- 1.[25%] Let Σ_2 denote the space of sequences $(s_j)_{j \in \mathbb{N}}$ with $s_j = 0$ or 1, as usual endowed with the product topology. Let $\sigma : \Sigma_2 \to \Sigma_2$ be the (left) shift map. Let Σ' consist of all sequences in Σ_2 satisfying: if $s_j = 0$ then $s_{j+1} = 1$.
 - (a) Show that σ preserves Σ' .
 - (b) Show that periodic points of $\sigma|_{\Sigma'}$ are dense in Σ' .
 - (c) Find and prove a recursive formula for the number of fixed points of σ^n in terms of the number of fixed points of σ^{n-1} and σ^{n-2} .

The forbidden code in Σ' is 00. The shift of a code without 00 obviously does not contain 00 and so lies in Σ' . To prove that periodic points lie dense, take any sequence $t \in \Sigma'$ and let U be a neighborhood of it. We must find a periodic point in U, which the following argument achieves. For n large enough, any code from Σ' that starts with $t_0 \ldots t_n$ is in U. Now take for sthe periodic code that repeats the block $t_0 \ldots t_n 1$ (the symbol 1 is included to avoid the possibility that $t_n t_0 = 00$). Finally, to obtain the recursive formula, recall that the number N_n of fixed points of σ^n equals the trace of A^n with $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Note that $A^2 = A^1 + A^0$ and by induction $A^{n+2} = A(A^{n+1}) = A(A^n + A^{n-1}) = A^{n+1} + A^n$ for $n \ge 1$. So $N_{n+2} = N_{n+1} + N_n$.

2.[25%]

- (a) Prove that two different lifts of a continuous circle map must differ by an integer.
- (b) Prove that if F is a lift of a continuous circle map f, then so is F(x) + k where $k \in \mathbb{Z}$.

Write f for the circle map on \mathbb{R}/\mathbb{Z} , let π be the canonical projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$; $\pi(x) = x \mod 1$. A lift F satisfies $\pi \circ F = f \circ \pi$. If F and G are two lifts, then $\pi \circ F = \pi \circ G$, i.e. $F(x) = G(x) \mod 1$. So F(x) and G(x) differ an integer, and since F and G are continuous this integer is the same for all x. For the second part, if F is a lift then $F(x) + k \mod 1 = F(x) \mod 1$, so F(x) + k is a lift as well.

3.[25%] Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous map. A point p is recurrent for f if, for any open interval J about p, there exists n > 0 such that $f^n(p) \in J$. Consider the map $f_{\mu}(x) = \mu x(1-x)$ when $\mu > 2 + \sqrt{5}$ and let Λ_{μ} denote the maximal invariant set of f_{μ} in [0, 1]. Show the existence of a point in Λ_{μ} that is not recurrent.

Take p = 1, then $f^n(p) = 0$ for all $n \ge 1$ and p lies in Λ_{μ} and is not recurrent. Several variants of this observation are possible.

- **4.**[25%] Let $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ be a smooth one-parameter family of functions with $f_{\lambda_0}(0) = 0$ and $f'_{\lambda_0}(0) \neq 1$.
 - (a) Show that there is a neighborhood N of λ_0 and a curve $p: N \to \mathbb{R}$ with $p(\lambda_0) = 0$ and $f_{\lambda}(p(\lambda)) = p(\lambda)$ for $\lambda \in N$.

(b) Give an expression for $p'(\lambda_0)$.

Consider the equation $G(\lambda, x) = f_{\lambda}(x) - x$. We seek solutions to $G(\lambda, x) = 0$ near $G(\lambda_0, 0) = 0$. Since $\frac{\partial}{\partial x}G \neq 0$ in $(\lambda_0, 0)$ by the assumption, the implicit function theorem gives the function p so that $G(\lambda, p(\lambda)) = 0$. Differentiate $\frac{d}{d\lambda}G(\lambda, p(\lambda)) = \frac{\partial}{\partial\lambda}f_{\lambda}(p(\lambda)) + [f'_{\lambda}(p(\lambda)) - 1]p'(\lambda) = 0$. Hence $p'(\lambda_0) = -\frac{\partial}{\partial\lambda}f_{\lambda}(0)/[f'_{\lambda}(0) - 1]$ calculated in $\lambda = \lambda_0$.