1.[20%]

Let T_2 be the tent map on [0, 1],

$$T_2(x) = \begin{cases} 2x, & 0 \le x \le 1/2, \\ 2 - 2x, & 1/2 \le x \le 1. \end{cases}$$

- (a) Give the definition, from Devaney, of the statement " T_2 is chaotic on [0, 1]"; T_2 is chaotic on [0, 1] if the following properties hold
 - i. periodic points are dense in [0, 1];
 - ii. T_2 shows sensitive dependence on initial conditions (there exists d > 0 so that for $x \in [0, 1]$ and U an open neighborhood of x, there exists $y \in U$, n > 0 with $|T_2^n(x) T_2^n(y)| > d$);
 - iii. T_2 is topologically transitive (for every relatively open U, V there is n > 0with $T_2^n(U) \cap V \neq \emptyset$);
- (b) Prove that T_2 is chaotic on [0, 1].

Note that [0,1] is partitioned into 2^n intervals P_i^n of length $1/2^n$ on which T_2 is monotone and maps onto [0,1]. On each interval P_i^n there is a point $T_2^n(y) = y$ (where the graph of T_2^n intersects the diagonal): it follows that periodic points are dense. Write $P_i^n(x)$ for the interval that contains x. Since $T_2^n(P_i^n(x)) = [0,1]$, in each $P_i^n(x)$ there exists y with $|T_2^n(y) - T_2^n(x)| > 1/2$. Sensitive dependence on initial conditions follows with d = 1/2. Finally for topological transitivity: each open U contains some P_i^n for n high enough, so that $T_2^n(U) = [0,1]$ intersects each open set V.

2.[30%]

Consider the family of maps

$$A_{\lambda}(x) = \lambda \arctan(x)$$

on the real line.

- (a) Identify the bifurcation that occurs at x = 0, $\lambda = -1$; Period doubling bifurcation.
- (b) Examine existence and stability of fixed and period points near x = 0, for λ near -1;

Consider the maps for x near 0 and λ near -1. The origin is a fixed point for all λ and has derivative -1 for $\lambda = -1$. Note that $A'_{\lambda}(0) = \lambda$ so that the origin is a stable fixed point for $\lambda > -1$ and unstable for $\lambda < -1$. A calculation shows $\frac{d^3}{dx^3}(A_{-1} \circ A_{-1})(0) = -4$. Consequently, by the period doubling bifurcation theorem, there is an attracting period two orbit if the fixed point at the origin is unstable. (This is clear from a picture of $A_{-1} \circ A_{-1}(x) = x - \frac{4}{6}x^3 + O(x^4)$, just consider what $A_{\lambda} \circ A_{\lambda}$ then looks like for λ near -1.) (c) Sketch the bifurcation diagram.

3.[20%]

Let $\Sigma_2 = \{0, 1\}^{\mathbb{Z}}$ be the set of two-sided sequences of 0's and 1's.

(a) Denote $\mathbf{s} = (s_i)_{i \in \mathbb{Z}}$, $\mathbf{t} = (t_i)_{i \in \mathbb{Z}}$. Prove that

$$d(\mathbf{s}, \mathbf{t}) = \sum_{i=-\infty}^{\infty} \frac{|s_i - t_i|}{2^{|i|}}$$

is a metric on Σ_2 ;

(b) Let Σ_2 be endowed with this metric. Prove that periodic points are dense for the shift operator σ on Σ_2 .

Let $\omega \in \Sigma_2$ and take a small ball B of radius ε around it. For N large enough, every sequence η with $\eta_n = \omega_n$ if $-N \leq n \leq N$, is contained in B. So is the period sequence η with $\eta_i = \omega_j$ with j = i + k(2N + 1) such that $-N \leq j \leq N$. Hence periodic points lie dense.

4.[30%]

Let L_A be a hyperbolic torus automorphism on the two-torus \mathbb{T}^2 , corresponding to the matrix $A \in GL(2,\mathbb{Z})$.

(a) Prove that periodic points are dense in \mathbb{T}^2 ;

Note that a point (p/q, r/q), p, q, r integers, is mapped, by L_A , to another point (P/q, R/q) with P, R integers. Since L_a is invertible, all these points with rational coordinates and denominator q are permuted. Each such point is therefore mapped back to itself by some iterate of L_A . As this holds for all q, periodic points are dense.

(b) Let $(x, y) \in \mathbb{T}^2$. Prove that both the stable and unstable manifold of (x, y) is dense in \mathbb{T}^2 ;

The unstable manifold of (x, y) is the projection (to the torus) of the line through (x, y) that is parallel to the unstable eigenvector of A (this line is not horizontal or vertical). Let y_n denote the y-coordinates of the intersections of this line with the verticals x = n. Then $y_{n+1}-y_n$ is irrational. Indeed, if $y_{n+1}-y_n = p/q$, then $y_{n+q}-y_n = p$ and $(n+q, y_{n+q})$ would correspond to the same point on the torus as (n, y_n) . This is not possible as the unstable manifold would then be closed and could not get longer under iteration by L_A . We know that for irrational circle rotations orbits are dense (there is no need to also prove this) and thus the points $y_n \mod 1$ lie dense in [0, 1]. The unstable manifold of (x, y) lies therefore dense in the torus. The stable manifold is dense by a similar argument, or by noting that it is the unstable manifold of $L_{A^{-1}}$.

(c) Prove that L_A is topologically transitive. Let U, V be open sets. Take a periodic point $(x, y) \in U$ of period k. Iterates of U under L_A^k are open sets that contain longer and longer pieces of the unstable manifold of (x, y) (which is fixed under L_A^k). Since the unstable manifold is dense, some iterate will intersect V.