (R?/r)

2
]1/2 is the grazing angle that just hits the stellar rim (seen from r)

and

W (r) =
1

2

1−

[
1−

(
R∗
r

)2
]1/2

 (2.8)

The factor W is called geometrical dilution and denotes the fraction of the total solid angle
subtended by a star of radius R? seen from a point in the sky at distance r. If r = R? one finds
W = 1/2. This is easy to understand as an observer on the stellar surface sees half of the
sky filled by the star. At very large distances, i.e. r � R?, one may approximate the dilution
factor by

W (r) ' 1

4

(
R?
r

)2

. (2.9)

This also is easy to grasp: at large distances one sees the stellar disk, therefore W (r) =
πR2

?/4πr
2.

Energy density of radiation

The energy density of radiation is the amount of energy present in a region of space per unit
volume. Let us consider the energy in a beam of solid angle dω passing through a surface
element dS, i.e., eq. (2.1). We envision a volume V such that for our beam the path length to
the far edge of the volume is l. We are only interested in those photons in the beam that are
actually inside V . These will be inside of the elementary volume during a time dt = l/c. The
part of the volume in which the photons are located is dV = l dS cos θ, where θ is the angle
between the direction of the beam and the normal to the surface element dS. The energy in
this part of the volume provided by the beam is therefore dEν = c−1 Iν(r,n, t) dω dν dV .
Integrating over all beams (to cover the entire volume) and the volume (to account for the size
of the volume through the path length l), one finds for the total energy in V in the frequency
band dν

Eν(r, t) dν =
1

c

[∫
V

{∮
Iν(r,n, t) dω

}
dV

]
dν (2.10)
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As the volume V is chosen so small that it is elementary, i.e. Iν is independent of position
within V , we may evaluate the integrals independently. We then find for the monochromatic
energy density

uν(r, t) =
Eν(r, t)

V
=

1

c

∮
Iν(r,n, t) dω =

4π

c
Jν(r, t) (2.11)

The frequency integrated or total energy density is

u =

∫ ∞
0

uν dν =
4π

c
J. (2.12)

The dimension of uν is erg cm−3 Hz−1; that of u is erg cm−3. In studies of the interstellar
medium is it quite customary to express the total energy density in eV cm−3 (see for instance
Table 1.3). Recall that 1 erg cm−3 = 6.415× 1011 eV cm−3.

Flux

The flux of radiation Fν(r,t) is defined as a vector quantity such that Fν · dS gives the net
rate of radiant energy flow across the arbitrarily oriented surface dS = s dS per unit time and
frequency interval.

The flux can be derived from the specific intensity passing through surface dS if we integrate
over all solid angles. The energy that passes through the surface in frequency interval dν in
time dt can be written as

Fν(r, t) · dS dν dt =

∮
dEν =

∮
Iν(r,n, t) n · dS dω dν dt, (2.13)

where the integration is over solid angle, consequently

Fν(r, t) =

∮
Iν(r,n, t) n dω, (2.14)

that is

(Fx,Fy,Fz) =

(∮
Iν(r,n, t) nx dω,

∮
Iν(r,n, t) ny dω,

∮
Iν(r,n, t) nz dω

)
. (2.15)

The flux has dimensions erg cm−2 sec−1 hz−1. One may therefore also think of the flux being
the power per unit surface per unit frequency bandwidth (which a radio astronomer would
likely find more appealing). In infrared and radio astronomy the flux is often given in units of
jansky (symbol: Jy): 10−23 erg cm−2 sec−1 hz−1 ≡ 1 Jy.

In a plan parallel medium only the flux in the z direction Fz 6= 0. Symmetry arguments show
that in the x and y directions the flux Fx = Fy = 0. As in this case only the z component of
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the flux is relevant one usually denotes this flux vector component as ‘the’ flux. It follows that

Fν(z, t) =

∫ 2π

0

∫ π

0
Iν cos θ sin θ dθdφ

= 2π

∫ +1

−1
Iν(z, µ, t)µ dµ (2.16)

Again: Fν(z, t) is the net flow of radiant energy, per second per frequency interval, that passes
through a surface of 1 cm2 that at position z is oriented normal to the z-direction. It is a net
flow of energy as the perspective factor µ = cos θ (measuring the effective surface) counts
inward directed contributions (−1 ≤ µ ≤ 0) negative.

The frequency integrated or total flux is

F ≡
∫ ∞

0
Fν dν ≡ σT 4

eff (2.17)

where the last equality introduces the effective temperature Teff . Note that conform its defini-
tion, Teff is a measure of the total flux; it is not a physical temperature. When considering a
star of radius R?, integration of the flux over all of the stellar surface results in the monochro-
matic luminosity Lν = 4πR2

?Fν(R?). Further integration over all frequencies yields the
luminosity of the star

L? =

∫ ∞
0

Lν dν = 4πR2
?F(R?) = 4πR2

?σT
4
eff (2.18)

The r−2 dependence of the flux

The observational meaning of the flux can be understood in the following way: Consider a
constant, isotropically radiating source, e.g. a spherical star with radius R? and surface 4πR2

? .
When we place a concentric spherical surface around this source, with radius r – and if we
assume there is no absorption or emission in the space around the source – the total amount
of radiation energy passing through the outer surface will be the same as that passing through
the stellar surface. Therefore

Fν(R?) 4πR2
? = Fν(r) 4πr2 (2.19)

If r is the distance of the source to earth, then Fν(r) is the observed flux. The flux therefore
decreases with distance as Fν(r) ∝ r−2.

At first sight it may seem that this result is in contradiction to the invariance of the specific
intensity along the line of sight. This is not so. Again consider a constant, isotropically
radiating star with radius R? and emerging intensity Iν . At a point r the intensity is equal to
Iν for all beams that intersect the star, for all other beams it is zero. We then find for the flux
in r (see figure 2.4)

Fν(r) = 2π

∫ 1

µ?

Iνµdµ = πIν(1− µ2
?) = πIν

(
R?
r

)2

(2.20)
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So we again find the flux to be proportional to r−2. Note that the flux at the surface Fν(R?) =
πIν , a result that can also be obtained directly from

Fν(R?) = 2π

∫ 1

µ?=0
Iνµdµ ≡ F+

ν = πIν (2.21)

Angular diameter

The angular diameter of an object of radius R? is

α? =
2R?
d

(2.22)

such that the observed flux can also be written as Fν(d) = (α2
?/4)Fν(R?). For unresolved

objects (such as is the case for almost all stars), we can measure only the flux. If the angular
diameter is known, then the measured flux can be converted to the flux at the surface of the
object. Reversely, if we know the value for the surface flux from (other) observed quantities
we may determine the angular diameter of the object using the measured flux.

2.2 Planck function

We recapitulate properties of the Planck function. The Planck function per frequency unit is
given by

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
(2.23)

where h and k are Planck’s constant and Boltzmann’s constant respectively. The dimensions
of Bν are erg cm−2 s−1 hz−1 sr−1. A derivation of the Planck function is for instance given
in Rybicki & Lightman. Using the relation

|Bν(T ) dν| = |Bλ(T ) dλ| (2.24)

we may rewrite the Planck function in wavelength units. We find

Bλ(T ) =
2hc2

λ5

1

ehc/λkT − 1
(2.25)

of which the dimensions are erg cm−2 s−1 cm−1 sr−1.

Wien’s displacement law

Note that if we write Bν(T ) = T 3q3B(q), where q = ν/T , that the function B(q) is a
universal function. This proofs that Planck curves for different temperature will not intersect.
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The position of the maximum of the Planck curves follows from Wien’s displacement law, and
can be derived by taking the partial derivative ∂Bν/∂ν = 0. We find

hνmax = 2.82144 kT or
νmax

T
= 5.87870× 1010 hz K−1 (2.26)

The peak of Bλ is at
λmaxT = 0.28979 cm K (2.27)

Note: the maxima of Bν and Bλ are not at the same position in the spectrum.

Rayleigh-Jeans approximation

For frequencies low enough to have hν/kT � 1, the Planck function simplifies to the
Rayleigh-Jeans approximation

Bν(T ) ' 2ν2kT

c2
(2.28)

The Rayleigh-Jeans approximation is particularly important in radio astronomy, where the
condition hν � kT is most easily met. At these long wavelengths a fixed ration between Bν
and T exists, so that the intensity can be expressed in Kelvin.

Wien’s approximation

For frequencies high enough to have hν/kT � 1, the Planck function simplifies to Wien’s
approximation

Bν(T ) ' 2hν3

c2
e−hν/kT (2.29)

Stefan-Boltzmann’s law

Integrating over the entire spectrum yields Stefan-Boltzmann’s law

B ≡
∫ ∞

0
Bν dν =

σ

π
T 4 (2.30)

where

σ =
2π5k4

15h3c2
= 5.66961× 10−5 erg cm−2 K−4 s−1 (2.31)

is Stefan-Boltzmann’s constant.

2.3 The equation of transfer

In this section we formulate the equation of transfer of radiation through a medium and in-
troduce the macroscopic quantities that play a role in this equation. The transfer equation has
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a formal solution which reflects that the specific intensity at each point in the medium can
be determined if the source function Sν and the optical depth τν are known throughout the
medium, or – equivalently – the extinction coefficient χν and the emission coefficient ην . We
mention analytical solutions to simple transfer problems.

Extinction coefficient

If only extinction processes occur along the path-length ds, either as a result of absorption or
because of scattering out of the direction of the ray, then the decrease in the specific intensity
is proportional to the incident specific intensity, to the path-length ds, and to the properties
and number of absorbing/scattering particles. The constant of proportionality is called the
extinction coefficient and can be defined in three ways (see eq. 2.34 for an overview).

We will often use the linear extinction coefficient χν , which has dimension cm−1, such that

dIν(s) = −χν(s) Iν(s) ds (2.32)

The linear extinction coefficient can be split up in a contribution due to absorption, κν , and
due to scattering, σν

χν(s) = κν(s) + σν(s) (2.33)

Here it is implicitly assumed that these processes are independent of each other and that they
are additive.

Alternative definitions of the extinction coefficient are

χν = χ′ν ρ = αν n (2.34)

Here χ′ν is the mass extinction coefficient in cm2 gr−1 and ρ the density of the material
medium in gr cm−3. αν is the extinction coefficient per particle or cross section in cm2 and n
the number density of particles in cm−3 that cause the extinction.

Emission coefficient

If only emission processes occur along the path-length ds, either as a result of thermal emis-
sion or because of scattering into the direction of the ray, then the increase in the specific
intensity is given by

dIν(s) = ην(s) ds (2.35)

The constant of proportionality is called the volume emission coefficient and has dimensions
erg cm−3 sec−1 hz−1 sr−1. ην always depends on the properties of the medium, and, in
case of scattering from other directions into the ray of light, also on the radiation field. For
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completeness we mention that in studies of gaseous nebulae it is custom to use the letter j (so
jν) to denote the emission coefficient (for instance in Osterbrock & Ferland).

An alternative definition of the emission coefficient is

ην = η′νρ (2.36)

where η′ν is the mass emission coefficient ([erg gr−1 sec−1 hz−1 sr−1]).

Extinction and emission: the equation of transfer

If both extinction and emission occur along the path-length ds then we may write

dIν(s) = [ ην(s)− χν(s) Iν(s) ] ds (2.37)

or
dIν
ds

= ην − χν Iν (2.38)

This is the equation of transfer.

Optical depth

Let us introduce an elementary optical depth interval dτν along a path-length ds, such that

dτν ≡ χν(r,n) ds (2.39)

This defines the optical depth τν which gives the integrated extinction of the material along
the line of sight. For a geometrical thickness D the optical depth is

τν(D) =

∫ D

0
χν(s) ds (2.40)

The optical depth is a dimensionless number. The physical meaning of τν is simple. In the
absence of emission in the medium the equation of transfer along the beam is given by (see
eq. 2.32 and/or 2.38)

dIν
dτν

= −Iν (2.41)

This yields
Iν(D) = Iν(0) e−τν(D) (2.42)

and shows that τν(D) is the exponential decline parameter that determines what remains of
a beam that has passed through a layer of thickness D in which extinction processes occur.
How far can photons penetrate in this layer? The chance that an incident photon travels an
optical depth τν(s) in the layer (for s < D) before it is absorbed or scattered is p(τν(s)) =
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exp(−τν(s)). As the average of a quantity x that has a probability distribution p(x) is given
by

< x >=

∫∞
0 x p(x) dx∫∞
0 p(x) dx

(2.43)

the mean optical photon path of the photon must be

< τν >=

∫∞
0 τν e

−τν dτν∫∞
0 e−τν dτν

= 1 (2.44)

Photons therefore typically travel one optical depth unit before interacting with the medium.

Mean free path of the photon

This result immediately shows what the mean geometrical path (in cm) of a photon in a ho-
mogeneous medium must be, i.e., the mean path length it can travel before it is absorbed or
scattered. This is

`ν =
< τν >

χν
=

1

χν
=

1

χ′νρ
=

1

αν n
, (2.45)

and is referred to as the photon mean-free-path.

Source function

The source function is defined as
Sν ≡

ην
χν

(2.46)

and has dimensions erg cm−2 sec−1 hz−1 sr−1. It has the same units as the specific intensity,
therefore Sν and Iν can be added and subtracted. The extinction and emission coefficients are
local quantities, implying the source function is independent of the adopted geometry.

From the definition of optical depth, eq. (2.39), it follows that ην ds = (ην/χν)χν ds =
Sν dτν . So, the source function is essentially the amount of emission per unit optical depth.

Formal solution of the transfer equation

We define the optical depth scale such that for distance z increasing in the direction to the
observer, τν is decreasing, i.e.

dτν(z) = −χν(z)dz (2.47)

This implies that for an observer at z = ∞, the optical depth τν(∞) = 0. Adopting this
optical depth scale, and using the source function, the transfer equation (Eq. 2.38) may be
written in its standard form

dIν(τν)

dτν
= Iν(τν)− Sν(τν) (2.48)
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For known source function Sν , eq. (2.48) has a formal solution. To find this solution we bring
Iν to the left hand side, and multiply both sides by the integrating factor exp(−τν). This
yields [

dIν
dτν
− Iν

]
e−τν =

d

dτν
(Iν e

−τν ) = −Sν e−τν (2.49)

Integration from τ1 to τ2, and multiplying by − exp (τ1) results in

Iν(τ1) = Iν(τ2) e−(τ2−τ1) +

∫ τ2

τ1

Sν(tν) e−(tν−τ1) dtν (2.50)

For τ1 = 0 and τ2 = τν , this reduces to

Iν(0) = Iν(τν) e−(τν) +

∫ τν

0
Sν(tν) e−tν dtν (2.51)

Solution of the transfer equation for a homogenous slab

Let us consider a homogeneous finite slab. Homogeneity implies that χν and ην , therefore
also Sν , are constant. If the integrated optical depth in the normal direction of the slab is τν
the emerging intensity at τ1 = 0 is

Iν(0) = Iν(τν) e−τν + Sν
[
1− e−τν

]
(2.52)

The first term on the right hand side describes the weakening of the radiation that is incident
to the far side of the slab (viewed from the direction of the observer). The second term on the
right hand side gives the contribution of radiation emitted by the slab itself. Let us analyse the
two limiting cases of this solution.

In the optically thin limit (τν � 1, such that exp(−τν) ' 1− τν) we find

Iν(0) ' Iν(τν) + (Sν − Iν(τν)) τν (2.53)

If no radiation is incident at the far side (Iν(τν) = 0) it follow that Iν(0) ' Sντν . This is to
be expected as in the optically thin case we observe emission from almost all parts of the slab.
The emerging radiation therefore must be Iν(0) ' ηνD = SνχνD = Sντν , where D is the
geometrical thickness of the slab. If no radiation is emitted by the slab itself (Sν = 0) then
Iν(0) ≈ Iν(τν), which is obvious – the slab is essentially transparant.

If the slab is optically thick (τν � 1) then

Iν(0) ' Sν (2.54)

The radiation Iν(τν) that is incident at the far side does not penetrate through the slab. One
only observes the source function in the slab, irrespective of the nature of the extinction. The
nature of the medium is only relevant for the source function Sν .
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We rewrite the solution of eq. (2.52) to

Iν(0) = Iν(τν) + (Sν − Iν(τν))
[
1− e−τν

]
(2.55)

Note that Iν(0) < Iν(τν) if Sν < Iν(τν), and reversely that Iν(0) > Iν(τν) if Sν > Iν(τν).
This is an important result. It shows the principle of the formation of absorption casu quo
emission lines in a plane-parallel medium. Let us identify the incident intensity Iν(τν) with
the intensity that is emitted by the background source. The homogeneous layer corresponds
to the interstellar medium, i.e. the region in which the spectral lines are formed. Is the line
source function Sν < Iν(τν) then an absorption line will form, i.e. Iν(0) < Iν(τν). Is the line
source function Sν > Iν(τν) then an emission line will form, i.e. Iν(0) > Iν(τν). Is the line
source function equal to the intensity emitted by the continuum, i.e. Sν = Iν(τν), then no line
will form, i.e. Iν(0) = Iν(τν).

2.4 Thermodynamic Equilibrium

The most important parameters describing the material medium are the mass density ρ(r) and
the temperature T (r). The essential problem in the study of astrophysical media is to under-
stand the interaction between the material medium and the radiation field. The description of
the coupling between the gas or dust and the radiation field can be simplified considerably if
the medium and the radiation are in some type of equilibrium.

The most strict form of equilibrium is thermodynamic equilibrium (TE). In TE the medium is
homogeneous and at rest. There are no gradients. Each process is in a microscopic equilibrium
with its reverse process, i.e. all processes are in detailed balance. The radiation field is given
by the Planck function, which only depends on T , so

Iν = Iν(T ) ≡ Bν(T ), (2.56)

and both the thermal velocity distribution of the particles – given by the Maxwell velocity
distribution – and the distribution of particles over excitation and ionization states – given by
the Boltzmann and Saha distributions – depend only on ρ and T .

However, the simple fact that we receive photons of the objects in which we are interested
tells us that these media can not be in a state of TE. Because photons escape from these media
it must be so that significant gradients are present in the quantities describing the medium.

If we can not assume that the medium may be characterized as a whole with one value for
ρ and one value for T , but if we are allowed to describe the state of the material medium
locally using only the value of ρ(r) and T (r), then we refer to the situation as being in local
thermodynamic equilibrium (LTE). In LTE all atomic processes are still in detailed balance.
However, the radiation field is not in equilibrium, but follows from the solution of the equation
of transfer.
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In those cases that even LTE is not valid, the medium is (per definition) in a state of non
local thermodynamic equilibrium (NLTE). This is so when (at least) one microscopic process
is not in detailed balance. The population of (at least) two excitation/ionization levels will
deviate from their LTE values. The Boltzmann and Saha distributions no longer hold, and
one requires a statistical equilibrium analysis to solve for the distributions of excitation and
ionization states.

In this section we mainly focus on a description of TE.

Kirchhoff’s law & the Kirchhoff-Planck relation

In a medium that is in TE there are no gradients, i.e. the specific intensity is homogeneous,
isotropic and time independent. In that case eq. (2.38) implies that for all rays, for all frequen-
cies, at all times

ην = χν Iν (2.57)

This is Kirchhoff’s law. Combining this law with eq. (2.56) results in

ην = χν Bν(T ) (2.58)

This is the Kirchhoff-Planck relation. So, the source function Sν = ην/χν in TE is equal to
the Planck function Bν .

In summary: in TE Iν = Bν = Sν . As the radiation field is isotropic, also Iν = Jν . Because
there are no gradients, the flux Fν = 0.

Maxwellian velocity distribution and kinetic gas-temperature

The probability, in TE, that a particle of mass m and temperature T has a velocity in the range
(v,v + dv) is given by the Maxwellian velocity disbribution

f(v) dvxdvydvz =
( m

2πkT

)3/2
exp

[
−m(v2

x + v2
y + v2

z)/2kT
]
dvxdvydvz (2.59)

For each component the spread in velocities is thus given by a Gauss distribution. In the x
direction for instance

f(vx) dvx =
1√
π

( m

2kT

)1/2
exp

[
−mv2

x/2kT
]
dvx (2.60)

The most probable velocity in the x direction is vx = 0. The root-mean-square velocity in this
direction is 〈v2

x〉1/2 = (kT/m)1/2.

To find the probability distribution in terms of speed v we must integrate over all direction
components. We find

f(v) dv =
( m

2πkT

)3/2
exp

[
−mv2/2kT

]
4πv2 dv (2.61)
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The dimensions of f(v) are cm−1 sec and the integral of f(v) is unity, similar to f(v) and
f(vx). It is not a Gauss distribution, but shows a “tail” as a result of the v2 term. The
most probable speed in this distribution, i.e. the one for which f(v) reaches a maximum, is
v = (2kT/m)1/2. The mean speed is

〈v〉 =

(
8kT

πm

)1/2

= 14.551

(
T

104A

)1/2

km s−1, (2.62)

where A is the atomic weight (in amu) of the particle. The root-mean-square speed is

〈v2〉1/2 =

(
3kT

m

)1/2

= 15.793

(
T

104A

)1/2

km s−1. (2.63)

This implies an average thermal energy of the particle

1

2
m〈v2〉 =

3

2
kT. (2.64)

The typical thermal energy of the particle is therefore Eth ∼ kT .

The average relative speed of two particles of massm1 andm2 of a distribution of gas particles
that is given by the Maxwell velocity distribution can be computed by substituting the reduced
mass µ = m1m2/(m1 + m2) for the mass m in Eq. (2.61) and yields a result similar to
Eq. (2.62), namely

〈v〉 =

(
8kT

πµ

)1/2

, (2.65)

From this result one may derive an expression for the average relative speed of hydrogen
atoms with respect to particles with a mass Amamu. We find

〈v〉 = 0.145T 1/2(1 + 1/A)1/2 km s−1. (2.66)

So, the average relative speed of two hydrogen atoms (A =1) in interstellar gas at a temperature
of T = 70 K is 〈v〉 = 1.7 km s−1.

If the Maxwellian velocity distribution is valid one speaks of kinetic equilibrium (KE). For
this condition to be valid a particle that is ejected into the gas (for instance, an electron that is
ejected from an ion after a photo-ionization or a collisional ionization) needs to experience a
large number of elastic collisions (for the electron that we use as an example these are usually
collisions with other free electrons) before it suffers a non-elastic collision. KE implies that
the medium has a unique kinetic temperature.

Level populations and Boltzmann distribution

In TE the number density distribution of atoms, ions, or molecules over all discrete excitation
states (the bound energy levels) is given by the Boltzmann excitation equation.

nj
ni

=
gj
gi

exp [−(Ej − Ei)/kT ] =
gj
gi

exp [−hνij/kT ] . (2.67)
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Here ni is the number density per cm3 in level i; gi is the statistical weight; Ei the excitation
energy in erg, and νij = ∆Eij/h the frequency in Hz corresponding to the energy difference
∆Eij = Ej − Ei. Limiting cases are

hνij � kT → nj = 0 (2.68)

hνij � kT → nj/ni = gj/gi (2.69)

It is customary that within each ionization stage the excitation energy is measured from the
ground state up (see figure 2.5). The ionization energy is also measured per ionization stage
from the ground state up. Usually one does not give the energy difference between levels
in erg, but in electron volts (eV) or kayser (cm−1). If we adopt the first unit one speaks of
excitation potential . In this caseEj[erg] = 1.602192 10−12 Ej[eV] and ∆Eij[eV] = 12 398.54
/ λij[Å]. If we adopt the last unit the wavelength of the transition can trivially be recovered
using λij[Å] = 108/(Ej[cm−1] - Ei[cm−1]). Figure 5.1 gives the excitation energy in Kelvin,
i.e. it provides Ej/k.

The Boltzmann equation can also be written to yield the excitation fraction

ni
N

=
gi

U(T )
exp [−Ei/kT ] , (2.70)

where N =
∑

i ni is the sum of populations over all levels, i.e. the total particle density per
cm3 of a given ionization stage, and U(T ) is the partition function of this ionization stage
given by

U(T ) ≡
∑
i

gi exp [−Ei/kT ] . (2.71)

Ionization ratios and Saha distribution

In TE the number density distribution over the ionization stages of an element or molecule is
given by the Saha ionization equation

NI

NI+1
= ne

UI
2UI+1

(
h2

2πmekT

)3/2

exp [EI/kT ]

≡ neΦ̃I(T ) (2.72)

where ne is the electron density per cm3 and me the electron mass; NI is the particle density
of atoms, ions or molecules in ionization stage I; UI is the partition function of this ion; and
EI its ionization energy (in erg), i.e. the minimum energy required to liberate an electron
from the atom, ion or molecule. The factor 2 in front of the partition function UI+1 reflects
the statistical weight of the liberated electron, that may have one out of two possible spin
orientations.
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Figure 2.5: Schematic picture of the energy level diagram or Grotrian diagram of hydrogen. The
excitation energy of the levels is measured from the ground state up and is given in units of cm−1 or
kayser. From: Bruce Draine, Physics of the interstellar and intergalactic medium.

If the temperature decreases at constant density (such that ne remains more or less the same)
the exponential term in the Saha ionization equation will make that NI/NI+1 increases, i.e.
the medium recombines. Essentially, the root-mean-square speed (Eq. 2.63) of the Maxwellian
velocity distribution decreases, lowering the number of free electrons that can cause ioniza-
tion. If the density decreases at constant temperature, ne (more or less proportional to ρ) will
decrease and therefore also NI/NI+1, i.e. the medium ionizes. Essentially, the lower electron
density lowers the probability that a free electron is captured by an ion.

In many cases the particle density of the ground level i = 0 will dominate the particle density
of the ion I , i.e. NI =

∑
ni,I ' n0,I . The Saha equation for ground levels only is given by

n0,I

n0,I+1
= ne

g0,I

2g0,I+1

(
h2

2πmekT

)3/2

exp [EI/kT ] (2.73)
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Finally, we may express the particle density ni in terms of the particle density of the ground
level of ion I + 1 and the electron density by substitution of eq. (2.67) in (2.73). This gives

ni,I = n0,I+1ne
gi,I

2g0,I+1

(
h2

2πmekT

)3/2

exp [(EI − Ei)/kT ]

≡ n0,I+1ne ΦiI(T ) (2.74)

This is the equation of state (EOS) of a gas in TE or LTE. In the latter case one should use
the local values for temperature and density. The equation can also be used to define LTE
particle densities in a NLTE medium. Deviations from LTE can thus be described by the
NLTE departure coefficient

bi,I ≡
ni,I

nLTE
i,I

(2.75)

in which nLTE
i,I is given by eq. (2.74). Henceforth we will denote LTE values of the level

populations with a superscript ∗ (and not with LTE). However, we will do so only if this is
required in the context of the discussion (if not, no superscript is used).

2.5 Local Thermodynamic Equilibrium

Local Thermodynamic Equilibrium or LTE implies that the conditions of TE apply at a specific
location in the medium, where the local temperature and density are T (r) and ρ(r). This does
not include the TE description of the radiation field. In LTE one must solve the equation of
transfer Eq. 2.48. LTE is a good description of the medium for one or both of the following
conditions:

- Densities are so high that collisions dominate the electron transitions between levels.
These collisions couple the level populations to the local medium (as the rate of colli-
sions depends on T (r) and ρ(r) only).

- The optical depth in all transitions of an atom, ion, or molecule are so high that photons
are locally truly absorbed or truly emitted. In that case the level populations depend on
the radiation field that is locally generated, i.e. on the local Planck function Bν(T (r)).

In LTE the temperature and density may vary gradually with location in the medium, however,
densities are always high enough to ensure that the state of the gas is determined locally. If,
for instance, photons created at some remote location reach r through a series of scatterings,
these should not contribute in a significant way to the local radiation field. If this would be the
case, these photons would likely ‘report’ on conditions elsewhere, where the temperature and
density may be very different from those at r, and introduce departures from LTE.
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2.6 Temperature definitions

Based on the above discussions we may define three characteristic temperatures that are often
used in the study of the ISM. The first two are related to the Planck function; the next two to
the equations of Boltzmann and Saha.

Brightness temperature

The brightness temperature Tb is the temperature for which the Planck function, at the fre-
quency at which is measured, reproduces the observed specific intensity

Iobs
ν = Bν(Tb) (2.76)

The brightness temperature is often used in radio astronomy, where in most cases the Rayleigh-
Jeans approximation is valid such that

Tb ≡
hν/k

ln [1 + 2hν3/c2Iobs
ν ]
' c2

2ν2k
Iobs
ν (2.77)

In general Tb will depend on frequency. Only if the source emits a blackbody spectrum Tb

will be the same for all frequencies.

If we consider a medium at a constant temperature T that emits according to the Planck func-
tion, the solution of the equation of transfer (eq. 2.52) in the Rayleigh-Jeans limit is

Tb(0) = Tb(τν) e−τν + T
[
1− e−τν

]
∀ hν

kT
� 1 (2.78)

where Tb(τν) is the brightness temperature of the radiation field that is incident at the far side
of the medium. For large optical depth in the medium the brightness temperature will be equal
to the temperature of the material, i.e. Tb(0) = T .

Excitation temperature

The excitation temperature is determined by comparison of observed level populations of an
atom, ion, or molecule, using the Boltzmann equation (eq 2.67). Obviously, the measured
populations need not be in LTE. To conserve a description of the measured population ra-
tios in terms of the Boltzmann equation, we introduce the excitation temperature Text. This
temperature is given by(

nj
ni

)obs

=
bj
bi

n∗j
n∗i

=
bj
bi

gj
gi

exp [−hνij/kT ] ≡ gj
gi

exp [−hνij/kText] (2.79)

If bu/bl = 1, such as is the case in TE and LTE, then T = Text. An interesting case is when
Text < 0, so that nj/ni > gj/gi. This means that an inversion of the level populations with
respect to TE or LTE occurs, which is a condition for maser amplification.
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Ionization temperature

In analogy to the excitation temperature, the ionization temperature is the temperature for
which an observed ionization ratio fulfills the Saha equation (eq. 2.72)(

NI

NI+1

)obs

≡ ne
UI

2UI+1

(
h2

2πmekTion

)3/2

exp [EI/kTion] = neΦ̃I(Tion) (2.80)

This temperature can only be determined if the electron density ne is known. In LTE it holds
that T = Tion.
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Exercise 2.1

From Earth, the mean distance to the moon is 385 000 km.
For this distance, the lunar angular diameter is 31.02’ (or
31’1”).

a) Compute the radius of the moon.

b) Compute the geometrical dilution of the moon, as seen
from Earth (pretend you are at the center of Earth for the
remainder of this exercise).

c) Compute the solid angle ∆Ω subtended by the moon. How
many moons (at the mean lunar distance) are needed to fill
the entire sky? (It is okay to use scissors to cut and paste
lunar disks to fill holes in between full lunar disks).

A B

d

P

d d

d

C D

Exercise 2.2

Consider a cluster of four stars; each star radiates an
isotropic radiation field of which the specific intensity is
Iν . The four stars and the observer are in the same plane.
The observer is in the center P of the cluster. The distance
from P to each of the four stars is d. The radius of the stars
B and C is R; that of the stars A and D is 2R.

a) Give the mean intensity at P .

b) Give the monochromatic energy density at P .

c) Give the flux at P .

Exercise 2.3

Suppose that in Sherwood Forest, the average radius of a tree is R = 1 m and that the
average number of trees per unit area is Σ = 0.005 m−2. When Robin Hood or Little
John shoots an arrow, it flies horizontally until it strikes a tree.

a) What is the mean cross section of a tree in m?

b) If Robin Hood shoots an arrow in a random direction, how far, on average, will it travel
before it strikes a tree?

c) If Little John shoots a total of 1000 arrows in random directions, how many, on average,
will travel at least 500 m?
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Exercise 2.4

A radio astronomer states that the radio intensity that she observes from an interstellar
cloud of diameter D is given by Iν = χνSνD. Give the five assumptions that she has
made.

Exercise 2.5

This could be a nice exam question. Consider a spherical homogeneous cloud of small
dust particles. The cloud has a mass m and a radius R = 0.1 AU (1 AU = 1.5×1013 cm).
The dust particles have a temperature T and radiate according to the Planck-function.
The optical depth τ , as measured from the edge of the cloud to the center, is independent
of frequency (’gray’).

a) Give the specific intensity, mean intensity, and flux at the center of the cloud.

The dust particles have a frequency independent (’gray’) extinction coefficient χ′ =
100 cm2/gr.

b) Derive an expression that gives the gray radial optical depth as a function of the basic
parameters of the cloud.

c) What should be the minimum mass of the cloud to assure that the cloud is optically thick
(i.e. τ ≥ 1)?

d) If we increase the radius of the cloud by a factor of two, but keep its mass the same,
does this lead to a change in the specific intensity at the center (yes/no). Does the mean
intensity at the center change (yes/no)? Does the flux at the center change (yes/no)?

The cloud represents the halo of a comet. This halo develops when the comet gets so
close to the sun that because of heating small dust particles come off its surface layers.
A comet has a typical initial diameter of 10 km and consists of material that has a typical
density of 1 gr cm−3.

e) Will the halo of this comet be optically thick or optically thin?

Exercise 2.6

a) Give the derivation of eq. (2.25) using eq. (2.23), and the relation (2.24)

b) Show that Bν ↓ 0 for T ↓ 0, and that Bν ↑ ∞ for T ↑ ∞ ∀ ν.
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c) Derive eq. (2.30) and the constant (2.31), given that∫ ∞
0

x3

ex − 1
dx =

π4

15
(2.81)

Exercise 2.7

a) The number of photons per cm3 per Hz in a Planck radiation field is n(ν) = uν/hν,
where uν (see eq. 2.11) is the energy density of the Planck radiation field. Show that the
total number of photons per cm3 in the Planck radiation field

ntot =
16πζ(3)k3

c3h3
T 3 ' 20 T 3 (2.82)

given that ∫ ∞
0

x2

ex − 1
dx = 2 ζ(3) (2.83)

where ζ(3) = 1.202057 is Apéry’s constant.

b) Compute the mean energy per photon in a Planck radiation field.

Exercise 2.8

a) Derive eq. (2.61) from (2.59).

b) Show that both distributions are normalized. Remember that∫ +∞

−∞
e−x

2/a2 dx = a
√
π and

∫ +∞

0

x2e−x
2/a2 dx = a3

√
π/4 (2.84)

c) Show that the mean particle energy is given by

<
1

2
mv2 >=

3

2
kT (2.85)

if we give that ∫ +∞

0

x4e−x
2/a2 dx =

3

8
a5
√
π (2.86)

d) Show that the most probable velocity of eq. (2.60) is given by vx = 0 and of eq. (2.61)
by v = (2kT/m)1/2.
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Exercise 2.9

Show that for a pure hydrogen gas in TE the analytical solution of the electron density in
terms of NH and T is given by

ne(NH, T ) =

[(
4NHΦ̃H(T ) + 1

)1/2

− 1

]/
2Φ̃H(T ), (2.87)

where NH = NN = N0 +N+ = N − ne.

Exercise 2.10

The Time of Decoupling in the early universe refers to the era of recombination of the
hot ionized gas in the expanding young cosmos. Before decoupling, Thomson scattering
by free electrons caused a high opacity in the medium keeping the electrons and photons
in thermal equilibrium. After decoupling, the loss of free electrons caused a drop in
opacity, freeing the photons to roam unhindered throughout a newly transparent universe
– hence the term ‘decoupling’. As the majority of baryonic gas is in the form of hydrogen,
recombination usually refers to the recombination of hydrogen gas. The primordial mass
fraction of hydrogen is Xprim = 0.75. For simplicity, we adopt that only hydrogen
supplies free electrons for the cosmic gas (i.e. helium is neutral).

The temperature at the time of recombination can be estimated through the use of the
Saha equation (2.72) for neutral and ionized hydrogen, where we use U1 ≡ UI = 2 and
U2 ≡ UII = 1. The ionisation energy of hydrogen is EI = 13.6 eV. We define q to be the
fraction of hydrogen atoms that are ionised, i.e.

q =
NII

NI +NII
, (2.88)

hence
NII

NI
=

q

1− q
, (2.89)

where NI and NII are the density of neutral and ionized hydrogen. In the present-day
universe the baryonic density is nb,◦ = ρb,◦/µmH = 5.4× 10−6 cm−3, where the mean
atomic weight is µ = 1.23, and the temperature of the cosmic background radiation T◦ =
2.725 K. We define the scale factor in the present-day universe to be R◦ = 1. At the time
of recombination, the universe was already matter-dominated, implying nb,◦ = R3 nb,
where nb is the density at the time when the scale factor was R. The temperature at the
time when the scale factor was R is given by T = T◦/R. Recall that the cosmic redshift
is given by

z =
1

R
− 1. (2.90)

a) Why might one consider the term ‘recombination’ in this context as oddly inappropriate?

b) Express the baryonic density nb in the hydrogen density nH = nHI
+ nHII

, assuming X
is constant throughout cosmic time.
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c) Use Saha equation (2.72) to derive an expression that links the scale factor R to the
ionization fraction q, for the known present-day quantities nb,◦ and T◦.

d) Let us assume that the time interval of decoupling spans the era where q drops from 0.9
to 0.1 and that the surface of last scattering, from which the cosmic microwave back-
ground photons arriving at Earth were last scattered, corresponds to q = 0.1. Use for
instance Excel to compute the scale factor at these two q values, hence the redshifts and
temperatures at the start and end of recombination. (It may be convenient to introduce
R′ = 103R for your Excel calculation, in which case the solutions are in the range
0.5 ≤ R′ ≤ 1.0).

To let you compare your findings to the results of the Wilkinson Microwave Anisotropy
Probe: WMAP finds for the redshift at the time of decoupling zdec = 1089 ± 1, and a
temperature at the end of recombination of T = T◦ (1 + zdec) = 2970 K.

Exercise 2.11

a) Does the brightness temperature of a radio source depend on its distance?

b) Can one measure the brightness temperature of a point source (i.e. an object that is not
spatially resolved) such as a star? Can one measure Tb for an extended source, such as a
nebula, if this source is not in TE?
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Atomic structure

Atomic structure describes the organization of electrons in various shells and subshells. This
chapter briefly summarizes the energy-level structure of atoms and ions, together with the
nomenclature for referring to those levels, and may be regarded as reference material. Many
textbooks discuss this notation; here we particularly use parts of the clear and concise sum-
mary of Draine (2011), who often relies on the excellent book Physics of Atoms and Molecules
by Bransden & Joachain (2003).

3.1 Single electron orbitals

Hydrogen is the most common element in the universe and it, obviously, plays an important
role in the study of interstellar gas. It is also the simplest atom with only a single electron
orbiting the nucleus. It is therefore with hydrogen that a study of atomic structure must begin.

For a one-electron system in a Coulomb field the orbital of the electron is characterized by an
integer principal quantum number n = 1, 2, 3, 4, ... and an orbital angular momentum quan-
tum number `, that can assume integer values 0 ≤ ` < n. Electrons with the same value
of n are referred to as being in the same shell. Electrons with the same value of n and `
are referred to as being in the same subshell. Though ` can thus take values 0, 1, 2, 3, ... it
is custom to use lowercase letters to denote these values, as these were first used by spectro-
scopists before quantum mechanics was known. In the proper order these lowercase letters
are ` = s, p, d, f, g, .... The first four letters refer to ‘sharp’, ‘principal’, ‘diffuse’, and ‘funda-
mental’. The actual magnitude of the orbital angular momentum L is denoted L and is related
to the quantum number ` by

|L| = L =
√
` (`+ 1) ~. (3.1)

In single electron orbitals the value of ` has no effect on the energy of the electron state (but
see fine structure below); only n does to any appreciable extent. The energies the electron
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Figure 3.1: Quantization of the orientation of the orbital angular momentum L in space. L takes on
only those orientations for which the z component Lz has values given by integer multiples of ~. For a
unique value of Lz the azimuthal angle is completely undetermined, i.e. Lx and Ly are indeterminate.
Like all classical representations of quantum mechanical results, the visualization can be misleading
and must be used with caution. For example, it may lead to experimentally meaningless questions such
as, ‘In what direction is the angular momentum vector really pointing at such-and-such instant?’ From:
chegg.com.

may assume are

En = −µ c
2 Z2 α2

2

1

n2
= −13.595 eV

n2
, (3.2)

where µ is the reduced mass of the nucleus-electron system, that is,

µ =
mNme

(mN +me)
, (3.3)

where mN is the mass of the nucleus, me the mass of the electron, and α = 7.297× 10−3 '
1/137 is the dimensionless fine structure constant. In the last equality of Eq. 3.2, we consider
hydrogen, which has a nuclear charge Z = 1.

In addition to the quantum numbers n and `, there is a third quantum number characterizing
the orbital: m`, the projection of the orbital angular momentum onto an axis that is fixed in
one direction, Lz; see Fig. 3.1. The choice of z as the relevant direction is arbitrary. Thus m`

can take on 2`+ 1 different values: −`, ... , −1, 0, +1, ..., +`. The actual magnitude of Lz is
related to m` by

Lz = m` ~. (3.4)
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This limitation on the direction of L is often called space quantization.

The name m` derives not from theory (which relates it to Lz), but from experiment. It was
found that when a gas-discharge tube was placed in a magnetic field, the spectral lines were
split into several very closely spaced lines. This splitting, discovered by the Dutch physicist
Pieter Zeeman (1865–1943) and known as the Zeeman effect, implies that the energy levels
must be split, and thus that the energy of a state depends not only on n but also on m` when
a magnetic field is applied – hence the name magnetic quantum number or magnetic angular
quantum number.

Finally, the electron possesses a spin quantum number s that is the same for all electrons and
equal to s = 1/2. This causes it to have a spin angular momentum S that has a magnitude

|S| = S =
√
s (s+ 1) ~ =

√
3

2
~. (3.5)

The z component of the spin angular momentum is

Sz = ms ~, (3.6)

where the two possible spin quantum numbers ms can take the values +1/2 (called ‘spin up’)
and −1/2 (called ‘spin down’). Thus a given pair of quantum numbers n` actually refers to
2(2`+ 1) distinct electronic wave functions. We include ms, but not s, in our list of quantum
numbers as s is the same for all electrons. A given n refers to

g =
n−1∑

0

2(2`+ 1) = 2n2 (3.7)

distinct wave functions or quantum states, where g is the degeneracy or statistical weight of a
hydrogen level.

The existence of ms did not come out of Schrödinger’s original theory (as did n, `, and m`).
It was Dirac (1902–1984) who introduced it in the theoretical description of the atom. The
first hint that ms was needed, however, came from experiment. A careful study of the spectral
lines of hydrogen showed that each actually consisted of two (or more) very closely spaced
lines even in the absence of an external magnetic field. It was first hypothesized that this
tiny splitting of energy levels, called fine structure, was due to a magnetic field produced by
the atom itself. We can see how it occurs by putting ourselves in the reference frame of the
electron, in which case we see the nucleus revolving around us as a moving charge or electric
current that produces a magnetic field. The electron has an intrinsic magnetic dipole moment
of which the z-component is proportional to ms, and hence the energy of the single electron
state will split into two closely spaced energy levels (for ms = +1/2 and ms = −1/2)1. In

1The z-component of the electron magnetic dipole moment is (µs)z = −gsµBms, where µB is the Bohr
magneton physical constant and gs ∼ 2 is the spin g-factor. Note the negative constant; i.e., the magnetic moment
is antiparallel to the spin angular momentum.
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general, fine structure is therefore said to be due to a electron spin-orbit interaction2.

The magnitude of the energy difference ∆E ∝ L · S ∝ α2Z4 eV, where α ' 1/137 is
the fine structure constant and Z is the nuclear charge, i.e., the atomic number. We find that
∆E ∼ 5×10−5 Z4 eV. Transitions among fine-structure levels occur therefore at near- (heavy
atoms, i.e. large nuclear charge Z) to far-IR wavelengths (light atoms).

Today we no longer consider the picture of a spinning electron as legitimate. We cannot
even view an electron as a localized object, much less a spinning one. What remains is that
the electron can have two different states due to some intrinsic property that behaves like an
angular momentum, and we still call this property ‘spin’.

3.2 Multiple electron orbitals

Now we discuss more complex atoms, those that contain more than one electron. Their energy
levels are not the same as in the H atom, since the electrons interact with each other as well as
with the nucleus. Each electron in a complex atom still occupies a particular state character-
ized by the same quantum numbers n, `, m`, and ms. For atoms with more than one electron,
the energy levels depend on both n and `. When an atom or ion has more than one electron,
the Pauli exclusion principle forbids two electrons from sharing the same orbital. Therefore,
there can be at most 2(2` + 1) = 4` + 2 electrons in a given subshell n`: s subshells can
contain at most 2 electrons, p subshells can contain at most 6 electrons, and d subshells can
contain up to 10 electrons.

The orbitals, in order of increasing energy, are 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, and so on.
Thus atomic carbon, C I, with 6 electrons, has a ground state configuration with 2 electrons in
the 1s subshell, 2 electrons in the 2s subshell, and the remaining 2 electrons in the 2p subshell.
The number of electrons in each subshell is designated by a superscript: the ground state
configuration for neutral carbon is written as 1s2 2s2 2p2. Neutral sodium, with 11 electrons,
has ground state configuration 1s2 2s2 2p6 3s.

Spectroscopic terms

If an orbital has more than one and less than 4`+ 1 electrons (for the np subshell, this means
2, 3, or 4 elections), then there will be more than one way in which the orbital and spin an-
gular momentum vectors of the electrons in the partially filled shell can add. In the so-called
LS-coupling or Russell-Saunders coupling approximation, the orbital angular momentum of

2But not for hydrogen. Though we don’t aim to delve too deeply into atomic physics, for hydrogen fine
splitting is dominated by a relativistic effect. This is a special feature of hydrogenic atoms. A discussion of this
effect is however beyond the scope of the lecture notes. For many-electron atoms it is the spin-orbit effect which
is responsible for the fine structure splitting.
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multiple electrons add (vectorially) to give a total orbital angular momentum L, and the indi-
vidual spin angular momenta similarly add (vectorially) to give a total spin angular momentum
S. Each allowed (L, S) combination – the wave functions must of course obey the Pauli ex-
clusion principle – is referred to as a term. The total angular momentum L for more than one
electron follows the same alphabetic character notation as for the single electron case, but is
expressed in upper case letters. For example, L = 0 is denoted as S (do not get confused
with the total spin S), and the higher values L = 1, 2, 3, 4 are P , D, F , G. The LS-coupling
designation of an atomic state is conventionally expressed as

2S+1L, (3.8)

where L = S, P,D, F,G, etcetera. The number of possible quantum states in a term is
(2S + 1)(2L+ 1).

Let us again take a closer look at neutral carbon. The outer n` subshell, 2p2, contains two
electrons. Each of the p elections has orbital quantum number ` = 1 and spin quantum
number s = 1/2. With three possible values of m` = −1, 0, 1, and two possible values of
ms = −1/2,+1/2, there are 3 × 2 = 6 possible one-electron states. The Pauli exclusion
principle stipulates that both electrons cannot share the same one-electron state, giving (6 ×
5)/2 = 15 possible states for the two indistinguishable electrons. We may readily identify
these 15 states3.

1. Both electrons could have m` = 1, giving a total orbital angular momentum in the
z-direction of Lz = 2~. This would require that one electron be spin up and one
spin down, so that S = 0, as otherwise the Pauli principle would be violated. Having
Lz = 2~ requires L ≥ 2. For two ` = 1 orbitals, the maximum possible value of L = 2.
Thus it is evident that one of the allowed terms has S = 0 and L = 2, i.e. 1D. This
accounts for (2S + 1)(2L+ 1) = 1× 5 = 5 of the 15 possible quantum states.

2. Both electrons could havems = 1/2, such that S = 1. One electron could havem` = 1
and one have m` = 0, so that Lz = 1~ is possible, requiring this state to have L ≥ 1.
We have seen above that the only way to have L > 1 is to have S = 0; therefore, this
term must have L = 1. With degenerate (2S + 1)(2L + 1) = 3 × 3, this 3P term
accounts for 9 quantum states.

3. To complement the 15 quantum state there is one remaining term, with S = 0 and
L = 0 it is 1S.

Different terms – for an np2 configuration, the three possible terms 1D, 3P , and 1S – will
differ in energy by a significant fraction of the total binding energy of the electrons in the
partially filled subshells. For atoms and low-ionization ions, the energy difference between
the different terms of the ground state configuration will be of order a few eV. This is shown
in Fig. 3.2 for the six electron systems N II and O III, that have an identical spectroscopic term
structure as C I. Note that the level energies or excitation energies are given in Kelvin, for
which holds that 1 eV = 11604.5 K.

3See for instance http://en.wikipedia.org/wiki/Term_symbol for details.

http://en.wikipedia.org/wiki/Term_symbol
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Figure 3.2: Energy level diagram for the ground state configuration of the 2p2 ions N II and O III.
Note that for clarity the fine-structure splitting between 3P0, 3P1, and 3P2 is strongly exaggerated.
Forbidden transitions connecting these levels are shown, with wavelengths in vacuo. From: Bruce
Draine, Physics of the interstellar medium and intragalactic medium.

Table 3.1 lists the terms for the ground state configuration of atoms and ions where the outer-
most subshell is ns or np.

Fine structure

Fine structure is a result of the coupling between the orbital angular momentum L of the outer
electron and its spin angular momentum S. The total angular momentum J = L + S lies
between |L− S| ≤ J ≤ L+ S.

When L > 0 and S > 0, there is more than one way to add L and S to get the total angular
momentum J = L + S. For given L and S, the allowed values of J range from |L − S| to
L+ S. Each will have different values of L · S, and will differ in energy due to electron spin-
orbit coupling. The fractional energy shifts are however small, of order 10−2 eV. This splitting
of energy levels is referred to as fine structure and is also indicated in Fig. 3.2. Beware that
in the figure the energy shifts involved are strongly exaggerated. The 1D and 1S terms in
our example of C I have S = 0, therefore do not show fine structure. The 3P term can have
J = 0, 1, 2, leading to fine-structure splitting between the three different fine-structure levels
of the term: 3P0, 3P1, and 3P2. Because of the possibility of multiple J values for a given L
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Ground Terms (ignoring J) and levels (considering J)
configuration in order of increasing energy Examples

... ns1 2S1/2 H I, He II, C IV, N V, O VI

... ns2 1S0 He I, C III, N IV, O V

... np1 2P ◦1/2,3/2 C II, N III, O IV

... np2 3P0,1,2, 1D2, 1S0 C I, N II, O III, Ne V, S III

... np3 4S◦3/2, 2D◦3/2,5/2, 2P ◦1/2,3/2 N I, O II, Ne IV, S II, Ar IV

... np4 3P0,1,2, 1D2, 1S0 O I, Ne III, Mg V, Ar III

... np5 2P ◦3/2,1/2 Ne II, Na III, Mg IV, Ar IV

... np6 1S0 Ne I, Na II, Mg III, Ar III

Table 3.1: Terms for ns and np subshells. From: Bruce Draine, Physics of the interstellar medium and
intragalactic medium.

and S, the terms are also referred to as multiplets. Terms with only one possible value of J
are referred to as singlets. Terms with two, three and four possible J values are referred to as
doublets, triplets, quartets, and so on. The 3P term is thus a triplet.

The total number of possible quantum states in a term (see also above) is referred to as the
multiplicity. The multiplicity of a term with total spin S and orbital angular momentum L is

g = (2S + 1)× (2L+ 1) . (3.9)

Thus, the 3P (i.e., L = 1, S = 1) term has multiplicity 9. The 1D (i.e., L = 2, S = 0) and
1S (i.e., L = 0, S = 0) terms have multiplicities 5 and 1. When spin-orbit coupling is taken
into consideration, these states are split into distinct fine-structure levels, each with a definite
value of J and a degeneracy

g = (2J + 1) . (3.10)

For 3P0, 3P1, and 3P2 the values of g are 1, 3, and 5, respectively.

To complete our discussion of the spectroscopic notation, we account for this fine structure,
and also introduce the purely quantum mechanical property parity. The notation for the angu-
lar momentum quantum numbers (in a multi-electron atom) becomes

2S+1LpJ , (3.11)

where L = S, P,D, F, ... for L = 0, 1, 2, 3, ..., and p denotes the parity of the level. It is
referred to as the term symbol. The parity of an energy level is ‘even’ or ‘odd’ depending
on whether the electronic wave function changes sign under reflection of all of the electron
positions through the origin. Parity is a purely quantum mechanical property. p is left blank
for a state of even parity and p is ◦ for a state of odd parity. If `i are the orbital angular
momentum quantum numbers of the individual electron orbits, then parity is even if Σi `i is
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Figure 3.3: Electronic configuration and energy level splitting. From left to right: an example of an
LS term structure, fine structure J = L + S, and hyperfine structure F = J + I.

even, and parity is odd if Σi `i is odd. The ground configuration 1s22s22p2 of C I has even
parity. Each of the s electrons has orbital quantum number ` = 0 and each of the p electrons
has ` = 1. Therefore Σ `i is 2, i.e. even.

Hyperfine structure

Hyper fine structure is a result of the coupling of J with the total nuclear angular momentum
In. The total atomic angular momentum F = J + In lies between |J − In| ≤ F ≤ J + In.

So far, we have discussed the state of the electron. We now include in our description prop-
erties of the nucleus. If the nucleus has non-zero spin, it will have an intrinsic magnetic
moment. In that case, fine structure levels with non-zero electronic angular momentum can
themselves be split due to interaction of the electrons with the magnetic field produced by the
nucleus. This hyperfine splitting4 is typically of order 10−6 eV, corresponding to centimeter
wavelengths (see also Fig. 3.3).

In describing both nuclear and electron angular momentum, it is customary to let

J ≡ electronic angular momentum

In ≡ nuclear angular momentum, and

F ≡ total angular momentum.

4So, fine structure is an interaction between the magnetic field generated by the electron’s motion around the
nucleus and electron spin, and hyperfine structure is an interaction between the magnetic field generated by the
electron’s motion around the nucleus and nuclear spin.
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Figure 3.4: Schematic illustration of hyperfine splitting of the ground state of atomic hydrogen. From:
Gould 1994.

The best-known example of hyperfine splitting is that of the electronic ground state of hydro-
gen. This ground state has quantum numbers: n = 1, ` = 0, m` = 0, and ms = 1/2. This
1s 2S1/2 state has electronic angular momentum J = 1/2. Like the electron, the proton has
two spin orientations, denoted mi = +1/2 and −1/2, such that In = 1/2.

In the true ground state of hydrogen, the spins and magnetic moments are anti-parallel, so
that the total angular momentum F = 0 and the statistical weight g = 1. In the exited level,
the spins and magnetic moments are parallel, so the total angular momentum F = 1 and the
statistical weight g = 3. See Fig. 3.4 for a graphical representation. The interaction energy
due to the magnetic moments is very small

∆E = 5.9× 10−6 eV = k × 0.07 K = h× 1.420 GHz =
hc

21 cm
, (3.12)

where the last three expressions give the energy in terms of (i) temperature, (ii) frequency, and
(iii) wavelength. The spontaneous radiative de-excitation coefficient or Einstein A-coefficient
for this transition is A = 2.87 × 10−15 s−1. An individual hydrogen atom therefore experi-
ences such a transition typically once per 1/A seconds. One finds that a typical hydrogen atom
spends on average ∼ 107 years in the upper level before it de-excites spontaneously, with the
emission of a 21-cm photon. One might conclude that this radiation would be undetectable.
However, the weak emission per hydrogen atom is compensated by the enormous amount of
hydrogen in interstellar space. Actually, it is the main signature of cool atomic hydrogen and
a very good tracer of the distribution of cold gas in galaxies.

Zeeman effect

In this short discussion on the Zeeman effect, we follow Drain (2011). When a static magnetic
field B◦ is applied, each of the fine-structure levels LJ splits into 2J + 1 energy levels, with
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energies depending on the value of J ·B◦. The energy splittings are however small, of order
∆E = µB B◦ ∼ 5.78 × 10−15(B◦/µG) eV, where µB = e~/(2mec) is the Bohr magneton.
Interstellar magnetic field strengths are of order 1–100 µG, and therefore Zeeman shifts are
difficult to measure.

Zeeman splitting is most often studied in the hydrogen 21 cm transition, with an energy ∆E =
5.9×10−6 eV. An interstellar magnetic field of 10 µG shifts the frequency in about one part in
104, or 3 m/s when expressed in velocity units. This shift is much smaller than the frequency
shifts v/c ∼ 10−5 due to a radial velocity of a few km/s, and it would be nearly impossible to
detect, except that it leads to a shift in frequency between the two circular polarization modes.
The Zeeman effect in H I λ21cm can therefore be detected by taking the difference of the two
circular polarization signals. We will not further pursue this topic in these lecture notes.

3.3 Selection rules

A final and important point to keep in mind when considering transitions between levels is
that they obey certain selection rules. Some changes in quantum numbers may occur, others
do not – or, at least, are much rarer. The strong transitions in spectra always satisfy what are
referred to as the selection rules for electric dipole transitions. These lead to so-called allowed
transitions. Here, we summarize these rules. We also give the selection rules for intersystem
transitions and forbidden transitions that do not satisfy the electric dipole selection rules but
nevertheless are strong enough to be of astrophysical importance.

A complete overview of the selection rules is given in Table 3.2. The table features the total
magnetic quantum number MJ which takes the values MJ = −J,−J + 1, ..., J − 1, J . This
creates 2J + 1 sublevels or states for each value of J . These states are degenerate in the
absence of a magnetic field. The splitting of levels into states in a magnetic field is generally
known as the Zeeman effect.

Intersystem transitions – sometimes also referred to as semi-forbidden or inter-combination
transitions – fulfill the electric dipole selection rules except for rule 5 and have ∆S 6= 0.
These transitions are considerably weaker than allowed transitions. An intersystem transition
is denoted with a single right square bracket – for example N II]λ2143.4Å 3P2− 5S◦2 .

A forbidden transition is denoted with two square brackets – for example [N II]λ6549.9Å 3P1−
1D2. This example fails rule 3 (parity is unchanged) and it fails rule 4 (single electron wave
functions are unchanged). Lets clarify the failure to comply with rule 4 a bit more: this is
a transition between lower level 1s22s22p2 3P1 and upper level 1s22s22p2 1D2. Notice that
none of the electrons has changed nl. This is an example of a magnetic dipole transition.

There is a hierarchy in the transition probabilities of the three types of transitions. Very
roughly speaking, intersystem transitions are ∼ 106 times weaker than permitted transitions,
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Electric dipole Electric quadrupole Magnetic dipole
(‘allowed’) (‘forbidden’) (‘forbidden’)

Rigorous rules 1. ∆J = 0,±1 ∆J = 0,±1,±2 ∆J = 0,±1
(not J = 0− 0) (not J = 0− 0, 1

2
− 1

2
, 0− 1) (not ∆J = 0− 0)

2. ∆MJ = 0,±1 ∆MJ = 0,±1,±2 ∆MJ = 0,±1
(not MJ = 0− 0 (not MJ = 0− 0)
if ∆J = 0) if ∆J = 0

3. Parity changes Parity unchanged Parity unchanged

With negligible 4. One electron jumping, No change in electron No change in electron
configuration with ∆l ± 1, configuration; or one configuration; i.e, for
interaction ∆n arbitrary electron jumping with all electrons, ∆l = 0,

∆l = 0,±2, ∆n arbitrary ∆n = 0

For LS coupling only 5. ∆S = 0 ∆S = 0 ∆S = 0

6. ∆L = 0,±1 ∆L = 0,±1,±2 ∆L = 0
(not L = 0− 0) (not ∆L = 0− 0, 0− 1) ∆J = ±1

Table 3.2: Selection rules for atomic spectra. Rules 1, 2 and 3 must always be obeyed. For electric
dipole transitions, intercombination lines violate rule 5 and/or 6. Electric quadrupole and magnetic
dipole transitions are also described as forbidden. From: NIST Physical Measurement Laboratory.

and forbidden transitions are ∼ 102 − 106 times weaker than intersystem transitions. Despite
begin very ‘weak’, forbidden transitions do frequently appear in astrophysics because every
atom and ion has excited states that can only decay via forbidden transitions. At high densi-
ties, such excited states would be depolulated by collisions, but at the very low densities of
interstellar space, collisions are so rare that there is time for forbidden radiative transitions to
take place. We will come back to this point when discussing the two-level system.

As an example we may discuss the energy level diagram of the lowest levels of N II and O III

(see Fig. 3.2). It turns out that there are no permitted transitions possible between any of these
energy levels: all of these transitions violate selection rule 3. The 3P → 1D and 3P → 1S
transitions in addition violate selection rule 5; the 1D→ 1S transition also violates rule 6. The
fine structure transitions within the 3P level too are forbidden. These all violate rule 5. In
addition, the 3P0→ 3P2 line violates rule 1. We will see later that the fine structure transitions
are quite important for the energy balance of interstellar gas. In addition they are important
diagnostic lines of this gas.

Though the example focussed on N II and O II, the exact same arguments holds for all atoms
and ions with a similar electron configuration, i.e. all np2 and np4 configurations (see Ta-
ble 3.1).
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Exercise 3.1

Classify the following emission lines as either (i) permitted, (ii) intersystem (a.k.a. inter-
combination), or (iii) forbidden, and give your reason.

(a) C III 1s22s2p 3P ◦1 → 1s22s2 1S0 1908.7 Å
(b) O III 1s22s22p2 1D2 → 1s22s22p2 3P2 5008.2 Å
(c) O III 1s22s22p2 1S0 → 1s22s22p2 1D2 4364.4 Å
(d) O III 1s22s2p3 5S◦2 → 1s22s22p2 3P1 1660.8 Å
(e) O III 1s22s22p2 3P1 → 1s22s22p2 3P0 88.36µm
(f) C IV 1s22p 2P ◦3/2 → 1s22s 2S1/2 1550.8 Å
(g) Ne II 1s22s22p5 2P ◦1/2 → 1s22s22p5 2P ◦3/2 12.814µm
(h) O I 1s22s22p33s 3S◦1 → 1s22s22p4 3P2 1302.2 Å

Exercise 3.2

Using the Keck telescope at Mauna Kea in Hawai, Antoinette Songaila et al. (1994,
Nature 371, 43) have detected the absorption of the lowest fine-structure lines of C I in a
cloud at redshift z = 1.776, towards the quasar Q1331+170.

a) Give the electron configuration and term symbol of the ground state of C I?

b) The column densities (see Eq. 7.6) that can be derived from the strength of the two ab-
sorption lines that feature in this ground level are 7.2 × 1012 cm−2 for the J = 0 level,
and 0.9 × 1012 cm−2 for the J = 1 level. Compute the excitation temperature Texc that
corresponds to the relative occupation of these two levels. The energy of the J = 1 − 0
transition is 609.75µm (or 16.4 cm−1).

c) What does this temperature signify? Is it the kinetic temperature of the gas or the radia-
tion temperature of the diffuse field at z = 1.776?

d) If we assume that this is the radiation temperature, what could be the source of the radia-
tion?
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Molecular structure

In this chapter we discuss the energy-level structure of molecules. In order to understand
molecular spectra, we should study the quantum mechanics of molecules. This would lead
too far from the topics of this course, and so we restrict ourselves to some basic ideas and
a comparison of the classical picture of molecular motions to the quantum mechanical treat-
ment. As in the discussion of atomic levels, here too we make use of the concise summary
of Draine (2011), who often relies on the excellent book Physics of Atoms and Molecules by
B.H. Bransden & C.J. Joachain (2003), to which we refer for a more in-depth treatment of
molecular physics. Basics of molecular bondings and spectroscopy can for instance be found
in Physics for Scientists & Engineers, with Modern Physics, by Giancoli (early editions) or
Serway & Jewett (later editions), on which this chapter also relies.

Energy considerations in quantum mechanics start with a formulation of the total energy in
the system. This is expressed by the Hamiltonian, which is the sum of the kinetic energies of
all the particles plus the electronic potential energy of the particles associated with the system.
As a molecule consists of several components (at least two nuclei and one electron), multi-
ple terms will appear in the Hamiltonian and solving for the discrete states that are allowed,
subject to a constant total energy E, may quickly lead to involved mathematics as interactions
between these components must be considered. Moreover, several types of kinetic energy may
need to be considered. In general,

E = Eelec + Etrans + Evib + Erot, (4.1)

whereEelec denotes electronic potential energy, due to the interactions between the molecule’s
electrons and nuclei, Etrans is translational energy, due to the motion of the molecule’s cen-
ter of mass through space, Evib is vibrational energy, due to the vibration of the molecule’s
constituent atoms, and Erot is rotational energy, due to the rotation of the molecule about its
center of mass. The translational energy is unrelated to internal structure of the molecule, so
this molecular energy is unimportant in interpreting molecular spectra. It is in particular the
electronic potential energy of a molecule that is very complex, but various techniques have
been developed to approximate its values. Although the electronic energies can be studied,
significant information about a molecule can be determined by analyzing its quantized ro-
tational and vibrational energy states. These lecture notes focus on the latter two types of
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Figure 4.1: Principle of covalent and ionic bonds. In symmetrical molecules such as H2, O2 and Cl2
the bond is covalent in nature. In a covalent bond the electrons being shared are shared equally among
the atoms. In asymmetrical molecules such as NaCl the bond is ionic. In an ionic bond the electrons
being shared are shared unequally among the atoms.

energies as they are most relevant for the medium in-between the stars.

In general one finds that Eelec > Evib > Erot. Typically, electronic transitions are in the
ultraviolet and optical part of the spectrum, vibrational transitions are in the infrared part of
the spectrum, and rotational spectra are in the far-IR to radio part of the spectrum.

Before we turn to vibrational and rotational transitions, we first briefly summarize aspects of
molecular bonds and the designation of energy levels.

4.1 Molecular bonds

A molecule is a group of two or more atoms that are strongly held together so as to function
as a single unit. When atoms attach in such a way we say that a chemical bond has been
formed. There are two main types of strong chemical bonds: covalent bonds and ionic bonds
(see Fig. 4.1). Many bonds are actually intermediate between these two types.

Covalent and ionic bonds

In a pure covalent bond the electrons are being shared equally among the atoms. Such bonds
occur mainly in symmetrical molecules such as H2, O2, and Cl2. Let us take H2 as an example
– the mechanism is basically the same for other covalent bonds. As two H atoms approach
each other (be ware that this is not a statement on the formation of H2), the electron clouds
begin to overlap, and the electrons from each atom can ‘orbit’ both nuclei. If both electrons
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are in the ground state (n = 1) of their respective atoms their spins must be anti-parallel,
i.e. ms = +1/2 for the one and ms = −1/2 for the other, so that their total spin S = 0.
The reason is that because they share the same space, the two electrons can not be in the
same state because of the exclusion principle. If the two electrons would have parallel spins
(corresponding to S = 1) they can not occupy the same space, i.e the electrons spend very
little time between the two nuclei. If one would explain this in terms of the electron wave
functions, one would state that the exclusion principle requires that when the spins are the
same, their is destructive interference of the electron wave functions in the region between
the two atoms. But when the spins are opposite, constructive interference occurs in the region
between the two atoms, resulting in a large amount of negative charge there. Thus a covalent
bond can be said to be the result of constructive interference of the electron wave function in
the space between the two atoms, and of the electrostatic attraction of the two positive nuclei
for the negative charge concentration between them.

An ionic bond is, in a sense, a special case of the covalent bond. Instead of the electrons
being shared equally, they are shared unequally. NaCl is an example of a molecule with an
ionic bond. The outer electron of sodium spends most of its time orbiting the chlorine atom,
as it feels a much smaller electric attraction to Na than to Cl. Effectively, sodium becomes
positively charged (Na+) and chlorine negatively charged (Cl−), hence the ionic bond.

As pointed out, a pure covalent bond in which the electrons are shared equally occurs mainly in

Figure 4.2: Polar and non-polar
molecules.

symmetrical molecules such as H2. When the atoms in-
volved are different from each other, it is usual to find that
the shared electrons are more likely to be in the vicinity
of one atom than the other. The extreme case is the ionic
bond. In intermediate cases the covalent bond is said to
have a partial ionic character. Molecules with at least a
partial ionic character are polar – that is, one part (or parts)
of the molecule has a net positive charge and other parts a

net negative charge. An example is the water molecule H2O. The shared electrons are more
likely to be found around the oxygen atom than around the two hydrogen atoms. The effect is
that there is a net positive charge on each H atom and a net negative charge on the O atom.

Potential-energy diagrams for molecules

The electric forces that are responsible for the bonding in a molecule are related to an elec-
tronic potential energy function. A stable molecule is expected at a configuration for which
the electronic potential energy function for the molecule has its minimum value. This function
should account for two known features of molecular bonding:

- The force is repulsive at very small separation distances. When two atoms are brought
close together some of their electron shells start to overlap, resulting in repulsion be-
tween the shells partly because of electrostatic forces and partly as a result of the exclu-
sion principle. Some electrons in the overlapping shells are forced into higher energy
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states and the system energy increases because of the repulsive force between the nuclei
themselves.

- At somewhat larger separations, the force between the atoms is attractive as a result of
the covalent and/or ionic bonds.

Accounting for these two features, the electronic potential energy for a system of two atoms
can be represented by an expression of the form

U(r) = − A
rn

+
B

rm
, (4.2)

where r is the internuclear separation distance between the two atoms and n and m are small
positive integers. The parameter A is associated with the attractive force and B with the
repulsive force, as

F (r) = −dU(r)

dr
= − nA

rn+1
+

mB

rm+1
, (4.3)

where F (r) is the force. The behavior ofU(r) is shown in Fig. 4.3. At large distances between
the two atoms, the slope of the curve is positive, corresponding to a net attractive force. At the
equilibrium distance r◦, called the bond length or bond distance, the attractive and repulsive
forces just balance. At this point, the potential energy has its minimum value and the slope
of the curve is zero. This minimum potential energy is referred to as the binding energy, the
bond energy, or the dissociation energy. For molecular hydrogen, the binding energy is about
4.5 eV and r◦ = 0.741 Å. At short distances, the slope is negative, corresponding to a net
repulsive force. If only two point sources would be present, U(r) ∝ q1 q2/r (where qi are the
charges of the two nuclei), hence n = 1.

For many bonds, the potential-energy curve has a shape that is slightly different from that
shown in Fig. 4.3: at large distances the potential energy becomes positive. This implies that
the atoms do not interact spontaneously. Instead, some additional energy must be injected
into the system to get it over the barrier in the potential diagram. This required energy is the
activation energy. The activation energy often reflects a need to break other bonds, before the
one under discussion can be made.

Van der Waals bonds

The binding energies for covalent and ionic bonds is typically 2 to 5 eV. These bonds, which
hold atoms together to form molecules, are often called strong bonds to distinguish them from
so-called weak bonds. The term weak bond refers to attachments between molecules due to
electrostatic attraction – such as between polar molecules. Binding energies for weak bonds
are typically in the range 0.04 to 0.3 eV. Weak bonds are referred to as van der Waals bonds,
and the forces involved van der Waals forces. The potential energy has the general shape
shown in Fig. 4.3, with the potential energy varying as 1/r6 (i.e. n = 6 in Eq. 4.2).
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Figure 4.3: Total potential energy as a function of internuclear separation distance for a system of two
atoms. Though the binding energy is indicated to be the energy to the bottom of the potential curve, it
is actually the energy to the lowest quantum energy state, which may be slightly above the bottom. See
for instance, Fig. 4.10. From: Raymond A. Serway & Jown W. Jewett Jr., Physics for Scientists and
Engineers with Modern Physics, 9th edition (left) and Chemistry Stack Exchange (right).

4.2 Diatomic molecules

The description of molecular structure is considerably more complicated than that of isolated
atoms, but fortunately the problem is greatly simplified because the mass of the electron is
much smaller than that of the nuclei, while the forces to which the electrons and the nu-
clei are subjected are of comparable magnitude. As a result, the velocities of the nuclei are
much slower than that of the electrons, and the nuclei occupy nearly fixed positions within
the molecule. The assumption that the nuclei in the molecule are truly fixed, and that only
the electrons are free to move, is known as the Born-Oppenheimer approximation. In atoms
and ions, the electrons move in a spherically symmetric potential. In molecules, the electrons
move in a Coulomb potential due to two or more nuclei, and spherical symmetry does not
apply. In the case of diatomic molecules – or, more generally, linear molecules – the Coulomb
potential due to the nuclei is symmetrical under rotation around the line passing through the
two nuclei, the internuclear axis.

The projection of the total electronic angular momentum on the internuclear axis is referred
to as Lz . It is conventional to define Λ ≡ |Lz|. Because the potential is axisymmetric, the
two states Lz = ±Λ have the same energy. The projection of the total electron spin onto the
internuclear axis is Sz . One defines Σ = |Sz|. The projection of the total electronic angular
momentum on the internuclear axis is Jz . If Λ and Σ are both non-zero, then there are two
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possible values: Jz = |Λ−Σ| and Jz = Λ + Σ. States with different |Jz| will differ in energy
due to fine-structure splitting.

If one or more nuclei have non-zero nuclear spin and Jz 6= 0, then there will be an interaction
between the nuclear magnetic moment and the magnetic field generated by the electrons,
leading to hyperfine splitting. The energy of these states will depend on the orientation of
the nuclear angular momentum (or angular momenta) relative to the internuclear axis. As in
atoms and ions, this splitting is small of order ∼ 10−6 eV.

Designation of energy levels

Diatomic molecules with identical nuclei, such as H2, N2 and O2 are referred to as homonu-
clear. To be clear, the nuclei must be truly identical. HD and 16O17O are not homonuclear.
The energy levels of homonuclear molecules are designated by term symbols

(2Σ+1)Lu,g, (4.4)

where L = Σ,Π,∆, ... for Λ = 0, 1, 2, ..., where Λ~ is the projection of the electron orbital
momentum onto the internuclear axis. Σ~ is the projection of the electron spin angular mo-
mentum onto the internuclear axis. In homonuclear molecules, there is an extra symmetry
since in addition to the axis of symmetry provided by the internuclear axis, there is a centre of
symmetry at the midpoint of the distance between the two nuclei. As a result, the electronic
wave functions may split in two sets. Those that remain unaffected by the operation ri → −ri
are considered to have an even parity and are denoted by the subscript g and are called gerade
states. Those that are affected have odd parity and are denoted by the subscript u and are
called ungerade states.

For the special case of L = Σ states, a superscript + or − is added to the term symbol, i.e.

(2Σ+1)Σ+/−
u,g , (4.5)

where + is used if the electronic wave function is symmetric under reflection through (all)
planes containing the nuclei, and − if the electronic wave function is anti-symmetric under
reflection through a plane containing the nuclei. So, a homonuclear diatomic molecule has
four non-degenerate Σ states: Σ+

g ,Σ
+
u ,Σ

−
g ,Σ

−
u .

In the case of a heteronuclear diatomic molecule, e.g. HD, OH, or CO, the energy levels are
designated

(2Σ+1)LJz , (4.6)

where L and Σ have the same meaning as for homonuclear diatomic molecules, but now Jz
is indicated as a subscript. As for homonuclear molecules, if the term symbol is Σ, then an
additional superscript +/− is applied, specifying the symmetry of the wave function under
reflection through planes containing the nuclei.

Because a given molecule may have more than one electronic state with the same term symbol,
the electronic states are distinguished by a letter X, A, B, ..., a, b, ... appearing in front of the
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Figure 4.4: Schematic diagram of rotation and vibration of a diatomic molecule.

term symbol. The letter X is customarily used to designate the electronic ground state. Exam-
ples of electronic ground states are H2 (1Σ+

g ), CH (2Π1/2,3/2), CH+ (1Σ+
0 ), OH (2Π3/2,1/2),

CN (2Σ+
1/2), CO (1Σ+

0 ), SiO (1Σ+
0 ), CS (1Σ+

0 ). Being the electronic ground state, each species
may have an X added before the term symbol. For instance, X 1Σ+

g for H2.

Vibration and rotation of diatomic molecules

A diatomic molecule can

- vibrate (stretch) along the internuclear axis, and

- rotate around an axis perpendicular to the internuclear axis.

These angular momentum modes add (vectorially) to the electronic angular momentum. The
ro-vibrational levels of diatomic molecules are specified by a single vibrational quantum num-
ber v and rotational quantum number J . Transitions will change J by either 0, ±1, or ±2.
It is custom to identify transitions by specifying the upper and lower electronic states, upper
and lower vibrational states, and a letter code, O,P,Q,R, S, of which the usages is given in
Tab. 4.1. Thus, for example, a transition from the v = 0, J = 1 level of the ground electronic
state to the v = 5, J = 2 level of the first electronic excited state would be written A-X 5-0
R(1). So, in the notation the upper level precedes the lower level.

The H2 molecule

The electronic ground state of H2 has zero electronic orbital angular momentum L = 0, has
zero electron spin S = 0, is symmetric under reflection through the center of mass (g), and
is symmetric under reflection through planes containing the nuclei (+). The ground state is
X 1Σ+

g .

In the case of H2, the electronic wave function is required to be anti-symmetric under exchange
of the two electrons. The two protons, just like the electrons, are identical fermions, and
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Designation (Ju − Jl) Note

O(Jl) -2 Electronic quadrupole transition
P (Jl) -1 Electronic dipole transition
Q(Jl) 0 Electric dipole or electric quadrupole, Q(0) is forbidden
R(Jl) +1 Electric dipole transition
S(Jl) +2 Electric quadrupole transition

Table 4.1: Usage of O,P,Q,R, S. The lower state is denoted by l, the upper state by u.

therefore the Pauli exclusion principle anti-symmetry requirement also applies to exchange
of two protons. The protons are spin 1/2 particles, therefore the two protons together can
have total spin 1 (if the spins are aligned to each other, i.e. parallel) or total spin 0 (anti-
parallel). Without going into the quantum mechanics, the consequence of the anti-symmetry
requirement is that if the protons have spin 0, the rotational quantum number J must be even.
This is referred to as para H2, with J = 0, 2, 4, ... If the two protons are parallel, with total
spin 1, the rotational quantum number J must be odd. This is referred to as ortho-H2, with
J = 1, 3, 5, ... Because the nuclear spins are only weakly coupled to the electromagnetic field,
ortho-H2 and para-H2 behave as almost distinct species, with conversion of ortho to para, or
vice versa, happening only very slowly at low temperatures (in the absence of a catalyst). See
Fig. 4.6 for the ro-virational energy level diagram of H2.

Because H2 consists of two atoms of identical mass, the center of mass and the center of
charge coincide. Consequently, it has no permanent dipole moment and emits no electric
dipole radiation (characterized by ∆J ± 1). The vibrational states and the rotational states
radiate very weakly, via the time-variation of the electric quadrupole moment as the molecule
vibrates or rotates. Because the nuclear spin state does not change, the ro-vibrational radiative
transitions of H2 must have ∆J = 0 or ∆J = ±2, i.e. ortho to ortho or para to para.
Conversion of para-H2 into ortho-H2, or vice versa, occurs, as mentioned, only very slowly.

4.3 Rotational spectra of diatomic molecules

It is instructive to use classical mechanics when considering the spectra of molecules.

Figure 4.5: Center of Mass.

In this case the rotation energy is given by

Erot =
1

2
I ω2, (4.7)

where ω is the angular velocity, i.e. ω = 2π νrot, where νrot is
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the rotational frequency, and

I =
∑
i

mi r
2
i (4.8)

is the moment of inertia. Each of the components i of the
system has a mass mi and a distance ri to the rotation axis. For the center of mass of a
diatomic molecule it holds that m1r1 = m2r2, where you should note the distances ri are
absolute distances. Denoting the absolute separation between the two nuclei or internuclear
separation as r = r1 + r2 (see Fig. 4.5), we can express the moment of inertia as follows:

I = m1r
2
1 +m2r

2
2

r1 =
m2

m1 +m2
r

r2 =
m1

m1 +m2
r

⇒ I =
m1m2

m1 +m2
r2 ≡ µr2 (4.9)

So we find that the moment of inertia of a molecule is proportional to the reduced mass µ of the
system. Expressing the rotational energy in the angular momentum of the rotating molecule
L = Iω yields

Erot =
L2

2I
, (4.10)

In the quantum-mechanical context the reduced mass µ also plays a role. Moreover, the an-
gular momentum is quantized and given by L2 = `(` + 1)~2, in which ` is zero or a positive
integer. The rotational energy of the molecule becomes

Erot =
`(`+ 1)~2

2I
. (4.11)

Note that for the ground state Erot = 0. If we would do a proper quantum mechanical
treatment, and write down and solve the Schrödinger equation for rotation, we would have
obtained

Erot =
J(J + 1) ~2

2I
=
J(J + 1)h2

8π2µr2
=
J(J + 1)h2

8π2I
= hcBJ(J + 1). (4.12)

Here, J is the rotational quantum number (not to be confused with the J quantum number for
atoms/ions). The constant

B =
h

8π2c I
=

~
4πc I

(4.13)

is the rotational constant. The dimension of B is cm−1. Let us compute B for the two
important molecules H2 and CO. For H2, the reduced mass µ = 0.5mH and the internuclear
separation r = 0.742 Å, such that the moment of intertia IH2 = 4.61 × 10−41 gr cm2. This
results in B = 60.80 cm−1. For CO, µ = 6.857mH and r = 1.1283 Å, implying ICO =
1.45× 10−39 gr cm2. This results in B = 1.922529 cm−1.
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Figure 4.6: Vibration-rotation energy levels of the ground electronic state of H2 with J ≤ 29. The
(v, J) = (1, 3) level and the 1-0 S(1) transition at 2.1218 µm are indicated. Transitions between even
J values belong to para H2, those between odd J values to ortho H2. From: Bruce Draine, Physics of
the interstellar medium and intergalactic medium.

As in atoms, also for molecules we can derive selection rules for rotational spectra. These
state that for electric dipole radiation

∆J = ±1. (4.14)

Therefore the energy difference between the transition J to J − 1 is given by

Ephoton = ∆Erot = E(J)− E(J − 1) = 2hcBJ. (4.15)

With this information we can now easily calculate the pure rotational spectrum of a simple
rigidly rotating diatomic molecule, provided we know the value of the rotational constant.

For the rigid rotator the spectrum thus consists of a set of evenly spaced lines in frequency
space. If centrifugal distortion is considered, it will destroy this constant separation (see next
page). Table 4.2 summarises the characteristics of rotational transitions of several diatomic
molecules (among others). The J = 1− 0 transitions of molecules consisting of heavy atoms
fall at a few millimeters. Because of the lower mass (therefore lower reduced mass µ, hence
larger B ∝ 1/µ), the rotational energy levels of hydrides (i.e. diatomic molecules in which
one is H) are shifted to higher energies, i.e. the sub-millimeter or far-infrared range.
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Species Transitions νlu (GHz) λlu (µm) Eu (K) Aul (s−1) ncr cm−3

CO 1− 0 115.3 2600.1 5.5 7.2× 10−8 1.1× 103

2− 1 230.8 1298.9 16.6 6.9× 10−7 6.7× 103

3− 2 346.0 866.4 33.2 2.5× 10−6 2.1× 104

4− 3 461.5 649.6 55.4 6.1× 10−6 4.4× 104

5− 4 576.9 519.7 83.0 1.2× 10−5 7.8× 104

6− 5 691.2 433.7 116.3 2.1× 10−5 1.3× 105

7− 6 806.5 371.7 155.0 3.4× 10−5 2.0× 105

CS 1− 0 49.0 6118.2 2.4 1.8× 10−6 4.6× 104

2− 1 98.0 3059.1 7.1 1.7× 10−5 3.0× 105

3− 2 147.0 2039.4 14.0 6.6× 10−5 1.3× 106

5− 4 244.9 1224.1 35.0 3.1× 10−4 8.8× 106

7− 6 342.9 874.3 66.0 1.0× 10−3 2.8× 107

10− 9 489.8 612.1 129.0 2.6× 10−3 1.2× 108

HCO+ 1− 0 89.2 3360.9 4.3 3.0× 10−5 1.7× 105

3− 2 267.6 1120.3 26.0 1.0× 10−3 4.2× 106

4− 3 356.7 840.46 43.0 2.5× 10−3 9.7× 106

HCN 1− 0 88.6 3383.7 4.3 2.4× 10−5 2.6× 106

3− 2 265.9 1127.5 26.0 8.4× 10−4 7.8× 107

4− 3 354.5 845.7 43.0 2.1× 10−3 1.5× 108

H2CO 212 − 111 140.8 2129.2 6.8 5.4× 10−5 1.1× 106

313 − 212 211.2 1419.5 17 2.3× 10−4 5.6× 106

414 − 313 281.5 1065.0 30 6.0× 10−4 9.7× 106

515 − 414 351.8 852.2 47 1.2× 10−3 2.6× 107

NH3 (1,1) inversion 23.7 12649.5 1.1 1.7× 10−7 1.8× 103

(2,2) inversion 23.7 12649.5 42 2.3× 10−7 2.1× 103

H2 2− 0 1.06× 104 28.3 510 2.9× 10−11 10
3− 1 1.76× 105 17.0 1015 4.8× 10−10 300

Table 4.2: Characteristics of rotational molecular cooling lines. Eu = hνlu/k. Critical densities for
CO are approximated from Fig. 10 in Yang et al. 2010 (ApJ 718, 1062) at a kinetic temperature of
10 K. From: Tielens (2005), The Physics and Chemistry of the Interstellar Medium.

Not all molecules show rotational spectra through permitted dipole radiation. Only molecules
that have a permanent dipole moment emit in this way. We can understand this by considering
that a radiative transition is the result of an accelerated charge. A molecule without permanent
dipole moment will not show a change in the spatial distribution of charge when it rotates, and
so no net acceleration of charges. No permitted dipole radiation is thus expected. Examples
are H2, C2, O2, CH4. These can still be studied in electric quadrupole radiation with ∆J = 2,
but the transition probabilities for these transitions are orders of magnitude smaller than those
of permitted ones. The implication is that the most abundant molecule in space, H2, is very
difficult to detect, especially when the gas is cold. Of course there are permitted vibrational
transitions of H2 available (see below) but these are often not in thermal equilibrium, are
associated with mostly hot molecular gas, and not easy to use as diagnostic probes.

As pointed out above, the energy levels of the quadrupole radiation of H2 divide out into two
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separate ladders with even or odd J . These ladders are not connected by radiative transitions.
Because of symmery considerations, the even states correspond to para-H2 (i.e. anti-parallel
nuclear spins) and the odd levels to ortho-H2 (e.g., parallel nuclear spins). Owing to nuclear
spin statistics (gS = 2S + 1), the ortho levels have three times the statistical weight of the
para levels (see Tielens 2005).

The lines in a pure rotational spectrum are not equally spaced

Experimental verification of the pure rotational spectrum of molecules show that the lines
are not equally spaced as the rigid rotator approximation predicts. The discrepancy can be
resolved by realizing that a chemical bond is not truly rigid. As the molecules rotate more
energetically (which is the case for increasing J), the centrifugal force causes the bond to
stretch slightly – resulting in a larger moment of inertia. This small effect can be treated by
perturbation theory, and the end result is that the energy can be written as

E(J) = hcBJ(J + 1)− hcDJ2(J + 1)2, (4.16)

where D is the centrifugal distortion constant. Of course, D � B. For CO, D = 6.1193 ×
10−6 cm−1. The more precise energy difference between the transition J to J − 1 (compared
to Eq. 4.15) is given by

Ephoton = ∆Erot = E(J)− E(J − 1) = 2hcBJ − 4hcDJ3. (4.17)

4.4 Cold gas temperature diagnostics: rotational diagram

A straightforward application of pure rotational line emission is to measure column densities
(see Eq. 4.23) for different levels of a particular molecule, and to combine these into a rota-
tional diagram which can be used to derive the excitation temperature of the molecules. We
start out with considering the number density, which is related to the excitation temperature
through Boltzmann equation (2.70),

nJ ∝ gJ exp [−E(J)/kT ] = (2J + 1) exp [−E(J)/kT ] , (4.18)

where gJ is the statistical weight of the rotational level. We may substituteE(J) by Eq. (4.12),
which yields

nJ ∝ (2J + 1) exp [−BJ(J + 1)hc/kT ] . (4.19)

This means that the maximum occupation is not always at J = 0, but can be at higher levels
depending on the temperature of the gas (see Fig, 4.7). One may show that the J for which
the population reaches a maximum, Jmax, is reached for

Jmax =

√
kT

2hcB
− 1

2
= 0.5896

√
T

B
− 1

2
. (4.20)
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Figure 4.7: Occupation of rotational energy levels for a Boltzmann distribution of molecules for a given
kinetic temperature of the gas.

We now turn to the construction of rotational diagrams. Consider the example of a molecular
cloud in which the pure rotational lines of some molecule have been measured. We assume all
these lines to be optically thin. The energy emitted by the cloud per second in the transition
J → J − 1 is

Lcloud =

∫
Volume

hc

λ
nJ AJ,J−1 dV, (4.21)

where we need to integrate over the volume of the cloud. Each second nJ AJ,J−1 de-excitations
take place in each cubic centimeter of the cloud, whereAJ,J−1 is the EinsteinA coefficient for
the transition (see e.g. Table 4.2). By multiplying by the energy hν = hc/λ, and integrating
over the entire volume, we get the line luminosity Lcloud of the cloud integrated over the spec-
tral line profile. We assume that the cloud is spatially resolved, such that we can measure the
total (or frequency integrated) line intensity at some spot in our detector. This total intensity
is

I(J, J − 1) =

∫
line of sight

hc

λ
nJ

1

4π
AJ,J−1 ds =

hc

λ

NJ AJ,J−1

4π
, (4.22)

where NJ is the column density along the path through the cloud on which we focus, i.e.

NJ =

∫
line of sight

nJ ds. (4.23)

The factor 4π enters because the total intensity is defined per unit solid angle (the total solid
angle being 4π). For the column density we thus find that

NJ =
4π I(J, J − 1)

AJ,J−1

λ

hc
(4.24)
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M.E. van den Ancker et al.: ISO Spectroscopy of the young bipolar nebulae S106 IR and Cep A East 1043

Fig. 7. H excitation diagrams for S106 (top) and Cep A East (bot-
Figure 4.8: H2 excitation diagram for S106 (top) and Cep A East (bottom). Circles indicate ISO
observations of quadrupole transition pure rotational lines. The triangles and squares indicate ground-
based measurements of ro-vibrational lines. The dashed lines give Boltzmann distribution fits to the
low-lying pure rotational lines and the lines with upper level energies above 5000 K. The solid line is
the sum of both contributions. Figure taken from van den Ancker et al., 2000 A&A 358, 1035.

Using Eq. (4.18) it is easy to see that if ln(NJ/g) is plotted versus E(J)/k the slope of this
curve gives the excitation temperature of the molecules averaged (in some weighted way)
along the line-of-sight. If the molecules are in LTE, this excitation temperature is the same
as the kinetic temperature. We show examples of such rotational diagrams in Fig. 4.8 for
two massive young stars embedded in their parental molecular cloud. The pure rotational
lines of H2 have been measured using the Infrared Space Observatory (ISO) satellite. Two
linear fits are needed to describe the observations. The lower temperature is probably related
to the actual kinetic temperature of the H2 in the cloud. The higher temperature, which is
determined by rotational lines of vibrationally exited levels, probably does not reflect the
kinetic temperature of the gas but a radiation temperature (implying these transitions are in
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non-LTE)

4.5 Vibrational spectra of diatomic molecules

In addition to rotational motion around their center of mass, molecules also experience radial,
or vibrational motion. For the case of a diatomic molecule the two nuclei vibrate along the
internuclear axis, as shown in Figs. 4.4 and 4.9. As in the case for rotational spectra, it is
insightful to consider the classical analogue of the motion, which is the harmonic oscillator. As
long as the atoms in the molecule are not too far from their equilibrium positions, the potential
energy function is in good approximation parabolic, varying as the square of the position of the
particle relative to the equilibrium position r◦. Figure 4.9 depicts the situation: for separations
close to r◦, the shape of the potential energy curve closely resembles the parabolic shape of the
potential energy function of the simple harmonic motion model. For the equation of motion
of the harmonic oscillator, it follows that

F = −k x = µ
d2x

dt2
, (4.25)

where F is the restoring force, x = r − r◦ is the displacement from the equilibrium position,
k is the force constant (or spring constant) and µ the reduced mass. This is Hooke’s law for a
restoring force. Because F = −dV/dx, where V is the potential, it follows that

V =
1

2
kx2. (4.26)

The solution to Eq. (4.25) is
x = x0 sin(2π νosc t+ φ), (4.27)

where φ is the phase determining the starting point of the sine wave and

νosc =
1

2π

√
k

µ
(4.28)

is the fundamental or harmonic frequency of vibration.

The quantum mechanical equivalent of the classical oscillator is

d2ψ

dx2
+

8π2µ

h2

(
E − 1

2
kx2

)
ψ = 0, (4.29)

where ψ is the wavefunction. The possible solutions of this Schrödinger equation are

E(v) =
h

2π

√
k

µ

(
v +

1

2

)
= hνosc

(
v +

1

2

)
, (4.30)
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Figure 4.9: Effective-spring model of a diatomic molecule and plot of the potential energy of a diatomic
molecule versus atomic separation distance. For separations close to r◦, the shape of the potential
energy curve closely resembles a parabolic shape. From: Raymond A. Serway & Jown W. Jewett Jr.,
Physics for Scientists and Engineers with Modern Physics, 9th edition.

which introduces the vibrational quantum number v = 0, 1, 2, ... The energies are quantized,
which is a general feature of quantum-mechanical systems when a particle is confined. These
discrete energy levels are equally spaced and the ground state is not at zero energy – as in the
case of rotational spectra – but at an energy 1

2hνosc. Vibrational transitions are also subject to
selection rules. Pure vibrational modes have

∆v = ±1, (4.31)

therefore

Ephoton = ∆Evib =
h

2π

√
k

µ
= hνosc. (4.32)

This implies that for pure vibrational modes there is only one line in the vibrational spectrum.

At most temperatures that we will encounter the molecules will have vibrational energies
corresponding to the v = 0 state because the spacing between the vibrational energy states is
much greater than kT , where k is Boltzmann’s constant and T is the temperature. To give an
example, the wavelength of the photon that causes the v = 0−1 transition in the CO molecule
is 4.67 µm or 6.42× 1013 Hz, corresponding to a temperature of 3081 K.

The an-harmonic case and overtones in vibrational spectra

Fig. 4.10 shows that in reality the exact shape of the internuclear potential energy is not a
simple parabola. One may improve on the description of the potential by expanding V (r) in
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Figure 4.10: Effective internuclear potential for H2 for the ground state X 1Σ+
g and the first two elec-

tronic excited states B 1Σ+
u and C 1Πu. The horizontal lines denoted the vibrational level, with v = 0

the ground vibrational level, being the lowest horizontal line (note it is not at zero energy). The x-
axis shows the internuclear distance. From: Bruce Draine, Physics of the interstellar medium and
intragalactic medium.

a Taylor series about r◦, to give

V (r)− V (r◦) =
1

2!

(
d2V

dr2

)
r◦

(r − r◦)2 +
1

3!

(
d3V

dr3

)
r◦

(r − r◦)3 + · · ·

=
1

2
kx2 +

1

6
γx3 + · · · (4.33)

The harmonic-oscillator approximation consist of keeping only the quadratic term in Eq. 4.33,
and it predicts a single line in the vibrational spectrum. Experimental data show there is,
indeed, one dominant line (called the fundamental) but also lines of weaker intensity at almost
integral multiples of the fundamental. These lines are called overtones. If the an-harmonic
terms in Eq. (4.33) are included, the Schrödinger equation can be solved by perturbation theory
to give

E(v) = hνosc

(
v +

1

2

)
− x̃hνosc

(
v +

1

2

)2

+ · · · , (4.34)
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where x̃ is the an-harmonicity constant. The an-harmonic correction is much smaller than the
harmonic term, i.e. x̃ � 1. The levels are not equally spaced as they are for a harmonic os-
cillator; their separation decreases with increasing v (see Fig. 4.11). The harmonic-oscillator
approximation is best for small values of v, which are the most important values at the tem-
peratures in interstellar space.

Figure 4.11: Harmonic (parabo-
lic) potential and an-harmonic
(Morse) potential. From: Mark
Somoza.

The selection rule for an an-harmonic oscillator is that ∆v
can have any integral value, although the intensities of the
∆v = ±2,±3, ... transitions are much less than for the ∆v±1
transitions. The photon energies of v → v′ transitions are
given by

Ephoton = E(v)− E(v′) = hνosc

(
v − v′

)
−x̃hνosc

[
v(v + 1)− v′(v′ − 1)

]
(4.35)

for v = 1, 2, ... and v > v′. The fundamental frequency
(∆v = 1, e.g., v = 1 ↔ 0 or v = 2 ↔ 1) is less than the
frequency for pure harmonic motion. The overtones (∆v = 2,
e.g., v = 2 ↔ 0 or v = 3 ↔ 1 is the first overtone; ∆v = 3,
e.g., v = 3 ↔ 0 or v = 4 ↔ 1 the second overtone, etcetera)

are not quite integral multiples of the fundamental frequency.

Ro-vibrational transitions

In general, a molecule vibrates and rotates simultaneously. To a first approximation, these
motions may be regarded independent of each other, so that the total energy of the molecules
for these motions is the sum of Equations (4.12) and (4.30), i.e.

E(v, J) = hνosc

(
v +

1

2

)
+ hcBJ (J + 1) . (4.36)

For each allowed value of the vibrational quantum number v, there is a complete set of rota-
tional levels corresponding to J = 0, 1, 2, .... When a molecule absorbs a photon with the ap-
propriate energy, the vibrational quantum number v increases by one unit while the rotational
quantum number J either increases or decreases by one unit (see Fig. 4.12). The molecular
absorption spectrum thus consists of two groups of lines: one group to the right of center (in
the right panel of Fig. 4.12) and satisfying the selection rules ∆J = +1 and ∆v = +1, and
the other group to the left of center and satisfying the selection rules ∆J = −1 and ∆v = +1.
The first series is referred to as the P-branch, the second series is the R-branch. The energies
of the absorbed photons are

Ephoton = ∆E = hνosc + 2hcB(J + 1) J = 0, 1, 2, ... P(J)− branch (4.37)

= hνosc − 2hcBJ J = 1, 2, 3, ... R(J)− branch (4.38)

In certain conditions the transition ∆J = 0 is permitted as well. This means that a third
branch will be visible in the spectrum, the so-called Q-branch. (Note that also an O-branch
(∆J = −2) and S-branch (∆J = +2) exist).
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Figure 4.12: Left: Absorptive transitions between the v = 0 and v = 1 vibrational state of a diatomic
molecule. Right: expected lines in the absorption spectrum of a molecule. The lines that correspond
to ∆J = Jlower − Jupper = +1 changes are said to be part of the P-branch; those that correspond to
∆J = −1 belong to the R-branch. Recall thatEphoton = 2hcBJ , see Eq. 4.15, therefore ν = ~J/2πI .
From: Raymond A. Serway & Jown W. Jewett Jr., Physics for Scientists and Engineers with Modern
Physics, 9th edition.

The experimental emission spectrum of the HCl molecule is shown in Fig. 4.13. Notice that
each line is split into a doublet. This doubling occurs because two chlorine isotopes ( 35Cl and
37Cl) were present in the sample to obtain this spectrum. Because the isotopes have different
masses, the two HCl molecules have different values of moment of inertia I .

The specific intensity of the lines is proportional to the number of molecules in each of the
excited J states (see Eq. 4.19), therefore

I ∝ n(J) ∝ (2J + 1) exp [−BJ(J + 1)hc/kT ] , (4.39)

where I is the specific intensity (do not get confused with the moment of inertia). The factor
(2J + 1), giving the number of sub-states mJ = −J,−J + 1, ..., J − 1, J , increases with
J while the exponential factor decreases decreases with J . The product of the two describes
the strength of the spectral lines in Fig. 4.13 and is a function of the (excitation) temperature.
Fitting the line strengths thus allows to constrain the excitation temperature, by means of the
rotational diagram method discussed in Sect. 4.4.
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Figure 4.13: Experimental emission spectrum of the HCl molecule for v = 0 → 1 and ∆J = +1 and
−1 transitions. The doubling of the ro-vibrational lines occurs because two chlorine isotopes ( 35Cl
and 37Cl) were present in the sample to obtain this spectrum. From: hyperphysics.phy-astr.gsu.edu.

Ro-vibrational interaction

The total vibrational and rotational energy equation (4.36) may be improved using the results
Eqs. (4.34) and (4.16). This yields

E(v, J) = hνosc

(
v +

1

2

)
− x̃hνosc

(
v +

1

2

)2

+ hcBJ(J + 1)− hcDJ2(J + 1)2. (4.40)

Vibrational motion is very fast compared to rotational motion, and as a consequence the ro-
tational states are affected by the vibrational mode the molecule is in. This is handled by
introducting two more constants, correcting the B and D values for the vibrational state

Bv = B − α
(
v +

1

2

)
and Dv = D + β

(
v +

1

2

)
, (4.41)

where α and β are the rotation-vibration interaction constants. The final energy expression is
obtained by replacing B and D by Bv and Dv in Eq. 4.40. Note that B, α, D, and β are a
function of the electronic state Eelec of the molecule; these dependencies have not been made
explicit in the formulae presented in this chapter. For the ground electronic state of CO, one
has B = 1.922529 cm−1, D = 6.1193× 10−6 cm−1, α = 0.017507, and β = 1.0× 10−9.
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Figure 4.14: Illustrations of the six vibrational modes in a CH2 group and the torsion mode of the group
as a whole. The H atoms are shown as grey spheres; the C atoms as blue spheres. The carbon atom
links the group to the remainder of the molecule. The top left sketch is for a diatomic molecule. A +
or - sign indicates motion out of the plane of the paper, towards us or away from us. Bending modes
that occur in the plane of the paper (scissoring and rocking) are referred to as in-plane bending modes;
those that bring H atoms out of the plane of the paper (twisting and wagging) are out-of-plane bending
modes. Stretching modes are symmetric when the two H atoms are in phase; they are asymmetric
when they are in anti-phase. For an animation of these modes, see http://en.wikipedia.org/
wiki/Molecular_vibration

4.6 Vibrational modes of more complex molecules

A description of the vibrational modes of more complex molecules is beyond the scope of
these lectures. However, vibrational modes are very characteristic for the motions of the
atoms in the molecular group directly involved but much less sensitive to the structure of the
rest of the molecule. This has the benefit that the vibrational frequencies can be related to the
fundamental frequency.

Though diatomic molecules only show a stretching motion, complex molecules or distinct
groups in complex molecules can vibrate in multiple ways. This is shown in Fig. 4.14 for a
methylene group (-CH2-) that is part of a larger molecule.

In general, a molecule with N atoms has 3N − 6 normal modes of vibration, but a linear
molecule has 3N−5 such modes. A diatomic molecule thus has one normal mode of vibration.
Not all the modes will lead to distinct absorptions. Some of the modes will occur at the same
frequency and hence these modes will be degenerate. Others – such as vibrations in homo-
nuclear molecules – may not lead to dipole radiation because the dipole moment does not
change during the vibration. So, as an example methane (CH4) has 3×5−6 = 9 fundamental

http://en.wikipedia.org/wiki/Molecular_vibration
http://en.wikipedia.org/wiki/Molecular_vibration
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Figure 4.15: Vibrational frequencies of various molecular groups. The filled boxes indicate the range
over which specific molecular groups absorb. The bond type and vibration type of these groups are
indicated in the linked boxes. From: D. Hudgins. See Tielens (2005, page 35) for an informative table
of vibrational frequencies of molecular groups.

modes but only the symmetric and asymmetric stretching and bending vibrations of the C−H
bonds about the central C atom show up in the IR absorption spectrum: the v4 mode at 7.66
µm, the v2 mode at 6.51 µm, and the v3 mode at 3.31 µm.

Characteristic band positions of various molecular groups are shown in Fig. 4.15. Modes
involving motions of H atoms occur at considerably higher frequencies than similar modes
involving heavier atoms (a direct result of Eq. 4.28). Thus, H-stretching vibrations occur in
the 3 µm region, while stretching motions among (single-bonded) C, N, and O atoms are
located around 10 µm. Likewise, when the bond strength increases, from single to double to
triple bonds, the vibrations progressively shift to shorter wavelengths.
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Exercise 4.1

Consider CO as a linear, rigid rotor.

a) The frequency of the J = 1 → 0 transition of the main isotopologue of CO (12C15O) is
115.3 GHz (see e.g. Table 4.2). What is the internuclear distance in this molecule (in Å)?

b) Assume that the internuclear distance in all CO isotopologues is the same. How large a
frequency shift can be expected for the J = 1→ 0 transition in the 13C16O isotopologue
relative to 115.3 GHz?

Exercise 4.2

Both H2 and HD have similar internuclear separation, r◦ = 0.741 Å. Assume that the
molecules can be approximated as rigid rotators.

a) Calculate [E(v = 0, J)− E(v = 0, J = 0)] /k for H2 for J = 1, J = 2, and J = 3.

b) Calculate [E(v = 0, J)− E(v = 0, J = 0)]] /k for HD for J = 1, J = 2, and J = 3.

c) Because H2 has no electric dipole moment, ∆J = ±1 transitions are forbidden, and
instead the only radiative transitions are electric quadrupole transitions with ∆J = 0,±2.
Calculate the wavelength of the J = 2→ 0 and J = 3→ 1 transitions of H2.

d) Because HD has a (small) electric dipole moment, it has (weak) electric dipole transi-
tions. What is the longest-wavelength spontaneous decay for HD in the v = 0 vibrational
level?

Exercise 4.3

This could be a nice exam question. In order to determine the strength of a rotational
transition, we need to know the fractional population of a molecule in rotational level J .
In LTE, this is given by (see Eq. 2.70)

nJ
N

=
(2J + 1)

U(T )
exp (−EJ/kT ), (4.42)

where

U(T ) =

∞∑
J=0

(2J + 1) exp (−EJ/kT ) (4.43)

is the partition function (see Eq. 2.71) and N the number density of the molecule. E(J)
is given by Eq. (4.12).
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Transition Eu/k λ Aul Iobs

[K] [µm] [s−1] [erg s−1 cm−2 sr−1]

0-0 S(1) 1015 17.0348 4.8 10−10 6.52 10−5

0-0 S(3) 2504 9.6649 9.84 10−9 3.00 10−4

0-0 S(4) 3474 8.0251 2.64 10−8 1.24 10−4

0-0 S(5) 4586 6.9095 5.88 10−8 1.99 10−4

1-0 S(0) 6471 2.2235 2.53 10−7 9.02 10−5

1-0 S(1) 6956 2.1218 3.47 10−7 2.36 10−4

1-0 S(2) 7584 2.0338 3.98 10−7 6.45 10−5

2-0 S(0) 12095 1.2383 1.27 10−7 5.03 10−5

2-0 S(1) 12550 1.1622 1.90 10−7 3.05 10−5

2-0 S(2) 13150 1.1382 2.38 10−7 3.14 10−5

Table 4.3: Observed rotational H2 line strengths towards the young stellar object S106.

a) Derive an alternative, approximate form of this partition function by replacing the sum-
mation with an integral and by taking J to be a continuous variable. This formula should
depend only on the temperature T and the rotation constant B.

b) Derive a formula for the value J = Jmax at which the maximum population occurs for
any specified temperature (so, recover Eq. 4.20). You may do so by assuming the excita-
tion fraction Eq. (4.42) is a continuous function in J , i.e. by taking a similar approach as
in a).

c) Find Jmax and the corresponding excitation fraction for CO gas at temperatures T = 10 K
and T = 100 K. The rotation constant for CO is B = 1.922529 cm−1.

Exercise 4.4

Vibrational energy separations are larger than rotational ones and are therefore only sen-
sitive to higher temperatures. We consider the molecule CO for which the fundamental
frequency of vibration is 2143.3 cm−1. For all diatomic molecules, the vibrational levels
v are not degenerate, and so gv = 1.

a) Give a formula that provides the LTE population density ratio of the vibrational state
n(v) relative to the vibrational ground state n(v = 0).

b) What proportion of the molecules are in the v = 1 vibrational state compared to v = 0
at (a) the ISM temperature of T = 20 K; (b) room temperature, T = 300 K, and (c) the
temperature of a typical M-dwarf star of 3000 K?
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Exercise 4.5

In this problem we will use observations of H2 rotational and ro-vibrational emission
lines to construct a rotation diagram and derive the temperature and mass of H2 in the
immediate surroundings of the hot, massive young stellar object S106. This young star
is still embedded in its parental molecular cloud and suffers from many tens of magni-
tudes of optical extinction. We may write for the number density of level u of molecular
hydrogen

nu =
gu
U(T )

e−Eu/kT n(H2) =
(2J + 1)(2In + 1)

U(T )
e−hcBJ(J+1)/kT n(H2), (4.44)

where U(T ) is the partition function Eq. (2.71) and In is the nuclear angular momentum
with its statistical weight gI = 2In + 1. Recall that for para-H2 (even J levels) In = 0,
while for ortho-H2 (odd J levels) In = 1.

In a previous exercise, we have derived U(T ) = kT/(hcB). This result relies on the as-
sumption that the rotational levels are very close to one another. More elaborate analyses
show that it is better to approximate U(T ) by twice this value, i.e. U(T ) = 2kT/(hcB).
We will henceforth adopt this better result.

We assume that the spectral lines for the observed transitions of H2 are optically thin, i.e.
that the intensity is given by eq. (4.22) for J → J − 2 transitions. Table 4.3 lists the
observed wavelengths and integrated line fluxes for a set of rotational lines observed by
the ISO-SWS instrument towards S106. The transitions are indicated by the upper and
lower vibrational quantum number and by the rotational quantum number J of the lower
level, for the S-branch (i.e. ∆J = +2).

a) What are the rotational quantum numbers J of the upper levels for each of the transitions
listed? What are the statistical weights (rotational, nuclear, and total) for these levels?

b) Use the observations of S106 to calculateNJ for each upper level J for the pure rotational
lines.

c) Use the above equations to extract a relation between logNJ/g and EJ/k.

d) Use the observations of S106 to make a plot of logNJ/g as a function of EJ/k. Does the
shape of this observed rotation diagram agree with the shape you expect from theory?

e) What is the excitation temperature of the H2 pure rotational lines (i.e. v = 0)? For the
v = 0 vibrational level, B = 59.3301 cm−1.

f) What is the total column density of the H2 gas?

g) Use the data for the ro-vibrational lines (i.e. those with transitions between different
vibrational levels) to derive the vibrational excitation temperature. Compare the vibra-
tional excitation temperature to the pure rotation temperature derived above. Explain the
difference (if at all) between both temperatures.
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First steps into the ISM

In this chapter we first make back of the envelope calculations to learn about aspects of, and
global properties of, the interstellar medium. The results may reflect order of magnitude
estimates only. We then discuss the conditions that should prevail for certain spectral lines to
be in LTE in the ISM. We end with a discussion of aspects of the interaction of key components
of the ISM, again employing rough estimates. The approximate results obtained in this chapter
provide valuable tools for thinking about the physics of the medium in-between the stars.

5.1 Global properties of the interstellar medium

How empty is interstellar space?

How large is the volume occupied by stars with respect to the total volume of our galaxy? For
simplicity we assume that all stars are of solar type. The ratio of volumes becomes

V∗
Vgal

' (4π/3)R3
∗N∗

πR2
galDgal

' 10−22, (5.1)

in which N∗ ' 1011 is the number of stars in the Milky Way; R∗ ' 1011 cm the radius of a
star, Rgal ' 15 kpc the radius of the galaxy, and Dgal ' 700 pc the thickness of the stellar
disk of the Milky Way. We find a ratio of ∼ 10−22. Let us compare this to the ratio of the
volume of a nucleon (roughly 1 fm or 10−13 cm in diameter) relative to the volume of an atom
(roughly 1 Å or 10−8 cm in diameter). This yields a ratio of ∼ 10−15, so interstellar space is
pretty empty: 107 times more so than an atom.
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How much mass is in interstellar space?

The ratio of interstellar gas mass to mass in stars in a column perpendicular to the plane of the
galaxy, near the Sun, is

Hgas nHmH

H∗ n∗M∗
' 200 pc× 1 cm−3 × 1.7 10−24 g

700 pc× 0.1 pc−3 × 2 1033 g
' 0.08, (5.2)

in whichHgas andH∗ are the typical thickness or scale-heigth of the gas layer and stellar layer
(note that these scale-heights in the galaxy are different). nH and n∗ are the densities and mH

and M∗ the masses of respectively the hydrogen atom and of stars. So we find that only ∼ 10
percent of the (visible) matter in the solar neighbourhood is interstellar matter.

How much mass is in interstellar gas and how much in interstellar dust?

The ISM consists of gas and of small solid particles, referred to as dust. The mass ratio of
dust to gas is

(4π/3) a3ρs nd

mH nH
' 0.01 (5.3)

in which nd and nH are the volume densities of the dust particles and of the gas atoms re-
spectively. The ratio between these two is nd/nH ' 10−12. The average radius a of a dust
particle in interstellar space is' 10−5 cm or 1000 Å or 0.1µm. The material from which dust
grains are composed has a (volumetric mass) density ρs ' 1 g cm−3. Later, we will discuss
that observations have shown that interstellar dust consists of silicates and carbon particles in
the form of graphite. In dense regions, water ice (and other volatile dust species) can cover
the surfaces of these grains.

5.2 Is the ISM in LTE?

In thermodynamic equilibrium a gas which is kept in a black box has Tbox = Tgas = Tradiation.
This situation is in general not true for matter in the ISM. The interstellar radiation field
originates from stars in the galaxy and has a high characteristic temperature (dominated by
the luminous OB stars) but is strongly diluted (by the factor given in Eq. 2.8), because the
average distance to stars is large. Gas in the ISM is in general colder than the temperature that
can be associated with the radiation field. The dust particles have temperatures that are lower
than that of the gas. So we have Tdust < Tgas < Tradiation.

Let us examine some aspects of LTE in the ISM.
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Does the Maxwell velocity distribution hold in the ISM?

An important question is whether or not the velocity distribution of gas particles is Maxwellian
under the rather extreme conditions that exist in the ISM. So, can we assign a kinetic temper-
ature to interstellar gas?

Assume that f(w) is the instantaneous velocity distribution. Elastic collisions between atoms
and ions in the gas lead to equipartition of energy and so to the Maxwell velocity distribution
f
◦
(v), where the superscript ◦ indicates that f is Maxwellian. The rate of change of the

velocity distribution toward a Maxwellian distribution is given by(
∂f

∂t

)
elas

=
f
◦
(v)− f(w)

telas
, (5.4)

where telas is the typical timescale of elastic collisions. Interactions between gas particles in
which the atoms and/or ions get excited as a result of collisions lead to a reduction of the
number of gas particles with a kinetic energy 1

2mw
2 > Eexc, where Eexc is the excitation

energy. Therefore, the rate of change toward establishing the velocity distribution that reflects
the missing high kinetic energy particles in the collision partner population is(

∂f

∂t

)
exc

= −f(w)

texc
, (5.5)

where texc is the typical timescale for collisions that lead to an excitation. In a steady state
situation we must have ∂f/∂t = 0, therefore

f
◦
(v)− f(w)

f(w)
=
telas

texc
. (5.6)

Let us consider a medium in which hydrogen is neutral, so conditions typical for the CNM
(see Table 1.1). The most important elastic collision process is that of H I particles colliding
with each other. A rough estimate for the typical timescale for such collisions is telas '
(nH σelas vH)−1. The dominant inelastic scattering process is that of collisional excitation of
the ground electronic state 1s22s22p1 2P ◦ of C II, which contains two fine-structure levels
(see Fig. 5.1), 2P ◦1/2 and 2P ◦3/2. The 2P ◦3/2 fine-structure level can be excited by collisions
of 2P ◦1/2 with H I. A rough estimate for the typical timescale for such collisions is texc '
(nCII σexc vH)−1.

In H I gas we can approximately equate σelas ' σexc and n(C II) ' XC nH, where XC is the
number fraction of carbon relative to hydrogen, since the carbon which is in the gas phase will
be almost entirely singly ionized. Then we find

f◦(v)− f(w)

f(w)
' XC ' 3 10−4. (5.7)

So, fortunately the deviations from a Maxwellian velocity distribution will be very small,
simply because the number of elastic collisions dominates.
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Figure 5.1: Fine structure levels of C II. From: Bruce Draine, Physics of the interstellar and intergalac-
tic medium.

In H II regions the gas will approach the Maxwell velocity distribution even better because
σelas � σexc. This is due to the long-range character of the coulomb force between charged
particles.

Is the 21 cm transition of hydrogen in LTE?

Consider the 21 cm transition of neutral hydrogen atoms in interstellar space. We adopt nH '
1 cm−3 and T ' 70 K. Collisions among H I particles are capable of populating the two hyper-
fine-structure levels according to the Boltzmann equation if the collisional de-excitations are
much more frequent than radiative de-excitations, i.e. if tcoll � trad. If we approximate the
collisional cross-section for hydrogen atoms by σH = πa2

0, where a0 = 0.53×10−8 cm is the
Bohr radius, we find:

tcoll '
1

nH σH < vH >
' 2100

nH
yrs, (5.8)

where we have used the average relative speed of hydrogen atoms of 1.7 km s−1 for T = 70 K,
as computed below Eq (2.66).

The radiation timescale follows from the transition probability A21 = 2.87 × 10−15 s−1 for
spontaneous de-excitation in the 21 cm line. As this value is small,

trad '
1

A21
' 1.1× 107 yrs. (5.9)

is large. So, the level populations of the hyper-fine levels in the electronic ground state of hy-
drogen are distributed according to Boltzmann (n2/n1 ' g2/g1 = 3 as for typical conditions
hν/kT � 1) for gas densities nH & 10−4 cm−3. This is virtually everywhere in interstellar
space.
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Is the first rotational excited state of para-H2 in LTE?

The first rotationally excited state of para-H2 connects to the ground state of molecular hydro-
gen. The energy levels of rotational states are given by Eq. (4.12), which we repeat here for
convenience

EJ = hcBJ(J + 1), (5.10)

in which B = 60.80 cm−1 is the rotational constant. The energy of the transition is at

∆E = E(J = 2)− E(J = 0) = 6hcB = 7.25× 10−14 erg = k [540 K], (5.11)

Typical temperatures observed in regions of molecular gas in the ISM are 10–40 K. Collisions
can therefore not (significantly) excite H2. The J = 2 state of para-H2 is thus not in LTE.

This result has a bigger implication. As the lowest exited J state of hydrogen is only very
poorly populated, it does not in general emit much radiation. Moreover, as H2 is a homonu-
clear molecule, therefore it has no permanent electric dipole moment and hence its dipole
transitions are forbidden (see Sect. 4.2). As already pointed out, its molecular structure is
essentially a symmetric ‘dumb-bell’. The combined low excitation of the J = 2 level and the
forbidden nature of the transition cause the H2 emission line to be very weak.

Though H2 can be detected via its UV absorption lines (the same lines that are involved in
its destruction), this is only on the lines of sight to a few suitably positioned bright, hot,
background stars. These lines of sight are too few and far between to make this an effective
means of conducting either a global search for, or a survey of, H2. Since H2 is so hard to
observe, carbon monoxide (CO) is used as a tracer of molecular gas.

Is the CO molecule in LTE in molecular clouds?

The first rotationally excited level of CO has energy

∆E = E(J = 1)− E(J = 0) = 2hcB = 7.64× 10−16 erg = k [5.5 K], (5.12)

whereB = 1.922529 cm−1. From λ = hc/∆E we find that the transition is at 2.6 mm. Recall
that for permitted rotational transitions ∆J = 1. This line can be easily excited at the low
temperatures observed in regions of molecular gas in the ISM. For a temperature T = 30 K
and densities nc > 104 cm−3 we find that tcoll < trad. For these conditions the line is in LTE.

Are also higher rotational states in LTE? The Einstein A-coefficients for the rotational transi-
tions is given by

AJ,J−1 =
29π4B3

3h
d2 J4

2J + 1
, (5.13)

in which d = 0.11 × 10−18 Fr·cm is the dipole moment of the molecule. This results in
transition probabilities of the rotational transitions of the CO molecule given by

AJ,J−1 ' 2.3 10−7 J4

2J + 1
s−1. (5.14)
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The life time of an excited CO rotational level is the inverse of the Einstein A coefficient

tJ ∝ A−1
J,J−1 J

−3. (5.15)

So we find that for the high J rotational levels the depopulation of energy levels due to ra-
diation is increasingly more rapid, and at some value of J this radiative depopulation can no
longer be compensated by collisional or radiative population. In a typical molecular cloud we
find a Boltzmann distribution for the lower J levels according to the kinetic temperature of
the gas, but in the higher energy levels the level populations deviate significantly from LTE.

5.3 Non-LTE in the interstellar medium

We may conclude from the examples in the previous section that for transitions among levels
that are close to the ground level and for which the energy difference between the lower and
upper level is small, collisional transitions may dominate. Examples of such cases may be fine
structure lines. However, when the energy difference between lower and upper level is large,
so typically for transitions in the optical or ultraviolet part of the spectrum, collisions between
gas particles will not always be energetic enough to cause an excitation of the electron. This
will inevitably lead to a situation of NLTE, i.e. a situation in which we can no longer rely on
the Boltzmann and Saha equations, Eqs. (2.67) and (2.72). If that is so, we need to solve the
statistical equilibrium equations to obtain the state of the gas∑

u6=l
(nuPul − nlPlu) = 0, (5.16)

where l refers to the lower state and u to the upper state. Plu and Pul are the rates at which
electrons transit from the lower to the upper state and vice versa, each of which is the sum
of a radiative rate and a collisional rate. To keep things simple, we will here consider the
statistical equilibrium equation for a system consisting of two bound levels. In Section 8.2,
we will formulate the rates that describe transitions between a bound and a free level.

Two level system

We consider a schematic atomic or molecular model consisting of two levels between which
radiative and collisional transitions can occur. This model is obviously very incomplete, but
it nevertheless provides a fairly good description of the real situation for some lines. Two
processes can result in a transition of the electron from a lower state l to an upper state u. The
number of excitations per second per cm3 caused by these processes are

− Radiative excitations :
dnl
dt

= nlRlu = nlBlu J̄

− Collisional excitations :
dnl
dt

= nl Clu = nl nc qlu
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Three processes can result in the transition of the electron from the upper state to the lower
state. The number of such de-excitations (also in cm−3 s−1) are

− Spontaneous emissions :
dnu
dt

= nuR
spon
ul = nuAul

− Stimulated emissions :
dnu
dt

= nuR
stim
ul = nuBul J̄

− Collisional de-excitations :
dnu
dt

= nuCul = nu nc qul

In the above expressions Aul, Blu and Bul are the Einstein coefficients, and R and C (with
indices lu and ul) the radiative and collisional rate. The dimension of Aul is sec−1, that of
Blu and Bul is erg−1 cm2 hz; the dimension of R and C is sec−1. J̄ (which could have been
given the indices lu and ul for completeness) is the profile function averaged mean intensity

J̄ = J̄lu = J̄ul =

∫ ∞
0

φ(ν) Jν dν, (5.17)

where φ(ν) is the profile function. The profile function is normalized, i.e.∫ ∞
0

φ(ν) dν ≡ 1, (5.18)

and sharply peaked, therefore J̄ ' Jν , i.e. it is almost equal to the mean intensity at frequency
ν at line center. In stating that J̄lu = J̄ul we assume that the profile function for radiative
excitations is the same as for stimulated emissions. The situation that the profile functions of
all three radiative processes are the same (so also that of spontaneous emissions) is known as
complete redistribution and is realized in TE.

The quantities qlu en qul give the product of the (velocity dependent) cross-section for colli-
sions and the velocity of the colliding partner, integrated over the relevant part of the Maxwell
velocity distribution, in cm3 s−1. Let us call this function the collision strength. We take as
a collision partner particles of type ‘c’ (collision) that have a number density nc cm−3. In
ionized H II regions, free electrons are typically the collision partner. In molecular clouds, the
H2 molecule will often be the collision partner. In H I regions it will be the hydrogen atom.

Now that we have formally introduced the Einstein coefficients, we also formally mention that
the lifetime (in seconds) of an excited level is related to the Einstein Aul coefficient through

τu =
1

ΣlAul
. (5.19)

Some numbers: for permitted transitions of hydrogen the values of Aul ≈ 104 − 108 sec−1.
From this we get that τu ∼ 10−4−10−8 sec, so these excited levels have a very short lifetime.

Statistical equilibrium between upper and lower level implies that the time average of the
population numbers of the levels do not change. This requires that

nl
(
Blu J̄ + nc qlu

)
= nu

(
Aul +Bul J̄ + nc qul

)
(5.20)
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We can rewrite this equation by making use of the relations between the Einstein coefficients

glBlu = guBul (5.21)

Aul =
2hν3

c2
Bul (5.22)

To make efficient use of the Einstein relations, i.e. to conveniently express Blu and Bul in
Aul, we introduce the photon occupation number

nγ ≡ Jν
/

2hν3

c2
, (5.23)

such that when J̄ ' Jν = Bν → nγ =
(
ehν/kT − 1

)−1
. For the radiative excitation processes

we can now write:

nlBlu J̄ = nl
gu
gl
Bul Jν = nl

gu
gl
Aul

c2

2hν3
Jν = nl

gu
gl
Aul nγ , (5.24)

and for the stimulated emission processes

nuBul J̄ = nuBulJν = nuAul
c2

2hν3
Jν = nuAul nγ . (5.25)

Using these results, statistical equilibrium equation (5.20) can be written as

nu
nl

=
nc qlu + (gu/gl)nγ Aul
nc qul + (nγ + 1)Aul

(5.26)

We may consider a few simple limiting cases that are relevant for the conditions in the ISM.
We first ignore the radiation field, and second we will ignore collisions. In the first case we
expect to get solutions close to LTE, while in the second case strong NLTE effects may occur.

Ignoring the radiation field

Let’s first consider the case where radiation is ignored, i.e. nγ = 0. The statistical equilibrium
equation reduces to

nu
nl

=
nc qlu

Aul + nc qul
=
nc qlu
Aul

(
1

1 + nc qul/Aul

)
(5.27)

Again, two limiting cases can be considered, with high and low density of the collision part-
ners. In the low density limit we find

nc qul � Aul →
nu
nl

=
nc qlu
Aul

. (5.28)
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The balance between nl and nu is set by collisional excitations (even though the density
of the medium is low) and spontaneous recombinations (that dominate over collisional de-
excitations).

Similarly, for the high density limit we get

nc qul � Aul →
nu
nl

=
qlu
qul

=
gu
gl

exp [−hν/kT ] . (5.29)

The last equality links qlu/qul to the Boltzmann distribution. In a medium where the state of
the gas (in our example the densities of nl and nu) is determined by collisions only, and such
collisions are frequent, it is the velocity distribution f(v) and density nc of the collision part-
ner particles that determines the outcome. In the ISM, the velocity distribution is according to
Maxwell, therefore the distribution only depends on the (local) temperature and hence will be
in (local) TE. In short

n∗l Clu = n∗uCul or n∗l qlu = n∗u qul. (5.30)

It thus follows that the population ratio nu/nl must be according to Boltzmann.

We can now introduce an important concept in ISM gas analysis, namely that of the critical
density

ncr ≡
Aul
qul

. (5.31)

The physical meaning of the critical density is clear: for nc < ncr collisional de-excitations
will be unimportant, and most de-excitations will be spontaneous, resulting in the emission
of a photon. The strength of such emission lines will therefore be a good measure of density
(i.e. of nc in Eq. 5.28). For densities much above ncr de-excitation will be mainly through
collisions. We expect to approach LTE. Line strengths (though not the dominant de-excitation
mechanism, spontaneous de-excitations may still occur) will provide a measure of the local
kinetic temperature (i.e. of T in Eq. 5.29). The critical density is determined by the quantum-
mechanical properties of the transition under consideration: small Einstein Aul values result
in low critical densities, i.e. densities in the range typically observed in the ISM. This is why
forbidden lines (including fine structure lines) are so important for ISM studies. An overview
of important forbidden lines is given in Fig. 5.2. Note that study of these lines allows to probe
a wide range of temperatures and densities. Forbidden lines are not important in stellar at-
mospheres, since the densities are usually far above the critical density for any forbidden line
(clearly permitted lines are abundant in stellar spectra). We can generalize the expression for
the critical density to multilevel systems where the critical density now compares radiative
transitions to all lower levels with the collisional transitions to all levels

ncr =
Σl<uAul
Σl 6=uqul

. (5.32)

The principle is the same: LTE ensues when the density is larger than the critical density. In
answering the questions in section 5.2, we computed the time scale for collisional processes
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Figure 5.2: Critical density for collisional de-excitation versus ionization potential of infrared fine-
structure lines. Note that a wide range in temperatures and densities is accessible. From: Spinoglio et
al. 2012, ApJ 745, 171.

and compared these to the timescale for spontaneous de-excitation (see Eqs. 5.8 and 5.9). This
is an alternative way of assessing whether the medium is in LTE or not. For tcoll < trad, LTE
will be valid as collisions will (start to) dominate the excitation and de-excitation processes.
Note that the critical density is also equivalent to

ncr ≡
Aul
qul

=
tcoll

trad
nc, (5.33)

where nc is the colliding partner.
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Ignoring collisions

Now let us consider the case that collisions are not important, but radiation is. In the equation
for statistical equilibrium we set nc = 0. We find

nu
nl

=
gu
gl

nγ
nγ + 1

(5.34)

We can also switch off radiation: nγ → 0. We obtain the trivial result that nu/nl → 0, all
particles are in the ground state and stay there.

More interesting is to assume the radiation field to be a Planck function, i.e. Jν = Bν(Trad),
such that nγ =

(
ehν/kTrad − 1

)−1
. We find

nu
nl

=
gu
gl

exp [−hν/kTrad]

The physical meaning of this limiting case is that the radiation field thermalizes the level pop-
ulations. These level populations are forced to correspond to the temperature of the radiation
field, referred to as the radiation temperature Trad. The value of Trad can be quite different
from the actual kinetic temperature of the gas. It is clear that the impact of the radiation field
on level populations can be significant. This is especially true in cases where the average
photon energy of the radiation field is well matched to the energy difference between upper
and lower levels of a particular transition, or class of transitions. We mention a few exam-
ples of cases where the diffuse and/or local radiation field is important and influences level
populations

� Fine structure lines have their transitions in the infrared and will couple well to the
radiation field of circumstellar and/or interstellar dust. Recall that stellar photospheres
emit most photons at short wavelengths - these can be ignored.

� Light molecules, such as H2, CH, OH, have strong transitions in the mid-infrared and
will also couple well to the dust radiation field.

� Heavy molecules, such as CO and SiO, have rotational transitions in the millimeter
wavelength range and so they will be sensitive to the 3 K cosmic background radiation
field.

Optical depth effects

So far we have assumed the gas to be optically thin, i.e. we have ignored optical depth effects.
There are however many examples of conditions where this is not the case, for instance for
CO rotational line emission from molecular clouds. The problem quickly becomes rather
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complicated because of the inherent non-local nature of the radiation field. So, the level
population equations and radiative transfer equations have to be solved simultaneously. We
can make life simpler by introducing the concept of escape probability by direct flight β.

We assume that photons that are produced locally can only be absorbed locally. If they are
not absorbed locally they escape to infinity by direct flight. This can for instance be the case
when there are (large) velocity gradients in the gas, which may occur in expanding, rotating,
or collapsing clouds. We further assume the local region of the cloud is homogeneous (so
the populations are the same everywhere) and that the cloud is not irradiated by an external
radiation field. We then have the situation in which the photons that are absorbed are those
photons that do not escape, i.e.

J̄ (nlBlu − nuBul) = (1− β)nuAul, (5.35)

where in the left-hand-part we have corrected the absorptions for a (negative) contribution
by stimulated emissions. This is customary practice as the photons produced in stimulated
emission events will have the same frequency and direction as the photons responsible for
these emissions.

Alternatively, we could have expressed the profile averaged radiation field as

J̄ = (1− β)Sν , (5.36)

where Sν is the local line source function for the transition between levels l and u. That is,
J̄ is equal to the locally emitted radiation corrected for the fraction of the light that escapes
without interacting with the local medium. This should be equivalent to Eq. (5.35). The line
emission and line extinction coefficient are given by

η`ν =
hνlu
4π

nuAul φν (5.37)

χ`ν =
hνlu
4π

[nlBlu φν − nuBul φν ] . (5.38)

The energy emitted in all directions per cm3 per second at all frequencies relevant for the
transition is hνlu nuAul. To get the emitted energy per hz we need to multiply with the profile
function φν (which has dimension hz−1), and, finally, to get the emission per unit solid angle
we need to divide by the total solid angle Ω = 4π. The total energy that is absorbed in a
volume element dV in a time interval dt by radiative excitation is

dEtot
ν = hνlu nlBlu J̄lu dV dt

= hνlu nlBlu

[∫ {
1

4π

∮
Iν dω

}
φν dν

]
dV dt (5.39)

where the last equality at the right-hand side follows (5.17). So, the energy dEν that is ab-
sorbed in a volume dV = dOds in a bandwidth dν in a time interval dt, from an incident
beam of opening angle dω and specific intensity Iν is

dEν =
hνlu
4π

nlBlu φν Iν dO ds dω dν dt (5.40)

= χν Iν dO ds dω dν dt (5.41)
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This recovers the first right-hand-side term in Eq. (5.38). The second right-hand-side term is
the correction for stimulated emission that can be derived in a similar manner.

For the line source function we now find

S`ν =
η`ν
χ`ν

=
nuAul

nlBlu − nuBul
, (5.42)

where we have adopted that the profile functions for spontaneous emissions, radiative emis-
sions and stimulated emissions are identical and given by φν . Substitution of Eq. (5.42) in
(5.36) recovers Eq. (5.35), as announced.

Combining Eqs. 5.35 and 5.20 we find

nl nc qlu = nu nc qul + nu β Aul, (5.43)

which is an expression similar in shape as Eq. (5.27). Following the discussion from there, we
can again formulate an expression for the critical density

ncr =
β Aul
qul

. (5.44)

This shows that the inclusion of optical depth effects by means of an escape probability formal-
ism lowers the critical density, because 0 ≤ β ≤ 1. When the medium is no longer optically
thin, photons may get ‘trapped’. Equation (5.35) essentially states that with a probability β
a spontaneous radiative de-excitation is ‘on the spot’ followed by a radiative excitation, as if
nothing happened. The only ‘real’ spontaneous de-excitations occur at the lower rate βAul. It
is this rate to which the collisional down channel has to be compared. In other words, LTE is
reached at a lower gas density (compared to the optically thin situation described in Eq. 5.31).

5.4 Examples of interactions between the components constituting the ISM

Interaction between dust and radiation - heating of dust grains by radiation

Though in reality the interstellar radiation field consists of several components (see Fig. 1.6
and Chapter 6), let us characterize it as a diluted Planckian radiation field with a radiation
temperature of about 104 K. The total mean intensity is

J = W B(Trad), (5.45)

where ‘total’ implies that we have integrated over all frequencies. The energy density of this
radiation field is (see Eq. 2.11)

u =
4π

c
W B(Trad) = W

4π

c

σT 4
rad

π
. (5.46)
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Note that the dilution factor is to be interpreted as a mean of the dilution of the radiation of
many stars, therefore we do not suggest to adopt the distance to the nearest star. A typical
mean dilution factor for the ISM is W ' 10−14, a number that is related to the average
distance in-between the stars in the galaxy that contribute most to the radiation field. Adopting
Trad = 10 000 K yields an energy density of radiation u ' 10−12 erg cm−3 ' 0.6 eV cm−3 (1
erg = 6.2415 × 1011 eV; see also Table 1.3). Physically this means that the radiation energy
density is very low, but that the energy per photon is high: there are very few photons per unit
volume, but those that are present are quite energetic.

If we assume that dust particles radiate as black bodies, we can derive the thermal equilib-
rium temperature that they should obtain through absorption of photons from the interstellar
radiation field. The amount of energy absorbed per unit time is 4π J , i.e. the mean intensity
integrated over all solid angles, times the cross section of the particle. We find that

Eabs = 4π J(Trad)πa2 = 4πW B(Trad)πa2 = 4W σT 4
rad πa

2. (5.47)

Note that as the stars are all at large distance, 4π J = F , where F is the flux that illuminates
the particle (to see this, combine Eqs. 2.7 and 2.20).

Similarly, the dust grain emits black body radiation at a dust temperature Td. The energy per
unit time radiated in this way is

Eem = 4πa2 σT 4
d (5.48)

Equating the absorbed and emitted energy

Td 'W 1/4 Trad (5.49)

Substitution yields 3 K. In reality the grains in interstellar space are warmer than 3 K, they are
found to be in the range ∼ 15−25 K. This is because of other contributions to the interstellar
radiation field, but mainly because dust grains do not radiate as black bodies. We will return
to the latter subject when we discuss interstellar dust.

Interaction between dust and radiation - extinction of light by dust grains

The density of dust particles in the ISM is nd ' 10−12 cm−3 and the average radius of a grain
is ad ' 10−5 cm. Using these numbers, we find for the mean free path of a photon for dust
absorption through the ISM (see Eq. 2.45):

` =
1

πa2
d nd

' 1 kpc. (5.50)

This means that we cannot observe objects in the plane of our galaxy at distances much larger
than a few kpc. We have assumed in this calculation that the cross-section for dust absorption
is the geometric cross section. This is a reasonable assumption for wavelengths smaller than
the typical size of the particles. At long, far-infrared and radio wavelengths, the cross-section
for radiation to be absorbed by dust is much lower, and we can observe the entire galaxy.
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Interaction between dust and gas - gas particles decelerating dust grains

The stopping distance of a moving dust particle is defined as the distance a dust grain can
travel before it has swept up its own mass by (sticking) collisions between the dust grain
and gas particles (mostly molecular hydrogen in molecular clouds). We may write for this
stopping distance

`d =
4πa3 ρs/3

πa2 nH mH
=

4 a ρs

3nHmH
' 5

nH
pc, (5.51)

where a ' 10−5 cm is the grain radius and ρs ' 2 gr cm−3 is the mass density of the dust
particles. In clouds with nH > 10 cm−3 we find that `d < 0.5 pc. This is smaller than the typ-
ical dimension of an interstellar cloud (∼ 1–10 pc). Gas and dust therefore interact efficiently
and as a result are well mixed. It is not easy to spatially separate the two components, which
would happen if the frictional force between gas and dust would be weak. We conclude that
in the ISM gas and dust are collisionally coupled.

The collision timescale for a hydrogen atom and a dust grain is

tH−dust =
1

nd σd < vH >
' 109

nH
yr, (5.52)

where we again have used that nd/nH ' 10−12 and an average velocity of hydrogen particles
of 1.7 km s−1(see Eq. 2.66). For the collisional cross section of the grains we adopted σd =
πa2, where a = 10−5 cm is a typical grainsize.

So, on average one hydrogen atom has collided only 10 times with a dust particle during the
lifetime of the galaxy assuming nH = 1 cm−1. In denser environments, such as molecular
clouds, collisions are much more frequent. These collisions are important because this is the
only way in which molecular hydrogen H2 can be made. Collisions between two hydrogen
atoms do not form H2 because the excess binding energy cannot be radiated away fast enough.
The reason for this is that H2 is a so-called homo-nuclear molecule which shows only dipole-
forbidden rotational transitions. This problem can be circumvented by introducing a third
particle that can carry away the excess energy. At very high gas densities (which do not occur
in the ISM), a three-body collision of H atoms can lead to H2 formation. In ISM conditions
dust grains act as a third body, which can absorb the binding energy of the molecule. This
shows the importance of grain surface reactions for interstellar chemistry.

2H + dust→ H?
2 + dust→ H2 + dust + hν, (5.53)

where the ? sign indicates that the hydrogen molecule is excited.

The formation of H2 in clouds becomes efficient at densities above about nH & 300 cm−3.
These clouds are called molecular clouds.



5.4 Examples of interactions between the components constituting the ISM 107

Interaction between gas and radiation

We can estimate the energy density associated with the thermal motions of gas in H I regions.
Adopting an average gas density of nH ' 1 cm−3 and a temperature of T ' 100 K, we find
for the thermal energy density Eth = 3nH kT/2 ' 2 × 10−14 erg cm−3 or 0.01 eV cm−3,
which is a lot smaller than the energy density of the interstellar radiation field. This number
also implies that collisions among hydrogen particles will not lead to ionization, for which
13.6 eV is needed per event.

The mean free path of a photon with energy hν > 13.6 eV (the ionization potential of hydro-
gen) is:

`hν =
1

nH σH
' 0.05

nH
pc, (5.54)

in which σH ' 6×10−18 cm2 is an effective mean of the ionization cross-section of hydrogen.
This mean free path is very small so that regions of neutral hydrogen and ionized hydrogen are
sharply separated spatially. This is because the transition region between H I and H II regions
cannot be much larger than 0.05/nH pc.

Interaction between gas and a magnetic field

Interstellar space is permeated by a weak magnetic field with a field strength of typically
B ' 6 10−6 Gauss. The magnetic energy density is B2/8π ' 1.4 10−12 erg cm−3 or 0.9 eV
cm−3 , which is comparable to the energy density of the interstellar radiation field.

In a (partially) ionized gas the charged particles move in circular orbits around the magnetic
field lines. The orbital angular frequency (also known as cyclotron frequency) is given by:

ωB =
ZeB

m
, (5.55)

where Z is the charge, in units of the charge e of an electron, and m the mass of the particle.
If we take v as the speed of the particle perpendicular to the magnetic field direction we find
that rB = v/ωB is the radius of the orbit that the particle makes around the magnetic field line,
known as the gyro radius or Larmor radius.

In an H I region which consists mainly of neutral hydrogen, some ionized particles still exist.
In particular C atoms (that have an ionization potential of 11.3 eV) can be ionized by photons
from the diffuse interstellar radiation field (with energies less than 13.6 eV). For an interstellar
magnetic field strength of B ' 6 × 10−6 Gauss a C II ion (m = 12mH en Z = 1) has a
cyclotron frequency of ωB ' 4 × 10−3 or, in other terms, an orbital period of 1500 s, much
smaller than most other timescales that are relevant in the ISM. For an electron (Z = 1) we
find ωB ' 80 s−1, so an even smaller orbital period of 0.1 s. A dust particle with mass 10−14

g and a charge Z ' 20 has ωB ' 2 × 10−10 s−1, so that an orbital period is about 1000 yrs.
Even this timescale is much smaller than most other timescales in the ISM. We can conclude
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that ions, electrons and charged dust particles are well coupled to the interstellar magnetic
field.

As an exercise, calculate the size of the Larmor radius for the given examples. Assume a
thermal speed (Equation 2.65) corresponding to a temperature of T = 70 K.

Interaction between gas and cosmic rays

Interstellar space also contains very energetic particles called cosmic rays, consisting of pro-
tons, α particles (nuclei of He atoms), electrons and nuclei of other elements. The energy
density of cosmic rays is ∼ 2 × 10−12 erg cm−3 or 1.4 eV cm−3, so of the same order of
magnitude as the magnetic and radiation energy densities.

Collisions between cosmic rays and the nuclei of H-atoms in the gas lead to the formation of
π0 mesons that decay into two very energetic γ photons with each an energy of ∼ 70 MeV

H + cosmic ray→ π0 → 2γ. (5.56)

This is why gamma-ray radiation can be observed from gas clouds in the plane of the galaxy.

Hydrogen atoms can also be ionized through interactions with cosmic rays. The cross-section
for H-ionization increases with decreasing cosmic ray energy. Let us consider a cosmic-ray
proton with an energy of 100 MeV. The average ionization frequency of neutral hydrogen for
such a proton is ζ ' 10−17 s−1, from which we can derive tH−cr = ζ−1 ' 3 109 years. So we
find that a hydrogen atom on average is ionized once every 3 109 yrs by an energetic cosmic
ray particle, so about three times in the lifetime of the galaxy. The energy that is transferred
to the gas (in the form of thermal energy) is of the order of ∼ 3 eV per event. Despite its
infrequent occurrence the ionization of hydrogen through cosmic rays can contribute to the
heating of interstellar gas. For instance, in the dense cores of molecular clouds or in dense
parts of proto-planetary disks the interstellar radiation field cannot penetrate, and ionizations
of hydrogen are dominated by cosmic rays.
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Exercise 5.1

This could be a nice exam question. The ‘very local’ interstellar medium has nH '
0.22 cm−3 (Lallemont et al. 2004, A&A 426, 875; Slavin & Frisch 2007, Sp.Sci.Revs.
130, 409). The sun is moving at vw = 26 ± 1 km s−1 relative to this local gas (Möbius
et al. 2004, A&A 426, 897). Suppose that this gas has n(He)/n(H) = 0.1, and contains
dust particles with total mass equal to 0.5% of the mass of the gas. Assume these particles
have radius a = 0.1µm and specific density ρs = 2 gr cm−3. We wish to design a
spacecraft to collect them for study. With how large a collecting area A should we equip
this spacecraft in order to have an expected collection rate of 1 interstellar grain per hour?

Neglect the motion of the spacecraft relative to the sun, and assume that the interstellar
grains are unaffected by solar gravity, radiation pressure, the solar wind, and the inter-
planetary magnetic field.

Exercise 5.2

a) At time t = 0 the population of an excited level is nu(0). How does the population of
this level decrease over time if only spontaneous emission to a lower level l occurs and
the Einstein coefficient of this process is Aul?

b) Show that the lifetime (in sec) of the particle in state u is given by

< t >=
1

Aul
(5.57)

Exercise 5.3

Consider a photon of frequency ν entering a slab of homogeneous material containing
two-level atoms with excitation temperature Texc. At the frequency of the photon, let the
optical depth of the slab be τ = τabs − τstim, i.e. to consist of an absorption component
and a stimulated emission component (with a minus sign in front as this component is
adding photons to a beam of light).

a) Let Pabs be the probability that the original photon will undergo absorption before exiting
from the cloud (we do not care about re-emission; once absorbed it is gone from our
exercise). Give an expression for Pabs in terms of τ and x = hν/kTexc.

b) Consider a photon that crossed the slab without being absorbed. Let Pstim be the prob-
ability that the incident photon will stimulate emission of one or more photons. Give an
expression for Pstim in terms of τ and x.
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Designation Ei gi
i [K]

3P2 0.0 5.0
3P1 227.7 3.0
3P0 326.6 1.0

Designation Aij qij
i→ j [s−1] [cm3 s−1]

3P1 – 3P2 8.9× 10−5 1.5× 10−10

3P0 – 3P2 1.3× 10−10 2.4× 10−10

3P0 – 3P1 1.8× 10−5 2.1× 10−12

Table 5.1: Left: level designations, energies, statistical weights of hyperfine structure of O I 2p4 3P.
Right: level designations of the forbidden hyperfine transition, Einstein A coefficient, collision rate
coefficient for collisions with molecular hydrogen at 100 K.

Exercise 5.4

The fine structure lines of neutral oxygen arise from the fact that the ground electronic
state splits up into three fine structure levels. The lines are forbidden (see 3.3). Relevant
atomic data for the lines are provided in table 5.1.

a) Make a sketch of the energy level structure of the oxygen ground electronic state with the
three line transitions and calculate their wavelength.

b) List the processes that impact the level population numbers of these fine structure states.

c) Calculate the critical density of the [O I] 63 µm line transition and compare this value to
a typical molecular cloud (use e.g. Table 1.1). Do you expect the level populations to be
in Local Thermodynamic Equilibrium in that environment?

d) Predict the LTE total intensity in erg cm−2 s−1 sr−1 of the [O I] 63 µm line from an opti-
cally thin slab of gas with an oxygen column density N(O) = 1012 cm−2 and constant
temperature of 100 K. (Tip: consult Eq. 5.37).

Exercise 5.5

a) Use Eq. 5.49 to estimate the mean temperature of Earth.

b) During its main sequence lifetime the sun will increase its luminosity and radius, and
decrease its surface temperature. What will be the effect of these changes on the mean
Earth temperature?
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The interstellar radiation field

We briefly introduced the interstellar radiation field (ISRF) in the introductory chapter (see
Sect. 1.3 and Fig. 1.6), and used a simple representation in Sect. 5.4 to make order of mag-
nitude estimates (see Eqs. 5.45 and 5.46). Let us devote a short chapter to better quantify
the ISRF in the solar neighborhood. Near home the ISRF is dominated by six components,
graphically shown in Fig. 6.1. Their contribution to the total energy density (Eq. 2.12) is given
in Table 6.1.

� Galactic synchrotron radiation. The ISM contains relativistic electrons that emit syn-
chrotron emission in the galactic magnetic field; this synchrotron radiation dominates
the sky brightness at frequencies ν . 1 GHz or meter wavelengths and up. This emis-
sion is spatially variable. Its intensity is higher near supernovae remnants due in part to
electron acceleration associated with the supernova blast wave and in part to increased
magnetic field strengths in the shocked gas. In Fig. 6.1 the synchrotron intensity is
approximated by

(ν uν)syn ≈ 3.05× 10−19 ν0.1
9

1 + 0.04 ν9
erg cm−3, (6.1)

where ν9 = ν/109 Hz. The figure too shows that the synchrotron intensity equals
the cosmic background radiation intensity at ∼1 GHz. The total energy density in
synchrotron radiation obtained by integrating Eq. 6.1 over frequency is small (see Ta-
ble 6.1).

� The cosmic microwave background radiation. The CMB is essentially isotropic and its
intensity is given by a Planck curve at a temperature T = 2.725 K, peaking at 1.87 mm
in frequency space.

� Free-free, free-bound, and bound-bound transitions from a partially / fully ionized
plasma (at ∼ 104 K). We do not discuss this in great detail – it is not an important
contributor to the ISRF in the solar neighborhood – but mention that the free-free emis-
sion coefficient given by

ηff
ν =

8e6

3c3

(
2π

3km3
e

)1/2

gIII(ν, T )
Z2
jk

T 1/2
neNjk e

−hν/kT , (6.2)



112 The interstellar radiation field

Component u [erg cm−3] u [eV]

Radio synchrotron (Eq. 6.1) 2.7× 10−18 1.7× 10−6

CMB, T = 2.725 K 4.19× 10−13 0.262
Dust emission 5.0× 10−13 0.312
Free-free, free-bound, two-photon 4.5× 10−15 2.8× 10−3

Starlight: T1 = 3000 K, W1 = 7× 10−13 4.29× 10−13

T2 = 4000 K, W2 = 1.6× 10−13 3.19× 10−13

T3 = 7500 K, W3 = 1× 10−14 7.11× 10−14

Starlight total 1.05× 10−12 0.655
Hα 8× 10−16 5× 10−4

Other λ ≥ 3648 Å H lines = 1.1× Hα 9× 10−16 5.6× 10−4

0.1−2 keV X-rays 1× 10−17 6.2× 10−6

Total ISRF 2.19× 10−12 1.367

Table 6.1: Components contributing to the total energy density (see Eq. 2.12) of the Interstellar Radia-
tion Field (ISRF). From: Draine (2011).

where Njk is the density of ion j of element k of net charge Zjk and gIII is the velocity
mean for the Gaunt factor of free-free processes; gIII is dimensionless and of order
unity. In cgs-units the front constants together have the numerical value 5.443× 10−39.
For an ionized hydrogen gas and gIII(ν, T ) = 1 we thus have

ηff
ν = 5.443× 10−39 T−1/2 ne np e

−hν/kT . (6.3)

Note that ηff
ν is proportional to the emission measure EMH (see Eq. 8.50).

� Far-infrared (FIR) and infrared (IR) emission from dust grains heated by starlight. In
the solar neighborhood this emission dominates between ν ∼ 500 GHz (or 600µm) and
∼ 6 × 1013 Hz (5µm). About 2/3th of the power radiated by the dust is at λ > 50µm
and can be approximated as thermal emission from dust particles at a temperature of
Td ∼ 17 K. The 1/3rd of the power emitted at shorter wavelength is dominated by the
vibrational bands of PAH molecules as 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7µm that have
undergone single photon heating (see Sect. 12.4).

� Starlight. Within an H I region the radiation at energies above 13.6 eV is negligible
because of strong absorption by neutral H and He. Only at ∼ 102 eV this absorption
has diminished enough to let soft X-rays through. Within the range 1−13.6 eV most
of the photons are starlight. Mathis, Mezger, and Panagia (1983) (MMP83) provide an
approximate expression for the local starlight background (see below).
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Figure 6.1: The ISRF in an H I cloud in the solar neighborhood. Spectral lines are not included. The
solid line is the sum of all components for hν ≤ 13.6 eV. Dotted lines are contours of constant photon
occupation number nγ . Squares show the measured sky brightness at various frequencies. From: Bruce
Draine (2011), Physics of the interstellar and intergalactic medium.

6.1 The MMP83 prescription for the ISRF

Mathis, Mezger, and Panagia (1983), henceforth MMP83, provide an approximate expression
for the local starlight background consisting of the sum of three diluted blackbodies and a
piecewise power-law approximation for the range 912Å < λ < 2450 Å. The diluted black-
body component is given by

ν uν =
3∑
j=1

8πhν4

c3

Wj

ehν/kTj − 1
for λ > 2450 Å, (6.4)

where the blackbody parameters Tj and Wj are given in Table 6.1. Note that originally,
MMP83 adopt W1 = 5× 10−13. To improve agreement with the COBE-DIRBY photometry
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data, W1 is increased to 7× 10−13. It is this new estimate that is plotted in Fig. 6.1.

The radiation field between 5.04 eV (2460 Å) and 13.6 eV (912 Å) is of considerable impor-
tance in the neutral ISM, because it can (1) photo-excite and photo-dissociate H2 and other
molecules, (2) photo-ionize many heavy elements, and (3) eject photo-electrons from dust
grains. However, the intensity of the far-ultraviolet (FUV) radiation field is spatially variable
because the O and B stars that are the primary emitters are neither numerous nor spatially dis-
tributed, and because of the strong attenuating effect of interstellar dust in the FUV. MMP83
represent the local FUV background by three power-law segments. In units of erg cm−3 these
are

ν uν = 2.372× 10−14 (λ/µm)−0.6678 1340− 2460 Å

= 6.825× 10−13 (λ/µm) 1100− 1340 Å

= 1.287× 10−9 (λ/µm)4.4172 912− 1100 Å (6.5)

Early estimates of the background FUV radiation field were made by Habing (1968). He
estimated an energy density times frequency ν uν ∼ 4× 10−14 erg cm−3 at λ = 1000 Å (12.4
eV). This is such a well known estimate that it is conventional to reference other estimates of
the intensity near 1000 Å to this value. To this end, we define the dimensionless parameter

χ ≡
(ν uν)

1000 Å

4× 10−14 erg cm−3
. (6.6)

The original MMP83 estimate for the ISRF has χ = 1.23. Integration of the spectrum by
Habing between 6.0 eV and 13.6 eV gives an energy density (ν uν)6−13.6 eV = 5.29× 10−14

erg cm−3. It is also custom to use this value as a reference. We define

G◦ =
(ν uν)6−13.6 eV

5.29× 10−14 erg cm−3
. (6.7)

The original MMP83 estimate for the ISRF has G◦ = 1.14.

The MMP83 estimate of the local starlight intensity (Eqs. 6.4 and 6.5) itself is often used as a
reference (see e.g. Sect. 12.4). The starlight component to the ISRF is then described as

uν = U uMMP83
ν , (6.8)

where U is a constant.

6.2 Radiation field in a photo-dissociation region (PDR) near a hot star

Consider a luminous massive O star (accompanied by additional lower luminosity stars) ex-
citing an H II region adjacent to a molecular cloud. The Lyman continuum radiation field
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Figure 6.2: The ISRF in neutral gas adjacent to an H II region with peak EMH ∼ 4 × 106 cm−6 pc.
Starlight is from an O star with T = 35, 000 K and dilution factor W = 2× 10−13, which corresponds
to a distance of 0.2 pc from a star of spectral type O8 V. Spectral lines, e.g. the hydrogen recombination
lines, are not shown. The infrared emission from dust is calculated using a dust model with a starlight
heating rate 3000 times the ISRF shown in Fig. 6.1. Dotted lines are contours of constant photon occu-
pation number nγ . From: Bruce Draine (2011), Physics of the interstellar and intergalactic medium.

(in-between 13.6 eV and ∼ 100 eV) will be absorbed within the H II region surrounding the
hot star. Radiation below 13.6 eV will arrive at the boundary of the H II region attenuated only
by absorption by dust that is able to survive in the H II region. After crossing the ionization
front separating the ionized and neutral regions, the photons will enter what is referred to as
a photo-dissociation region or photon-dominated region or PDR. Fig. 6.2 shows the spectrum
of the radiation field within the PDR.

The PDR is illuminated by the same CMB and galactic synchrotron radiation as a diffuse H I

cloud. In addition, the radiation field includes starlight from the nearby O star at hν < 13.6 eV,
free-free and line emission from the H II region, and emission from the warm dust in the PDR.
From the perspective of the PDR the H II region covers about half of the sky. A bright H II
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region, such as the Orion Nebula, has an assumed angle-averaged EMH ≈ 1 × 106 cm−6 pc
(see Eq. 8.50). It is this value that has been assumed in Fig. 6.2. The starlight that enter the
PDR mostly ends up being absorbed by dust, with the energy re-radiated in the IR. The dust
emission peaks at several tens of microns or 100−200 K.
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Exercise 6.1

After the Sun, Sirius (αCanis Majoris) is the brightest star in our sky. It is actually a
binary; Sirius A and Sirius B. Sirius A is spectral type A1 V, with mass 2.1M�; Sirius B
is a (much fainter) white dwarf, with mass 0.98M�. The Sirius system has luminosity
L = 25L� and is at a distance d = 2.6 pc.

a) Give an expression for the total energy density (see eq. 2.12) in terms of luminosity L
and distance d.

b) What is the energy density u due to radiation from Sirius alone at the location of the
Sun? What fraction of the local starlight background energy density is contributed by
Sirius alone? (Consult Table 6.1).

Exercise 6.2

Show, by computation, that indeed the energy density of the Cosmic Microwave Back-
ground is uCMB = 4.19× 10−13 erg cm−3, as listed in Table 6.1.

Exercise 6.3

This could be a nice exam question. From the dispersion of radial velocities of galaxies
in the Coma cluster and applying the virial theorem, one finds a total mass for the Coma
cluster of 3.3 × 1015M�. The total mass of all stars in all galaxies of the Coma cluster
can be derived from the total UV to infrared luminosity of the entire system and is 1.5×
1013M�. The Coma cluster also contains hot gas, with Tgas = 8.8 × 107 K. In this
exercise we investigate whether this hot gas might account for the difference in total
mass and total mass in stars.

Coma is a spherical cluster of galaxies with radius 3 Mpc. The hot gas is optically
thin, and we assume that it is distributed homogeneously and composed of fully ionized
hydrogen. The temperature of the gas is so high that it effectively emits all its energy at
x-ray wavelengths. The measured x-ray luminosity of the gas is Lx = 5×1044 erg sec−1.
We may assume gIII(ν, T ) = 1.

a) Derive a formula that gives the frequency integrated emission of the gas in all directions
in erg sec−1 cm−3.

b) Derive a formula that gives the electron density as a function of Lx and other relevant
quantities.

c) Calculate the total mass of the hot gas in solar mass. Recall that the proton mass mp =
1.66 × 10−24 gr cm−3. Which fraction of the total mass of the Coma cluster resides in
the hot gas component?
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d) It appears that the mass in gas and stars can not account for all of the mass in the Coma
cluster. What component may be responsible for the missing mass?



7

Cold and Warm Neutral Medium

The distinction between the neutral medium and the ionized medium is to some extend some-
what arbitrary. The neutral medium is best defined by the absence of hydrogen Lyman con-
tinuum photons (with λ ≤ 912 Å), so that hydrogen is neutral. These photons apparently can
not reach these (therefore neutral) parts of the ISM because of severe interstellar extinction.
However, interstellar extinction is considerably smaller at wavelengths longward of the Lyman
discontinuity, so that some elements like carbon or the metals as well as the dust grains can be
ionized by UV radiation. Cosmic rays ionize a small fraction of all elements even deep inside
molecular clouds, and X-rays, when present, can also weakly ionize all elements including
hydrogen. The neutral medium has, in fact, a non-zero degree of ionization, which plays a key
role in its physics.

As we have seen in Section 1.1, the CNM and WNM together contain most of the mass of the
interstellar medium. There are two main observables to study the neutral gas: the 21-cm line of
atomic hydrogen and metallic lines. The 21-cm line traces the main constituent of the ISM and
allows us to measure its mass(distribution), kinematics and temperature. Allowed transitions
of metallic species, many of which are located in the UV and optical part of the spectrum,
give the chemical composition and some physical parameters. At far-IR wavelengths one may
also detect forbidden fine-structure lines of metal species. These are important coolants of the
ISM in media that have temperatures up to ∼ 100 K.

7.1 The 21-cm line of atomic hydrogen

The 21 cm or 1.420 GHz line of hydrogen may be observed in emission or in absorption.
Combining equations (5.38) and (5.22), we may write for the line extinction coefficient

χ`ν =
c2

8πν2
lu

gu
gl
Aul

[
1− gl

gu

nu
nl

]
nl φν (7.1)

=
c2

8πν2
lu

gu
gl
Aul

[
1− e−hνlu/kT

]
nl φν , (7.2)
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where the latter equation assumes that the 21-cm line is in LTE (see Sect. 5.2 and Eq. 2.67).
In case LTE is not valid, we may still preserve the latter expression replacing T for Text (see
eq. 2.79). As hνlu/kT � 1 (i.e. the Rayleigh-Jeans approximation) we may simplify this
expression to

χ`ν =
c2h

8πk νlu

gu
gl
Aul

1

T
nl φν = 1.040× 10−14 1

T
nl φν . (7.3)

In the neutral medium most of the hydrogen atoms are in the ground state, hence in the two
hyperfine sub-levels, because the level immediately above is at an energy of 10 eV. As the two
hyperfine sub-levels have gu = 3 and gl = 1 (see figure 3.4) one finds that in LTE the total H I

density is given by
nH = nl + nu = nl + 3nl = 4nl, (7.4)

again realizing that the Rayleigh Jeans limit holds. So, nl = nH/4. Using Eq. 2.40 we may
derive

τν = 2.601× 10−15 1

T
N(H I)φν , (7.5)

where

N(H I) =

∫ D

0
nH(s) ds (7.6)

is the column density of hydrogen atoms in atoms cm−2, i.e. the number of atoms in a column
with unit cross-section in the line of sight (see also eq. 4.23). For the 21-cm line line broad-
ening is only caused by the Doppler effect, its natural width being extremely narrow since the
lifetime of the upper level is only limited by collisions which are rare. We may thus adopt a
Doppler profile for φν . This gives

φν = φ(ν − νlu) = φ(∆ν) =
1√

π∆νD
exp

[
− (∆ν/∆νD)2

]
, (7.7)

where ∆νD is the Doppler width defined as

∆νD ≡
vD

c
νlu =

νlu
c

(
2kT

m

)1/2

, (7.8)

and vD is the Doppler velocity. It is often convenient to express the line profile as a function
of radial velocity rather than of frequency. These are related through φν dν = φv dv. Using
∆v = v − v◦ = c (ν − νlu)/νlu, hence dv/dν = c/νlu, this yields

φv = φ(v − v◦) = φ(∆v) =
1√
π vD

exp
[
− (∆v/vD)2

]
. (7.9)

For the optical depth in v space we have

τv = 2.601× 10−15 1

T
N(H I)

c

νlu
φv = 5.491× 10−14 1

T
N(H I)φv (7.10)
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as for the 21-cm line c/νlu = λlu = 21.11 cm (of course). We may multiply both sides with T
and integrate over the entire line. As the profile function is normalized to unity (see eq. 5.18)
we obtain

N(H I) = 1.821× 1013

∫
line

T τv dv, (7.11)

where the front constant has units (K cm s−1)−1. For those that prefer velocities in km s−1,
the front constant becomes 1.821× 1018 (K km s−1)−1.

Radiative transfer in the 21-cm line

For a spatially resolved homogenous medium we may use solution (2.78) that conveniently
expresses the observed specific intensity in the brightness temperature Tb(0). By adding and
subtracting the background specific intensity similar as to what we did in Eq. 2.55, we have

∆Tb(v) = (T − Tbg)
[
1− e−τv

]
, (7.12)

where ∆Tb(v) = T obs
b (v)− Tbg is the brightness temperature of the line profile at velocity v

above the background continuum or baseline level Tbg. For an emission line ∆Tb > 0 and for
an absorption line ∆Tb < 0.

Let us consider the situation where T � Tbg. We may then drop Tbg in Eq. 7.12 and use the
resulting equation to eliminate T from Eq. 7.11 such that

N(H I) = 1.821× 1018

∫
line

∆Tb(v) τv
1− e−τv

dv, (7.13)

where the velocity is now in km s−1. Interestingly, if the medium is optically thin the column
density is directly given by a measurement of the spectral line integrated brightness temper-
ature, i.e. it is no longer a function of the kinetic temperature of the medium and the optical
depth. We have

N(H I) = 1.821× 1018

∫
line

∆Tb(v) dv ' 3× 1018 ∆Tb(v = 0) vD, (7.14)

where in the last expression we have approximated the integral over velocity by the ∆Tb at
line center times the full width at half maximum or FWHM of the peak. For a Doppler profile
FWHM = 2

√
ln 2 vD.

Figure 7.1 shows an all-sky map of the H I 21-cm integrated line intensity, converted to
N(H I), assuming self-absorption to be negligible (so using Eq. 7.14). A map like this al-
lows to study, among others, the thickness of the galactic disk in neutral hydrogen. On the
Southern left-side quadrant of the image one can identify the Magellanic Clouds, the SMC
on the right and the LMC on the left. Notice that the two dwarf galaxies are conspicuously
connected by a bridge of H I gas. Indeed, this feature is called ‘The Bridge’.

Let us assume that we have mapped a part of the sky centered on a distant galaxy. We may
compute the mass in neutral hydrogen in this galaxy by integrating Eq. 7.14 over the total
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Figure 7.1: H I emission integrated over the velocity range −400 < v < +400 km s−1 in the Leiden-
Argentine-Bonn (LAB) dataset, shown in Hammer-Aitoff projection centered on the Galactic Anti-
Center. The angular resolution is 36-arcmin. The LMC and SMC are visible, with a connecting H I
‘bridge’. The integrated emission ( 0 < N(H I) < 2× 1022 atoms cm−2, on a logarithmic scale) yields
column densities under the assumption of optical transparency. This assumption may be violated at
latitudes within about 10◦ of the Galactic equator. From: Kalberla et al. 2005, A&A 440, 775 (but
image horizontally mirrored).

projected surface dS of the galaxy. This is the topic of Exercise 1, so we refrain from doing it
here. One finds

M [M�] = 2.354× 105 d2 [Mpc]

∫
line
Fv [Jy] dv[ km/s], (7.15)

where the mass is in solar masses, the distance in Mpc, and the integral is the measured flux
integrated over the line in Jansky.

Main findings from studies of the 21-cm line

The main application of the 21-cm line is the measurement of the mass, the distribution and
the kinematics of atomic gas in our Galaxy and in external galaxies. For this, it is generally as-
sumed that the line is optically thin, so that the column density does not depend on the physical
temperature (Eq. 7.14). Always be conscious that this is not generally correct, consequently
that the H I masses obtained in this way may be lower limits. Despite this limitation, emission
and absorption measurements of neutral hydrogen have yielded very important insights and
results. These include (see Lequeux 2003):

◦ The atomic interstellar medium is extremely inhomogeneous. The 21-cm emission is
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Figure 7.2: The Magellanic Stream in H I (pink) observed with the Green Bank Telescope displayed in
Galactic coordinates using an all-sky Hammer-Aitoff projection centered on the Galactic AntiCenter. A
model is applied to remove Galactic and non-related extra-galactic emission prior to making this image.
The H I data is shown together with an optical all-sky image (blue, white, and brown; Mellinger 2009).
The Magellanic Bridge between the LMC and SMC and the Leading Arm are clearly visible, as is the
extended fragmentation across the Stream. The pink part of the image is similar to Fig. 7.1, but velocity
information and an optimized contrast is used to better bring forward the Magellanic Stream. From:
Nidever et al. 2010, ApJ 723, 1618 (but image horizontally mirrored).

dominated by filaments, sheets and shells.

◦ There are two phases in the atomic interstellar medium: cool H I gas and warm H I gas.
They contain about as much matter, however, the warm (several thousands degrees)
component has a low density (0.1−0.5 cm−3) and is barely seen in absorption. The
cool component (60−100 K) is denser (tens of atoms cm−3), and dominates absorption.
See also Table 1.1. The cool gas is the main contributor to the complex structures
mentioned above.

◦ The warm component forms a thicker galactic disk than does the cool gas. Their re-
spective mean half-thicknesses are 186 pc and 105 pc. Moreover, there seems to exist
some neutral gas in the halo, with a high velocity dispersion (of 60 km s−1) and a scale
height of the order of 4400 pc.

◦ There exists, at high galactic latitudes neutral gas that falls onto the galactic plane
with velocities ranging from a few km s−1 to several hundreds of km s−1. These high-
velocity clouds might either be of extragalactic origin, or more probably originate in the
hot ionised gas ejected by supernovae and bubbles from the galactic disk (and which
forms the Galactic corona) which then falls back onto the disk while cooling and re-
combining (see Fig. 7.3).
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Figure 7.3: High Velocity Cloud distribution displayed in Galactic coordinates using an all-sky
Hammer-Aitoff projection centered on the Galactic AntiCenter. Top: H I column density in the range
of log10

(
NHI/cm2

)
= 18 to 21 under the assumption that the emission is optically thin and fills the

16.2-arcmin beam. A model is applied to remove Galactic H I emission prior to making this image.
Bottom: radial velocity in the Galactic standard-of-rest frame, derived from Gaussian fits, in the range
of vGSR = −300 to +300km s−1. Several major HVC complexes (such as Complex C and Complex A
at 4−14 kpc and 8−9 kpc distance, and the Magellanic Stream and the Leading Arm) as well as a few
notable individual structures and external galaxies (M31, M33) are labelled. Note that a few remaining
artefacts and residual stray radiation were manually removed for presentation purposes. From: West-
meier (Tobias) 2018, MNRAS 474, 289.
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◦ The Magellanic Clouds (MCs) are surrounded by an extended network of gaseous struc-
tures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trail-
ing the Clouds in their orbit around the Milky Way. A structure leading the MCs, the
Leading Arm, is likely physically related to the Magellanic Stream. The origin of these
structures is being investigated. They may be the result from tidal stripping of the MCs
by the Milky Way Galaxy (e.g. Gardiner & Noguchi 1996), ram pressure forces exerted
by the Galaxy corona (e.g. Moore & Davis 1994), supernova blowout following star
formation in the LMC (Nidever et al. 2008), or tidal evolution as a result of a collision
between the LMC and SMC (Besla et al. 2010, 2012).

7.2 Interstellar absorption lines

The spectra of stars, safe for those in the direct solar neighborhood, contain many interstel-
lar absorption lines. They differ from stellar lines by being much narrower, the interstellar
medium being much cooler than the stellar photospheres where the stellar lines originate.
When we target a spectroscopic binary system, we see the photospheric lines of one (in case
of a SB1 binary) or both (in case of a SB2 binary) components shift in wavelength while the
two sources orbit each other due to the Doppler effect as a result of their orbital motion. In-
terstellar lines in such a spectrum, however, do not show such a periodic movement. In the
visible and near-UV, we observe interstellar lines from atoms (Na, K, Ca), ions (Ca+, Ti+),
molecules (CN, CH, C2), and ionized molecules (CH+). See Fig. 7.4 for an example of a few
such lines toward the star ζ Ophiuchi. A very large number of atomic, ionic and molecular
lines have been observed in the far-UV. Among the atomic lines the Lyman series of atomic
hydrogen lines are conspicuous, and among the molecular lines the many lines of H2.

These lines contain important information on the chemical composition, physical conditions,
and velocity fields in the diffuse interstellar medium. In this section, we will study the line
profiles of interstellar lines in more detail. We first define a means to describe the strength of
a spectral line. Next, we discuss how one may derive the column densities from such lines.

Describing the line profile

The most complete description of the spectral line is given by its profile. The relative depres-
sion or absorption depth of the profile is strickly speaking defined as

dλ ≡ 1− Iλ
Ic
λ

(7.16)

where Ic
λ is the continuum intensity at the wavelength λ. In the presence of a spectral line it is

by definition impossible to measure the continuum intensity, therefore its value is determined
by interpolation of the continuum intensity at both sides of the line profile. In case the absorp-
tion depth is positive, the line is an absorption line; in case dλ is negative, we are dealing with
an emission line.
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Figure 7.4: Left panel: a selection of optical absorption lines of interstellar origin. Right panel:
A small part of the optical spectrum of ζ Oph, a O9.5 V type stars with E(B−V )= 0.32. The
Ca II Kλ3933.66 Å and Ca II Hλ3933.66 Å as well as the CH+ λ3957.74 Å interstellar lines can be
observed. Note that the Ca II H line is positioned inside the Hε hydrogen line, which is much broader
and of stellar origin. Table and figure: Maciel (2013)

If one can not (or does not want to) measure the specific intensity, one may use a measurement
of the flux to describe the absorption depth. In this case

Dλ ≡ 1− Fλ
Fc
λ

(7.17)

where Fc
λ is the continuum flux at wavelength λ. Also the continuum flux at a wavelength in

the line profile can not be measured directly, and therefore it also follows from interpolation
of the continuum flux at both sides of the line.

Before the absorption profile can be used as a diagnostic of the interstellar gas it needs to be
corrected for instrumental distortions. This distortion, which always leads to degradation of
the line profile, is described by the instrumental profile. Say a light source emits an emission
line of infinitesimal width. The profile of this line can be described by a δ-function. Mea-
surement of this line by an instrument shows a smeared profile (typically a Gaussian profile),
of which the sharpness is determined by the quality and/or settings of the spectrograph. A
measure of this sharpness is the spectral resolution or resolving power

R ≡ λ/∆λ (7.18)

Here ∆λ is the bin-width of the flux measurement. For excellent instruments R can be larger
than 100 000.
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Equivalent width

The concept of equivalent width of a spectral line was developed by Marcel Minnaert (1893-
1970)1. The equivalent width is the line profile integrated absorption depth, i.e.

Wλ(line) ≡
∫

line
Dλ dλ =

∫
line

(
1− Fλ
Fc
λ

)
dλ (7.19)

and is – in case of an absorption line – equivalent to the width of a fully blackened rectan-
gular profile of identical surface area (see figure 7.5). It is custom to measure Wλ in (milli-)
Angström or in the velocity unit km s−1. In case of an absorption line Fc

λ ·Wλ is equal to the
total continuum energy that is removed by the line. In case of an emission line Wλ will be
negative, and −Fc

λ ·Wλ describes the total energy that is added by the line to the continuum.
The equivalent width is a suited measure for the strength of the spectral line, as it is, for in-
stance, much less sensitive to smearing of the profile as a result of the finite resolution of the
spectrograph, than is, for instance, the central absorption depth. For an accurate measurement
of Wλ it usually suffices to have a spectral resolution of R ∼ 8 000 if the signal-to-noise is
at least several tens. The equivalent width offers a quantitative measure of the line profile in
cases where the flux levels are too low to observe a detailed line profile. Finally, the equivalent
width is independent of interstellar extinction (see § 12.2).

If the source is spatially resolved, one can determine the equivalent width from

wλ(line) ≡
∫

line
dλ dλ (7.20)

Total line flux

The line profile integrated flux or total line flux in erg cm−2 sec−1 is

F(line) ≡
∫

line
(Fν −Fc

ν) dν =

∫
line

(Fλ −Fc
λ) dλ (7.21)

The total line flux (measured at distance d) is especially important in studies of emission
lines, and therefore is defined such that a positive value results if Fν > Fc

ν . One obtains
F(line) = −Fc

λ ·Wλ = −Fc
ν ·Wν . In, for instance, planetary nebulae the continuum flux can

be so low that it can not be measured (accurately), i.e. Fν � Fc
ν . The continuum contribution

can then simply be omitted when computing the total line flux. Note that the total line flux –
in contrast with the equivalent width – is dependent on the amount of interstellar extinction.

Related to the total line flux is the luminosity in the line, in erg sec−1, i.e.

L(line) = 4πd2F(line) (7.22)
1Born in Ghent, Belgium, Minnaert worked at the Utrecht astronomical observatory Sonnenborgh from shortly

after World War I. From 1937 until 1962 he was the director of the observatory.
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Figure 7.5: Schematic representation of the flux behaviour of a spectral line (i.e. the profile). The
equivalent width Wλ is equal to the surface area of the spectral line divided by the continuum flux.
Figure: Edward Jenkins.

7.3 Curve of growth

We consider a simple model for interstellar absorption in the line of sight towards a distant
star. The star is responsible for the continuum light and emits at a brightness temperature Tb.
In front of the star is a homogeneous layer where the interstellar absorption line is formed, and
that emits according to a Planck function at temperature TL. We will assume that TL < Tb,
such that an absorption line is formed. Note that if the temperature in the line forming layer
would be higher than Tb – implying an emission line – the following discussion would remain
valid.

Though mostly we have been considering frequency space, we will now switch to wavelength
space as this is quite generally done in absorption line studies. The emerging intensity follows
from eq. (2.52) and is equal to

Iλ = Bλ(Tb) e−τλ +Bλ(TL)
[
1− e−τλ

]
(7.23)

where τλ is the optical depth in the spectral line. If we neglect the contribution of stimulated
emission in the line extinction coefficient, we have

χλ = αlu(λ)nl =
πe2

mec

λ2
lu

c
flu φ(λ)nl (7.24)
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where (πe2/mec) = 0.02654 cm2 hz. flu is the oscillator strength. It is related to the Einstein
coefficients in the following way

πe2

mec
flu =

hνlu
4π

Blu. (7.25)

For the line profile function φ(λ) we consider a Voigt profile, which is the convolution of a
Doppler profile and a Lorentz profile. This is a quite general expression for the profile shape,
capturing thermal and turbulent broadening processes (described by a Doppler profile) and
natural broadening and collisional (or pressure) broadening (described by a Lorentz profile).
Let us briefly summarize the essentials of these profiles. Doppler profile Eq. 7.7 in wavelength
space is given by

φλ = φ(λ− λlu) = φ(∆λ) =
1√

π∆λD
exp

[
− (∆λ/∆λD)2

]
, (7.26)

where the Doppler width ∆λD = (λ2
lu/c) ∆νD. The Lorentz profile in wavelength space is

φλ =
1

π

∆λL

∆λ2 + ∆λ2
L

, (7.27)

(7.28)

where ∆L = λ2
lu γ/4πc is the Lorentz width and γ the damping constant. The convolution of

these two profiles yields the Voigt profile

φλ =
λ2
lu

c

1√
π∆λD

H(a, x), (7.29)

where H(a, x) is the Hjerting function. The Hjerting function is not normalized – unlike the
Doppler and Lorentz profile – but has a surface

√
π in units of x (see below). Examples of the

Hjerting function are given in Fig. 7.6. We have

H(a, x) ≡ a

π

∫ +∞

−∞

exp(−y2)

(x− y)2 + a2
dy, (7.30)

where x = ∆λ/∆λD is the distance from line center in units of the Doppler width and
a = ∆λL/∆λD is the ratio of the natural width to the Doppler width. In most astrophys-
ical circumstances a � 1, in which case the Hjerting function can be approximated quite
accurately by the sum of a Gaussian core and the damping wings of the Lorentz profile, i.e.

H(a, x) ' exp(−x2) +
a√
πx2

. (7.31)

Note that H(a, 0) ' 1− a/
√

(π).

If we define the integrated column density in cm−2 of particles in level l that are in the line of
sight similar to Eq. 7.6, i.e.

Nl ≡
∫
nl(s)ds, (7.32)
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Figure 7.6: Hjerting functions for different a. For small a and in case of weak spectral lines the central
parts of the profile can well be approximated with a Doppler profile. For large a and strong strong
lines the wings are characterized by the Lorentz behavior H(a, x) ∝ x−2. From: Cococubed School
of Earth and Space Exploration Arizona State University. See: Cococubed.com.

we obtain for the line optical depth

τλ = αlu(λ)Nl =
πe2

mec

λ2
lu

c
flu

1√
π∆λD

NlH(a, x) =
τ◦

H(a, 0)
H(a, x) ' τ◦H(a, x),

(7.33)
where τ◦ is the optical depth at line centre. The last equality in Eq. (7.33) follows from
H(a, 0) ' 1− a/

√
(π) ' 1 for a� 1. For the relative depression dλ we get

dλ = 1− Iλ
Ic
λ

=
Bλ(Tb)−Bλ(TL)

Bλ(Tb)

(
1− e−τλ

)
≡ dmax

λ

(
1− e−τλ

)
, (7.34)

where Ic
λ = Bλ(Tb), the continuum specific intensity in the absence of the spectral line. dmax

λ

is the maximum depression. This yields for the equivalent line width

wλ = dmax
λ

∫
line

(
1− e−τλ

)
dλ. (7.35)

Figure 7.7 shows how the line profile and equivalent line width depend on optical depth τ◦
for a line that has dmax

λ = 1, i.e. in case the source function in the line forming layer – i.e.
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Figure 7.7: The curve of growth for a Lyα of H I with a Doppler velocity ξD = 30 km s−1. The three
regimes discussed in the text, the linear (weak lines), flat (saturated lines), and damping part (strong
lines) are shown by thicker curves. The approximations describing these regimes are Eq. 7.36, 7.37,
and 7.39, respectively. Corresponding line absorption profiles are shown for each regime and their
locations on the COG are marked with filled dots. Figure: Chris Churchill.

the interstellar medium – is negligibly small compared to the continuum source function. The
behaviour of the equivalent width may be characterized by three regimes.

Weak lines

First, the regime of weak lines, for which τλ � 1. In this limit the relative depression re-
duces to dλ ' dmax

λ τλ. For weak lines we may replace the Hjerting function H(a, x) by
exp[−(∆λ/∆λD)2], which has surface

√
π∆λD. This yields

wλ ' dmax
λ τ◦

√
π∆λD =

πe2

mec

λ2
lu

c
flu d

max
λ Nl (7.36)

The equivalent width increases linearly with column depth Nl. The curve of growth there-
fore first shows a linear increase of wλ with line strength. Note that the equivalent width is
independent of the profile function.
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Saturated lines

For τ◦ > 1 the core of the line saturates. The intensity at line centre approaches the value
Bλ(TL), reflecting the maximum depression dmax

λ . The width of the line wings still increases,
however, the corresponding increase in the equivalent width is no longer linear with τ◦, but
proceeds at a slower pace. It approximately holds that

wλ ≈ dmax
λ Q(τ◦) ∆λD. (7.37)

For increasing optical depth,Q(τ◦) increases from about 2 to 6 in this plateau or shoulder part
of the curve of growth. An approximate analytical expression for this function is Q(τ◦) =
2
√

ln τ◦, valid from τ◦ & 3. This regime of the curve of growth is therefore (also) referred to
as the logarithmic part.

Strong lines

For very strong lines, i.e. lines for which τ◦ � 1, the line core is completely saturated and
does not react to a further increase of τ◦. However, the far line wings will still have τλ < 1. For
a sufficiently large τ◦ both wings will contribute significantly because they are formed in the
damping part of the Voigt profile, i.e. whereH(a, x) ' a/(

√
πx2) = (a/

√
π)(∆λD/∆λ)2 ∼

1/∆λ2. This decrease with wavelength is much less dramatic than the exponential decay of
the Doppler core. In the damping part of H(a, x) we may write

τλ = τ◦
a√
πx2

= τ◦
a√
π

∆λ2
D

∆λ2
. (7.38)

Using the transformation u2 = 1/τλ, we obtain after substitution in eq. (7.35) for the equiva-
lent width

wλ ' dmax
λ ∆λD

√
τ◦

a√
π

∫
line

(1− e−1/u2
) du

= dmax
λ ∆λD

√
τ◦a 2π1/4. (7.39)

For the last equality we used the standard integral∫ +∞

−∞

(
1− e−1/x2

)
dx = 2

√
π. (7.40)

Empirical curve of growth and gas-phase elemental abundances in the ISM

Let us consider the line of sight toward ζ Ophiuchi in the constellation Ophiuchus. The visual
spectrum of this bright O9.5 V star is well known for its many interstellar absorption lines.
Studies have identified at least six distinct H I clouds and one H II cloud in this 112 parsec
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Figure 7.8: Empirical curve of growth for the dominant ion stages expected in H I clouds. The chosen
line of sight is toward the O9.5 V star ζ Ophiuchi. The turbulent velocity is 6.5 km s−1 and the damping
constants appropriate for the lines labeled in the upper right corner. The horizontal scale was labeled
to give the column depth for Fe II2382 Figure: Donald Morton, 1975, ApJ 197, 85.

long sight line. ζ Oph is moving through space with a peculiar velocity of 30 km s−1 and is a
runaway star from the Scorpius-Centaurus Association.

The different H I clouds can be identified through their distinct radial velocities. We assume
that absorption lines from different elements in the same cloud are broadened in the same way
by the Doppler effect, with the same velocity dispersion. This is the case if the Doppler effect
is dominated by turbulence rather than by thermal motion, frequently the case for interstellar
clouds. In this case the Doppler width is given by (see Eq. 7.8)

∆νD =
vD

c
νlu =

νlu
c

√
v2

th + v2
turb =

νlu
c

√(
2kT

m

)
+ v2

turb '
νlu
c
vturb (7.41)

hence ∆λD = (λ2
lu/c) ∆νD = (λlu/c) vturb, where vturb is the turbulent velocity.

The Doppler width ∆λD is proportional to λlu and for unsaturated lines wλ ∝ ∆λD ∝ λlu
(see Eq. 7.36). As a result, if we plot the curve of growth which gives log(wλ/λlu) as a
function of log(λluNl flu), the representative points for the different lines from lower level l
are located on a single curve, even if these lines are saturated. Be ware that this is no longer
the case for larger column densities, in which case the line width is dominated by the damping
wings, because the damping constant is not the same for all lines.

Figure 7.8 shows the empirical curve of growth for ζ Oph. Lines of different elements are
shifted such that they all are given as a function of the column depth of Fe II λ2382. To do
so requires knowledge of the excitation, ionization, and elemental abundance of the species
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involved. In a formal treatment one may split out these quantities in the following way

Nljk =
Njlk

Njk

Njk

Nk

Nk

NN
NN

=
gljk

Ujk(Text)
e−Eljk/kTextqjk(Tion)AkNN (7.42)

where Nljk = Nl in our previous notation; Njk is the column depth of the ion; Nk is the ele-
mental abundance, and NN is the column depth of hydrogen. In this notation qjk = Njk/Nk

is the ionization fraction. The notation adopts the LTE formalism (see Eq. 2.70). However, the
interstellar lines seen in the ISM all originate from the ground level, henceNljk/Njk ' 1. For
the ionization temperature it is safe to adopt the kinetic temperature derived from the 21-cm
line. Note that the ionization equilibrium is a function of temperature and electron density
(see e.g. eq. 2.72). For some elements it can be difficult to estimate their total abundance if
only one ionization state can be observed. For O, N, and the noble gases this problem does
not arise because they are not ionized in the neutral (cold and warm) medium. There is no
difficulty either for most of the metals – including iron – and carbon which essentially exist
as singly ionized species in this medium. Calcium typically exists as Ca0 and Ca+, though
Ca+ is much more abundant. The ionization equation of Calcium (for ionization equations,
see section 8.3) can then be used to constrain the electron density ne. The electron density
in warm clouds is generally found to be lower than 1 electron cm−1 (see Table 1.1). Most of
these free electrons are in interstellar clouds that are relatively transparant to the UV, and come
from the ionization of carbon, the most abundant element with an ionization potential (11.260
eV) lower than that of hydrogen. Once the state of the gas has been established, abundances
relative to hydrogen (or, as in Fig. 7.8, relative to iron) may be determined by shifting curves
of growth for different elements.

The result of such analysis have already been shown in Fig. 1.5. Most elements are found to
be underabundant in the diffuse interstellar medium with respect to the Solar system, young
stars and H II regions. Exceptions are S, Zn and P, which do have solar abundances in the
warm neutral medium. The missing elements in the ISM are believed to be in dust grains. The
underabundance of an element is larger if its condensation temperature is higher, confirming
this idea. Condensation must have taken place in circumstellar envelopes, and also the inter-
stellar medium itself. The underabunances are smaller in the warm medium, suggesting that
the evaporation of grains, probably as a consequence of shocks, has returned a fraction of the
elements to the gas phase.
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Exercise 7.1

Prove that Eq. 7.15 follows from integrating Eq. 7.14 over a projected surface area dS.
The source is at a very large distance, such that dS = d2 dω, where d is the distance to
the source, and dFν = Iν dω, where dFν is the flux we receive from solid angle dω.

Exercise 7.2

Figure 7.9: Integrated H I spectrum of the galaxy UGC 11707 obtained with the 140-foot telescope of
the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The beam width∼
20 arcmin. The line shows the typical two-horned profile of a spiral galaxy. The line center frequency
is ν = 1416.2 MHz. The rest wavelength line center frequency is at ν◦ = 1420.4 MHz or 21 cm. The
measured line width is 200 km/s. From: NRAO.

We have measured the H I 1420.4 MHz (21 cm) line of the spiral galaxy UGC 11707 with
the NRAO facility in Green Bank (see Fig. 7.9).

a) Assume the galaxy is at such a large distance that its recession velocity is caused by
the uniform Hubble expansion of the universe. Derive the distance to this galaxy. The
Hubble constant is 72 km s−1 Mpc−1.

b) Assume that the H I emission from this galaxy is optically thin. The mean peak height of
the line is at about 0.35 Jy. Compute the H I mass of UGC 11707.
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Figure 7.10: Panels showing a hypothetical spectral window containing stellar and one interstellar
line. The spectral resolution of the spectrum in panel A is very high; that of the other panels is so
low that the line broadening is dominated by the spectral resolution of the instrument. Hints: In panel
A the interstellar cloud in front of the star is cold relative to the stellar temperature. In panel B two
observations of the star are shown taken several days apart. In panel D the noisy stellar spectrum is
fitted with a model atmosphere.

Exercise 7.3

In Fig. 7.10, each panel shows a hypothetical spectral window containing stellar and
one interstellar line. Identify in each panel the interstellar line and briefly explain your
reasoning. The spectral resolution of the spectrum in panel A is very high; that of the
other panels is so low that the line broadening is dominated by the spectral resolution of
the instrument. Hints: In panel A the interstellar cloud in front of the star is cold relative
to the stellar temperature. In panel B two observations of the star are shown taken several
days apart. In panel D the noisy stellar spectrum is fitted with a model atmosphere.

Exercise 7.4

Show that the equivalent width in frequency units is

Wν(line) ≡
∫

line

(
1− Fν
Fc
ν

)
dν (7.43)

and that it is related to the equivalent width in wavelength units as Wν = c/λ2Wλ.
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H II regions - part I: structure and
dynamical state

In this and the next chapter we study the physics of ionized regions of hydrogen, so-called
H II regions. In this chapter we first summarize the types of H II regions. Then we address the
ionization structure and dynamics of these clouds. In then next chapter we study the energetics
of H II regions. The latter requires us to study the heating and cooling processes of interstellar
gas. Finally, we discuss how one obtains key properties of H II regions, i.e. its temperature
and density.

8.1 Introduction

In the 19th century an animated debate ensued on the question whether the diffuse objects
seen through telescopes, loosely termed ‘nebulae’, were in fact unresolved stellar associations
or gas clouds. The answer came when these objects were studied using spectroscopy. The
small ‘white nebulae’, those located primarily outside of the plane of the Milky Way, fea-
tured spectra typical for that of stars. These are stellar associations or star clusters. Other
nebulae showed a pronounced line spectrum, sometimes accompanied by an underlying con-
tinuum that did not appear to be of stellar origin. These are the gas clouds, including planetary
nebulae, H II regions, and supernova remnants.

The spectrum of the brightest of these nebulae, the Orion nebula (see Fig. 8.1), was observed in
1863 by William Huggins. Soon after, Balmer lines were recognized in this and other nebulae.
After it was discovered in the Sun, also helium was found. Surprisingly enough, the identifi-
cation of the by far strongest lines in many nebular spectra – in green light at 4959 and 5007
Å – and those of other strong transitions, turned out to be a challenge. Some even speculated
that these unidentified lines were produced by a new and hypothetical element ‘nebulium’.
Progress in the understanding of atomic structure eventually led to the identification of these
lines as forbidden transitions of O III. Other strong nebular lines were found to be of a similar
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Figure 8.1: The Orion Nebula (also known as Messier 42, M42, or NGC 1976) at a distance of ∼400
pc is the closest region of massive star formation to Earth. The dimensions of this image are 65 ×
60 arcmins, corresponding to a physical scale of 7.5 × 7.0 pc. The open cluster of stars in the heart
of the Orion Nebula contains several O-type stars of which the O6pe V star θ1 Orionis C is the most
massive. The optical light we see is the result from line emission of hydrogen (Balmer lines) and
reflection of star light on dust grains.

nature, and due to known elements such as nitrogen, neon, sulfer and argon1. The complexity
of the spectrum of H II regions is nicely illustrated in Fig. 8.2, that shows the IR spectrum of
K3-50A.

H II regions are formed when massive stars reach the main sequence and suddenly ‘switch
on’ their UV radiation field. The gas and dust that remains from the star formation process is
often still around and will be ionized by the UV radiation. Regions of ionized gas around O
and early-B stars are therefore often called H II regions. In a sense, H II regions signal the end
of star formation in a molecular cloud, as the photo-ionized gas is also heated, which causes
over-pressurization through which the cloud is dispersed.

1See Table 2 of Lee & Hyung (2013) for a comprehensive overview of nebular lines in the H II region of the
the planetary nebula NGC 6803).

https://www.aanda.org/articles/aa/pdf/2013/01/aa19263-12.pdf
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Tielens, page 252

Figure 8.2: Infrared spectrum of the dense (ultra-compact) H II gas-cloud surrounding the K3-50A
high-mass star-forming region, measured by the Infrared Space Observatory. The distance to this
source is ∼8.7 kpc. This spectrum shows a multitude of components. The continuum emission is due
to warm dust. Superimposed, are IR emission bands due to PAH molecules. Absorption bands due
to silicates and ices located in a foreground cold molecular cloud are also visible. The line spectrum
shows hydrogen recombination lines and far-IR ionic fine structure lines originating in the H II regions,
as well as those originating in the photo-dissociation region. The jump in the spectrum reflects the
difference is aperture size between ISO’s short wavelength and long wavelength spectrometer and is
not intrinsic. Adapted from: Peeters et al. (2002), A&A 381, 571.

Planetary nebulae have many things in common with H II regions: there too a gas/dust mix-
ture (the stellar wind which was ejected when the star was still an asymptotic giant branch
star) is ionized by the UV photons of the hot white dwarf. White dwarfs can reach much
higher temperatures than main sequence stars, so in general one can expect higher ionization
of the gas in planetary nebulae.

H II regions form a class of relatively well-studied objects that are usually classified as ultra-
compact, compact, and extended H II regions (e.g. Habing & Israel 1979). Ultracompact H II

regions (UCH IIs) have small sizes, of about 0.1 pc, and are located in the inner, high-pressure,
parts of the parental molecular cloud. Compact H II regions have larger sizes, 0.1 − 0.3
pc, and are carving their way out of the clouds. Extended H II regions, have sizes of up to
several parsecs and they represent the mature state of these objects. Giant and supergiant
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H II Class Size Density EM Ionized Mass Number of
[pc] [cm−3] [pc cm−6] [M�] ionizing stars

Hypercompact ∼ 0.003 & 106 & 108 ∼ 10−3 ' 1

Ultracompact . 0.05 & 104 & 107 ∼ 10−2 ∼ 1

Compact . 0.5 & 5× 103 & 107 ∼ 1 ∼ 1

Classical ∼ 10 ∼ 100 ∼ 102 ∼ 105 few
Giant ∼ 50− 100 ∼ 30 ∼ 5× 105 103 − 106 ∼ 102

Starburst nuclei > 100 ∼ 10 ∼ 105 106 − 108 ∼ 103

Table 8.1: Physical parameters of H II regions: size, mean density, emission measure, and ionized
mass. From: Franco et al. (2000), Astrophysics and Space Science 272, 169; Murphy et al. (2010),
MNRAS, 405, 1560, and Tielens (2005).

H II regions are observed in external galaxies, but they represent a conglomerate of many
individual H II regions that have already photo-ionized a large fraction of their parental giant
molecular clouds. Recent observational results suggest the possibility of a new, even more
compact type: Hypercompact (HCH II) regions. Physical properties of the classes of H II

regions are summarized in Table 8.1.

In the next two paragraphs, we largely follow Draine (2011). If the dust to gas ratio in UCH II

and HCH II regions is approximately ‘normal’, these regions are expected to be strongly af-
fected by radiation pressure, and should exhibit a shell-like morphology if they are static. In
these dense H II regions, we expect the dust to absorb a significant fraction of the ionizing
radiation, as well as a substantial fraction of the recombination radiation, particularly Lyα.
Consequently, the dust can be quite warm, and indeed, these regions stand out as sources that
are bright at 24µm or even 10µm.

If the stellar source of ionizing radiation is stationary relative to the gas, then the timescale for
expansion of a HCH II or UCH II region is very short – of the order of the Strömgren sphere
divided by the∼15 km s−1 sound speed (see Sect. 8.6) – and we would expect these objects to
be relatively rare. The observed number of sources is, however, larger than expected. Several
reasons may be responsible for this. First, it may be due to motion of the star relative to the
gas: in the direction of motion of the star, the H II region ceases to expand when the expansion
velocity of the gas is equal to the velocity of the star relative to the gas. In this scenario, the
ionized gas should have a ‘cometary’ appearance: flattened on the leading edge of the H II

region, with a ‘tail’ trailing behind the star. This morphology is sometimes seen (see Fig. 8.3).
Second, some of the UCH II regions appear to be cases where a disk or other dense structure
near the star is gradually being ablated by photo-ionization, providing a reservoir of gas to
replace the gas removed by the expanding ionized outflow. If a disk is involved, the outflows
may be bipolar. In case the dense structure is an ensemble of small dense neutral (molecular)
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Figure 8.3: Schematic pictures of basic UCH II region morphologies seen in high-resolution VLA ob-
servations. The spatial resolution was ∼0”.4 and structures larger than ∼10” were not well imaged.
Percentages give the relative number of sources in each class. Some of the spherical or unresolved
sources may show different structures when observed at higher angular resolution, and a few non-
cometary sources may actually be cometary sources viewed along their axis of symmetry. The ap-
pearance of a source may change with the wavelength of observation: the central cavities seen in the
cometary and shell-shaped sources will not be seen at wavelengths where the gas is optically thick.
From: Wood & Churchwell, 1989, ApJS, 69, 831.

condensations, the stellar wind and UV flux of the young massive star may ablate and photo-
ionize these ‘blobs’, thereby providing a continuous supply of ionized gas. (This is known as
the mass-loaded stellar wind model). Third, newborn O or early-B stars are still embedded in
remnants of their natal clouds. Their stellar winds will sweep up these remains in a shell and
trap the ionizing radiation until the mass in the shell cannot absorb all of the ionizing photons
emitted by the star (or other effects break up these shells) and ionizing radiation can stream
out (Geen & de Koter 2022).

A nice review of UCH II regions is provided by Hoare et al. (2007). In these lecture notes, we
only discuss spherical H II regions; for models of cometary and bipolar H II regions, see e.g.
Redman et al. 1998, MNRAS, 298, 33.
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8.2 Ionization and recombination rates

In Section 5.3 we considered transitions between two bound levels. Here, we will – again
briefly – summarize transitions between a bound lower level l and a free upper level κ. The
transition l → κ is equivalent to an ionization; the transition κ → l to a recombination
recombination. The number of ionizations per second per cm3 by radiative and collisional
processes are

−Radiative ionizations :
dnl
dt

= nlRlκ = nl 4π

∫ ∞
ν◦

αlκ
Jν
hν

dν (8.1)

−Collisions :
dnl
dt

= nl Clκ = nl nc qlκ (8.2)

Three processes can result in the transition of the electron from the free state to the lower
state. The number of such de-excitations (also in cm−3 s−1) for spontaneous recombinations,
stimulated recombinations and collisional recombinations are

−Spon. rec. :
dnκ
dt

= nκR
spon
κl = nκ

(
nl
nκ

)∗
4π

∫ ∞
ν◦

αlκ
hν

2hν3

c2
e−hν/kT dν (8.3)

= nκ nc α
RR
i,κ−1(T ) (8.4)

−Stim. rec. :
dnκ
dt

= nuR
stim
κl = nκ

(
nl
nκ

)∗
4π

∫ ∞
ν◦

αlκ
hν

Jν e
−hν/kT dν (8.5)

−Collisions :
dnκ
dt

= nκCκl = nu nc qκl (8.6)

R andC are again the radiative and collisional rate in sec−1. Jν is the mean intensity of the ra-
diations field, and qlκ and qκl the cross-sections for collisions in cm3 s−1. The ratio (nl/nκ)∗

refers to the LTE equation of state Eq. 2.74. αlκ is the extinction coefficient for photoioniza-
tion or photoionization cross-section per particle in energy level i. It has dimension cm2. The
same remarks as to the nature of the collision particle ’c’ as made in Section 5.3 apply here.
Notice that one may express the number of spontaneous recombinations in terms of a recom-
bination coefficient in cm3 s−1. In H II regions, where the collision partners are free electrons,
αRR
i,κ−1(T ) is a function that decreases with increasing temperature, as it is more difficult for

an ion to capture a faster moving electron (see e.g. table 8.2). In ISM studies it is common to
use this recombination coefficient formalism.
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8.3 Ionization and recombination of hydrogenic atoms and ions

The ionization equilibrium of hydrogen is determined by the balance between photo-ionizations
and recombinations of electrons with hydrogen ions. Let us assume that the nebula is com-
posed of hydrogen only. What then is the ionization condition of H? Given the large excitation
energies of hydrogen, it is safe to assume that all the neutral hydrogen is in the ground state,
i.e. n0 = n◦, where n◦ is the density of neutral hydrogen. The condition is then

n0 4π

∫ ∞
ν◦

αbf
ν

Jν
hν

dν = n+ne αA(T ), (8.7)

where n+ is the ionized hydrogen density, ne the electron density, and T the kinetic temper-
ature. The number of ionizations per second per cm3 is shown on the left, and is the product
of the ground state population density n0, the ionization cross-section αbf

ν in cm2, and the
number of ionizing photons 4π Jν/hν that illuminate the gas. The integration starts at ν◦, the
frequency of the ionization edge. For the ground state of hydrogen we have ν◦ = 13.6 eV
or 912 Å. Photons with higher energies are referred to as Lyman-continuum photons. For
hydrogen and other ions with one electron (so-called hydrogenic ions)

αbf
ν (n,Z) = 7.91× 10−18 n

Z2
gII(ν, n)

(ν◦
ν

)3
, (8.8)

in which ν◦ is the frequency of the ionization edge. Z is the nuclear charge of the atom or
ion and gII(ν, n) is the bound-free Gaunt factor, which close to the ionization edge is ∼ 1.
The extinction is thus proportional to ν−3 for ν > ν◦. For more complicated ions, that have
more valance electrons (for instance Fe I which has an electron shell that is half filled and
that provides a multitude of valance electrons and valance cavities), the smooth decline is
disrupted by resonances which produce all sorts of peaks in ionization cross-section that need
to be determined in experiments.

On the right of Eq. (8.7) the number of recombinations per second per cm−3 are given. This is
the product of the particles involved in the collision process, i.e. the ionized hydrogen density
n+ and the free electrons density. The proportionality constant is the total recombination
coefficient of hydrogen to all bound levels αA, in cm3 s−1 (see Table 8.2). This function
decreases with increasing temperature, as it is more difficult for an ion to capture a faster
moving electron.

If n = n◦ + n+ is the hydrogen density, q = n◦/n is the fraction of neutral hydrogen. It then
follows that n+ = ne = (1 − q)n. We further assume that the radiation field in the nebula
is controlled by a star at a large distance. If we adopt the star to be an isotropically radiating
sphere, it follows from Eq. (2.7) and (2.20) that

Jν(r) =
1

4π
Fν(r) =

1

4π

Lν
4πr2

. (8.9)
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Table 8.2: Recombination coefficients of hydrogen as a function of temperature in cm3 s−1: αA ≡∑∞
i=1 α

RR
i,H gives the total number of recombinations to all levels; αB ≡

∑∞
i=2 α

RR
i,H gives the total

number of recombinations to all levels above the ground level. From: Storey & Hummer, for ne =
1000. The fit formula is from Draine (2011), in which T4 = T/10 000 and Z the net charge of the ion.
It provides good approximations in the range 30 K ≤ T/Z2 ≤ 30 000 K.

T αA/ 10−13 αB/ 10−13

3 000 9.74 6.74
5 000 6.83 4.53

10 000 4.17 2.59
15 000 3.11 1.84
20 000 2.51 1.43
30 000 1.84 0.991

T 4.13Z2
(
T4/Z

2
)−0.7131−0.0115 ln(T4/Z

2) 2.54Z2
(
T4/Z

2
)−0.8163−0.0208 ln(T4/Z

2)

Writing for the total number of Lyman continuum photons leaving the star each second

Q0 ≡
∫ ∞
ν◦

Lν
hν

dν, (8.10)

and approximating the extinction coefficient of photoionization with a constant (frequency
independent) value αbf

ν , we obtain for the fraction of neutral hydrogen

q

(1− q)2 =
4πr2αAn

αbf
ν Q0

. (8.11)

If the argument on the right-hand side is much smaller than unity, the left-hand side may be
approximated by q. Let us consider a point in the nebula with a typical particle density n = 10
cm−3, at a distance of 5 pc from an O7 V star having logQ0 = 48.7 (see Table 8.3). We then
find – using αbf

ν ∼ 6× 10−18 cm2 (see Eq. 8.8) and αA ∼ 4× 10−13 cm3 s−1 (see Table 8.2)
– for the fraction of neutral hydrogen q ∼ 4 × 10−4. In other words: hydrogen is almost
completely ionized.

How far can the Lyman-continuum photons typically travel before they are absorbed in a
photo-ionization interaction? To this end, we calculate the mean free path at the distance 5 pc
from the star. Using Eq. 2.45, we find

∆r ∼ 1

αbf
ν n
◦ =

1

αbf
ν q n

∼ 13.6 pc. (8.12)

For this low particle density the medium is essentially optically thin for ν > ν◦. Be cautious
that for q � 1, ∆r ∝ 1/(rn)2, therefore for a higher density medium and further out from
the central star this may no longer be the case.
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Spectral type Teff R? logL M v∞ log Ṁ logQ0 Ew/EQ0

[K] [R�] [L�] [M�] [km s−1] [M�yr−1] %
O3 44900 13.8 5,84 58 3600 -5.6 49.6 1.2
O4 42900 12.4 5.67 47 3300 -5.7 49.4 1.3
O5 40900 11.2 5.49 38 3000 -6.0 49.2 0.8
O5.5 39900 10.6 5.41 34 2900 -6.1 49.1 0.8
O6 38700 10.1 5.32 31 2800 -6.2 49.0 0.7
O6.5 37900 9.6 5.23 28 2700 -6.3 48.9 0.7
O7 36900 9.2 5.14 25 2500 -6.4 48.7 0.7
O7.5 35900 8.7 5.05 23 2400 -6.5 48.6 0.7
O8 34900 8.3 4.96 21 2300 -6.6 48.4 0.8
O8.5 33900 7.9 4.86 19 2200 -6.7 48.3 0.7
O9 32900 7.5 4.77 17 2100 -6.8 48.1 0.8
O9.5 31900 7.2 4.68 16 2000 -6.9 47.9 0.9

Table 8.3: Stellar parameters as a function of spectral types for luminosity class V stars (Martins et al.
2005, A&A 436, 1049; parameters for luminosity classes III (giants) and I (supergiants) are available
as well). Terminal wind velocities, v∞, and mass-loss rates, Ṁ , are from Sternberg et al. (2000, ApJ
599, 1333). The final column provides the ratio between wind energy Ew = Ṁv2

∞/2 and energy in
ionizing photons EQ0

, using the Lyman threshold frequency 3.3 × 1015 Hz (or 91,2 nm) to convert
number of ionizing photons Q0 to energy.

8.4 Strömgren sphere

A source that is producing a finite number of ionizing photons can of course not ionize an
infinitely large volume. Therefore, if the star is located in a sufficiently large gas cloud, there
must be a boundary to the H II region. Somewhere there will be a zone in which hydrogen
is recombining and outside of which there is an H I region. The thickness of the transition
zone will be small because when hydrogen starts to recombine the optical depth in the Lyman
continuum rapidly increases, effectively preventing ionizing radiation to penetrate deeper into
the medium. Hence we may estimate the thickness of the recombination zone by equating it
to the mean free path at the point where half of the hydrogen is recombined, i.e. at q = 0.5.
We find (see Eq. 2.45) using the numbers we have used above

∆r ∼ 1

αbf
ν n
◦ =

1

αbf
ν q n

∼ 0.01 pc. (8.13)

This is much smaller than the typical radius of an H II region (see below). H II regions thus
have a sharp boundary, referred to as the ionization front. Inside of the boundary hydrogen is
almost completely ionized; outside of the boundary hydrogen is almost completely neutral.
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Strömgren sphere – optically thin Lyman continuum

How big is an H II region? Let us assume a homogeneous spherical cloud of hydrogen gas
with a star in the center, and that the cloud is transparent for Lyman continuum photons. In
very good approximation, the sphere up to the ionization front is almost fully ionized. We
can thus write n+ ' ne ' n. If RS is the radius of the H II region, the balance between the
number of ionizations per second and the number of recombinations per second is

Q0 =
4π

3
R3

S αA ne n
+ =

4π

3
R3

S αA n
2. (8.14)

Hence, the radius of the sphere is

RS =

(
3Q0

4π αA n2

)1/3

. (8.15)

This radius is referred to as the Strömgren radius, in honor of the pioneer of this field, and the
volume encompassed by RS as the Strömgren sphere. It shows that the higher the gas density,
the smaller is the H II region.

If we fill in the numbers of our standard example (see above), we find RS = 10.1 pc. Indeed,
the Strömgren radius is much larger than the thickness of the ionization front.

Strömgren sphere – optically thick Lyman continuum

In the previous discussion we assumed the Strömgren sphere to be optically thin and the
radiation field in the nebula to be completely controlled by the central star. However, at Lyman
continuum frequencies ν ≥ ν◦ the nebula very likely is not optically thin. Therefore, we now
allow the mean intensity to have a diffuse component as a result of Lyman continuum radiation
emitted in the nebula. The local volume emission coefficient ην for radiation generated by
recombinations to the ground state is given by

4π

∫ ∞
ν◦

ην
hν

dν = n+ ne α
RR
1,H, (8.16)

where αRR
1,H is the recombination coefficient to the ground level of hydrogen.

Suppose the nebula is optically thick for Lyman radiation, such that no Lyman continuum
photons can escape. Each and every Lyman photon produced by the diffuse radiation field
will be absorbed elsewhere in the nebula. For the mean intensity of the diffuse component of
the radiation field, Jd

ν , this implies

n0 4π

∫
nebula

αbf
ν

Jd
ν

hν
dV = 4π

∫
nebula

ην
hν

dV (8.17)

where the integration is over the entire volume of the nebula. If the mean free path of the
photons is small, that is, if the photons are absorbed close to where they are created, one may
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even write
Jd
ν =

ην
n0 αbf

ν

. (8.18)

This is referred to as the on-the-spot approximation. For nebulae having particles densities
that are not too small this is a reasonable assumption.

As a result of absorptions (read: photo-ionizations) Lyman continuum radiation that originates
directly from the star gets weakened by a factor exp[−τν(r)], where τν is the radial optical
depth

τν(r) =

∫ r

0
n0 α

bf
ν dr. (8.19)

In a formal sense, the integration of course needs to start at R? in stead of at the origin.
However, as we will show below, things work out more elegantly if we accept this minute
error. For the mean intensity of the stellar component of the radiation field we may write
(using also Eq. 8.9)

J s
ν(r) =

1

4π

Lν
4πr2

e−τν . (8.20)

The total radiation field in the nebula is then the sum of the stellar and the diffuse component,
i.e. Jν = J s

ν + Jd
ν . Substituting Eq. (8.18) and (8.20) in ionization equilibrium (8.7) then

yields

n0

∫ ∞
ν◦

αbf
ν

Lν
hν

e−τν

4πr2
dν = n+ ne

[
αA − αRR

1,H

]
= n+ ne αB, (8.21)

where we have used Eq. (8.16). We have introduced the recombination coefficient αB =∑∞
2 αRR

i,H to represent the total number of recombinations to all levels above the ground level
(see Table 8.2). The physical meaning of the above equation is that in an optically thick
nebula ionizations caused by the stellar radiation field are in equilibrium with recombinations
to excited levels of hydrogen. Recombinations to the ground level produce Lyman continuum
photons that (in the on-the-spot approximation) are almost on-the-spot reabsorbed and thus
have no effect on the ionization equilibrium.

To determine the radius of the ionized region we use that dτν = n0 α
bf
ν dr (see Eq. 8.19) and

integrate over distance. This yields∫ ∞
ν◦

Lν
hν

[∫ ∞
0

e−τν dτν

]
dν =

∫ ∞
ν◦

Lν
hν

dν =

∫ ∞
0

N+ ne αB 4πr2 dr (8.22)

By letting the optical depth run from zero to infinity we have assured that all Lyman continuum
photons are ‘used up’. To find a simple expression for the size of the ionized region we again
assume that the gas is fully ionized up to the Strömgren radius RS, and that the gas outside
of this region is neutral. As we have seen, we expect a classical H II region to have a sharp
boundary implying that our assumption is quite reasonable. Using Eq. (8.10) it follows that

Q0 =
4

3
πR3

S αB n
2 (8.23)
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The meaning of this result is that the total number of ionizing photons emitted by the star
(per second) is exactly balanced by the total number of recombinations to excited states of all
hydrogen atoms within a Strömgren sphere. For the Strömgren sphere we find

RS =

(
3Q0

4π αB n2

)1/3

= 1.6 pc

(
Q0

1050 s−1

)1/3 ( n

103 cm3

)−2/3
(8.24)

If we again fill in the numbers of our standard example (see above) and adopt αB = 2 ×
10−13 cm3 s−1, we find RS = 12.7 pc. The Strömgren sphere is now larger because only
recombinations to exited levels matter. As there are less such events relative to recombinations
to all levels, a larger volume can be kept ionized.

The two assumptions that we have made to estimate the size RS of the H II region are the
on-the-spot approximation and that the medium is either fully ionized (within the Strömgren
sphere) or fully neutral (outside of the Strömgren sphere). In doing so we could avert having
to solve the equation of transfer explicitly.

Ionization bounded and density bounded

Note that we have assumed that the ionizing star is in a sufficiently large gas cloud, that is, that
the edge of the Strömgren sphere is determined by the region where hydrogen recombines.
This is referred to as ionization bounded. It is however possible that the nebula contains
insufficient hydrogen for all Lyman continuum photons to ‘be used’. In that case we refer to
the H II region as density bounded.

What is the total mass of ionized hydrogen gas in an ionization bounded nebula. This is

M =
4π

3
R3

S mamu n =
Q0 mamu

αB n
' 417M�

(
Q

1050 s−1

) (
103 cm−3

n

)
, (8.25)

where we have assumed the Lyman continuum to be optically thick, hence have adopted αB.
For our standard example we find M = 2089 M�.

Case A and Case B recombination

While we are in the process of defining things: in case the nebula is optically thin in all
recombination lines, i.e. all radiation produced by recombination processes in the nebula is
able to escape freely, one speaks of Case A. H II regions that fulfill the Case A requirement
can only contain a relatively small amount of gas. So little gas, as a matter of fact, that they
will be hard to observe.

Nebulae containing appreciable amounts of gas will rapidly develop large optical depths in the
hydrogen Lyman lines. We can easily estimate this from the ratio of the extinction coefficients
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per particle in the ground state for line- and continuum radiation. For the extinction coefficient
of lines we have

χν = αlu(ν)nl =
hν

4π
Blu φν nl =

πe2

mec
flu φν nl, (8.26)

where (πe2/mec) = 0.02654 cm2 hz and the dimensionless quantity flu is the oscillator
strength. Comparison of the collisional cross section at line center αlu(ν◦), assuming a
Doppler function for the profile function φν , with the continuum cross section Eq.(8.8) at
the ionization boundary yields, after substitution of constants

τ(Ly n)

τ(Ly−edge)
= 14.68

λ1n

[
Å
]
f1n

gII(ν◦, n) (T/10 000)1/2
, (8.27)

where n is the principle quantum number of the upper level of the line that is considered. For
a characteristic temperature T = 10 000 K and gII ∼ 1 we find that Lyα has about a 104 times
larger optical depth than the continuum at the Lyman ionization boundary. For an ionization
bounded nebula with τ (Ly-edge) ∼ 1 one thus obtains τ (Lyα) ∼ 104, τ (Lyβ) ∼ 103, τ (Ly8)
∼ 102, and τ (Ly18) ∼ 10. For a typical nebula a better approximation than Case A therefore
is the opposite assumption, i.e. that it is optically thick in all Lyman lines. This assumption is
called Case B.

The above two limiting cases have been described in 1938 by Menzel and Baker and are
therefore often called Menzel & Baker Case A and Case B. It should not be forgotten that
the realistic situation in a nebula is likely in between these two limits. For fairly low lying
transitions in the Lyman series Case B will hold, while for the higher transitions, i.e. n→∞
and small τ(Ly n), the situation will be more similar to Case A.

8.5 Feedback of massive stars on the interstellar medium

Above, we showed that a massive hot star will photo-ionize the interstellar gas in its imme-
diate surroundings. This particular process is only one way in which these stars affect their
environment. Before exploring some of these so called feedback effects in more detail, we
provide a brief overview of massive star feedback effects.

� The intense Lyman-continuum radiation field of hot massive stars creates ionized hy-
drogen bubbles, i.e. H II regions. H II regions in molecular clouds are bounded by
photo-dissociation regions where molecular hydrogen is dissociated by Lyman-Werner
band photons (see Sect. 10.3). For stars hotter than about 40 000 K the H II region will
coincide with an He II region; the hottest of massive stars may also produced fully ion-
ized helium bubbles, i.e. He III regions.
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� In photo-ionizing the interstellar gas, hot massive stars heat the gas from about 10-50 K
to about 104 K (see Sect. 9.1), destroying dust and (complex) molecules that may be
present in the ambient medium.

� The increase in temperature (by a factor 200-1000) and the number of free particles (by
a factor of 2) due to the photo-ionization process itself, greatly increase the gas pressure
in the H II region. This ionized gas can not be contained and will expand. A shock front
develops at the (moving) Strömgren radius, where interstellar matter accumulates in a
thin shell (see Sect. 8.6). When the surface density of this shell material is high enough,
it may fragment and cause new star formation.

� Mass loss from hot massive stars in super-sonic outflows too create a pressure on the
ambient medium, causing an expanding shock wave and the accumulation of interstellar
matter in a shell.

� Massive stars terminate their existence in core-collapse supernovae, extremely violent
events. Gas is injected in the ISM at speeds of about 10 000 km s−1, clearing out chan-
nels all the way to the nearest edge of their host galaxies. In this way material may
be lost from these galaxies altogether, and hydrogen ionizing photons may be streaming
into the intergalactic medium through these channels. At early cosmic time, this process
may have contributed strongly to the re-ionization of the IGM.

� Through stellar winds of hot and cool massive stars and their supernovae, the ISM is
enriched in nuclear processed material, including the elements from which terrestrial
planets and life are build. Part of this material enters the ISM in the form of dust. The
ionizing radiation from hot massive stars may play a role in the chemistry that takes
place in molecular clouds and in proto-planetary disks around nearby newly formed
low-mass stars, potentially either aiding in creating complex chemistry or shutting such
chemistry down.

8.6 Expansion of an H II region

In discussing the expansion of the H II region we closely follow Ward-Thompson & Whitworth
(2011). We shall assume that, when a massive star forms, the output of hydrogen-ionizing
photons Q0 builds up instantaneously (i.e. the star ‘switches on’ abruptly) and then stays at a
constant value during the main-sequence lifetime of the star. Also, we ignore the presence and
impact of stellar winds (see Geen & de Koter 2021 for the effect of winds). The subsequent
evolution can then be discussed in terms of three consecutive phases. We start by analyzing the
initial static phase, then the intermediate phase, in which the H II region undergoes dynamical
expansion, and lastly the final phase, in which the expansion halts. We note that some of the
most massive stars may become supernova before the final phase is reached.
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Initial static ionization phase

In the first phase, the initially neutral gas is static and the hydrogen-ionizing photons from the
central star ionize it out to the Strömgren radius Eq. (8.24). The timescale on which the initial
ionization equilibrium is established (i.e. the timescale for the hydrogen ionizing output from
the central star to come into balance with the total rate of recombination in the H II region) is
of order the recombination timescale – i.e. the average time that a free proton or electron has
to wait before it finds a mate with which to recombine, given by

trec =
1

αB n
' 160 yr

( n

103 cm−3

)−1
. (8.28)

We have assumed here that in the time trec the density of hydrogen in the H II region has not
changed. This is only true if the timescale for expansion of the H II region driven by its over-
pressure relative to the surroundings is much longer. This dynamical expansion time may be
estimated from

texp '
RS

a
' 1.7× 105 yrs

(
Q0

1050 s−1

)1/3 ( n

103 cm−3

)−2/3
(8.29)

where

a =

(
kT

mamu

)1/2

= 9.1

(
T

104 K

)1/2

km s−1 (8.30)

is the isothermal sound speed in the H II region, and we have assumed a temperature of 104 K.

For trec << texp to hold it follows that

n� 10−6 cm−3

(
Q0

1050 s−1

)−1

. (8.31)

This is clearly satisfied by the neutral gas in regions like giant molecular clouds where massive
stars, and hence H II regions form. For a patch of gas in which a massive star forms of density
n = (1 − 5) × 104 cm−3, we find from Eq. (8.24) a Strömgren radius for our O7 V star
emitting logQ0 = 48.7 of RS = 0.14 − 0.04 pc. This is typical for (ultra-)compact regions
(see Table 8.1). These are often strong radio continuum sources because of the free-free
emission the ionized gas produces, but they are invisible at shorter wavelengths because of the
huge extinction by interstellar dust in the optical and near-IR.

The dynamical expansion phase

Even when all Lyman continuum photons are used to counteract recombinations the H II re-
gion will still expand. The densities in the H II region and its immediate surroundings are
similar, but because of the higher temperature in the H II region the pressure can be hundreds
of times higher. In order to reach pressure equilibrium with the surrounding medium the



152 H II regions - part I: structure and dynamical state

H II region must therefore expand, which implies that the density will decrease (recall that
RS ∝ n−2/3; see Eq. 8.24). This in turn reduces the number of recombinations per unit time
(which is ∝ n2; see e.g. Eq. 8.7), so that more hydrogen gas can be ionized. Indeed the total
number of atoms that can be ionized is ∝ nR3

S ∝ 1/n.

We use Eq. (8.23) to write for the evolution of the number density of nucleons as a function
of time

n(t) = n0

(
R

R0

)−3/2

= n◦

(
R

R0

)−3/2

, (8.32)

where n0 (do not get confused with the ground level H population) andR0 reflect the situation
at the end of the initial static ionization phase. For simplicity and clarity of notation, we refer
to the time-dependent Strömgren radius as R (rather than RS(t)), and to the number density
of the undisturbed medium in which the H II is expanding as n◦.

Since the expansion of the H II is initially at a speed a ∼ 10 km s−1, which is much greater
than the sound speed a◦ ∼ 0.3 km s−1 in the neutral gas outside the H II region, the ionization
front at the edge of the H II region is preceded by a shock front, which sweeps the neutral
gas up into a dense shell. We assume that the shock compression is very large (see below)
such that the dense layer between the ionization front and the shock front is always very thin.
Hence, both fronts have radial speed Ṙ = dR/dt.

We assume that the pressure in the shocked gas is equal to the ram pressure of the undisturbed
neutral gas flowing into the shock front at speed Ṙ(t)

ps = ρ◦ Ṙ
2 = n◦mamu Ṙ

2, (8.33)

where n◦ is the number density and ρ◦ the density in the ambient gas2

We further assume that the pressure in the shocked gas is equal to the thermal pressure in the
H II region

ps = ρ a2 = nmamu a
2. (8.34)

Finally, we assume that, although the pressures in the shocked layer and in the H II region are
functions of time, they are uniform. This means that the sound travel time across the ionized
region should be less than the timescale for a substantial change in the overal configuration.
This may not be a good approximation in the early stages of expansion, where the ionized
gas expands with a velocity comparable to a. It gets progressively better as the expansion
progresses and must in any case be used in order to make a simple analysis. See Fig. 8.5 for a
schematic representation of an H II region. Eliminating ps between Eqs. (8.33) and (8.34), we
obtain

n(t) = n◦
Ṙ2

a2
. (8.35)

2Notice the subtle difference in notation: n0 is the number density in the H II region at the end of the initial
static ionisation phase and n◦ the number density in the ambient medium.
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Figure 8.4: Variation of density with radius when a shock wave driven by an expanding H II bubble
moves into surrounding neutral material of constant density n◦ and creates a geometrically thin swept-
up shell of neutral gas. The layer of shocked neutral gas is thin because of the compression across the
shock. In effect the Strömgren radius RS = Rshock. Based on: D. Ward-Thompson & A.P. Whitworth
(2011).

Notice that at t = 0, the start of the dynamical expansion, Ṙ = a; the initial velocity of expan-
sion is the sound speed in the H II region, as already pointed about above. Then eliminating
n(t) between Eqs. (8.32) and (8.35), we have

Ṙ R3/4 = aR
3/4
0 . (8.36)

This can be integrated to give

R7/4(t) = R
3/4
0

(
R0 +

7

4
at

)
∼ 7

4
R

3/4
0 a t (8.37)

The last expression in this equation gives the limiting behavior at late times. This is an ade-
quate expression once t � R0/a ∼ texp; where texp is short compared to the main-sequence
lifetimes of OB stars. Therefore, through most of its lifetime the H II region’s Strömgren
radius is given approximately by

R(t) ' R3/7
0

(
7

4
at

)4/7

. (8.38)

The asymptotic stage

However, the dynamical expansion phase can’t go on forever. Eventually the expansion of the
H II region will reduce its pressure to a value equal to the pressure in the undisturbed neutral



154 H II regions - part I: structure and dynamical state

gas, and the expansion will then halt (provided the star lives long enough). If at this stage
the density and the radius of the H II region have values nf and Rf , pressure balance with the
undisturbed neutral gas requires

ρf a
2 = ρ◦ a

2
◦, such that

nf

n◦
=
(a◦
a

)2
=
T◦
T
∼ 1

1000
. (8.39)

Here we have put the temperature of the neutral H I gas at T◦ = 10 K and of the ionized H II

gas at T = 104 K 3

So, the radius Rf , for which the expansion will halt is

Rf =

(
nf

n◦

)−2/3

R0 =

(
T

T◦

)2/3

R0 ∼ 100R0, (8.40)

where R0 is the initial Strömgren radius Eq. (8.24). Using Eq. 8.38, the time to reach Rf is

tf =
4

7

(
R0

a

)(
Rf

R0

)7/4

=
4

7
texp

(
Rf

R0

)7/4

= 23 Myr

(
Q

1050 s−1

)1/3 ( n

103 cm3

)−2/3
,

(8.41)
where in the second equality we have substituted expression Eq. 8.29. Note that texp is not
a physically relevant timescale in this problem (its just convenient to use the expression) as
expansion of the shockfront starts from R0 after the static ionization phase has ended. The
timescale tf is comparable to the main-sequence lifetime of OB stars. We conclude that the
most massive O stars, which have the highest Q0 and shortest lifetimes, end their lives whilst
the H II region is still over-pressured and expanding. The least massive OB stars, with rela-
tively low Q0 and relatively long lifetimes will reach the asymptotic stage of H II region ex-
pansion. When the source of ionizing photons is gone, it will take about trec yrs (see Eq. 8.28)
for the gas to become neutral again.

The swept-up neutral gas at the boundary of an H II region

As well as the ionized gas we should also consider the shell of neutral gas swept up between
the ionization front and the shock front. For a mature H II region, the mass of the swept-up
shell of neutral gas at the edge is usually much greater than the mass of the ionized gas.

The mass in the H II region is given by

MH II(R) =
4

3
πR3 mamu n =

4

3
πR3

0 mamu n0

(
R

R0

)3/2

= M0

(
R

R0

)3/2

, (8.42)

3In our analysis of H II region expansion we have not considered the role of the mean molecular weight µ.
The pressure p = nkT = ρkT/µmamu = ρa2, is proportional to the number of free particles n, or, alternatively
phrased, to 1/µ. If the H II gas consists of hydrogen only, µ = 0.5, and if the ambient medium consists of molecular
hydrogen, µ = 2. This impacts pressure considerations throughout the discussion of H II region expansion. For
the temperature ratio in Eq. (8.39) this would imply a ratio of 1/4000 rather than 1/1000.
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where in the second equality we have used Eq. (8.32) and M0 is the mass of the H II region at
the end of the initial static ionization phase (see also Eq. 8.25). It follows that if the Strömgren
spheres moves out a distance dR, the mass that is added to the H II region is

dMH II =
3

2
M0

(
R

R0

)1/2 1

R0
dR = 2πR

3/2
0 mamu n0R

1/2 dR, (8.43)

where we (as discussed above) assume that the density and temperature – hence the pressure –
of this freshly ionized material are quickly homogenized with that of the rest of the ionized gas.
Over the same interval dR, the shockfront just downstream of the ionization front (which we
place at the same radius as the ionization front) encounters an amount of interstellar material

dMISM = 4πR2 mamu n◦ dR, (8.44)

implying

dMHII

dMISM
=

1

2

(
R0

R

)3/2

. (8.45)

So, at the start of the dynamical expansion phase half of the mass that is swept up at the
interface with the ambient medium is added to the H II region and half to that of the thin shell
of shocked gas. At later times hardly any mass enters the H II region and almost all is added
to the shocked shell. For instance, at R = 14R0 less than 1% is added to the H II region and
over 99% is added to the thin shocked shell. The mass in the shocked shell is

Mshell =
4

3
πR3 mamu n◦ −

4

3
πR3mamu n =

4

3
πR3mamu n◦

[
1−

(
R0

R

)3/2
]
. (8.46)

where we have used Eq. (8.32). Indeed, at later times it is safe to approximate the mass in the
shell as being all of the mass that has been swept up.

As the surface-density of the shell grows it becomes increasingly gravitationally unstable,
and eventually it should break up into collapsing fragments. These collapsing fragments may
produce a new generation of stars, and this is usually referred to as propagating, or triggered,
star formation. If some of the new stars are massive, and therefore excite new H II regions, the
process can repeat itself, and we speak of self-propagating star formation.

8.7 The impact of the stellar wind on the interstellar gas

All throughout their evolution massive stars loose mass in a spherical stellar wind. The rate
of mass loss for the most massive stars in their main sequence phase is in the range 10−7 −
3 × 10−6 M�yr−1. The material in the wind is accelerated to a maximum outflow speed or
terminal velocity of 2000 − 3600 km s−1 (see Table 8.3).
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8.8 Gas density diagnostics: the emission measure

Let us assume that the fraction of all recombinations of hydrogen that lead through the tran-
sition u → l is pul. Then, the volume emission coefficient for the line u → l is (see also
Eq. 8.7)

ην =
hν

4π
pul αA n

+ ne φν = η◦ φν (8.47)

The expression is the multiplication of the number of de-excitations from u → l per cm3 per
second, per unit solid angle – which is why we need to devide by the total solid angle Ω = 4π
– multiplied by the energy of the photon that is emitted hν, where ν = νlu. To get the emitted
energy per hz, we multiply by the profile function for spontaneous emission φν (which has
dimension hz−1).

Though to determine the temperature dependent pul requires a general approach, it is found
that pHα ∼ 0.3, i.e. only about 30 percent of hydrogen recombinations produce an Hα photon.
Similarly, pHβ ∼ 0.1, so only about 10 percent of hydrogen recombinations produce an Hβ
photon.

If we observe an H II region along a line-of-sight where there is negligible background specific
intensity, and if the emission from the H II region is optically thin, then (see Sect. 2.3)

Iobs
ν '

∫
Sν(τν) dτν =

∫
ην(s) ds, (8.48)

where Iobs
ν is the observed specific intensity and s is the spatial coordinate along the line-of-

sight. It follows that the specific intensity integrated over the line proflle is

Iobs =

∫
Iobs
ν dν =

∫ [∫
η◦ ds

]
φν dν =

∫
η◦ ds =

hν

4π
pul αA

∫
n+ ne ds, (8.49)

assuming the emitting medium has uniform temperature T (recall αA = αA(T )). The integral
in the last equation is called the emission measure of the line-of-sight

EMH =

∫
n+(s)ne(s) ds. (8.50)

If the emitting medium has uniform density, then EMH = n+ neD, where D is the length of
the intercept which the line-of-sight makes with the emitting medium.

Thus a measurement of the total line specific intensity Eq. (8.49) enables us to estimate the
emission measure of the emitting medium. Suppose, we also have an independent estimate
of the linear size D of the emitting region, say from its distance d and its angular size α, via
D = dα. This assumes spherical symmetry, which is often a reasonable approximation. Then
we can combine this with the emission measure to obtain 〈n+ ne〉 = EMH/D. Typically in
an H II region we have n+ ∼ ne. Therefore

〈n2
e〉 = 〈(n+)2〉 =

EMH

D
. (8.51)
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So, from the study of hydrogen recombination lines, we can estimate the density of gas in an
H II region and the total mass of ionized gas

MH II =
4π

3

(
D

2

)3

mamu n
+, (8.52)

which essentially is the total mass, as in the H II region n+ = n.
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Exercise 8.1

Consider a pure hydrogen gas and a situation in which only radiative and collisional
ionizations R and C are important. The recombination of the medium is described by a
recombination coefficient α.

a) Derive a quadratic equation describing the equilibrium ionized fraction q = N+/N ,
where N = N0 +N+ is the sum of particles in the neutral state and in the ionized state.

b) Derive an approximate expression for the low-density limit R� C ·N .

c) Derive approximate expressions for the high-density limit R� C ·N , for the situations
in which collisional ionizations are either (i) important or (ii) irrelevant.

Exercise 8.2

This could be a nice exam question. According to Martins et al. (2005, A&A 436, 1049)
a 60M� star produces Q = 1049.7 ionizing photons per second early on in its life. Brott
et al. (2011, A&A 530, 116) predict a total lifetime for such a star of about 4 Myr. We
assume that Q remains constant throughout the life of the star. The medium in which the
massive stars forms has density N = 3 × 104 cm−3. The sound speed a in the ionized
part of the medium is 10 km s−1. In the neutral medium a = 0.3 kms.

a) Compute the Strömgren sphere radius at the end of the initial static ionization phase in
pc.

b) Compute the Strömgren sphere radius at the end of the life of the star in pc.

c) How much mass has been swept up in the dense shell that has accumulated at the edge of
the H II region once the star dies?

d) Linear stability analysis results in a characteristic length scale

` =
2a2

GΣ
(8.53)

for which the medium is most susceptible for instability. Σ is the surface density of the
gas shell. Compute this length scale ` at the end of the star’s life.

e) What would be the typical mass of a shell fragment that collapses at t = 4 Myr? If
collapse of part of the shell would occur earlier in the life of the star, would the mass of
the fragment be larger / the same / or smaller than what you have just computed?
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Exercise 8.3

This could be a nice exam question. Consider a spherical cloud, initially completely
neutral, consisting of hydrogen with uniform number density n◦ = n. At time t = 0, a
hot star at the centre of the cloud starts emitting Lyman continuum photons at a constant
rateQ0. These cause a progressively larger sphere around the star to become ionized. The
gas inside the ionization front at radius R will be mostly ionized, and at larger distances
will be mostly neutral. Neglecting the width of this transition region, the position and
speed of the front is found from

4π R2 n◦
dR

dt
+

4

3
π R3 αB n

+ ne = Q0, (8.54)

where ne is the electron density, n+ is the density of ions, and αB is the recombination
coefficient. The above equation is referred to as the jump condition and expresses that
an ionizing photon either ionizes a neutral atom for the first time (the first left-hand side
term) or compensates for a recombination within the ionized region (the second left-
hand side term). We assume the gas inside the ionized region to be fully ionized, i.e.
n+ = ne = n, and beyond the ionization front, in the neutral zone, to be completely
neutral, i.e. n◦ = n. Then, Eq. 8.54 can be solved exactly.

a) Show that a radius evolution of the type

R(t) = a [1− exp(−bt)]1/3 , (8.55)

is a valid solution and determine a and b. Link these constants to physical quantities
relevant to this problem and discussed in this chapter.

b) Introducing the initial static ionization phase in section 8.6, it was stated that the time-
scale on which the initial ionization equilibrium was established is of the order of the
recombination timescale trec. Given the results of a) and b), is this indeed a reasonable
timescale?

c) Derive an expression for the speed of the ionization front.

Exercise 8.4

This could be a nice exam question. The Red Supergiant star Betelgeuse in the constel-
lation of Orion travels through its local interstellar environment at a speed of v? = 25
km s−1, creating a bow shock. The apex of this arc-like structure has a radius of 5.75
arcmin from the star which is at 200 pc. We assume the bow shock is observed edge on.

a) Compare the apparent apex radius in arcmin to the apparent radius (also in arcmin) of the
moon.

b) Compute the apex radius in pc.
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Figure 8.5: Composite color image of the Herschel PACS 70, 100, 160µm images of the Red Su-
pergiant Betelgeuse (αOrionis) and its surroundings. Betelgeuse travels through its local intersteller
environment at a speed of 25 km s−1, plowing up material forming an asymmetric arc or bow shock.
The apex of the arc is at 5.75’ from the star. Notice to the left a dust filament, thought to be unassoci-
ated with the bow shock. From: ESA-Herschel-PACS / Decin et al.

For a bow shock, the standoff distance Rso is where the ram pressure of the stellar wind
of the moving star balances that of the surrounding material. Rso is measured in the
direction of motion of the star. The mass-loss rate is given by

Ṁ = 4π r2 ρw(r) vw, (8.56)

where r is radial distance, ρw the wind density and vw the wind velocity. For Betelgeuse
vw = 17 km s−1. We assume the ambient medium to be a neutral gas, for which the
mean molecular weight is µ = 1.27, and adopt a canonical value for the particle density
n◦ = 1 cm−3.

c) Derive a formula for the mass-loss rate of Betelgeuse as a function of Rso and other
relevant quantities.

d) Calculate the mass-loss of Betelgeuse in solar masses per year. The literature value is
Ṁ = (3± 1)× 10−6M�yr−1. How well does your result compare to this value? Which
assumption(s) may contribute to the cause of the difference.
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H II regions - part II: thermal state

We discuss the energetics of H II regions. We first review the heating and cooling processes
of interstellar gas in these clouds. Then we discuss how one obtains key properties of H II

regions, i.e. its temperature and density.

9.1 An overview of heating and cooling

What are the physical processes that add kinetic energy to, i.e. heat, the interstellar gas, and
what processes extract kinetic energy from, i.e. cool, this gas? Together, these processes
determine the thermal state of the gas.

In general terms, we can imagine two categories of heating processes in the ISM: microscopic
scale processes (i.e. the absorption of photon energy by gas and dust) and large scale processes
(mechanical heating, e.g. by SNe explosions and cloud-cloud collisions). While there are a
number of energy sources with comparable energy densities in the ISM (see Sect. 1.3), the
processes that couple the gas to the radiation field generally dominate. Below, we provide a
brief overview of the most important of the heating and cooling processes, with a reference to
the section where we provide more information. For more details see e.g. Tielens (2005) and
Draine (2011).

Heating processes

� Photo-ionization: Here we need to distinguish between H II regions, where very ener-
getic photons are available and H I regions, where no photons more energetic than 13.6
eV – the ionization potential of hydrogen – are present. In H II regions H ionization
dominates the heating of the gas, while in H I regions photo-ionization of large (stable)
molecules and small dust grains take over. When solids are photo-ionized, it is custom
to speak of photo-electric heating or photo-electric effect.

� Cosmic rays: Of all cosmic rays, those having energies of 1-10 MeV are most efficient
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in heating the gas. They can do so in two ways: (1) through interaction with bound
electrons resulting in ejection of an energetic electron, that in turn may cause other
(secondary) ionizations; and (2) transfer of kinetic energy to free electrons by elastic
scattering. The latter process is only important in H II regions.

� Shockwaves: Shockwaves are common phenomena in the ISM, and occur whenever
material moves at velocities exceeding the sound speed in the surrounding medium and
the upstream material can not dynamically respond to the upcoming material until it
arrives. The shock will then compress, heat, and accelerate the medium. Supernovae or
cloud-cloud collisions are examples of events that may lead to shock heating.

Cooling processes

� Collisionally excited line radiation: The fundamental cooling process of interstellar
gas is the collisional excitation of an atom, ion or molecule, followed by a radiative de-
excitation. The collision partners can be electrons, H atoms or H2 molecules, whichever
are the most abundant. The process dominates the cooling in both H I and H II regions.
Because the densities are low, forbidden transitions contribute – and even play a domi-
nant role – in the cooling.

� Recombination radiation: Every time an electron recombines with an ion, the plasma
loses the kinetic energy of the recombining electron. In the case of Case B recombi-
nation – which reflects the usual situation – only recombinations to levels above the
ground level will produce photons that can escape the nebula. The process contributes
(somewhat) to the cooling of H II regions.

� Free-free emission: Free electrons scattering off ions produce free-free emission. The
photons created in this way typically have long wavelengths and may escape freely. As
it requires an ionized plasma, this cooling mechanism need only be considered in H II

regions.

9.1.1 Heating by photo-ionization

We examine the energy input by photo-ionizations by again considering a pure hydrogen neb-
ula. At any specific point in the nebula, the heating rate in erg cm−3 s−1 is

G(H) = n0 4π

∫ ∞
ν◦

αbf
ν

Jν
hν

(hν − hν◦) dν (9.1)

= αA neN
+

4π
∫∞
ν◦
αbf
ν (Jν/hν) (hν − hν◦) dν

4π
∫∞
ν◦
αbf
ν (Jν/hν) dν

(9.2)

= αA neN
+Einit, (9.3)

where G is short for Gain (the letter Γ is used as well). The term (hν − hν◦) reflects the
thermal energy of the electron that is liberated from the hydrogen atom. It is this energy
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times the number of ionizations per second per cm3 that specifies the gain in thermal energy
of the medium. In writing down the second equality, we have assumed that the nebula is in
ionization equilibrium (see Eq. 8.7). In the third equality we have introduced the initial mean
energy of the newly created photo-electron or mean initial photon energy, which depends on
the shape of the ionizing radiation field, but not on the absolute strength of this field. This can
be made explicit when we describe the stellar Lyman continuum radiation field with a diluted
blackbody spectrum at a radiation temperature Trad (see also Eqs. 2.7 and 5.45)

Jν = W (r)Bν(Trad). (9.4)

Note that the dilution factor does not feature in Einit, i.e. the absolute strength of Jν does
not matter. It is convenient to define the dimensionless ratio parameter ψ, such that (see also
Eq. 2.63)

Einit = ψ
3

2
kTrad. (9.5)

We refer to ψ at the stellar surface as ψ◦, i.e. the case where no radiation has been absorbed
yet. Though near the star the stellar radiation may already be attenuated (i.e. W (r) � 1),
the shape will still be Jν ∝ Bν(Trad), i.e. it is not yet distorted by frequency dependent
absorption (that is ∝ exp(−τν)).

For the important case of photo-ionization of hydrogen, we know from the discussion of the
Strömgren sphere that – by definition – all of the photons with hν > hν◦ will produce a
photo-ionization somewhere in the H II region. Since every stellar Lyman continuum photon
is eventually absorbed in the H II gas, we need not weigh with the effect of the ionization cross
section αbf

ν and may set it to unity for all frequencies. We also need not care about the diffuse
radiation field because the total energy that is gained through absorption of diffuse photons is
exactly equal to the energy that is lost elsewhere in the H II region due to the recombinations
that created these diffuse photons: a zero-sum game. This implies that the average of the
photo-electron energy over the entire nebula is given by

〈ψ〉 3

2
kTrad =

∫∞
0 (Bν/hν) (hν − hν◦) dν∫∞

0 (Bν/hν) dν
(9.6)

Values for the two cases ψ◦ and 〈ψ〉 are given in Table 9.1 for selected values of Trad. The
important thing to note is that both ψ◦ and 〈ψ〉 are of order unity over a broad range of Trad.

A photo-ionization that is followed by a recombination to the ground-level implies that first
radiation energy is converted into thermal energy, after which the gained thermal energy is
converted back into radiation energy. If the Lyman continuum radiation field is optically thick,
we may apply the on-the-spot approximation (see Sect. 8.4) stating that the recombinations
occur ‘on the spot’, i.e. immediately after the ionization has occurred. If so, it is as if a
photon scattering has occurred, i.e. no net energy is exchanged between the radiation field
and the thermal pool of gas – again a zero-sum game. These combinations of events do not
contribute to the energy balance and may be excluded, i.e. only photo-ionizations followed
by recombinations to excited levels contribute to the heating. We may trivially exclude these
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Trad (K) 4000 8000 16000 32000 64000

ψ0 0.651 0.639 0.615 0.576 0.517

〈ψ〉 0.701 0.734 0.799 0.920 1.103

Table 9.1: Dimensionless factor providing the mean initial photon electron energy Einit = ψ kTrad.
The values of ψ0 are lower than the corresponding values of 〈ψ〉 because of the ν−3 dependence of the
photo-ionization cross-section, which means that photons near the ionization edge are absorbed close
to the star; hence the radiation field hardens with distance from the star. Adapted from: Spitzer (1998);
see also Tielens (2005).

‘scatterings’ by replacing αA by αB in Eq. (9.3). The heating rate becomes

G(H) = αB neN
+ ψ

3

2
kTrad. (9.7)

9.1.2 Cooling by collisionally excited line radiation

Cooling of ionized gas is mainly achieved by means of collisional excitations followed by
radiative de-excitations. Important transitions in this context are forbidden fine-structure tran-
sitions in O III, S III, O II, Ne II, and N II. For the energy level diagram of O III and N II see
Fig. 3.2; that of O III is also displayed in Fig. 9.3. Notice that the forbidden transitions among
the 3P, 3D and 1S levels of O III separate out in two groups: (1) Those involving fine-structure
levels of the ground state that are separated by less than∼0.1 eV, and (2) transitions involving
levels separated by 1−3 eV. As

E [eV] = 11604.5T [K] , (9.8)

the first group involves levels that are separated by energies that correspond to 1000 K or less.
The populations of these levels are therefore not very sensitive to the temperature of the gas
when T ∼ 104 K. Transitions involving levels of the second group are sensitive to the electron
temperature and hence their excitation acts as a thermostat regulating the temperature of the
ionized gas to ∼ 104 K. In other words: because typically the fine-structure transitions do not
deliver enough cooling, the gas temperature has to rise sufficiently (to∼ 104 K) to excite these
higher levels.

Note that the cooling efficiency of these transitions depends on their critical density ncr, see
Eq. (5.31) and (5.32).

The energy L(ion) that is released by this cooling in erg cm−3 s−1 is

L(ion) = hνlu nuAul = hνlu ne (nl qlu − nu qul) , (9.9)

where L is short for Loss (the letter Λ is used as well). l and u are the indices of the lower
an upper level of the ion that is considered. The equation simply stems from the statistical
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equilibrium equation nl ne qlu = nu ne qul + nuAul and the emitted energy per cm3 per
second, hνlu nuAul, where hνlu = Eu − El.

Obviously, the number of excitations to higher energies increases rapidly with increasing tem-
perature, because the average velocity of the electrons increases with temperature. This means
that the cooling rate also increases rapidly as temperature rises. A balance between heating
and cooling follows from

G(H) =
∑
ions

L(ion), (9.10)

where the sum is over all ions contributing to the cooling, and all relevant lines of these ions.
In H II regions this balance is usually reached at about 10000 K. See Sect. 9.1.5 for a more
precise description of thermal balance.

9.1.3 Cooling by recombination

What if cooling of our pure hydrogen nebula would occur by recombinations only? On aver-
age, the kinetic energy of the recombining electrons is 3kTe/2 and the total loss of energy per
unit volume per unit time is

L(H) = αB neN
+ 3

2
kTe. (9.11)

If only these recombinations cool the medium, thermal balance is given by G(H) = L(H),
hence

Te = ψ Trad. (9.12)

Table 9.1 shows that 0.7 . ψ . 1.1. For O-type stars Trad ' 30 − 50 kK, yielding electron
temperatures Te in the nebula that are about the same (see Table 9.1). These are much higher
values than the∼10 kK that are usually observed in the H II regions. So, indirectly, this shows
the importance of additional cooling processes – notably the cooling by collisionally excited
line radiation.

9.1.4 Cooling by free-free emission

Hydrogen can cool through free-free transitions, where a free electron is decelerated in the
electric field of a proton. Starting from Eq. (6.2), we may derive the cooling rate in erg cm−3 s−1

integrated over frequency

L(ff) = 4π

∫ ∞
0

ηff
ν dν = 1.425× 10−27 Z2 T 1/2 neN

+, (9.13)

where Z = 1 for ionized hydrogen. Cooling by free-free radiation is about equally important
as cooling by recombination, i.e. in the present day universe it is not very important. In the
early universe – when the chemical composition was H and He only – these two processes
dominated the cooling in the ionized medium.
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Figure 9.1: Top (a): photo-electric heating function Γpe and radiative cooling function Γ as function of
gas temperature T in an H II region with Orion-like abundances and density nH = 4000 cm−3. Heating
and cooling balance at T ∼ 8050 K. Top (b): Contributions of collisionally excited individual lines to
Λce. Bottom (a): same as in top left panel, but now for metal abundances that are 10% of solar. Bottom
(b): same as in top left panel, but now for an enhanced metal abundance by a factor of three.

9.1.5 Thermal balance between heating and cooling in H II regions

The gas will stabilize at a temperate where heating balances the total cooling, i.e. where

G(H) = L(total) =
∑
ions

L(ion) + L(H) + L(ff). (9.14)
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Figure 9.2: Left: same as the top left panel of Fig. 9.1, for reference. Right: same as in left panel, but
now for a range of hydrogen particle densities. As the gas density is increased from 102 cm−3 to 105

cm−3, the equilibrium temperature increases from 6600 K to 9050 K, because more and more of the
cooling transitions become useless once the density gets above the critical densities of these forbidden
lines.

The top panels of figure 9.1 show the temperature dependence of G(H) (in the figure Γpe),
L(ion) (in the figure Λce), L(H) (in the figure Λrr), L(ff) (in the figure Λff ), and L(total) (in
the figure Λ) for gas with a solar composition, a density nH = 4000 cm−3, and ionization
similar to that in the Orion Nebula, assuming heating by a Trad = 35000 K blackbody. We
find an equilibrium temperature of T ∼ 8050 K.

The equilibrium temperature is sensitive to the abundance of the coolant species. Lowering
the abundance will cause the equilibrium temperature to increase. This is shown in the lower
panels of Fig. 9.1 – if we reduce the metal abundance by a factor of 10, as might be appropriate
for a low-metallicity galaxy, the equilibrium temperature is raised to ∼ 15600 K. Conversely,
raising the metal abundance by a factor of 3, as might be appropriate in the central regions of
mature spiral galaxies, causes a drop to ∼ 5400 K.

For given gaseous abundances, the H II region temperature will also be sensitive to the gas
density. When the density exceeds the critical density of some of the cooling levels, the
cooling will be suppressed, and the equilibrium temperature will rise. For our test calculation
it is found that if the density is increased from nH = 102 cm−3 to nH = 105 cm−3, the thermal
equilibrium temperature shifts from 6600 to 9050 K (see right panel Fig. 9.2).
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Figure 9.3: Left: Energy level diagram of O III. Right: detail of the lowest levels of O III and the
forbidden oxygen transitions (denoted by dashed lines) that are prominently visible in the emission
spectra of nebulae. The 3P term of the 2p2 level has three fine structure levels, i.e. 3P0,1,2. The relative
energy differences between these fine structure levels have been strongly exaggerated for clarification
purposes.

9.2 Te diagnostics: collisionally excited forbidden fine-structure lines

The forbidden emission lines of O III at λ4363, 4959 and 5007 Å (see Fig. 9.3) turn out to be
very suited for constraining the temperature of the nebular gas. We assume that the electron
density of the gas is much less than the critical density (see Eq. 5.31), such that collisional
de-excitations are negligible.

To keep a clear view of the situation we refer to the ground state 3P0,1,2 as level 1, the first
excited level 1D2 as level 2, and the second excited level 1S0 as level 3. This notation ignores
that there are two1 possible transitions from level 2 to 1, namely 1D2 − 3P1 (λ5007 Å) and

1See for the ∆J selection rules Sec. 3.3. There is a third possibility, namely 1D2− 3P0 (λ4931 Å), that can
only occur by means of a quadrupole transition, but that is so weak that it can be ignored altogether.
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1D2 − 3P2 (λ4959 Å), however, we will repair that later. The statistical equilibrium equation
for level 2 is

n2A21 = n1 ne q12 + n3A32

' n1 ne q12. (9.15)

This reflects that the n2 level can be populated either by collisional excitations from the ground
level (n1 ne q12) or by spontaneous radiative de-excitations from level 3 (n3A32). Note that
the second process is negligible relative to the first and can be safely ignored, simplifying the
derivation. For level 3 it follows that

n3 (A31 +A32) = n1 ne q13. (9.16)

This level can be populated by collisional excitations from the ground level (n1 ne q13) or be
de-populated by cascade to level 2 (n3A32) or level 1 (n3A31). Note that in this case we do
not ignore the process n3A32 as here it contributes significantly to the depopulation of level 3.
The ratio of the populations of levels 2 and 3 is now given by

n2

n3
=

(A31 +A32)

A21

q12

q13
=

(A31 +A32)

A21

Ω12

Ω13

e−E12/kT

e−E13/kT
=

(A31 +A32)

A21

Ω12

Ω13
e+E23/kT ,

(9.17)
where we have expressed the cross-sections for collisions qlu using the Maxwellian averaged
collisional strength Ω. In this description,

qlu(T ) =
8.629× 10−6

gl T 1/2
e−Elu/kT Ωlu, (9.18)

and, as nLTE
l qlu = nLTE

u qul,

qul(T ) =
gl
gu
e+Elu/kT qlu(T ) =

8.629× 10−6

gu T 1/2
Ωlu. (9.19)

Beware that Ωlu = Ωul. Values of Ω are typically of order unity and for some important
transitions are summarized in Table 9.2.

If we assume that all the lines of interest are optically thin, the observed line profile integrated
flux is given by

Flu =

∫
line

[
Fν(d)−Fνcont(d)

]
dν '

∫
line
Fν(d) dν (9.20)

=
1

4πd2

∫
V

4π ηlu dV =
1

4πd2

∫
V
hνlu nuAul dV, (9.21)

(9.22)

where Fν(d) is the observed flux from a nebula at distance d. The observed continuum flux
Fνcont(d) is usually negligible for strong nebular lines (see Fig. 9.4). The line profile inte-
grated emission coefficient ηlu (see also Eq. 5.37) multiplied by the total solid angle (Ω = 4π)
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Ion Transition λlu ∆Eul/k Aul Ωul ncr

Å (or µm) K s−1 cm−3 cm−3

O II 2D5/2−4S3/2 3728.8 39000 3.8× 10−5 0.82 1.3× 103

2P1/2−2D5/2 7318.8 20000 2.0× 10−2 0.30 4.3× 106

2P1/2−2D3/2 7329.6 20000 1.0× 10−1 0.28 4.3× 106

2P1/2−4S3/2 2470.2 58000 2.3× 10−2 0.14 4.3× 106

2P3/2−2D5/2 7319.9 20000 1.2× 10−1 0.74 6.3× 106

2P3/2−2D3/2 7330.7 20000 6.1× 10−2 0.41 6.3× 106

2P3/2−2S3/2 2470.3 58000 5.6× 10−2 0.28 6.3× 106

N II 3P1−3P0 204µm 70 2.1× 10−6 0.41 4.5× 101

3P2−3P1 122µm 120 7.5× 10−6 1.12 2.8× 102

1D2−3P2 6583.4 22000 3.0× 10−3 1.47 8.6× 104

1D2−3P1 6548.1 22000 1.0× 10−3 0.88 8.6× 104

1S0−1D2 5754.6 25000 1.0 0.83 1.1× 107

1S0−3P1 3062.8 47000 3.3× 10−2 0.10 1.1× 107

S II 2D3/2−4S3/2 6730.8 21000 8.8× 10−4 2.76 3.6× 103

2D5/2−4S3/2 6716.4 21000 2.6× 10−4 4.14 1.3× 103

2P1/2−2D5/2 10370.5 14000 7.8× 10−2 2.20 9.8× 105

2P1/2−2D3/2 10336.4 14000 1.6× 10−1 1.79 9.8× 105

2P1/2−4S3/2 4076.4 35000 9.1× 10−2 1.17 9.8× 105

2P3/2−2D5/2 10320.5 14000 1.8× 10−1 4.99 5.7× 106

2P3/2−2D3/2 10286.7 14000 1.3× 10−1 3.00 5.7× 106

2P3/2−4S3/2 4068.6 35000 2.2× 10−1 2.35 5.7× 106

O III 3P1−3P0 88.4µm 160 2.7× 10−5 0.54 5.0× 102

3P2−3P1 51.8µm 280 9.8× 10−5 1.29 3.4× 103

1D2−3P2 5006.9 29000 2.0× 10−2 1.27 6.9× 105

1D2−3P1 4958.9 29000 7.0× 10−3 0.76 6.9× 105

1S0−1D2 4363.2 33000 1.7 0.58 2.4× 107

1S0−3P1 2321.4 62000 2.3× 10−1 0.10 2.4× 107

S III 3P1−3P0 33.5µm 430 4.7× 10−4 3.98 1.4× 103

3P2−3P1 18.7µm 770 2.1× 10−3 7.87 1.2× 104

1D2−3P2 9530.9 15000 5.5× 10−2 3.86 6.2× 105

1D2−3P1 9068.9 16000 2.1× 10−2 2.32 6.2× 105

1S0−1D2 6312.1 23000 2.3 1.38 1.4× 107

1S0−3P1 3721.7 39000 8.4× 10−1 0.39 1.4× 107

Table 9.2: Optical and infrared cooling lines of ionized gas. All listed transitions are forbidden. Com-
piled by: Tielens (2005). Beware that Ωul = Ωlu.

is the total energy emitted by the spectral line per cm−3 per second. It thus needs to be inte-
grated over the entire volume V of the nebular gas. If we assume a constant temperature, the
ratio of the line strengths 2→1 and 3→2 is the same in each cubic centimeter of the nebula
and we need not integrate over the full volume to obtain this ratio. We get

η4959 + η5007

η4363
=

hν4959A4959 + hν5007A5007

hν4363A4363

n2

n3

=
A2321 +A4363

A4959 +A5007

ν4959A4959 + ν5007A5007

ν4363A4363

Ω12

Ω13
e+E23/kT

=
A2321 +A4363

A4363

ν

ν4363

Ω12

Ω13
e+E23/kT , (9.23)
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Figure 9.4: The visible spectrum of a resolved part of the Orion Nebula H II region. In the upper panel,
the spectrum has been scaled up to bring out the underlying continuum, which is weak relative to the
spectral lines. From: Baldwin et al. (1991), ApJ 374, 580.

where ν is the Einstein A averaged frequency of the 2→1 transition. Notice that we now have
split up the 2→1 transition in the lines 1D2 − 3P1 (λ5007 Å) and 1D2 − 3P2 (λ4959 Å).

This diagnostic is useful for temperatures ranging from 5 000 − 20 000 K (or ∼ 0.5 − 2 eV;
as 1eV = [k 11605] K) and earns this sensitivity to the fact that the energy levels 2 and 3
are some distance apart. If indeed the distance between these levels would have been small,
exp(E23/kT ) ∼ 1 and consequently the line flux ratios would have been insensitive to tem-
perature. There are other ions that have a similar favorable positioning of energy levels and
that can be used in a similar fashion to constrain the temperature of warm gaseous nebulae,
for instance [N II], [O I], [Ne III], [S III]. Figure 9.5 shows the sensitivity of these diagnostics
in the limit of low electron densities.

Equation (9.23) is a good approximation up to ne ∼ 105 cm−3. At higher electron densities
collisional de-excitations start to play a role (see also Sect. 5.3). The 1D term has a consid-
erably longer lifetime than 1S, and therefore will be de-populated at a lower ne by collisional
de-excitations, causing a weakening of the λ4959 and λ5007 lines. What starts to play a role
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Figure 9.5: Five temperature sensitive forbidden line ratios as function of the electron temperature.
The [O I] (solid line) and [N II] (dashed line) are almost superimposed, partly because they have very
similar excitation potentials. All ratios shown are in the limit ne � ncrit

e (ne = 1 cm−3). From
Osterbrock & Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2006.

at electron densities above the value given previously are collisional excitations from 1D to
1S. This strengthens the emission from λ4363. A proper description of this problem requires
the solution of a more extended set of statistical equilibrium equations, however, an analytical
solution that is correct to within first order in exp(−∆E23/kT ) is

η4959 + η5007

η4363
=

7.90 exp(3.29× 104/T )

1 + 4.5× 10−4 ne/T 1/2
(9.24)

In the second edition of Osterbrock & Ferland similar approximations are given for [N III],
[Ne III], en [S III]. Note that the correction term for the electron density is very small. Even
if only a rough estimate of ne is used, very reasonable estimates for T can be made. Giving
Eq. (9.24) some thought, one must admit that it is a fascinating result: the temperature of the
nebular gas can be derived without any knowledge of the local radiation field, the distance to
the nebula, and (often) the local electron density.
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Figure 9.6: Energy-level diagram of the 2p3 ground configuration of O II and 3p3 ground configuration
of S II, relevant for the formation of forbidden [O II] and [S II] lines. Note that the fine-structure levels
2D◦3/2,5/2 and 2P ◦1/2,3/2 (the energy separation of the different J-levels is exaggerated for clarity) are
switched around in these two ions.

9.3 ne diagnostics: collisionally excited forbidden fine-structure lines

An estimate of the electron density ne in the rarefied nebular gas can be made by determining
the ratio of the line strengths of forbidden transitions in the ground configuration of ions
with very comparable excitation energy (contrary to what is required for a good T -diagnostic,
see Sect. 9.2). The two best examples of such a situation are [O II] λ3729/λ3726 en [S II]
λ6716/λ67312.

We again take oxygen as an example. To keep a clear view of the situation we refer to the
ground level 4S◦3/2 as level 1, the first excited level 2D◦5/2 as level 2, and the second excited
level 2D◦3/2 as level 3. The two highest terms in the ground level configuration, 2P◦1/2,3/2, need
not be considered. In formulating the relevant statistical equilibrium equations we consider
collisional excitations, collisional de-excitations and spontaneous de-excitations. Note that
we ignore the (forbidden) transition 2D◦3/2 −

2D◦5/2. Though this is a good approximation for
the radiative transition between these two fine structure levels, it is not so for the collisional
coupling. However, in the two limiting situations ne → 0 and ne →∞ this is not a problem:
in the first instance these collisions are indeed negligible; in the second instance the two
levels (2 and 3) will be in LTE relative to each other. This is automatically taken care of by
considering the collisional transitions between 1− 2 and 1− 3. The situation of arbitrary ne,

2Notice that for the oxygen line the line ratio is longest wavelength / shortest wavelength of the doublet while
this is reversed in case of sulpher. This is because in these ions the 2D◦3/2,5/2 are interchanged, see figure 9.6.
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Figure 9.7: Statistical equilibrium calculation of line ratios for [O II] (solid line) and [S II] (dashed
line) as a function of ne for a temperature T = 10 000 K. At other temperatures the relations shown
are nearly correct if one assumes the horizontal scale represents ne(104/T )1/2. From Osterbrock &
Ferland, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2006.

however, does require a consideration of the 2D◦3/2 −
2D◦5/2 coupling.

Using Cij = ne qij for convenience, we get for level 2

n2 (A21 + C21) = n1C12, (9.25)

and for level 3
n3 (A31 + C31) = n1C13. (9.26)

For the ratio between the line strengths 21 and 31 it follows that

η21

η31
=
η3729

η3726
=

n2A21 hν21

n3A31 hν31
' A21

A31

C12

C13

(A31 + C31)

(A21 + C21)
=
A21

A31

C12

C13

C31

C21

(A31/C31 + 1)

(A21/C21 + 1)

' A21

A31

g2

g3

(A31/C31 + 1)

(A21/C21 + 1)
. (9.27)

The first approximately equal sign denotes that ν21 ' ν31. For the last equality we have used
that nLTE

l Clu = nLTE
u Cul, as collisions couple the populations to the local temperature and

density, and realized that E12 ' E13.

In the low density limit, each collisional excitation is followed by the emission of a photon.
One obtains η3729/η3726 = C12/C13 = Ω12/Ω13. In the high density limit, that for 2D◦5/2
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is reached at ncrit
e ∼ 3 × 103 cm−3 and for 2D3/2 at ncrit

e ∼ 1.6 × 104 cm−3, it follows that
η3729/η3726 = A21 g2/A31 g3 = 0.34.

Figure 9.7 shows the behavior of η3729/η3726 as function of ne for the exact solution of the
statistical equilibrium equations, also accounting for collisional excitations to the 2P◦1/2,3/2
levels.



176 H II regions - part II: thermal state

Exercise 9.1

Derive the cooling rate Eq. 9.13 starting from Eq. 6.2.

Exercise 9.2

Observations of an H II region surrounding an O5 Ia supergiant in the Orion Nebula show
that the electron temperature of the gas is 9000 K. A similar O5 Ia supergiant in the Small
Magellanic Cloud has an H II region with an electron temperature of 11000 K. What could
be the cause of the different electron temperatures?

Exercise 9.3

This could be a nice exam question. It is believed that the sun is inside a local bubble
of hot gas of about a million degrees and hydrogen density nH = 10−3 cm−3. This
gas is highly ionized and hence provides no significant opacity for observations within
100 pc or so. However, numerous investigations have shown that there is a minimum
column density of neutral hydrogen of about NH = 1018 cm−2 toward all stars observed.
Therefore it appears that we are embedded in a small, at least partially neutral cloud
with approximately this column depth towards its edge. The temperature of the gas in
this bubble within a bubble is 8 000 K and the neutral hydrogen density nH = 0.1 cm−3.
Assume all H I to be in the ground state. Furthermore, assume that the bubble of neutral
gas is spherical and that we are at its center.

a) What is the diameter of this bubble, assuming an atomic hydrogen density of nH =
0.1 cm−3.

b) Derive an expression for the optical depth in the Lyα line of hydrogen in terms of the
column depth in hydrogen and a constant temperature in the local bubble. Use for the
extinction coefficient

χν = αlu(ν)nl =
πe2

mec
flu nl φν , (9.28)

where flu = 0.4162 and assume a Gaussian line profile function.

c) Is the local bubble optically thin or thick at the center wavelength of Lyα?

d) In spectra of distant quasars we do see numerous Lyα lines caused by intervening galactic
halos and gas clouds. How can this be?
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Molecular gas

As we have discussed earlier, molecules are widely used as diagnostic tools in studies of
the ISM. Fathoming the chemistry leading to the molecules we observe in space is a fun-
damental problem in astronomy. It is essential that we grasp the formation, destruction,
hence abundance of well-known species such as H2 and CO. Simple chemical networks may
be in operation in e.g. dark clouds, leading to simple organics. Complex organics, either
in the ISM, in proto-planetary disks, or in exo-planetary atmospheres might produce build-
ing blocks of life as we know them. Observations with ground-based telescopes such as
the James Clark Maxwell Telescope (JCMT), the Institut de Radioastronomie Millimétrique
(IRAM) interferometer, the Infrared Space Observatory (ISO), the Spitzer Space Telescope
(SST) and especially the Herschel Space Observatory (HSO) and Atacama Large Millimeter
Array (ALMA) are adding enormously to our knowledge of molecules in space. Today more
than 180 molecules are known to exist in the medium in-between the stars, some simple – for
instance H2, some surprisingly complex – for instance fullerenes, a family of structures com-
posed entirely of carbon, including spherical, ellipsoidal, or tube like shapes (see Fig. 10.1).
Perhaps most intriguing so far is the discovery of the amino acid glycine (C2H5NO2) – one of
the 20 amino acid building blocks of genetic code – in meteorites and possibly in space (but
see Snyder et al. 2005, ApJ 619, 914). For an up to date list of molecules in space with liter-
ature references, we refer to the websites of the Astrochemistry Laboratory at Goddard Space
Flight Center1 and the University of Köln2, but one may also check the Wikipedia lemma List
of interstellar and circumstellar molecules. For an overview of known complex molecules,
defined as those that consist of 6 atoms or more, see Fig. 10.2. All contain the element carbon
so can be called organic.

1http://science.gsfc.nasa.gov/691/cosmicice/interstellar.html
2http://www.astro.uni-koeln.de/cdms/molecules

http://science.gsfc.nasa.gov/691/cosmicice/interstellar.html
http://www.astro.uni-koeln.de/cdms/molecules
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Figure 10.1: The fullerines C60 (buckyballs) and C70 have been discovered in a number of Planetary
Nebulae, both in the Galaxy and (in once case) in the Small Magellanic Cloud. The figure shows an
artist impression of these fullerenes, in the Planetary Nebula SMC 16 in the SMC.

10.1 Gas phase reactions

Consider the two-body reaction

A + B
k→ C, (10.1)

where reactants A and B interact and form the product C. The rate at which the abundance of
species C increases with time is given by the rate equation

dn(C)

dt
= k n(A)n(B), (10.2)

with n(X) the number density of species X in cm−3. The rate coefficient k describes how fast
or slow the reaction proceeds, i.e. the probability that the product is formed when the reactants
meet. Because the rate of change in the abundance of species C is proportional to the product
of the abundances of its two reactants, it is a second order rate equation. In this case, the unit
of k is cm3 s−1.

In case of a one-body reaction, e.g. photo-dissociation,

AB + hν
k→ A + B, (10.3)
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Figure 10.2: Complex organic interstellar molecules. Here complex implies ≥ 6 atoms. Abbreviations
refer to the location where these species are found: circ = circumstellar envelope around evolved stars
or proto-planetary nebulae; cc = cold cloud core; hc = hot cores or hot corinos (a hot corino is the
low-mass version of a hot core); lc = lukewarm corino; gc = galactic center cloud; of = outflow. From:
Herbst & van Dishoeck 2009, ARAA 47, 427.

the rate of formation of species A and B are given by a first order rate equation,

dn(A)

dt
=

dn(B)

dt
= k n(AB), (10.4)

where the rate of change in the abundance of the product(s) depends only on the abundance of
its single reactant. In this case, the unit of k is s−1.

Assuming a species i may form or get destroyed in a set of either one-body or two-body
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reactions, it holds that

dni
dt

=
∑
j,k

kj,k nj nk +
∑
l

kl nl − ni

(∑
m

ki,m nm +
∑
n

kn

)
. (10.5)

The first two terms of this ordinary differential equation (ODE) represent all reactions form-
ing species i, either through two-body reactions (first term) or single-body reactions (second
term). Equivalently, the final two terms represent all reactions destroying species i, either in
two-body reactions (third term) or one-body reactions (fourth term).

The situation in which all species in the network of chemical reactions are present in abun-
dances which have no further tendency to change with time – i.e. the system is in steady state
– is referred to as chemical equilibrium. In case the network consists of a single chemical
reaction, this state results when the forward reaction proceeds at the same rate as the reverse
reaction. More general, chemical equilibrium for a set of species Xi implies that

dn(Xi)

dt
= 0 ∀ Xi. (10.6)

Photodissociation is only one type of gas-phase reaction. An overview of the different types
of gas-phase reactions is given in Table 10.1. They are grouped according to their effect on
the species involved. Reactions can lead to bond formation, bond destruction, bond rearrange-
ment, and ionization/neutralization. They can also be divided in two-body reactions, where
two species meet for the reaction to occur (Eq. 10.1), and one-body reactions, where a species
is photo-ionized or photo-dissociated by either a UV photon or a cosmic-ray (e.g. Eq. 10.3).

Two-body reactions

The temperature dependence of the reaction rate coefficient is described by the Arrhenius
equation, proposed by Svante Arrhenius (1859 - 1927) based on the work of the Dutch chemist
Jacobus van ’t Hoff (1852 - 1911),

k = α

(
T

300

)β
exp

(
− γ
T

)
. (10.7)

The coefficient α is the pre-exponential factor; β specifies the temperature dependence. The
energy barrier of the reaction, i.e. the energy that needs to be available to the system of
reactants for the reaction to occur, is captured with the parameter γ = Ea/k, where Ea is the
activation energy in K.

The value of the rate coefficient of a two-body reaction and its temperature dependence de-
pend mainly on the charged state of the reactants. Reactions between neutral molecules are
generally slow, since these reactions have energy barriers due to the electronic rearrangement
required to form the products. Ion-neutral reactions are faster than neutral-neutral reactions,
thanks to the long-range interaction between the ion and the electric dipole of the neutral
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Bond formation reactions Typical k Unit

Radiative association X(+) + Y→ XY(+) + hν 10−17 − 10−14 cm3 s−1

Associative detachment X− + Y→ XY + e− ∼ 10−9 cm3 s−1

Bond destruction reactions
Collisional dissociation∗ XY + Z→ X + Y + Z 10−9 − 10−7 cm3 s−1

Dissociative recombination XY+ + e−→ X + Y 10−7 − 10−6 cm3 s−1

Photo-dissociation XY + hν → X + Y 10−11 − 10−8 s−1

Cosmic-ray induced dissociation XY + cr→ X + Y 1.3× 10−17 s−1

Bond rearrangement reactions
Ion-neutral X+,− + YZ→ XY+,− + Z 1010 − 10−8 cm3 s−1

Neutral-neutral X + YZ→ XY + Z 10−13 − 10−10 cm3 s−1

Charge exchange X+ + YZ→ X + YZ+ ∼ 10−9 cm3 s−1

Mutual neutralization X− + Y+→ X + Y ∼ 10−8 cm3 s−1

Ionization/neutralization reactions
Radiative recombination X+ + e−→ X + hν ∼ 10−12 cm3 s−1

Radiative electron attachement X + e−→ X− + hν 10−9 − 10−7 cm3 s−1

Photoionization X + hν → X+ + e− 10−11 − 10−8 s−1

Cosmic-ray induced ionization X + cr→ X+ + e− ∼ 1.3× 10−17 s−1

Table 10.1: Types of chemical reactions and their typical rate coefficients k. From McElroy et al.
(2013) and van Dishoeck (2014). cr stands for cosimic ray. ∗Also known as thermal dissociation.

molecules, which is either a permanent dipole in the case of polar molecules, or an induced
dipole moment in case of non-polar molecules. Mutual neutralization and dissociative recom-
bination reactions, involving a positively charged and a negatively charged reactant, are even
faster than ion-neutral reactions, as the long-range attraction between the reactants is stronger.

One-body reactions

The rate coefficient of a one-body reaction depends on the specific process. Cosmic rays with
energies between 10 and 100 MeV may cause direct ionization at a rate

k = ζ. (10.8)

For instance, for direct cosmic-ray ionization of H2, ζ = 1.36 × 10−17 s−1. In this process
secondary electrons with a mean energy around 30 eV are produced that in turn may excite,
dissociate, and ionize other molecules (mainly H2). Excitations of H2 to the B 1Σ+

u , C 1Πu

(see Sect. 4.2 for the designation of molecular energy levels) and higher electronic states of H2

are followed by spontaneous emission of photons which have sufficient energy to dissociate
many of the interstellar molecules. The rate of cosmic-ray-induced photo-reactions these (UV)
photons cause is

k = ζ

(
T

300

)β γ

1− ω
, (10.9)
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where ζ is the cosmic-ray ionization rate, γ is the efficiency of the cosmic-ray ionization event
(as defined in Eq. 8 of Gredel et al. 1989), and ω is the dust-grain albedo in the far ultraviolet
(typically 0.4−0.6 at 150 nm).

The photo-dissociation or photo-ionization rate of a species upon interaction with a UV photon
is calculated as (see Sect. 8.2)

k = 4π

∫ ∞
ν◦

αbf
ν

Jν
hν

dν = c

∫ ∞
ν◦

αbf
ν

uν
hν

dν, (10.10)

where αbf
ν is the photo-dissociation or photo-ionization cross section and uν the energy density

of the interstellar radiation field (see Eq. 6.8).

10.2 Formation of H2

For many years it was a mystery as to how molecules could form in the low-density environ-
ments of the interstellar medium in molecular clouds. The basic problem is that when two
atoms collide in the gas phase the most likely outcome is that they will simply bounce off. A
third body is normally needed to carry away the excess (binding) energy that is liberated when
two atoms bind (see Sect. 4.1).

The H2 molecule exemplifies this problem. When two free H atoms, both in the ground
electronic state, approach one another, by symmetry there is no electric dipole moment. Con-
sequently, there is no electric dipole radiation that could carry away energy from the system
and leave the two H atoms in a bound state. Electric quadrupole transitions are possible, and
in principle allow for the radiative association reaction

H + H→ H2 + hν (10.11)

to occur, but the rate at which this happens is so low that it can be ignored in astrochemistry.
The three-body reaction

H + H + H→ H2 + H + Ekin, (10.12)

in which the H atom is carrying off the 4.48 eV of energy released when H2 is formed, too has
a reaction rate that is so low that it is negligible at interstellar or intergalactic densities.

So, how does H2 form?

Gas-phase formation of H2

There is actually no good way to produce molecular hydrogen through gas phase reactions, and
in the present-day universe H2 is formed on interstellar grain surfaces (see below). However, in
the early universe, when dust was absent, gas-phase formation may have played an important
role prior to heavy element synthesis in the first generation of stars.
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The dominant channel for H2 formation in the gas phase starts by the formation of the hydro-
gen anion H− by radiative association

H + e− → H− + hν, (10.13)

of which the rate coefficient or rate constant k ∼ 4.0× 10−16 (T/300 K)2/3 cm3 s−1. Hence,
the number of H− that is produced per cm3 per second is dn(H−)/dt = k n(H)ne. Subse-
quently, H2 is formed by associative detachment

H− + H→ H2(v, J) + e− + Ekin, (10.14)

of which the rate coefficient k ∼ 1.3 × 10−9 cm3 s−1. In the diffuse ISM, most of the H−

that is formed by reaction (10.13) is actually not available for the follow-up reaction leading
to molecular hydrogen, but is destroyed by the photo-dissociation reaction

H− + hν → H + e−, (10.15)

of which the rate coefficient k ∼ 2.4 × 10−7 s−1 assuming an average ambient interstellar
radiation field, resulting in a very low formation rate of H2. In addition, H− can also be
destroyed by mutual neutralization reactions with protons (H− + H+ → H + H) or other
positive ions.

Grain surface catalysis of H2

Because of the difficulty of forming H2 in the gas phase, it is now generally accepted that the
formation of H2 in the ISM proceeds via grain catalysis. The idea is that H atoms adsorb to the
surface of a dust grain, i.e. H atoms arrive and become bound to the grain surface, after which
they migrate over that surface. During the migration process, part of the H atom population
may arrive at a site where it is bound strongly enough to (at least temporarily) prevent it from
being evaporated by thermal fluctuations on the grain surface. It then has to wait until it is
encountered by a newly arrived H atom, wandering over the grain surface, and form H2.

The formation rate of H2 in cm−3 s−1 can be expressed as

dn(H2)

dt
=

1

2
S(T, Td) η(Td)σd nd nH vH, (10.16)

where S(T, Td) is the sticking probability of an H atom with temperature T colliding with a
grain of temperature Td, η is the probability that an adsorbed H atom will migrate over the
grain surface, find another H atom, and form H2 before evaporating from the grain surface.
The dust grain density is nd and σd = π a2

d the grain geometric cross section, where ad is the
grain size. nH is the H atom density, and vH is the thermal speed of the H atoms, given by
Eq. (2.62). The factor 1

2 enters because it takes two H atoms to form an H2 molecule. The
energy released when two H atoms react to form H2 in the ground state is ∆E = 4.5 eV. This
energy is large enough to overcome the forces that were binding the two free H atoms to the
grain, and the H2 molecule is ejected from the grain surface.
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Figure 10.3: A schematic diagram illustrating the H2 pumping, fluorescence, dissociation, and heating
through the absorption of far-UV photons. Absorption of a far-UV photon followed by FUV radiative
decay can leave H2 vibrationally excited in the ground vibrational state. The excess vibrational energy
can be emitted as a near-IR photon or the molecule can be de-excited through collisions, thereby heating
the gas. In about 10-15% of the far-UV pumps, H2 decays to the vibrational continuum of the ground
electronic state and the molecule dissociates. From: Tielens (2005).

S and η tend to decrease with increasing temperature as atoms bounce from the grain surfaces
or evaporate before reacting more easily. For sufficiently low temperatures, S ∼ 1 and η ∼ 1.
The larger the grains in the population, the slower the formation rate, as the total geometric
grain cross section nd σd becomes less. For a typical grain radius of 0.1µm (or 10−5 cm)
we find σd = 3 × 10−10. Using Eq.5.3 we obtain for nd/nH ∼ 4 × 10−12, such that σd ∼
10−21 cm2 per H atom, but it could conceivably be much larger if a large population of very
small ad . 50 Å grains is present. Models that, in addition to silicates and graphite particles
also include PAHs typically have a & 5 times higher total grain cross section. However, the
application of these models to observations seems to indicate that for PAHs the value of η is
very low.

Though many of the details need sorting out, it appears that with the canonical numbers given
here, molecular hydrogen formation on interstellar grain surfaces can explain quantitatively
the observed H2 abundances.
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10.3 Destruction of H2

The destruction of molecular hydrogen is dominated by photo-dissociation processes.

10.3.1 Photo-dissociation of H2

Photo-dissociation is the principal process destroying interstellar H2. It is quite an efficient
process and in the absence of self-shielding, diffuse H I clouds will contain only trace amounts
of H2. The outcome of photo-dissociation is that

H2 + hν → H + H + Ekin. (10.17)

The first step in the H2 photo-dissociation is the absorption of a resonance line photon at far-
UV wavelengths with photon energy in the range of 11.2 to 13.6 eV, raising the H2 from an
initial level X(v, J) of the ground electronic state X 1 Σ+

g to a level B(v′, J ′) or C(v′, J ′) of
the first or second electronic excited states, B 1Σ+

u and C 1Πu (see Sect. 4.2 for the designation
of molecular energy levels). Photons leading up to excitation of the B 1Σ+

u electronic state
are referred to as Lyman(-band) photons; those leading up to excitation of the C 1Πu state
as Werner(-band) photons. The original photo-excitation is via a permitted absorption line,
and therefore the newly excited level B(v′, J ′) or C(v′, J ′) will have electric dipole-allowed
decay channels. In about ∼ 85-90% of cases, the exited level decays to vibrationally excited
bound levels X(v′′, J ′′) of the ground electronic state. Sometimes, however, spontaneous
decay of the excited level B(v′, J ′) or C(v′, J ′) will be to the vibrational continuum of the
ground electronic state: the molecule will ‘vibrate’ apart, separating into two free H atoms
(see Figs. 10.3 and 4.10).

10.4 Structure of a photo-dissociation region or PDR

In high density regions the gas is able to shield itself against radiation that is capable of
destroying molecules by photo-dissociation. This self-shielding refers to the phenomenon
where the photo-excitation transitions become optically thick, so that the molecule in question
is “shielded” from starlight by other identical molecules.

Because a high density is required, molecular gas is often found in star-forming regions – in-
deed, stars form out of molecular gas. When a massive star forms, it may strongly irradiate the
remaining molecular cloud material with ultraviolet radiation, resulting in photo-dissociation
and photo-ionization. The photo-ionized gas, heated to ∼ 104 K, will be over-pressured and
drive a compressive wave (possibly a shock wave) in the molecular cloud, i.e. the ionized gas
will try to flow toward lower-pressure regions nearby (see Sect. 8.6).
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Figure 10.4: Structure of a PDR at the interface between an H II region and a dense molecular cloud.
The front is assumed to be illuminated from the left by unidirectional radiation. Measured from the
ionization front, the hydrogen column density and optical depth increase to the right. Dissociation
fronts of molecules other than H2 will also be present. From: Drain (2011).

The interface between the H II region and the dense molecular cloud is called a photo-disso-
ciation region or photon-dominated region or PDR, and its structure is illustrated in Fig. 10.4.
The PDR is bounded by an ionization front – the surface where the hydrogen is half ionized
and half neutral – and will contain a photo-dissociation front – the surface where the hydro-
gen is half atomic and half molecular (by mass). If we adopt a frame of reference in which
the photo-dissociation front is at rest, then the molecular gas will flow toward the photo-
dissociation front where it is dissociated, after which the atomic gas flows away from the
photo-dissociation front toward the ionization front.

Diffuse molecular clouds have a qualitatively similar structure, although they may lack both
the hottest and the coolest regions shown in Fig. 10.4, depending on whether they are bounded
by photo-ionized gas, on the one hand, and how thick they are, on the other hand. Figure 10.5
shows the profile of a model plane-parallel cloud with an H I / H2 transition. The cloud is
illuminated from one side by unidirectional radiation with the energy density and spectrum
of the interstellar radiation field (ISRF). The gas is assumed to be at uniform pressure p/k =
3000 cm−3 K, i.e. the entire medium is in pressure equilibrium. The cosmic ray ionization
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Figure 10.5: Profile of the H I−H2 transition in a diffuse molecular cloud, for an assumed pressure
p/k = 3000 cm−3 K. The dotted lines delimit the surface layer of cool gas where more than half of the
hydrogen is H I. From: Drain (2011).

rate ξCR = 2× 10−16 s−1 and the properties of the dust that is present and that is attenuating
starlight, causing photo-electric heating and formation of H2, is standard. The gas is further
assumed to be in thermal and chemical equilibrium at each point, with heating = cooling,
ionization = recombination, and H2 destruction = H2 formation. This may be expected to
be valid if the flow velocities referred to above are sufficiently small. As the radiation field
entering from the left is attenuated by dust, the gas makes a transition from the warm (WNM)
phase to the cool (CNM) phase.

In the WNM (on the left of the figure), the H2 abundance is very low, . 10−6. The steady
state H2 abundance rises as one enters the CNM, as a result of both

- the increased gas density – promoting H2 formation, and

- growing self-shielding – lowering the photo-dissociation rate.
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The onset of the zone where the gas forms molecules has NH = 3.9 × 1020 cm−2, and a
dust column with E(B−V ) = 0.066 mag (see Eq. 12.19), AV = 3.1E(B−V ) = 0.2 mag.
The optical depth τV in dust is here about 0.2 (see Eq. 12.13). The end of this zone is at
NH = 11.5 × 1020, i.e. an τV = 0.6. The H2 in the cloud is undergoing far-UV pumping
which results in destruction of the H2 in ∼ 10-15 % of the time; the remaining ∼ 85-90 % of
the UV excitations create a population of rotationally excited H2 in the cloud.

Orion’s Bar

The Orion Bar (see Fig. 10.6) is the most famous example of a PDR. Moving outward from
θ1 Ori C, it includes a high pressure layer of photo-ionized gas, an ionization front, a photo-
dissociation zone where the hydrogen is neutral but primarily atomic, and a photo-dissociation
front. Tielens et al. (1993) provide a nice overview of the structure of the Orion Bar, in which
many different molecules have been detected.

Star-forming galaxies

In star-forming galaxies, an appreciable fraction (∼10 %) of the total luminosity of the galaxy
is reprocessed through dense PDRs at the interface between molecular clouds and H II regions.
Energy, originally radiated by hot stars is absorbed by molecules and dust grains in the PDR,
and re-radiated at longer wavelengths as IR emission from dust and PAHs, and line emission
from atoms and molecules in the gas. Part of the starlight energy goes into changing the
physical state of the gas – from cold and molecular to hot, photo-dissociated, and possible
photo-ionized if an ionization front is present.

10.5 Chemistry in molecular clouds

Once H2 has formed, other chemistry can follow (see Draine 2011). For other molecules than
H2 the general ultraviolet background provided by starlight too is lethal, with either photo-
dissociation or photo-ionization occurring rapidly. In the diffuse ISM, small molecules have
photo-dissociation rates that range from∼ 4×10−11 s−1 (e.g. H2) to∼ 10−9 s−1 (e.g. CN and
H2CO). In clouds, the ultraviolet radiation is attenuated by dust, and the photo-dissociation
rates are reduced. The amount by which it is reduced depends on the overall column density
(or AV ) through the cloud, and the location within the cloud. For a Giant Molecular Cloud
(GMC) the total thickness is typically AV ∼ 10. Already at AV ∼ 3 the photo-dissociation
rate can be reduced by factors of ∼ 103 − 105, rendering unimportant photo-dissociation by
photons originating outside the cloud. However, cosmic rays penetrating the cloud not only
ionize H2 and He, they also cause electronic excitation of H2 by two processes. First, the
electric field of passing charged cosmic rays can excite electrons to bound states (e.g. the
B 1Σ+

u and C 1Πu states of H2) followed by spontaneous emission of an UV photon. Second,
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Figure 10.6: Left panel: In the white box is part of Orion’s Bar, the PDR in the Orion nebula. It is here
that the ionization of the Trapezium stars is eating its way into the parent molecular cloud. We observe
the Bar edge-on, which is a favorable angle to study the individual layers that make up the structure of
this PDR. Moving to the south-east (down and left), we pas from the ionized medium into a (swept-up)
dusty interface, into the molecular region. Right panel: the PAH emission layer is code in blue, the H2

emission in green, and the CO emission in red. The yellow color results form an overlap of green and
red. From: Tielens et al. 1993.

the secondary electrons produced by cosmic ray ionization events can themselves excite elec-
tronic states of H2. Together, these two processes result in the generation of UV photons at a
rate proportional to the cosmic ray ionization rate.

With H2 present and UV radiation present, the chemical network in Molecular Clouds (with
a typical temperature T < 100 K) is dominated by ion-molecule reactions. Things start with
the cosmic-ray induced ionization reaction (see e.g. Ward-Thompson & Whitworth 2011)

H2 + cr→ H+
2 + e− + cr, (10.18)

where we have denoted the cosmic ray as cr. The ionization helps to drive the subsequent
chemistry. This leads to

H+
2 + H2 → H+

3 + H, (10.19)

producing the highly reactive molecular ion H+
3 . Protonated molecular hydrogen, H+

3 , is the
simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next
only to H2, although its steady state abundance is low because of its extremely high chemical
reactivity. H+

3 is a strong acid (proton donor) and initiates chains of ion-molecule reactions
leading to formation of complex molecules (Oka 2006, PNAS 103, 33).
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Formation and destruction of OH

H+
3 can drive the oxygen chemistry, leading to the formation of the water molecule, H2O, and

the OH radical by the following direct route

O + H+
3 → OH+ + H2. (10.20)

An alternative formation mechanism for OH+ could be by means of ionized oxygen, using

H2 + O+ → OH+ + H. (10.21)

Then
OH+ + H2 → H2O+ + H (10.22)

followed by

H2O+ + e− →


OH + H (20%)
O + H2 (9%)
O + H + H (71%),

(10.23)

and
H2O+ + H2 → H3O+ + H, (10.24)

followed by

H3O+ + e− →


O + H2 + H (1%)
OH + H2 (14%)
OH + H + H (60%)
H2O + H (25%),

(10.25)

The OH that is formed in this way is destroyed primarily by photo-dissociation, i.e.

OH + hν → O + H. (10.26)

Formation and destruction of CO

In diffuse molecular clouds, most of the gas-phase carbon is in the form of C+. The formation
of CO starts with the (slow) reaction

C+ + H2 → CH+
2 + hν, (10.27)

where we have denoted the emitted photon by hν. The radical CH+
2 that is produced reacts

rapidly with electrons

CH+
2 + e− →


CH + H (25%)
C + H2 (12%)
C + H + H (63%),

(10.28)
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producing CH about 25% of the time. The CH produced by dissociative recombination of
CH+

2 can then react with O to produce CO via reaction

CH + O→ CO + H. (10.29)

Equation (10.29) is an example of an exchange reaction. Other pathways to forming CO also
appear to involve such exchange reactions. They are

C + OH→ CO + H, (10.30)

or
C+ + OH→ CO+ + H. (10.31)

The latter process proceeds to CO via

CO+ + H2 → HCO+ + H, (10.32)

and
HCO+ + e− → CO + H. (10.33)

Aside from the initial production of H2 via grain catalysis, it is assumed that all other reactions
resulting in formation of CO in diffuse molecular clouds take place in the gas phase. Whether
this is actually the case is uncertain. For example, one could imagine that C and O atoms
might stick to silicate grains and react to form CO, with the CO molecule returned to the gas
phase either by the energy released in formation of CO, or by photo-desorption. Like OH, CO
is destroyed primarily by photo-dissociation.
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(1) V Ar + cr
k1−→ Ar+ + e− k1 = ζ(Ar) = 11.4 ζ(H)

(2) Ar + H+
2

k2−→ Ar+ + H2

(3) Ar + H+
3

k3−→ ArH+ + H2

(4) Ar+ + e−
k4−→ Ar + hν

(5) V Ar+ + H2
k5−→ ArH+ + H

(6) V ArH+ + H2
k6−→ Ar + H+

3 k6 = 8.0× 10−10 cm3 s−1

(7) ArH+ + CO
k7−→ Ar + HCO+

(8) V ArH+ + O
k8−→ Ar + OH+ k8 = 8.0× 10−10 cm3 s−1

(9) ArH+ + C
k9−→ Ar + CH+

(10) ArH+ + e−
k10−→ Ar + H

(11) V ArH+ + hν
k11−→ Ar+ + H

Table 10.2: Simple chemical network describing the formation and destruction pathways of ArH+.
The cosmic-ray ionization rate of hydrogen ζ(H) = 2.0× 10−16 s−1.

Exercise 10.1

Argonium (ArH+), the first nobel gas molecule to be detected in space (Barlow et al.
2013, Science 342, 1343), is considered a very good tracer of the atomic gas in the ISM
(Schilke et al. 2014, A&A 566, A29). Table 10.2 provides a simple chemical network
describing the formation and destruction pathways of ArH+.

a) Classify each type of reaction in the chemical network using Table 10.1.

b) Write the ordinary differential equation which describes the rate of change of the number
density n(ArH+) of argonium as a function of time.

c) Assuming an equilibrium situation, i.e. dn/dt = 0 for all species, derive the following
expression for the abundance ratio of ArH+ and Ar in the diffuse ISM

n(ArH+)

n(Ar)
=

ζ(Ar)

k6 n(H2) + k8 n(O)
, (10.34)

where ζ(Ar) = k1 is the cosmic-ray ionization rate of Ar.

According to Schilke et al. 2014, the only reactions contributing significantly to the
formation and destruction of ArH+ are the ones indicated with aV in Table 10.2. Use
for the abundance of oxygen in a diffuse interstellar cloud n(O) = 2.9 × 10−4 nH and
for argon n(Ar) = 3.2 × 10−6 nH, where nH is the total hydrogen particle density (so,
all hydrogen in atomic and molecular form).

d) Show that

n(ArH+) =
4.56× 10−10

25f(H2) + 1.45× 10−2
cm−3, (10.35)
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where f(H2) = 2n(H2)/nH is the molecular mass fraction of hydrogen.

e) Make a plot (e.g. using Excel or python) to show the relation between n(ArH+) and
f(H2). Is argonium a good tracer of molecular gas or of atomic gas?

Exercise 10.2

In a molecular cloud, molecular hydrogen forms on the surface of grains and is destroyed
by the interaction with sufficiently energetic photons.

a) Give formulae for dn(H2)/dt (formation) and dn(H2)/dt (destruction). Given is that the
photo-destruction cross-section of molecular hydrogen due to photons with frequency ν
is αH2

(ν) (see Section 8.2) and that the minimum frequency where a photon can destroy
molecular hydrogen is ν◦.

b) Compute the equilibrium molecular hydrogen fraction x = n(H2)/N , where N =
n(H2) + nH.

Exercise 10.3

This could be a nice exam question. The molecule AB is formed in the following ways:

A + B → AB + hν k1

A + BC → AB + C k2

The rate coefficients for these reactions are k1 and k2 cm3 sec−1, respectively. AB is lost
in the reaction

AB + D → A + BD k3

AB + hν → A + B k4

where the latter is a photo-dissociation reaction. The rate coefficients are k3 cm3 sec−1

and k4 sec−1.

a) Write down the expression for the equilibrium number density of AB, nAB, in terms of
other number densities. Why do the number densities of species C and BD not feature in
this expression?

b) We assume that these are the only four chemical reactions that occur in the medium.
To what value will nAB eventually evolve, again expressed in terms of other number
densities?

c) We take away the molecules A, B, and D at time t◦, when the number density of AB is
nAB(t◦). We further set k1 = 0. How does the number density of AB evolve in time
from t◦ on?
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Interstellar dust

The existence of solid state material between the stars was first proposed by the Russian
astronomer Otto Wilhelm von Struve (1819-1905) in 1847 based on the analysis of star counts
which suggested that the number of stars per unit volume decreased with increasing distance
from the sun. Struve proposed that the starlight was experiencing absorption proportional to
distance. It was not until 1909 that Jacobus Cornelius Kapteyn (1851-1922) realized the full
significance of this interstellar extinction. Shortly thereafter Edward Barnard documented the
irregular variations in the distribution of the absorbing matter. The identification of small solid
state particles as the source of this extinction was finally accepted in the 1930s through the
work of Trumpler and Stebbins, Huffer, and Whitford. Over the succeeding decades, we have
built on these pioneering studies, but many aspects of interstellar dust – including its chemical
composition – remain uncertain.

Interstellar dust plays an important role in many processes in galaxies and in the life cycle of
stars. Only roughly one percent of the interstellar matter is in the form of dust (see Sect. 5.1).
Because of its efficient absorption of stellar light at short wavelengths, and the re-emission of
the absorbed energy at long wavelengths, dust plays an important role in the energy budget
of the ISM. For instance, it shields molecular clouds from the UV radiation of stars, so that
molecules can exist in the ISM. Dust also provides a surface on which various chemical and
physical processes can occur. Dust also plays a crucial role in the process of star formation in
contracting molecular clouds, and is the building block from which planets form.

Asymptotic Giant Stars and Red Supergiants produce copious amounts of dust in their stellar
winds, so-called circumstellar dust. This dust is blown into the ISM and mixes with the
material already there. Supernova explosions can also produce dust; in fact they are potentially
a very important source of interstellar dust, but there is still considerable uncertainty about
the amount of dust these explosions produce. Finally, we mention so-called ultraluminous
infrared galaxies at redshifts mostly between z = 1 to 3. These are distant galaxies in which
more than 90 percent of the light is emitted at far-IR wavelengths (see Fig. 11.1). They
obviously have large amounts of dust, probably due to a recent starburst. The dust in these
galaxies is heated by the many young hot stars that formed during the starburst. Clearly these
systems can best be studied at long, infrared and millimeter wavelengths.
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Figure 11.1: Left: HST/ADS image IRAS 14348-1447, a galaxy merger event of two gas-rich spiral
galaxies. Almost 95% of the energy emitted by the system is in the far-infrared. At a redshift of
z = 0.083 (or 341 Mpc), it is a nearby example of an Ultra-Luminous Infra-Red Galaxy or ULIRG.
Right: Observer-frame spectrum of the best fit model to IRAS 14348-1447 at increasing redshifts, for
a cosmology where H◦ = 50 km s−1 Mpc−1, Ω◦ = 1 and ΩΛ = 0. Notice that at z = 0.08 by far most
of the light coming from the galaxy is emitted in the far-infrared, i.e., it is re-emission of stellar light
by dust grains. From: Left: HST/ADS image. Right: Devriendt et al. 1999, A&A 350, 381.

11.1 Observations

It is not possible (yet) to bring representative samples of interstellar dust (see below) into
the laboratory, and we must thus rely on remote observations. Our strongest constraints on
interstellar dust come from observations of its interaction with electromagnetic radiation (see
also Draine 2011):

� Wavelength-dependent attenuation of starlight by absorption and scattering, observable
at wavelengths from 0.1µm to 20µm. This continuum extinction is strongest in the
ultraviolet, and weakens towards the infrared, and includes a number of spectral features
that provide clues to the grain composition (see Fig. 11.2 and Sect. 12.2).

� Polarization-dependent attenuation of starlight, resulting in a wavelength-dependent po-
larization of light reaching us from reddened stars.

� Scattered light in reflection nebulae. The dust in these clouds reflects the light of a
nearby star or stars. These nearby stars are not hot enough to ionized the gas, such as in
H II nebulae (also called emission nebulae; see Fig. 11.3).

� Strong attenuation of background starlight in interstellar clouds, causing such a cloud
to appear as a dark patch in the sky relative to its surroundings. A famous example of a
dark cloud is the Horsehead Nebula (see Fig. 11.3).
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Figure 11.2: Extinction versus inverse wavelength λ−1 on a typical sightline in the local diffuse ISM.
The inset shows the extinction at λ > 2µm. Note distinct spectral features at 2175 Å, 3.4 µm and
10 µm that provide clues to the grain composition. Because atomic hydrogen absorbs strongly at
λ < 912 Å, the extinction curve is shown up to about λ−1 = 10µm−1. The dust responsible for
interstellar extinction appears to be relatively well-mixed with the gas. For RV ∼ 3.1, AV /NH =
5.3× 10−22 mag cm−2 H−1, assuming all the gas is neutral.

� Thermal emission from dust, at wavelengths ranging from about 2µm to the sub-mm.

� Small-angle scattering of X-rays, causing ‘scattered halos’ around X-ray point sources.

� Microwave emission from dust, probably from rapidly spinning ultra-small grains.

� Luminescence when (a so far unidentified component of) interstellar dust is illuminated
by ultraviolet starlight with efficient luminescence in the 500− 1000 nm spectral range
– the so-called extended red emission.

In addition to this electromagnetic evidence, dust reveals itself also in other, less direct ways
(see Draine 2011):

� Pre-solar grains preserved in meteorites – a selective and not-well understood sam-
pling of the interstellar grains that were present in the solar nebula 4.65 Gyr ago. See
Fig. 11.4.
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Figure 11.3: The Horsehead Nebula (or Barnard 33) in the emission nebula IC 434 is a dark nebula in
the much larger Orion Molecular Cloud complex at a distance of 1500 lyr. The red or pinkish glow
surrounding the horse head like shaped nebula is from an H II region, ionized by the nearby bright
binary σOrionis A (O9V) & B (B0.5V).

� Depletion of certain elements from the interstellar gas, with the missing atoms presumed
to be contained in dust grains (see Fig. 1.5).

� The observed abundance of H2 in the ISM, which can only be understood if catalysis
on dust grains is the dominant formation avenue (see Sect. 10.2).

� The temperature of interstellar diffuse H I and H2, in part a result of heating by photo-
electrons ejected from interstellar grains.

11.2 Lattice structure and chemical composition of dust

Crystalline and Amorphous lattice structure

We can distinguish two lattice structures of solids in space. Crystalline materials show a
regular (ordered) structure both on short and long length scales. Amorphous materials also
show some regularity, but distances to atoms and binding angles between atoms can vary.
Glass is amorphous, so has short-range order but long-range dis-order. Lets take this material
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Figure 11.4: Fotos of presolar grains found in primitive meteorites. Upper left: Silicon carbide (SiC).
The isotopic signatures of these SiC inclusions point to an origin in a Type II supernova (SN) explosion.
Upper right: Graphite from an asymptotic giant branch (AGB) star or a Type II SN. Lower left: Spinel
(MgAl2O4) from an AGB star. Lower right: a grain consisting of an Al-rich core surrounded by a
silicate mantle, also from an AGB star. From: Hoppe 2010. Photo credit: Max Planck Institute for
Chemistry.

as an example. The basic ’building block’ or network former of glass is silica, SiO2. Pure
silica consists of a 3D network of tetrahedra in which Si is in the centre of the tetrahedron

Figure 11.5: The SiO2 structure is com-
posed out of Si-O4 tetrahedrons which are
connected at the corner O atoms under spe-
cific Si-O-Si bonding angles.

and every corner oxygen atom is shared with the ad-
jacent tetrahedron (see Fig. 11.5). In a crystalline
form, the tetrahedrons are in a regular geometry,
while in an amorphous lattice regularity is lost at a
length scale not much larger than that of the tetrahe-
dron. In figure 11.6 this is shown schematically.

So, what determines whether the lattice that forms
is amorphous or crystalline? Figure 11.7 illustrates
the volume-temperature phase diagram. A conden-
sation point Tb exists at which a gas moves from the
gas phase to the liquid phase (the subscript b denotes
the reverse process, boiling). Contrary to the gas
phase, in a liquid the molecules are locally bound:
continuously bonds are created and broken. When
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Figure 11.6: Top: the atomic ordering in a crystalline (a) and amorphous (b) solid. The dots indicate
the equilibrium positions of the atoms around which they can vibrate. The lines indicate the chemical
bonds. Every silicon atom is in the core of an oxygen tetrahedron. In a crystalline solid, the particles
are ordered in well-defined arrangements and create flat surfaces with definite angles to give highly
regular shapes. In an amorphous solid, particles have no orderly structure which results in no well
defined faces and shapes. Bottom: lattice structures that are intermediate between crystalline and
amorphous are called polycrystalline. Though not typical for silicates, carbon grains often have a
polycrystalline structure.

the liquid cools slowly it passes the phase transition from liquid to solid at the freezing tem-
perature Tf = Tm (where the subscript m denotes the reverse process, melting). The atoms
and molecules have enough time to find the energetically most favorable, crystalline, lattice
structure. This process releases energy, according to the second law of thermodynamics. If
the cooling is fast(er), the material will remain in the liquid phase for a period of time before
gradually solidifying in an amorphous material. Depending on the speed of cooling several
amorphous structures can be formed (glass A and glass B in Fig. 11.7) If the temperature of
the medium in which a solid forms is below the annealing temperature (somewhere in between
TK and TB

f in Fig. 11.7) the material can only solidify with an amorphous lattice form.

When gas pressure and temperature are very low, the liquid phase is skipped and a gas will go
directly to the solid phase upon cooling (deposition). At typical interstellar matter conditions
this is the most likely sequence. Moreover, as in the ISM temperatures are typically below Ta

the forming solid will be amorphous.
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Figure 11.7: Volume-temperature phase diagram. There are two routes along which a gas can solidify.
Route 1 results in crystalline materials, route 2 is the fast cooling path and results in amorphous mate-
rials.

The transition from an amorphous solid to a crystalline lattice structure is only possible by
heating the material to a temperature above Ta. This heating adds energy and increases the
mobility of the atoms, resulting in an ordering of the lattice. This process is referred to as
annealing and the temperature at which annealing can start (Ta) is referred to as the glass
temperature. An amorphous material that exhibits a glass transition may classify as a glass.
In the solid phase a glass is usually transparent or translucent (i.e., semi-transparant). Glasses
are typically brittle and consist of a mixture of silicates, including SiO2.

An amorphous or crystalline lattice structure can be ‘poluted’ by the inclusion of other oxides
(see Fig. 11.8). These oxides become part of the network and act as a stabilizer. There are
two types of such ‘pollutants’. Intermediates can replace the network formers. Examples
of such intermediates are TiO2 (see left panel Fig. 11.8) and Al2O3. Modifiers modify the
network structure. Modifiers are usually present as positive ions (cations). Their positive
charge is compensated by nearby non-bridging oxygen atoms, bound by one covalent bond
to the network and holding one negative charge to compensate the positive ion nearby. In the
right panel of Fig. 11.8 sodium is such a modifier. Some elements can act both as intermediates
and modifiers. The presence of non-bridging oxygens lowers the relative number of strong
bonds in the material and disrupts the network, lowering the freezing temperature.
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Figure 11.8: Glassy silica (SiO2; where Si is blue and O is yellow). Left: Glass with added titanium
(green) as a network intermediate. Right: Glass with added sodium (purple) as a network modifier.

11.3 Composition of interstellar dust

The available evidence indicates that the overall abundances in the ISM of our galaxy are close
to the values in the solar photosphere. Though most abundant in number, hydrogen does not
contribute appreciably to the grain mass. The way H is incorporated into grains is typically
through C−H bonds, immediately implying that its contribution to the mass of the particle
can only be at most 1/(12 + 1) ∼ 10%. The nobel gasses helium and neon are chemically
inert. Nitrogen too is a rather inert element when it comes to dust formation, and only seems
to appear as an impurity in water (dominated) ice. Dust in the diffuse ISM appears to be
ice free, but ices contribute a significant fraction of the dust mass in dark clouds. Shielding
of the dust from the interstellar radiation field is probably needed to suppress H2O removal
by photo-desorption (the process in which atomic or molecular species leave the surface of a
solid when it is exposed to light). Though H2O is the dominant ‘ice’ species, ammonia (NH3)
is one of the secondary constituents.

Without the species mentioned, it must be that dust grains are build out of the most abundant
condensible elements that remain: C, O, Mg, Si, and Fe. Figure 1.5 indeed shows that these
elements are in fact under-abundant in the gas (depleted), with about 2/3 of the C and 90
percent or more of Mg, Si, and Fe presumed to be incorporated in dust grains in the typical
diffuse interstellar cloud. In the figure, gas-phase abundances, relative to solar abundances, are
plotted against the condensation temperature Tcond, the temperature at which 50 percent of the
element in question would be incorporated into solid material in a gas of solar abundances, at
LTE at a pressure of p = 103 den cm−2 (Lodders 2003). Tcond indicates whether an element is
able to form stable solid compounds in gas of solar composition. We see that there is a strong
tendency for elements with high Tcond to be under-abundant in the gas phase, i.e. to have been
incorporated in grain material.
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With the elements providing the bulk of the grain population identified, the main candidates
for dust material are (see Draine 2011):

� Silicates, i.e. pyroxenes (of composition MgxFe1−xSiO3) or olivines (Mg2Fe2−2xSiO4

(0 ≤ x ≤ 1).

� Oxides of silicon, magnesium, and iron (e.g. SiO2, MgO, Fe3O4)

� Carbon solids (graphite, amorphous carbon, and diamond)

� Hydrocarbons (e.g. polycyclic aromatic hydrocarbons)

� Metallic iron

Other elements (e.g. Al, Ti, Cr) are also present in interstellar grains, but, because of their low
abundances, they contribute only a minor fraction of the grain mass.

11.4 Observed spectral features of dust

Spectroscopy is a powerful way to measure the chemical composition of interstellar dust, as
well as to derive information about grain size and shape. A good example is the 217.5 nm
UV bump which is usually attributed to an electronic transition in the carbon lattice of a
graphitic particle. At infrared wavelengths there are many spectral bands of dust species, that
correspond to vibrational modes of the molecules that make up the grain (see Sect. 4.6). It is
not simple to identify the precise chemical composition of the grains from the observed bands,
because we can only compare the astronomical spectra to laboratory samples of materials
present on earth. These materials may differ from those in space. However, in recent years
a lot of effort has been invested in devising more realistic laboratory measurements, and this
progress has resulted in the identification of many dust species. Depending on the temperature
of the dust, we can observe the infrared vibrational resonances in absorption (cold dust in front
of a bright background object) or emission (warm dust, usually circumstellar). In the case of
Polycyclic Aromatic Hydrocarbons (PAHs) the bands are only seen in emission.

The 217.5 nm feature

The 217.5 nm (5.7 eV) bump is remarkably constant in wavelength, but its width can vary
significantly between different lines of sight. The strength is well correlated with E(B−V )
(see Sect. 12.2). No other resonances in the UV are known. The feature is unpolarized, which
means that its carrier is not part of the grain population causing extinction and polarization.
The carrier of the 217.5 nm band must be abundant, in order to explain its strength. Graphite
is the most likely candidate, but the problem is that a very specific grain size and shape is
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Wavelength Identification Chemistry Environment
µm
Dust
0.2175 Graphite C ISM
11.3 SiC C AGB
20.5 TiC clusters? C post-AGB shells
30 MgS C AGB — PN
9.7, 18 a-silicate O ISM, CS dust
13, 16.5 MgAlO4 Spinel O AGB
11.3, 16.5 19.5, c-Mg2SiO4 Forsterite O AGB–PN, YSO
23.5, 27.8, 33.5 69
40.5 c-MgSiO3 Enstatite O AGB, YSO
65 CaSiO7 Diopside O post-AGB
110 Hydrous silicates O YSO
8.6, 20.6 SiO2 Silica O AGB, YSO
Ices
4.67 CO C,O MCs, PP disks
3, 43, 60 c-H2O ice O AGB—PN, YSO
44 a-H2O ice O MCs
2.70, 2.78, 4.27, 15.2 CO2 O MCs, protostars
4.92 OCS Protostars
3.32, 7.67 CH4 Protostars
2.27, 3.54, 3.85, 3.94, CH3OH Protostars
4.1, 6.85, 8.9, 9.7

Table 11.1: Incomplete overview of identified dust bands in the mid- and far-infrared part of the spec-
trum. MC = molecular cloud; CS = circum-stellar; PP = proto-planetary; PN = planetary nebula; a- =
amorphous; c- = crystalline.

required to match the observations, in particular the observed and very constant wavelength
of the band. Its carrier therefore remains debated, and alternatives have been suggested, such
as OH− on small silicate grains, see Steel & Draine (1987) and Bradley et al. (2005); and a
combination of organic carbon and amorphous silicates, see Bradley et al. (2005).

Silicate features at 9.7 µm and 18 µm

There is a conspicuous absorption feature at 9.7µm that is detected throughout the galaxy
and in other galaxies. Silicate minerals generally have strong absorption resonances due to
the Si−O stretching mode near that wavelength, and it seems virtually certain silicates are the
carrier of the feature. This conclusion is strengthened by the fact that the 9.7µm feature is
seen in the outflows from oxygen-rich stars (which would be expected to condense silicate
dust) but not in the outflows from carbon-rich stars (expected to condense carbon based dust).
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Figure 11.9: A possible atomic structure of a disordered (or amorphous) silicate and that of an ordered
(or crystalline) silicate together with their typical infrared emission spectra. The projected Si-O4 tetra-
hedrons are shown in gray (oxygen atoms are in red, and the silicon atom is hidden from view by the
center oxygen atom that is above the plane of the paper) and the yellow circles are the metal cations.
Note the many sharp features in the crystalline silicate spectrum and the two broad bumps at about
10µm and 19µm for the amorphous silicate spectrum. From: Molster & Kemper (2005).

The interstellar 9.7µm feature is seen both in emission (e.g. in the Trapezium region of
Orion; Gillett et al. 1975) and in extinction in the interstellar medium (Roche & Aitken
1984). Sightlines within a few kpc from the Sun have (Draine 2003)

AV = (18.5± 2)× τ9.7, (11.1)

where AV is the visual extinction (see Eq. 12.11) and τ9.7 the optical depth at 9.7µm. How-
ever, sightlines to sources near the Galactic Center have AV = (9 ± 1) × τ9.7 (Roche &
Aitken 1985). This correlation breaks down for lines of sight that pass through molecular
clouds: with increasing column of dust along these lines of sight, the silicate band strength no
longer increases in proportion. Clearly dust properties (size, chemical composition) change in
molecular clouds.

Near 18µm, interstellar dust shows another feature, attributed to the O−Si−O bending mode
in amorphous silicates.

The SiO molecule has its fundamental vibrational stretch resonance νosc at 8.13µm (see
Eq. 4.28). The band shape and central wavelength of the resonance in the solid (at 9.7µm)
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are different from that of the gas-phase molecule because the forces acting on the individual
atoms are different due to nearest neighbor effects, shifting the band to longer wavelengths
and broadening it. In addition, rotational motions are not possible in the solid lattice. As a
result of these differences, amorphous materials only show the most fundamental resonances
in their spectra. An overview of silicates is given in Table 11.1. Common cations incorpo-
rated in the lattice structure of silica tetrahedrons are Mg, Fe, Al, and Ca. Important groups
of silicates are the olivine group, with chemical formula (Mg, Fe, ..)2SiO4, and the pyroxene
group, with chemical formula (Mg, Fe, ..)SiO3.

Silicate crystals

At first it was generally assumed that all cosmic silicates were of amorphous structure. Thanks
to the Infrared Space Observatory (ISO), launched in 1995, we now know that crystalline
silicates are ubiquitous in the Galaxy – though they appear absent in the diffuse galactic ISM
(a stringent limit of < 1 % of the total silicate mass has been placed on it; Kemper et al.
2004). They do appear to be present in the ISM of distant starburst galaxies. The resonances
in crystalline silicates are sharply peaked relative to those of amorphous silicates. Crystalline
silicates can also be distinguished from amorphous silicates due to the presence of lattice
modes at wavelengts & 25µm (see Fig. 11.9). Table 11.1 includes some crystalline silicates.

A nice example of crystalline silicates can be found in Fig. 11.10, which shows the ISO spec-
trum of the planetary nebula NGC 6302. This object has recently evolved off the Asymptotic
Giant Branch (AGB) into the Planetary Nebula phase. The old AGB wind is still visible in the
spectrum as the cold dust continuum with many resonances of crystalline silicate dust super-
imposed. Crystalline silicates are also found in the planet-forming disks around young stars
and in Solar System comets.

Ices

In dark molecular clouds and near proto-stars, a number of additional absorption features
appear, most notably a strong band at 3.1µm which is produced by the O−H stretching mode
in H2O ice. Other common ices are CO and CO2 ice. These features are not seen on lines of
sight that pass only through diffuse interstellar clouds, even when the extinction is large. So,
dust in the diffuse ISM appears to be ice-free. It indicates that ice is present only in regions
that are shielded from the diffuse starlight background. The dust shielding is probably needed
to suppress H2O removal by photo-desorption. Lines of sight towards young stars often show
a mix of silicate and ice absorption bands (see Fig. 11.11).

The 3.4 µm feature

There is a broad absorption feature at 3.4 µm (see Fig. 11.2) that is almost certainly due to
the C−H stretching mode of hydrocarbons (see Sect. 4.6 and Fig. 11.12). Hydrocarbons with
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Figure 11.10: The ISO spectrum of the planetary nebula NGC 6302, showing strong emission bands
of crystalline silicates and of crystalline water ice. In addition, the spectrum also shows very strong
forbidden fine-structure emission lines of the ionized part of the nebula.

a mixed aromatic (ring) and aliphatic (chain) character provide a good fit to the observed
feature, but the exact aromatic / aliphatic ratio remains uncertain. Somewhat surprisingly, the
3.4µm C−H feature is found to be weaker (relative to the overall extinction) in dark clouds
than in diffuse clouds (Shenoy et al. 2003), which has been interpreted as evidence that the
C−H bonds responsible for the 3.4µm feature are destroyed in molecular clouds, perhaps as
a result of cosmic ray irradiation, and regenerated when carbonaceous grains are exposed to
atomic hydrogen in diffuse clouds (Mennella et al. 2003).

PAH features

A number of emission bands are very frequently observed in many different environments,
ranging from the diffuse ISM to H II regions, reflection nebulae, C-rich planetary nebulae (see
Fig. 11.13), photon dominated regions, planet-forming disks around Herbig AeBe stars and
T Tauri stars, and even in the integrated light of entire galaxies (see Fig. 1.2). The strongest
bands are found at wavelengths of 3.3, 6.2, 7.7, 8.6, 11.3 and 12.7µm (see Figs. 1.3 and 11.12).
A larger number of weaker bands are also found. This family of emission bands has been
known since the 1970s. Laboratory studies and detailed observations with ISO and Spitzer
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Figure 11.11: Spitzer Space Telescope spectra of young low-mass stars embedded in molecular cloud
material with substantial amounts of ices, seen as absorption bands in the spectrum. From: Boogert et
al. 2004, ApJS 154, 359.

Space Telescope have convincingly shown that the carriers of these bands are most likely
Polycyclic Aromatic Hydrocarbons (PAHs). The observed bands coincide with strong bending
and stretching resonances of these PAH molecules, see Fig. 11.12.

The PAH molecules have as basic ‘building block’ a benzene ring (C6H6). Benzene has as ad-
ditional property over simpler hydrocarbons, such as methane (CH4, that its ring-like structure
allows the electrons of the π-orbitals to delocalise over the entire carbon ring. Molecules with
this property are called aromatic. Polymerisation of two or more benzene rings creates 2- and
even 3-dimensional structures. The edges of the structures can have H-atoms attached (like
in benzene). Such molecular structures can show different kinds of vibrational resonances,
such as C-H (in-plane stretch, out-of-plane stretch, in-plane bending) and C-C (stretch). The
family of PAHs is large and ranges from its smallest member naphthalene (C10H8) to very
large molecules such as C384H48.

The precise nature of the PAH molecule is not crucial in determining the wavelength of the
resonance, so that it is still not clear what the detailed structure of the dominant PAH molecules
in different environments is. Observations suggest that typical PAH molecules have about 60
C atoms, and a varying amount of C-H bonds at the edges of the molecules.

Interestingly observations of PAH molecules show that the relative strength of the PAH emis-
sion bands in e.g. reflection nebulae hardly depends on the distance to the star that excites
the molecules. For dust in thermal equilibrium a sharper drop in band strength would be ex-
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Figure 11.12: Left: the stretch resonance of Si-O together with the bending resonance of the O-Si-O
bond in a tetrahedron give rise to bands at 9.7 and 18 µm that can be in emission or absorption. Right:
the most important resonances in Polycyclic Aromatic Hydrocarbons, PAHs.

pected because the temperature of the grains drops with distance to the star heating the grains.
However this effect is not observed. The PAH bands to first order only weaken due to the
dilution of the radiation field as the distance to the central star increases. Even in very cold
dust regions PAH emission is readily found. Obviously, we are not dealing with the usual res-
onances in dust grains that are in thermal balance, but rather with fluorescence of molecules
that are excited by UV and optical photons. These short wavelength photons are absorbed by
electrons in the molecule, and internal energy conversion within the molecule results in the
emission of infrared photons in the vibrational resonances of the molecule. This fluorescence
mechanism explains why the PAH bands are never seen in absorption, only in emission. The
molecules de-excite on very short timescales and usually the UV radiation field is so dilute
that the time to the next photon absorption is hours to days (see Sect. 12.4). It means that
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Figure 11.13: The mid-infrared spectrum of the carbon-rich planetary nebula NGC 7027. The emission
bands in the spectrum are due to PAH molecules in the ejecta of the star that are illuminated by UV
photons of the hot white dwarf.

PAHs are transiently heated to a few 100 K and quickly cool to very low temperatures. Only
in very intense radiation fields the cooling timescale becomes similar to the photon absorp-
tion timescale. Under these conditions the short-wavelength bands will emit stronger, simply
because the molecule is on average hotter. Other effects that influence the relative strength of
the PAH bands are the size of the molecule, ionization properties and dehydrogenation.

Graphite and diamond

As pointed out above, graphite seems to be the most likely candidate of the pronounced 217.5
µm band. Indeed, the observed profile of the feature is well fitted by theoretically calculated
extinction cross sections for either 200 Å graphite spheres or for graphite prolate (i.e. flat-
tened) spheroids with a size of 30 Å and an axial ratio of 1.6. The sensitivity of the absorption
profile to the detailed characteristics of the grain poses a problem for all of these fits in view
of the observed constancy of the peak position (but variable width) of the 217.5µm feature.
It should also be mentioned that not only graphite may fit the feature. Good fits can also be
obtained with laboratory measured extinction spectra of ∼100 Å hydrogenated amorphous
carbon grains – containing 33 % H atoms by number – which share the aromatic character of
their bonding with graphite.

Diamond nano-particles are relatively abundant in primitive Solar System meteorites. Based
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Figure 11.14: Graphite consists of parallel sheets of so-called sp2-bonded carbon. A single (sheet) of
carbon atoms is known as graphene; each carbon atom in graphene has three nearest neighbors (one
of which is a double bond, i.e. the bond has a aromatic character). The graphite sheets are weakly
bonded to one another by van der Waals forces. Diamond consists of sp3 bonded carbon atoms, with
each carbon atom is bonded to four equidistant nearest neighbors.

on isotopic anomalies associated with them, it seems likely that some fraction of the nano-
particles is of pre-solar origin, and thus was present in the ISM prior to the formation of the
Sun. Therefore, some nano-diamond is presumable present in the ISM today, but its abundance
is not known (see Jones & D’Hendecourt 2004).

Diffuse Interstellar Bands

The spectrum of the interstellar medium shows weak absorption bands from near-UV to the
near-IR (see Fig. 11.15). The bands have widths from 0.5–30 Å, which is significantly broader
than the (Doppler) width of atoms, ions, or small molecules. These bands were discovered a
century ago (Heger 1922) and have been dubbed the diffuse interstellar bands. Their inter-
stellar nature was established by Merrill in 1934 (Merrill 1934). The strongest DIB falls at
4430 Å. The DIB spectrum shows strong variations in relative strength, as illustrated for the
well-known 5780 Å and 5797 Å DIBs in Fig. 11.15. Hobbs et al. (2009) report a total of 414
DIBs between 3900 Å and 8100 Å.

It seems likely that at least a substantial part of the DIBs may be due to free-flying large
molecules, possible ionised. Support for this hypothesis comes from laboratory experiments
likely identifying C+

60 as the carrier of the 9577 Å and 9632 Å DIBs (Campbell et al. 2015).
Further support comes from high resolution spectra of the 5797 Å feature showing intrinsic
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Figure 11.15: The synthesized 4300-6800 Å spectrum of the diffuse interstellar bands as derived from
observations of the star BD +63 1964 (Ehrenfreund et al. 1997) illustrates the great variety in relative
strength and width of these absorption features. Note the strongest of all DIBs at 4430 Å. The top insert
shows the detailed profile of the 6614 Å DIB and its associated substructure observed towards the star
HD 145502. The bottom insert illustrates the large variations in the strength of the DIB bands relative
to each other for the two well-studied DIBs at 5780 Å and 5797 Å on the basis of observations of the
stars HD 149757 and HD 147165. Note the strongest of all DIBs at 4430 Å. From: Tielens (2005),
courtesy of Jan Cami.

ultra-fine structure. The DIBs may represent absorption in an electronic transition of such
molecules, and the sub-structure may reflect rotational substructure. If so, one would expect
that a given molecule would have multiple absorption lines due to different vibrational states
of the electronic excited state. McCall et al. (2005) found what appears to be a nearly perfect
correlation between the strengths of DIBs at 6196.0 Å and 6613.6 Å, suggesting that these
may be two absorption features produced by a single absorber – similar as the two DIBs
associated with C+

60. But such correlations in DIB behaviour are exceptions. The observation
that generally the strong bands vary in relative strength from one sightline to another implies
that each of them represents a single species and hence that there are many different (more
than 50 or so), fairly abundant molecules in the diffuse ISM.

Clearly, the DIB carriers have to be readily made or survive easily in the harsh environment
of the diffuse ISM. Regarding the first option, the production mechanism of DIBs may be
linked to the reservoir of dust particles in the sense that UV illumination of grains may slowly
evaporate them, releasing (among other material) DIB carriers. Regarding the latter, small
molecules (with few atoms only) are usually efficiently destroyed by the interstellar UV radi-
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ation field, however (some) more complex molecules may be more refractory to UV illumina-
tion. They might be produced locally or carried over from their place of origin, implying such
DIBs are not directly linked to the local dust reservoir.
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Exercise 11.1

This could be a nice exam question. The 3µm water ice absorption feature is detected
in the direction of sources behind the Taurus region if the visual extinction AV > 3
mag, which is called the threshold value for ice formation. The observations indicate the
presence of mantles on ice grains which mainly consist of amorphous water ice. In this
exercise we compute how these mantles have formed from molecules in the gas phase.

a) The accretion rate of atoms and molecules on grains depends upon the relative velocity
between grains and gas atoms. The velocity distribution of particles is given by the
Maxwell distribution. The distribution of the absolute velocity v = |v| of particles with
mass m is given by equation (2.61). Derive the mean relative velocity between the dust
grains and gas particles.

Remember that the two particle problem becomes a one particle problem by replacing
the masses m1 and m2 by the reduced mass 1/mr = 1/m1 + 1/m2. Also:

∞∫
0

e−ax
2

x3dx =
1

2
a−2 (11.2)

b) Derive an expression for the rate at which the mass of a grain grows as a consequence
of the accretion of atoms and molecules. Make use of the mean velocity derived in the
previous item, and use the following quantities: the grain radius a; the number of atoms
and molecules per unit volume n; the sticking probability S; the gas temperature T , and
the mean mass of the gas particles m.

c) Derive an expression for the speed at which the thickness of the mantle grows, da/dt.
The specific density of the ice is ρice. Make use of your answer in (b). Do grains which
were initially larger also grow a thicker mantle?

d) The grain mantles in the Taurus region have a thickness of ∆a ' 0.02µm and a density
ρice = 0.75 g/cm3. Each particle that collides with the grain sticks (S = 1). Use Ta-
ble 11.2, the result of (c) and assume n(H2) = 2 · 103 cm−3 and Tgas ' 50 K to show
that this result can only be correct if we assume that the H2O molecules are formed on
the surface by surface reactions between O and H atoms, and not by direct condensation
of H2O molecules from the gas phase.

Table 11.2: Abundances relative to n(H2)/2 in a molecular cloud after 105 years. From: Hasegawa &
Herbst (1993).

Species Abundance Species Abundance Species Abundance Species Abundance

H 6.0× 10−1 He 2.8× 10−1 C 6.1× 10−5 N 3.1× 10−5

O 2.2× 10−4 OH 1.1× 10−8 H2 1 CO 4.3× 10−5

H2O 5.8× 10−8 SiO 1.7× 10−10 NH 5.0× 10−9 CH 1.3× 10−8
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Physics of interstellar dust

Dust grains can both absorb and scatter electromagnetic radiation. The effect of absorption
and scattering together is called extinction (see Sect. 2.3). Light which passes through in-
terstellar space suffers from interstellar extinction due to its interaction with the dust that is
present. When the amount of extinction is small, the amount of dust along the line of sight
(its column density) can easily be derived from observations. However when extinction is
high, the amount of light which is ‘lost’ along the line of sight is very high and it may be
difficult to constrain the column density. Examples of lines of sight with high extinction are
the galactic centre that is obscured by 30 magnitudes of optical extinction, and lines of sight
passing through dense molecular clouds. These regions with high extinction cannot be studied
at optical wavelengths, even with the most powerful telescopes.

Dust particles play an important role in determining extinction due to their size. Electromag-
netic radiation in general has a much longer wavelength than individual atoms or molecules,
and light can pass without much difficulty. Only in spectral lines photons can be efficiently
absorbed, and of course in H II regions Lyman continuum photons are strongly absorbed. Pho-
tons with wavelengths longward of the Lyman edge (at 912 Å) can efficiently be absorbed and
scattered by dust particles of comparable size. Smaller dust particles are more abundant than
large ones, and so extinction is larger at short (ultraviolet) wavelengths, and decreases towards
longer (infrared) wavelengths. At infrared wavelengths the extinction to the galactic centre is
only a few magnitudes, low enough to allow detailed studies of that important region in the
Galaxy using imaging techniques and spectroscopy. Realize though that even at very long
wavelengths (up to 40µm) extinction can be significant – e.g. in star-forming regions.

In this chapter we discuss diagnostic methods to constrain the amount of dust in clouds or
along line-of-sights toward stars, as well as some basic properties of the grains. Two sections
are devoted to obtaining the temperature of dust grains.
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12.1 Growth and destruction of grains in the ISM

Grain growth

Grains form in the outflowing gas from cool stars as well as in other environments, e.g. during
supernova explosions. Do these grains grow significantly once deposited in the ISM? Consider
a spherical dust grain at rest in the ISM with radius a that grows by the addition of species i
(an atom or molecule) that has particle density ni, mass mi, and mean thermal speed vi. The
rate at which atoms stick to the surface is

Rstick = 4πa2 vi ni S, (12.1)

where S is a dimensionless sticking probability that describes the fraction of particles that hit
the grain that actually stick to it. The mass m of the grain will grow at a rate

dm

dt
= miRstick = mi 4πa2 vi ni S, (12.2)

If the grain has volumetric mass density ρs = m/(4π a3/3) then

da

dt
=
S nimi vi

ρs
. (12.3)

We can easily integrate this equation if ni and vi do not depend on time. We get

a(t) = a◦ +
S nimi vi

ρs
· t, (12.4)

where a◦ is the size of the nucleation seed, i.e. the size to which the grain could grow at
the location where it was formed. For a typical grain in the ISM, ρs = 1 gr cm−3. In the
cool neutral medium nH ∼ 10 cm−3. If the species that sticks to the grain is 1000 times
less abundant than hydrogen, ni = 0.1 cm−1. If it is 10 times as massive (mH = 1.67 ×
10−24 gr cm−3), it will have a mean thermal speed of ∼0.5 kms (see Eq. 2.62) for a typical
temperature of the CNM. Assuming the nucleation seed to be negligibly small and S ∼ 1,
the time for the grain to grow to a size a = 1µm is τgrowth = a/(da/dt) ∼ 109 yr. This
is a long time compared with other relevant mechanisms and implies that grains do not grow
significantly in the ISM. They first need to enter denser regions for growth to occur.

Grain destruction by evaporation and sputtering

If grains accrete icy mantles then these are fairly readily destroyed by evaporation, should
the grain temperature rise when the grains pass near to a star. Refractory materials such as
hydrocarbons, graphite, silicates, or silicon carbide are very durable and probably would sur-
vive such a star passage quite easily. These particles are however vulnerable to sputtering by
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Figure 12.1: Thermal sputtering rates (Draine & Salpeter 1979). For 106 . T . 109 K all three
refractory materials (iron, silicate, graphite) have 1/nH · |da/dt| ≈ 10−2 cm3 Å yr−1. From: Draine
(2011).

high-speed atoms. Sputtering is a process in which an incident atom has sufficient momentum
to knock one of the lattice atoms – or a small cluster of lattice atoms – completely out of the
lattice. This typically needs velocities greater than about 50 km s−1 and these are probably
attained in shocks such as caused by supernova explosions.

At an elementary level, we may regard sputtering as a simple momentum transfer proces, in
which case the maximum energy transfer ∆Ekin from the projectile p to the target t is

∆Ekin =
4mpmt

(mp +mt)
2 Ep = η Ep, (12.5)

where mp and mt are the atomic masses of the particles involved (see exercise 12.2), and Ep
is the projectile energy. If the binding energy of the atom close to the surface of the solid is
U◦, then no sputtering can occur if ∆Ekin < U◦. In other words, there is a threshold energy
below which sputtering can not take place.

To describe the outcome of laboratory experiments of sputtering one introduces the sputtering
yield Ysput. Suppose we have a flux of projectile particles incident on a target surface, then
the yield tells us how many atoms from the target are ejected per incident projectile. The
yield actually depends on a number of factors, including the nature and momentum of the
bombarding particles, the nature of the surface, and the angle at which the particles strike the
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surface. It is complications such as these that make sputtering so difficult to describe. Still, to
mention a number: Ysput is ∼0.01 for 5 keV protons incident on graphite.

Figure 12.1 shows the outcome of laboratory experiments of thermal sputtering rates for ices
and refractory grains. For 106 . T . 109 K the calculated sputtering rates for graphite,
silicate, or iron grains can be approximated by

da

dt
≈ − 1× 10−6

1 + (T/106K)−3
·
( nH

cm−3

)
µm yr−1, (12.6)

to which one may associate a grain lifetime

τsput =
a

|da/dt|
≈ 1× 105

[
1 + (T/106K)−3

]( a

0.1µm

)
·
(

cm−3

nH

)
yr. (12.7)

In a supernova remnant with nH = 1 cm−3 and T = 106 K, a grain with initial radius a =
0.1µm could survive for ∼ 105 yr. This coincides with the typical lifetime of such a remnant,
suggesting that though grains may form in the expanding remnant gas most of these grains
likely will be destroyed before the remnant has dissipated. In the x-ray emitting intra-cluster
gas of the Coma cluster, with T ≈ 108 K (kT ≈ 8 eV) and nH ∼ 0.003 cm−3, a 0.1µm dust
grain would have a lifetime τsput ∼ 3 × 107 yr. This is short compared to the age of galaxy
clusters, hence these may be expected to be dust free.

A special type of sputtering is chemical sputtering in which sputtering takes place via a series
of chemical reactions on the grain surface. For this proces the threshold energy is very low or
none-existent. As an example we mention the surface of an ice grain that may erode by virtue
of the bombardement of the grain by protons: H2O + H→ OH + H2.

Grain destruction by grain-grain collisions

Grains may collide with each other. The outcome of such a collision will depend on the
circumstances: they may stick, shatter (each other), or destroy one or both particles. The
latter is referred to as evaporation. Laboratory experiments and theory suggest that when
particles shatter, the mass distribution of fragments n(m) is given by

n(m) dm ∝ m−α dm (12.8)

where α is a constant. For asteroid belt particles, for instance, α ' 1.8 for sizes ∼1000
km downwards. In the context of interstellar dust grains, however, it is more convenient to
consider the size distribution, i.e. the number n(a) da of grains with radius a in the range
[a, a+ da]. For a specific density of the grain material ρs, we have that

dm = 4π a2 ρs da. (12.9)

We may now write

n(a) = n(m)
dm

da
∝ m−α a2 ∝ a−3α+2. (12.10)
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A power-law distribution of grain masses also represents a power-law distribution of grain
radii. Thus, in the asteroid belt the size (rather than mass) distribution has exponent−3α+2 =
−3.4. For interstellar grains, Mathis, Rumpl, and Nordsieck applied a power-law grain size
model for graphite and silicate grains in order to fit the interstellar extinction curve in the
50−2500 Å range (see Fig. 12.2 for this curve). They find a power-law slope of −3.5, close
to what is derived for the asteroid belt. This so-called MRN distribution is widely applied in
studies of the ISM.

12.2 Interstellar extinction

It is custom to characterize the attenuating effects of dust by the extinction Aλ at wavelength
λ, measured in magnitudes, defined by

Aλ = m−m◦ = −2.5 log [Iλ/I
◦
λ] , (12.11)

where Iλ is the observed specific intensity, and I◦λ the specific intensity that would have been
observed in the absence of extinction. Typically, one measures the extinction in a line-of-
sight toward a star and I◦λ is the specific intensity of the starlight. For this situation, m is the
observed magnitude and m◦ the intrinsic magnitude of the stellar light at wavelength λ. If the
optical depth in the ISM in between us and the star is τλ, the observed intensity will be given
by (see Eq. 2.42)

Iλ = I◦λ e
−τλ , (12.12)

hence
Aλ = −2.5 log [Iλ/I

◦
λ] = −2.5 log

[
e−τλ

]
= 1.086 τλ. (12.13)

The extinction measured in magnitudes is proportional to – and almost equal to – the optical
depth at the chosen wavelength. In most cases we can only measure the flux, and not the
specific intensity. In that case one may replace Iλ with Fλ in the above equations, and again
obtain the result Eq. (12.13).

The optical depth in dust along a path length ds may be written as (see Eqs. 2.34 and 2.39)

dτλ = σλ nd ds = πa2Qext(λ)nd ds, (12.14)

where nd is the density of dust grains, a is the grain radius, σλ is the cross section per dust
grain and Qext is the extinction efficiency, i.e. the cross section normalized to the projected
grain surface. We will return to Qext in Sect. 12.3.1. Substitution in Eq. (12.13) yields

Aλ = 1.086πa2Qext

∫ d

0
nd(s) ds = 1.086πa2QextNd, (12.15)

where Nd is the column density of the dust particles in the line of sight towards a background
source at distance d.
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Figure 12.2: Left: The measured wavelength dependence of the interstellar extinction for three direc-
tions into the ISM (dashed lines). The extinction is normalized to the value in the V band (5500 Å).
For each direction the best fit valueRV and the name of the star that is targeted is given. The extinction
in the direction of Herschel 36 – the ionizing star in the H II region M8 – is considered “peculiar”. The
full lines are fits to the measured Aλ/AV . Right: The Galactic average of the interstellar extinction has
RV = 3.05± 0.15; often 3.1 is adopted.

Interstellar extinction law

The wavelength dependence of the interstellar extinction in the direction of three stars is shown
in Fig. 12.2, whereAλ/AV = Qext(λ)/Qext(V ) is the interstellar extinction normalized to the
photometric V band. The functional behaviour of this quantity is refered to as the interstellar
extinction law. It only depends on the (mean) intrinsic properties of dust particles in the beam
towards the star, and not on the length of the beam. The use of AV , the extinction in the V
band (see § 2.6) to normalize the extinction law is arbitrary and one could argue that it is more
meaningful to use, for instance, the extinction in the I or J filter (centered around ∼ 0.9 and
1.25 µm respectively) as for these wavelengths the extinction is almost independent of the
direction in which we look.

A very useful parameterization of the extinction curve within the Milky Way was provided
by Cardelli et al. (1989, ApJ 345, 245). They describe the entire wavelength range from
ultraviolet to infrared using a fit function with seven adjustable parameters. However, in the
wavelength range 3030Å < λ < 3.5µm their fit function depend only on λ and the single
parameter, the total-to-selective extinction

RV ≡
AV

AB −AV
=

AV
E(B−V )

, (12.16)
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where AB and AV are the extinctions measured in the B and V photometric bands, and

E(B−V ) = AB −AV = (B −B◦)− (V − V◦) = (B − V )− (B−V )◦ (12.17)

is the visual selective extinction or color excess. Because the extinction increases from red to
blue, the light reaching us from stars will be ‘reddened’ owing to a greater attenuation of the
blue light. The quantity E(B−V ) is therefore also referred to as the reddening.

We may also express the properties of interstellar extinction using the reddening in a magni-
tude band centered at wavelength λ, E(λ− V ), normalized to the visual selective extinction

E(λ− V )

E(B−V )
=
Aλ −AV
E(B−V )

= RV

(
Aλ
AV
− 1

)
. (12.18)

The curve of E(λ − V )/E(B−V ) versus 1/λ is also known as the reddening law. It shows
the same behavior as those of Aλ/AV displayed in Fig. 12.2. It is however easier to measure
the reddening of a star than the actual extinctionAλ. This is because the intrinsic brightness of
the star is not a priori known, but its intrinsic (unreddended) color (B−V )◦ can be determined
through the spectral type. RV can be measured by extrapolation of the E(λ − V )/E(B−V )
extinction curve to λ−1 → 0, i.e. Aλ → 0. The ratio of absolute extinction Aλ/AV can be
derived from the reddening when RV is known.

Sightlines through diffuse gas in the Milky Way have RV ' 3.05± 0.15 as an average value.
The smallest well-determined value is RV = 2.1 toward the star HD 210121 (Welty & Fowler
1992). Sightlines through dense regions tend to have larger values of RV ; the sightline to-
ward HD 36982 has RV ' 5.7 (Cardelli et al. 1989; Fitzpatrick 1999). Intuitively, we may
expect that if the grains were large compared to the wavelength, the extinction cross section
would equal the geometric cross section of the particle – i.e. it would be independent of wave-
length with RV = ∞ (as AB = AV in Eq. 12.16). The rise of the extinction with decreasing
wavelength λ implies that smaller grains than the wavelength must be making an appreciable
contribution to the extinction, down to λ ∼ 0.1µm. In this context, ‘small’ means (approxi-
mately) that 2πa/λ . 1. Thus interstellar dust must include a large population of grains with
radii a . 0.015µm = 150 Å. Figure 12.3 again shows the interstellar extinction curve, with a
discussion of its shape in the caption from the perspective of grain size (and composition).

In our Milky Way the interstellar dust is concentrated in the galactic plane, with an effective
scaleheight of about 100 pc. The mean reddening in the plane is about 0.61 magn kpc−1. If
we take RV = 3.1 we get an AV = 1.9 magn kpc−1. Beware that in reality the distribution of
dust is very patchy, i.e. concentrated in small and large interstellar clouds, and that there are
directions in which the reddening deviates a factor of 5 to 10 from the mean. Measurements
of the correlation between the column density of gas and the interstellar reddening yield an
average gas-to-color-excess ratio

N(H I + H2)

E(B−V )
= 5.8× 1021 atoms cm−2 mag−1, (12.19)
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Figure 12.3: Decomposition of the interstellar extinction curve (black circles) observed toward
HD 143018 into three components: a visual component (green line), a bump component (blue line),
and a far-UV component (purple line). The solid red line labelled ‘Drude’ is the sum of these three
components. The dashed green line is the Cardelli, Clayton, & Mathis (1989) fit for RV = 3.1. The
physical basis for this decomposition lies in the interstellar grain size distribution (Greenberg 1978).
The near-IR/visual part is dominated by silicate and graphite grains with a > 250 Å and saturates at
λ−1 > 4µm−1. PAHs and ultra-small graphitic grains of a < 250 Å produce the 2175 Å bump, while
ultra-small silicate grains of a < 250 Å mainly absorb at far-UV wavelengths (Xiang et al. 2017). In a
comparable model by Weingartner & Draine (2001) the far-UV rise is due to both ultra-small graphitic
grains and silicate grains. From: Xiang et al. 2017.

where N (H I + H2) = N (H I) + 2N (H2) (Bohlin et al. 1978; Rachford et al. 2009). For sight
lines with RV ∼ 3.1, this implies that AV /(N(H) + 2N(H2)) = 5.3× 10−22 mag cm−2 H−1

(see Fig. 11.2).

12.2.1 Dust density diagnostics: optical extinction

The density of dust particles ρd in gr cm−3 may be derived from the extinction at optical
wavelengths. To this end we use the observed extinction in the V -band in the diffuse ISM per
kpc. Building on Eq. (12.15) we may write

Aλ = 1.086πa2Qext ndD = 1.086
3

4

(
Qext

a

)
ρd

ρs
D, (12.20)

where ρs is the volumetric mass density of the individual grains; for silicates this is about 2.5
gr cm−3. The distance D is 1 kpc for AV = 1.9 magn kpc−1 (see above). From Fig. 12.4

https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C/abstract
https://ui.adsabs.harvard.edu/abs/1978ASIC...38...51G/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..107X/abstract
https://ui.adsabs.harvard.edu/abs/2001ApJ...548..296W/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..107X/abstract
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we read off that at the center of the V band (at 0.55 µm), Q/a = 10 × 104 for a in cm.
Substitution yields ρd = 1.9× 10−26 gr cm−3.

The density of hydrogen atoms in the diffuse ISM is about 1 cm−3 (see Sect. 5.1), therefore
ρH = 1.7 × 10−24 gr cm−3. Taking into account that the hydrogen mass fraction is 0.71, we
derive a dust-to-gas mass ratio

fdg = 0.71
ρd

ρH
= 0.008, (12.21)

a result consistent with the order of magnitude discussion in Sect. 5.1.

For the solar chemical abundance pattern about 1.2 percent of the species consist of elements
more massive than helium. So, roughly 2/3th of these heavier elements are locked up in
grains. Indeed, measurements of interstellar gas abundances of elements such as Mg and Fe
show strong depletion because these elements are locked up in dust (see again Fig. 1.5).

12.3 The temperatures of interstellar grains

Hendrik van de Hulst noted — in 1946, long before observations could confirm his idea —
that interstellar grains should mostly absorb at short, optical and UV wavelengths, and emit
at long, far-infrared wavelengths and that their temperature would be very low. He predicted
equilibrium temperatures of 10−20 K for isolated particles of diameter 0.1 µm. Such emission
was indeed detected for the first time in 1973 by Judith Pipher. Dust emission turns out to be
an important component (∼ 10−30 %) of the total radiated luminosity of our Milky Way.
Since then, several infrared satellites have made extensive studies of the infrared sky, e.g.
IRAS, ISO, MSX, Akari, and recently the Spitzer Space Telescope and HERSCHEL Space
Observatory. These telescopes have mapped the sky in the 10-500 µm wavelength range and
have made detailed spectroscopic studies of interstellar matter.

Interstellar grains exchange energy with their surroundings through the absorption and emis-
sion of radiation. In regions of high density collisions with gas particles and exothermal
chemical surface reactions may also heat the grains. In most environments radiative processes
dominate. Let us first consider the simplest case: spherical grains that absorb and emit as
black bodies and that are in thermal equilibrium with the interstellar radiation field.

A grain particle (or an elementary volume of gas) that is in thermal equilibrium and that
absorbs and emits energy by radiative processes fulfills the constraint of radiative equilibrium

4π

∫ ∞
0

χν(r) [Sν(r)− Jν(r)] dν = 4π

∫ ∞
0

χν(r)
[
Sν(r)− c

4π
uν(r)

]
dν = 0. (12.22)

The equation describes that the total amount of energy that is absorbed by an individual dust
grain per second (4π

∫∞
0 χνJν dν) must be equal to the total amount of energy that is emitted

from the volume in the same time interval (4π
∫∞

0 χνSν dν = 4π
∫∞

0 ην dν).



12.3 The temperatures of interstellar grains 223

Figure 12.4: Absorption efficiency Qabs divided by grain radius a for spheres of amorphous silicates
(left) and graphite (right). Also shown are power-laws that provide a reasonable approximation to the
opacity for λ & 20µm. From: Draine (2011).

We express the linear extinction coefficient χν as we have done above (see Eqs. 2.34 and
12.14)

χν = σd(ν)nd = πa2Qext(ν)nd, (12.23)

where nd is the density of dust grains, a is the grain radius, and Qext is the extinction effi-
ciency. If we assume that the grains absorb and emit as black bodies, Qext(ν) is unity for all
frequencies (but see below). For the same reason Sν = Bν(Td), where Td is the temperature
at which the grains radiate. We find (using Eqs. 2.12 and 2.30) that

Td =
( c

4σ
u
)1/4

' 3.2 K, (12.24)

where we have adopted for the total energy density of starlight u = 0.54 eV cm−3 = 8.65 ×
10−13 erg cm−3 (see Table 1.3), a result first derived by Arthur Eddington in 1926. The
temperatures of the dust grains in the diffuse ISM are actually more like 15-20 K. To explain
the reason for this, we need to take a closer look at the extinction efficiency.
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12.3.1 Extinction efficiency

The extinction efficiency is in reality not gray (i.e. independent of wavelength), as we have
assumed above. Moreover, it consists of two contributions, one due to absorption and one due
to scattering.

Qext(ν) = Qabs(ν) +Qsca(ν). (12.25)

The scattering efficiency does not play a role in the thermal balance of the dust – scatterings
only change the direction of the incident photons, hence do not contribute in any way to the
heating or cooling of the particles.

It is beyond the scope of the lectures to discuss the theory that describes the way particles
interact with radiation. Pioneering work in this field has been performed by Gustav Mie
(1908) and Peter Debye (1909) for spherical particles. Codes are freely available on the web
that calculate the extinction efficiencies for particles based on this Mie theory. Noteworthy
to mention though is that the extinction efficiencies are a function of two parameters: (1) a
dimensionless size parameter

x =
2πa

λ
, (12.26)

and (2) the complex refractive index of the grain material

m = n− ik, (12.27)

describing the composition of the particles. k determines the absorption cross-section and
n is a measure of the scattering. In order to calculate the extinction curves for an assumed
grain composition the real and imaginary part of the complex refractive index must be known.
These quantities k and n, sometimes misleadingly referred to as ‘optical constants’, in general
depend on wavelength.

In Mie theory it is found that for values x up to ∼3, the extinction increases proportional to x
and for larger values of x the curve oscillates. For grains with a range in sizes the extinction
will increase until x ∼ 3 or 1/λ ∼ 1/(2a) and for larger grains will remain roughly constant.
The extinction is largest at a wavelength roughly equal to the size of the particle. For grains
much larger than the wavelength the extinction is almost constant (and of the order of the ge-
ometric cross-section). These basic trends can be seen in the more detailed calculations of the
silicate and graphite grains shown in Fig. 12.4. The observed extinction curve of interstellar
dust actually never reaches a constant value and so this must mean that very small particles
exist in interstellar space and that there are more small than large grains.

Let us now return to the question as to why the temperature of dust is ∼10−15 K, rather than
3 K. Figure 12.4 showsQabs/a – which is proportional to the absorption cross section per unit
volume – for graphite and silicate spheres with radii a = 0.01, 0.1, and 1µm. We focus on
grains of 0.1µm, for which Qabs ∼ 1 at ultraviolet wavelengths but for which Qabs becomes
very small at infrared wavelengths. When the wavelength is much larger than the dimension
of the dust grain, radiation hardly ‘notices’ its presence: no radiation is absorbed. Because
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of Kirchhoff’s law (Eq. 2.58), which states that the emission is proportional to the extinction
efficiency, also hardly any radiation is emitted. For the grain to be in thermal equilibrium, i.e.∫ ∞

o
Qext(ν)uν dν =

4π

c

∫ ∞
0

Qext(ν)Bν(Td) dν, (12.28)

the temperature Td must be higher (than ∼ 3 K): to compensate for the efficient heating of
the grain by optical and ultraviolet light, the poor cooling efficiency of the grains at infrared
wavelengths requires a higher grain temperature.

When the particles are much smaller than the wavelengths some approximate formulas can
be derived for Qsca and Qext. The wavelength dependence of Qabs(λ) is often approximated
by a power law, so Qabs(FIR) ∝ λ−β . β depends on the nature of the dust material and has
a value between 1 and 2. For weakly absorbing materials with β = 1 van de Hulst showed
in 1946 that Td ∼ 15 K. Strongly absorbing dust species such as graphite reach equilibrium
temperatures that can be a factor two higher than those of silicates. These numbers hold for
the diffuse ISM. For Qsca(λ) the wavelength dependence will be λ−4.

Depending on local conditions, dust temperatures can vary significantly from the ones derived
above for the diffuse ISM. For instance, towards the galactic centre the ISRF intensifies and
so the dust temperature will increase. In the cores of molecular clouds the diffuse ISRF is
highly attenuated and the temperature of silicates can drop to 7 K when shielded by AV = 10
mag in the centre of the cloud. Close to early-type stars (that are hot) dust can be much hotter
due to the much stronger radiation field. Circumstellar dust shells generally show the hottest
dust, with values up to the sublimation temperature (1000-1700 K, depending on dust species
and gas pressure).

12.4 Temperatures of very small grains

In radiative equilibrium (see above) the grain is at this steady-state or equilibrium temperature
and the vibrational energy content of the particle is

Evib(Teq) =

∫ Teq

0
C(T ) dT, (12.29)

whereC(T ) (in erg K−1) is the heat capacity of the grain at temperature T . If the particle is so
small that the energy content becomes small relative to the mean energy per absorbed photon,
i.e. Evib . 〈hν〉abs, then individual photon absorptions will cause pronounced upward jumps
in the grain temperature. In between photon absorptions substantial radiative cooling of the
grain will take place. As a result, the grain temperature T will be a strongly fluctuating
quantity, with large excursions above and below Teq.

Figure 12.5 shows the temperature histories of five graphitic grains over the span of about a
day. For the grain sizes shown here,Qabs(λ) ∝ a, so that the absorption cross section σd(λ) =
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Figure 12.5: Temperature evolution as a function of time over a period of 105 s (∼ 1 day) for carbona-
ceous grains of different radii in two radiation fields: the local starlight intensity U = 1 (left panel) and
a hundred fold the local starlight intensity U = 102 (right panel). For the definition of U see Eq. (6.8).
The importance of quantized stochastic heating is most pronounced for the smallest sizes. For these
grains the number of network formers NC (in this case single carbon atoms) is given as well. Notice
that the typical cooling time is fairly independent of particle size and about 104 s – best seen in the
a = 20 Å and U = 1 panel. From: Draine (2011).

πa2Qabs(λ) ∝ a3. From Fig. 12.4 we may estimate that for very small carbonaceous grains,
Qabs ' 2 a [µm] = 2 × 104 a [cm] at a mean frequency of the photons responsible for the
heating of ν = 3 × 1014 Hz (or 1µm). The rate (per second) at which these particles absorb
incident photons is given by

Rabs = 4π

∫ ∞
0

σd
Jν
hν

dν = 4π

∫ ∞
0

πa2Qabs
c

4π
U
uMMP83
ν

hν
dν

' 2× 104 πa3 c

hν
U uMMP83 ≈ 1× 10−6 U

(
a

10 Å

)3

, (12.30)

where we have adopted for the total energy density of the mean interstellar radiation field the
value 1.05 × 10−12 erg cm−3 from Table 6.1. The constant U is defined in Eq. (6.8). The
typical time between two successive absorptions of a photon is thus

τabs ≈ 1× 106 U−1

(
a

10 Å

)−3

s. (12.31)

For a 50 Å grain and U = 1 we find τabs ≈ 104 s.
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The time to cool below ∼5 K is independent of grain size for a . 200 Å and about

τrad ≈ 104 s (12.32)

The estimate shows that for grains smaller than about 50 Å, τrad < τabs. When a photon
absorption does take place, the small heat capacity of the grain results in a high peak tem-
perature. It is clear that one cannot speak of a representative grain temperature under these
conditions – one must instead use a temperature distribution function. For grains larger than
about 50 Å, τrad > τabs. Though absorption events occur more frequently, the temperature
rise at each event is reduced by the increased heat capacity, and the temperature varies over
only a small range, as seen for the a = 200 Å grain in Fig. 12.5.

Radiation from ‘super-heated’ dust grains has first been detected using IRAS. Apart from the
expected thermal emission from ‘large’ interstellar dust grains at temperatures of 15-20 K with
a peak in the flux near 100 µm wavelength, the IRAS satellite also observed strong emission at
shorter wavelengths that cannot be explained with these large cold grains. The explanation for
this extra emission at short wavelengths is of course very small grains, with sizes as small as
large molecules. This small particle population is dominated by PAHs, as later shown through
spectroscopy with ISO and Spitzer. PAHs and nano-grains are transiently heated to a temper-
ature of typically a few 100 K and emit photons at that temperature, before cooling down vary
rapidly (within seconds) to much lower temperatures. The maximum temperature that small
PAH molecules may reach by means of this quantum heating process is about 2000 K, when
exposed to an intense radiation field that emits FUV photon with an energy approaching 13.6
eV.

12.5 Dust mass diagnostics: FIR continuum emission

In a typical spiral galaxy, perhaps a third of the energy radiated by stars is absorbed by dust
grains and re-emitted in the infrared. The spectrum of this emission is determined by the
temperatures and composition of the dust grains.

The observed far-infrared emission of interstellar dust can be used to derive the total mass
of interstellar grains, provided we make some assumptions about the grain properties. Once
we have the total grain mass, we can derive the total gas plus dust mass by using the dust to
gas mass ratio (see e.g. Eq. 5.3, though more often a ratio of 1/150 is adopted). This kind
of calculation is often done in the literature, but it has some important uncertainties, related
to the assumptions usually made. An important one is that of an isothermal dust cloud. This
condition may be met in the diffuse ISM, but will certainly break down in dense molecular
clouds. Sub-millimeter radiation probes the innermost and coldest regions of such clouds,
where the bulk of the dust mass is and that can be assumed roughly isothermal. Hence, the
method can still be applied in these cases.
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Let us assume an optically thin dust cloud. The flux that we receive from this cloud is (using
Eq. 2.34)

Fλ =
4π ηλ V

4π d2
=
χλBλ(Td)V

d2
=
χ′λρdBλ(Td)V

d2
, (12.33)

where ρd is the dust density and V the volume of the dust cloud. In the second equality we
have used the Kirchhoff-Planck relation Eq. (2.58). d is the distance to the cloud. We find for
the dust mass

Md = ρdV =
Fλ d2

χ′λBλ(Td)
. (12.34)

Alternatively, using Eq. 12.23

Fλ =
4π ηλ V

4π d2
=
χλBλ(Td)V

d2
=
πa2

d2
QλBλ(Td)N, (12.35)

where N is the total number of spherical dust grain of uniform size, composition and temper-
ature in the cloud. a is the radius of these dust grains. The dust mass is given by

Md =
4π

3
a3 ρsN (12.36)

where ρs is the mass density of the dust particles. We may eliminate N from Eqs (12.35) and
(12.36) and rearrange terms such as to obtain an expression for the total dust mass. This yields

Md =
4ρsFλ d2

3Bλ(Td)

(
a

Qλ

)
(12.37)

Figure 12.4 shows that at long wavelengths the plotted ratios a/Qλ do not depend on grain
size – a consequence of the grains being small compared to the wavelength at which they
radiate. If the temperature is known (e.g. using the cold gas temperature diagnostics described
in Sect. 4.4) a flux measurement at a single wavelength suffices to compute the total dust
mass. If Td is not known, we may measure the flux at several wavelengths and constrain the
temperature fitting the overall behavior of the energy spectrum.

12.5.1 Dust to gas ratio diagnostics: FIR continuum emission

We can yet again derive the gas to dust mass ratio, as was done in Sect. 12.2.1. This time we do
not use the extinction at short wavelengths, but rather the thermal emission at infrared wave-
lengths. The infrared emission method is however more difficult to use than is the extinction
method.

For optically thin dust in the line of sight, the flux observed in a radius of angle θ at wavelength
λ is

Fλ = Iλ dω = ηλDπθ2 = Sλ τλ πθ
2 = Bλ(Td) τλ πθ

2, (12.38)

where we have used Eq. (2.14) to express the flux in specific intensity. D is the line of sight
path length. For an adopted dust temperature, the only unknown in this equation is τλ and
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so the optical depth of the dust grains can be determined. However, when the adopted Td is
too low, the optical depth will be larger than computed. Clearly, the accuracy of the method
critically depends on our knowledge of Td.

Borrowing from Eq. (12.20), we may write

Fλ = Bλ(Td)πθ2 3

4

(
Qext

a

)
ρd

ρs
D. (12.39)

This results in a value for the column density of the dust, ρdD. If for the same line of sight
we measure the column density in hydrogen, ρHD (or the total hydrogen column density
NH = ρHD/mH), we may apply Eq. (12.21) to obtain the dust-to-gas ratio fdg.
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Exercise 12.1

In Section 12.5 it is stated that if the temperature of the dust in a (dust) cloud is not
known, one may measure the flux at several wavelengths and constrain the temperature
fitting the overall behavior of the energy spectrum.

We consider dust grains for which the absorption efficiencyQabs is given by (see Fig. 12.4)

Qabs

a(µm)
= 0.014

(
λ

100µm

)−2

µm−1. (12.40)

This relation is valid for FIR wavelengths. As interstellar dust+gas clouds are very cold,
it is reasonable to assume that hc/λkT � 1 for this wavelength regime. We also assume
the dust grains emit radiation following a Planck function.

a) Show that for an optically thin cloud the flux behaves as

Fν(λ) ∝ λ−6

The implication is that far in the infrared such clouds may become undetectable due to
sensitivity limits of the instrument.

b) Would it be useful to measure several flux points in this regime in order to constrain the
dust temperature?

Exercise 12.2

a) Show that for a head-on elastic collision of a projectile particle on a target particle the
transferred energy is given by Eq. (12.5).

b) Why, for given mp and mt, is this the maximum energy that can be transferred in an
elastic collision?

c) For what mass ratio mp/mt is the transferred energy maximal?

Exercise 12.3

This could be a nice exam question. Sputtering acts to erode grains at a rate (see e.g.
Eq. 12.6)

da

dt
= −β · nH, (12.41)
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independent of a. We assume that β, often expressed in cm3 µm yr−1, is constant. nH is
the density of hydrogen particles. Suppose that the grain-size distribution at t = 0 is a
power-law

1

nH

dn

da
=

A0

amax

(
a

amax

)−p
0 ≤ a ≤ amax. (12.42)

The maximum grain size is amax.

a) After how long have all grains been eroded? Express this time tmax in terms of the given
quantities.

b) Let V0 be the initial volume of grain material per hydrogen nucleus. Express V0 in terms
of A0, amax, and p.

c) Obtain an algebraic expression for V (t)/V0 in terms of y ≡ ∆a/amax = β nH t/amax

and p. ∆a is the decrease in grain radius of particles that still exist after time t.

Exercise 12.4

We build on the results from the previous problem and consider sputtering in the hot
coronal gas (see e.g. Table 1.1). We assume p = 3.5, and amax = 0.3µm. Assuming
a temperature of 106 K, we find from Eq. (12.6) that β = 0.5× 10−6 cm3 µm yr−1. For
the hydrogen particle density we adopt nH = 0.01 cm−3

a) Make a plot of V (t)/V0 s a function of ∆a/amax.

b) Graphically (or, alternative, using a root-finding routine) estimate ∆a/amax such that
V/V0 = 1/2.

c) What time t is required to sputter away 50% of the mass in grains?

d) What time t is required to sputter away all of the mass in grains?
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