1.[20%]

Let T_2 be the tent map on [0, 1],

$$T_2(x) = \begin{cases} 2x, & 0 \le x \le 1/2, \\ 2 - 2x, & 1/2 \le x \le 1. \end{cases}$$

- (a) Give the definition, from Devaney, of the statement " T_2 is chaotic on [0, 1]";
- (b) Prove that T_2 is chaotic on [0, 1].

2.[30%]

Consider the family of maps

$$A_{\lambda}(x) = \lambda \arctan(x)$$

on the real line.

- (a) Identify the bifurcation that occurs at $x = 0, \lambda = -1$;
- (b) Examine existence and stability of fixed and period points near x = 0, for λ near -1;
- (c) Sketch the bifurcation diagram.

3.[20%]

Let $\Sigma_2 = \{0, 1\}^{\mathbb{Z}}$ be the set of two-sided sequences of 0's and 1's.

(a) Denote $\mathbf{s} = (s_i)_{i \in \mathbb{Z}}$, $\mathbf{t} = (t_i)_{i \in \mathbb{Z}}$. Prove that

$$d(\mathbf{s}, \mathbf{t}) = \sum_{i=-\infty}^{\infty} \frac{|s_i - t_i|}{2^{|i|}}$$

is a metric on Σ_2 ;

(b) Let Σ_2 be endowed with this metric. Prove that periodic points are dense for the shift operator σ on Σ_2 .

4.[30%]

Let L_A be a hyperbolic torus automorphism on the two-torus \mathbb{T}^2 , corresponding to the matrix $A \in GL(2,\mathbb{Z})$.

- (a) Prove that periodic points are dense in \mathbb{T}^2 ;
- (b) Let $(x, y) \in \mathbb{T}^2$. Prove that both the stable and unstable manifold of (x, y) is dense in \mathbb{T}^2 ;
- (c) Prove that L_A is topologically transitive.